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Abstract—In the next few decades, solar PV and 

electric vehicles (EVs) will become a major potion 

in Thailand’s power system. In this paper, we aim 

to study the impact of future solar PV installation 

and EV charging on Thailand’s power system and 

to provide the efficient load demand management 

policy. Firstly, the future power load demand, solar 

PV installation, and the number of EVs are 

forecasted by ARIMA models. Next, various 

scenarios of EV charging demand are generated by 

varying the charging schedule which is controlled 

by a smart grid system and charging policy. 

Future load demand curve in each EV charging 

scenario is analyzed based on demand response 

and the effect to electricity power producer is 

discussed. 
 

Index Terms—Demand Response, Electricity 

Demand, Electric Vehicles (EVs), Solar PV, 

Thailand’s Power System 

I. INTRODUCTION 

Renewable energy is the key point in a current 

electric power system. Plug-in renewable energy 

such as solar PV and wind power are encouraged 

over the past decade. Each country employs different 

renewable energy types depending on their location 

and technology. Moreover, each renewable type has 

different power output behavior which leads to the 

changing of production and demand curve. The most 

prevalent renewable energy type in Thailand is solar 

power since it has been supported by the 

government. The power output from solar energy 

make the load demand in midday decrease. 

Another factor that will significantly affect the 

demand curve in the near future is the consumption 

from the electric vehicle (EV), which starts to break 

into the global automobile market. Although the 

increasing number of EV cars implies the  

 

 

decreasing of oil fuel consumption, EV car charging 

will cause the considerably increase in the electricity 

consumption.  

If the renewable energy and EV charging enter 

the power system without control, the demand may 

be extremely high or extremely low in some periods. 

This leads to the high spinning reserve power. 

Therefore, the peaks of total load demand should be 

maintained or reduced to satisfy the demand 

management based on demand response. This can be 

accomplished by scheduling the EV charging to 

avoid the peak load periods and provide the most 

equally distributed load demand. 

In this paper, the objective is to analyze the 

future effect of solar power and EV charging on 

Thailand’s daily electricity demand and to provide 

policy recommendation on EV charging schedule. 

First, the future value of load demand and solar PV 

installation are forecasted by ARIMA model using 

historical data. Next, scenarios of charging are 

determined under the concept of a smart charging 

system. Then, the effect of EV charging schedules 

on Thailand’s load demand with solar power are 

plugged into the system is analyzed. The scenario 

where the load demand is the most equally 

distributed throughout the day will be recommended. 

The benefit of the smart EV charging system will be 

discussed by comparing with other net load demand 

scenarios. 

The remaining paper is organized as follows. 

The literature review about the power system, solar 

penetration, and electric vehicles is in the next 

section. Next, the research methodology which 

consists of the forecasting technique for the daily 

demand and the scenarios generation of EV 

charging is  presented.  Last ly,  the  research 

results and conclusion are discussed. 

 

Received: August 14, 2019/ Revised: September 18, 2019/ Accepted: September 18, 2019 



INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND TECHNOLOGY (ISJET), Vol. 4, No. 1 January-June 2020 22 

 

Indexed in the Thai-Journal Citation Index (TCI 2) 

II. LITERATURE REVIEW 

The solar PV power has penetrated Thailand’s 

power system since 2002 and has significantly 

increased since 2011 [1]. References [2] and [3] 

shows that the solar PV installed in Thailand’s 

industry sector would reach 3,131 MW and the solar 

PV installed in Thailand’s household sector would 

reach 2,656 MW in 2037. Consequently, the 

projected power production from the installed solar 

PV would be large enough to affect the production 

planning of power system. The uncertainty of solar 

PV output made the power system management 

more complex. Good forecasted solar PV output 

data can help ease the production planning of the 

power system. 

There are many research studies trying to forecast 

the power output from solar PV with various methods. 

Mellit, Benghanem, and Kalogirou proposed a 

combined method to forecast the solar radiation that 

includes wavelet theory and neural networks method 

[4]. In another study by Chen, Duan, Cai, and Liu, 

the daily solar PV output was forecasted by artificial 

neural network based on type of the weather [5]. 

According to Perez et al. in [6], they evaluated the 

solar irradiance that directly related to solar PV 

power output. Their result showed that as the 

number of solar PV plants increased, the fluctuate of 

solar PV output decreased.  

In addition to the forecasting methods that were 

proposed to increase the accuracy, many production 

models were also proposed to handle the uncertainty 

from solar PV output. Osório, Lujano-Rojas, Matias, 

and Catalão, proposed the unit commitment problem 

with the penetration of renewable energy. A new 

scenario-based method was applied to generate 

scenarios of wind and solar. Then, they solve the unit 

commitment problem with these scenarios by 

priority list method [7]. Kaewpasuk, Intiyot, and 

Jeenanunta introduced the stochastic recourse model 

for unit commitment problem that integrated with 

renewable energy and analyzed the relation between 

the amount of renewable penetrated and the spinning 

reserve [8]. Moreover, Liu, Botterud, Zhou, and Du 

proposed the unit commitment model with a fuzzy 

variable in renewable output energy and reserve 

power, and then solved it with the fuzzy max-min 

method [9].  

Electric vehicles (EVs) were recently introduced 

to automobile market and got a lot of attention. 

According to IEA report in [10], EVs would be 

promoted to reach 220 million cars in 2030. Having 

EVs in the system seems to affect the pattern of load 

demand. Since the demand response of the power 

system management must be preserved [11], the 

load demand when EV car charging is included 

should be equally distributed throughout the day. 

Qian et al. in [12] simulated EV charging effects on 

load demand by simulating daily load demand of 

power system where EV charging was assumed to 

be normally distributed. According to [13], the 

impact of EVs and solar PV on the electricity 

industry was studied where the overall productivity 

of the electricity industry was determined by          

a Monte-Carlo-based portfolio model. The solar PV 

output was simulated by the system advisor model. 

Their scenarios of EV charging were separated into 

unmanaged and managed charging. In [14], Yang, 

Li, Niu, and Xue studied the unit commitment 

problem of power systems with renewable  

generations and EV plug-in. Scenarios of renewable 

generating and EV charging were generated by Latin 

hypercube sampling and solved by a meta-heuristic 

method. The management of load demand for 

demand response is also studied in smart grid. In 

[15], Nguvauva and Kittipiyakul proposed an 

algorithm to schedule EV charging to reduce the 

peak demand in the evening. The limitation of this 

research was that the charging station must be smart 

charging, meaning the power charging must be fully 

controlled by the smart grid.  

III. RESEARCH METHODOLOGY 

A. Forecasting electricity demand data 

The study began with preprocessing the data 

which were then used for forecasting the future 

yearly and daily demand by ARIMA model. The 

data of load demand power were obtained from the 

Electricity Generating Authority of Thailand 

(EGAT) that is the major electricity production 

sector in Thailand. The obtained data consisted of 

yearly load demands and daily load demands. The 

future yearly load demands were forecasted using 

historical data directly whereas the future daily load 

demands were forecasted using preprocessed data. 

In the preprocessing of the daily data, the daily load 

demands were classified into 7 groups based on the 

pattern of daily load demand which were summer-

weekday group, summer-weekend group, rainy-

weekday group, rainy-weekend group, winter-

weekday group, winter-weekend group, and long-

vocation group. The pattern of daily load demands 

in the same group had similar peak and off-peak 

periods. Therefore, a day in each group can represent 

other days in the same group. In this study, the daily 

demand from 2006 to 2017 was collected as the data 

for the forecasting. Then, the ARIMA model with 

48-time-period cycles was used to forecast the future 

demands. 

B. Forecasting solar PV daily production 

Installed solar PV in Thailand has been started in 

2002. The cumulative installed capacity was only 3 

MW in 2002 and increased to 2,667 MW in 2017 [1]. 

Installed capacity from 2002 to 2017 from GIZ was 
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the data for an ARIMA model of the  forecasting 

process. Not only installed solar PV but also solar 

PV production was forecasted. A solar PV 

production that directly affects the load demand can 

be calculated from the installed capacity, a function 

of external factors, and efficiency of solar PV 

technology. According to the report from [16], a 

value of the efficiency of solar PV was less than 10 

percent in 2007 and increased to 46 percent in 2017. 

By this historical data, the value of efficiency was 

estimated by linear regression model and 

approximated to be 80 percent in the next 10 years. 

In this research, the external factors consist of 

irradiance and temperature, whose function values 

were calculated from historical installed solar PV 

and its production data. Finally, the solar power was 

computed from the product of solar PV installed, the 

efficiency value, and the value of the function of 

external factors in each time period. 

C. Forecasting EV charging demands 

Forecasting EV charging demand requires the 

estimation of the number of EVs and their battery 

capacities in the future as well as the future amount 

of each type of the charging systems. In this study, 

the forecasted amounts of EVs were obtained from 

the previous study of Electricity Generating 

Authority of Thailand, Metropolitan Electricity 

Authority, and Provincial Electricity Authority in 

[17]. However, the forecasted EV data did not 

specify their battery capacities. To approximate the 

proportion of EV battery capacities in the future 

market, the data from EVs plug-in U.S. data in [18] 

were used. This data contained the current number 

of EVs with more than 28 EV models e.g. Tesla 

model X, BMW Active E, Nissan LEAF, and BMW 

i8. Knowing the model of an EV implies knowing its 

battery capacity. Hence this can be used to serve our 

purpose. The amount of charging systems was 

assumed to be the same as the number of EVs. 

However, proportion of each type was estimated 

using the data from [10], which classified the types 

of charging system of U.S. into 3 types i.e. level-1 

charging (AC current with 3.7 kW), level-2 charging 

(AC current with 22 kW), and fast charging (AC 

current or tri-phase with 43.5 kW). 

D. Generating scenarios of load demand, solar 

PV power, and EV charging 

The forecasted values of load demands, solar PV 

installed, and EV charging in the previous section 

were combined to generate the possible net load 

demand of the power system. Firstly, the simulation 

of load demand and solar PV were generated from a 

normal distribution with mean f and standard 

deviation (u - l)/6where f, u, l are the forecasted 

value, upper bounded forecasted value at the 80% 

confidence interval, and lower bounded forecasted 

value at the 80% confidence interval, respectively. 

The simulation was generated for 500 replications. 

After scenarios of load demand with solar PV 

output were generated, scenarios of EVs charging 

were set up. EV models and charging systems were 

grouped by their battery capacity and type of 

charging station, respectively. This study separated 

EVs model into three groups based on the size of the 

battery regardless of their battery type. The first 

group was EVs with small battery whose capacity 

less than 10kWh. The second group was EVs with 

medium battery whose capacity was 10-30 kWh. 

The third group was EVs with large battery whose 

capacity was more than 30 kWh.  

This study assumed that every EV was charged 

fully only 1 time a day and the number of charging 

stations equaled to the number of EVs. For 

simplicity, each EV was assigned to only one 

charging station and vice versa. In this study, it was 

assumed that the large size battery group was 

assigned to the fast charging stations for charging. If 

the number of large size battery EVs is larger than 

the number of fast charging stations, the remaining 

large size battery EVs will be assigned to the level-

2 charging stations, and so on. On the other hand, 

if the number of large size battery EVs is less than 

the number of fast charging stations, the remaining 

fast charging stations will be assigned to the medium 

size battery EVs and so on. Given the forecasted 

values, the EV charging was classified into 5 groups 

as shown in Error! Reference source not found.. 

In order to generate scenarios of EVs charging, the 

period of charging in each group was varied and 

different distributions was applied, namely normal 

distribution and uniform distribution. Initially, 

scenarios of EVs charging were set up based on the 

current charging system power consumption and 

human behavior. After that, more scenarios were 

generated by changing the period of charging to 

generate the load demand corresponding to the 

demand response. The period of charging for every 

station was scheduled under a concept of smart EV 

charging in [15]. 

Lastly, all scenarios of EV charging schedules 

were applied to 500 simulated of load demands with 

solar PV output for each demand group that was 

assumed in section forecasting electricity demand 

data. To achieve the best demand response of 

demand management, the load demand curve should 

be flat as much as possible because it requires less 

ramp up/ramp down in the generator units. 

E. Analyzing the future load demand following 

solar PV installation and EV charging schedule 

To analyze the range of load demand in the future, 

the extreme case of them also observed. Scenarios of 

load demand and power output of solar PV were 

obtained from three values, namely the forecasted 



INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND TECHNOLOGY (ISJET), Vol. 4, No. 1 January-June 2020 24 

 

Indexed in the Thai-Journal Citation Index (TCI 2) 

value, upper bounded forecasted value, and lower 

bounded forecasted value at the 0.8-confidence 

interval. Scenarios of load demand integrated with 

solar PV consisted of two extreme cases and a 

normal case. The first extreme case, denoted by D1, 

was a combination of the upper bounded forecasted 

value of load demand and lower bounded forecasted 

value of solar PV output. The second extreme case, 

denoted by D3, was a combination of the lower 

bounded forecasted value of load demand and upper 

bounded forecasted value of solar PV output. The 

normal case, denoted by D2, was obtained from a 

combination of the forecasted value of load demand 

and solar PV output. For example, assumed that the 

forecasted value, lower bounded forecasted value, 

and upper bounded forecasted value in midday 

period of load demand were 26.7GWh, 25.4 GWh, 

and 28.1 GWh, respectively and the forecasted 

value, lower bounded forecasted value, and upper 

bounded forecasted value in midday period solar PV 

output were 3.5 GWh, 3.2 GWh, and 3.8 GWh, 

respectively. Then, a total demand in a midday of 

scenario D1 was 24.9 GWh, which was calculated 

by subtracting 3.2 GWh of lower bounded 

forecasted value of solar PV output from 28.1 Ghof 

upper bounded forecasted value of load demand. 

Similarly, total demand in a midday of scenario D2 

and D3 were 23.2 GWh and 21.6 GWh, respectively. 

All EV charging schedules were applied to 

scenarios D1–D3. The scenario with the smallest 

fluctuation in load demand throughout the 48-time 

period provided the best charging policy. The range 

of the future net load under the best policy was also 

recommended. 

IV. RESEARCH RESULTS 

A. Forecasting electricity demand results 

The load demand forecasting process started 

with yearly demand forecasting. The result of yearly 

demand forecasting is shown in Fig. 2. For example, 

in 2028, yearly consumption was approximately 260 

GWh. In 2038, yearly consumption was more than 

310 GWh. The trend of yearly consumption was 

almost linearly increasing.  

Examples of the forecasted daily load demands from 

summer-weekday group are shown in Fig. 3. The 

patterns of peak and off-peak periods were similar in 

every year e.g. the evening peak period occurs 

between 8-11 pm. Meanwhile, the mean of load demand 

increased every year corresponding to the trend of the 

yearly consumption. 
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Fig. 2. Yearly power consumption 

 
 

 
Fig. 3.  Forecasted daily load demand of summer-weekday. 

 
B. Forecasting solar PV daily production results 

Solar PV daily productions in Thailand were 

approximated in the second process at the 

efficiency of solar production equal to 80%. The 

examples of solar daily production are shown in Fig. 

4. This figure illustrates similar production pattern 

each year i.e. the solar power has high power output 

at midday and has zero power output in the evening 

until sunrise. 

C. Forecasting EV charging demand results 

For EV data, the proportions of EV cars based on 

battery size were investigated and are shown in  Fig. 

5. In the early stages, the medium group was a 

majority but as time went by, its size stayed 

approximately the same and no longer the dominant 

one. On the contrary, the small and the large groups 

which came later but grew faster than the medium 

group. For example, the number of EV cars in large 

group increased approximately 65% from 2014 to 

2015. The data from Fig. 5 was used to forecast the 

proportion of each group in future based on linear 

regression and approximation. In our forecast, we 

assume the proportion of each group stayed the same 

for 2018-2038 although the number of EV cars 

increased. As the result, the forecasted proportions 

were 60%, 30%, and 10% for large, medium, and 

small size battery groups, respectively. 



INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND TECHNOLOGY (ISJET), Vol. 4, No. 1 January-June 2020 26 

 

Indexed in the Thai-Journal Citation Index (TCI 2) 

 

 
Fig. 4.  Forecasted solar PV daily production 

 

 
Fig. 5. U.S. EV sales in each battery size. 

 

The proportions of EV charging stations were 

obtained from U.S. charging station in [10]. Their 

proportions of level-1, level-2, and fast charging 

were 6%, 80.7%, and 13.3%, respectively. Groups 

of EV charging were established by applying the 

assumption shown in section 3.4 to the proportion of 

EV cars and charging stations which were obtained 

in the previous step. The proportion of each charging 

group are shown in Error! Reference source not 

found.. Moreover, the power consumption and 

charging time were also calculated and are shown in 

this table. 

D. EV charging schedules 

In this section, we discuss how to generate the 

EV charging scenarios. The scenarios were set up 

under the smart charging system where the power of 

charging was controllable by the policy maker. 

These scenarios were generated by varying the 

starting and ending charging time period of each  

group that depends on 1) their power consumption  

 

of EV charging, 2) the pattern of load demand, and 

3) solar power output.  In this paper, we assumed the 

starting charging time of EV was classified into          
6 types that were 6 p.m. –12 a.m. called Nighttime,  

6 a.m. –7 p.m. called Solar operation time, 12 a.m. – 

6 a.m. called After midnight time, 7 p.m. – 6 a.m. in 

next day called Non-solar operation time, 4 a.m. – 9 

p.m. called Extended solar operation time, and All 

day. The distribution of the starting and ending 

charging time was either normally distributed [N] or 

uniformly distributed [U]. For example, the first 

scenario (S1) assumes that the starting charging 

times of all groups occur in 6 p.m. – 12 a.m. and are 

distributed normally during that period with mean at 

9 p.m. and S.D. equals 1 hour represented by [N] 

Night. This scenario did not involve smart charging 

and therefore was the most possible situation in 

current technology of EV charging station.  
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TABLE I 

THE CHARGING PERIOD OF EACH EV CHARGING GROUP 

EV charging Group 1 2 3 4 5 

Detail of charging 
Small size battery 

by level1 

Small size battery 

by level2 

Medium size 

battery by level2 

Large size battery 

by level2 

Large size battery 

charging by fast 

charging 

Percentage respect whole 

EV car 
6% 4% 30% 46.70% 13.30% 

Charging time(hour) 3 0.5 1 4 2 

Total power 

consumption of 

EV charging 

(MWh) 

202

8 
541.24 357.58 5363.66 33397.73 9403.47 

203

8 
5097.53 3367.74 50516.1 314546.89 88563.9 

- 

S1 
[N] Night  

(6 p.m. – 12 a.m.) 
[N] Night [N] Night [N] Night [N] Night 

S2 
[N] After midnight 

(12 a.m. – 6 a.m.) 
[N] After midnight  [N] After midnight  

[N] Solar operation 

time 
[N] After midnight  

S3 
[N] Solar operation 

time 

[N] Solar operation 

time 

[N] Solar operation 

time 

[N] Solar operation 

time 

[N] Solar 

operation time 

S4 [U] All day [U] All day [U] All day 

[N] Solar operation 

time: 40% 

[U] All day: 60% 

[U] All day 

S5 
[U] Non-solar 

operation time 

[U] Non-solar 

operation time 

[U] Non-solar 

operation time 

[N] Extended 

solar operation 
time (4 a.m. - 9 p.m.) 

[N] Extended solar 

operation time 

The motivation of these smart charging scenarios 

is as follows. If the solar power output is high, the 

pattern of the total load demand in the midday will 

be a concave curve. Therefore, the starting charging 

times should be moved to the solar operation time in 

order to keep the load demand most equally 

distributed throughout the day. Since the total 

charging power consumption was dominated by the 

3rd, the 4th, and the 5th groups, these groups had 

high priority when the moving of starting charging 

times was required. The distribution of the staring 

charging times was chosen so that the total load 

demand curve was flat as much as possible. For 

example, in case that the period of the starting 

charging time was the same as the solar operation 

time, the distribution of the staring charging times 

should be normal since the solar power output curve 

throughout the day is similar to the curve of a 

normal distribution function. The resulting scenarios 

(S2 – S5) are shown in Error! Reference source 

not found.. 

E. The effect of solar PV and EV charging 

schedule on future load demand 

To study the effect of solar PV and EV charging 

schedule on future load demand, the scenario of no 

EV charging (S0), the scenario of current charging 

without any control policy(S1), and four scenarios 

of charging schedule controlled by smart charging 

system (S2 – S5) were applied to the 500 simulated 

of load demands integrated with solar power for 

each load demand group and compared. The results 

of net load demand in 2028 and 2038 are shown. To 

investigate the effect of EV and solar PV on load 

demand, the average of the standard deviation value 

for each load demand group and each EV charging 

scenario were observed. The standard deviation 

value of each case in 2028 and 2038 are shown in 

Error! Reference source not found. and Error! 

Reference source not found., respectively. The 

values in boldface indicate the best scenarios for 

each demand group. 
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TABLE II 

AVERAGE OF STANDARD DEVIATION VALUE IN 2028 

Demand groups 

Scenarios of EV charging 

S0 S1 S2 S3 S4 S5 

summer weekday 3,628.00 5,039.05 2,838.77 2,611.79 3,300.65 2,870.95 

summer weekend 3,820.78 8,521.57 3,472.60 2,686.42 2,984.56 5,239.27 

rainy weekday 3,575.83 4,996.99 2,861.31 2,698.25 3,274.01 2,894.44 

rainy weekend 3,739.01 5,189.15 3,015.17 2,765.65 3,424.20 3,000.87 

winter weekday 3,476.63 4,831.05 2,673.62 2,493.29 3,154.76 2,727.99 

winter weekend 3,701.55 5,044.42 2,914.64 2,597.10 3,356.40 2,873.51 

vocation 4,744.24 5,974.84 3,964.34 3,421.17 4,358.47 3,788.03 

 

 
TABLE III 

AVERAGE OF STANDARD DEVIATION VALUE IN 2038 

Demand groups 

Scenarios of EV charging 

S0 S1 S2 S3 S4 S5 

summer weekday 5,789.12 21,650.39 7,620.14 11,126.93 3,311.22 6,178.50 

summer weekend 6,017.89 26,031.04 3,332.72 10,824.41 5,822.83 2,1843.14 

rainy weekday 5,729.38 21,646.66 7,881.65 11,447.79 3,531.11 6,519.59 

rainy weekend 5,888.68 21,816.48 7,835.64 11,187.51 3,492.68 6,234.09 

winter weekday 5,569.14 21,372.64 7,580.27 11,232.94 3,128.48 6,211.04 

winter weekend 5,865.24 21,560.52 7,639.80 10,924.04 3,221.46 5,869.64 

vocation 7,034.31 22,230.16 7,657.91 9,930.80 3,958.57 4,935.71 

The result from Error! Reference source not 

found. and Error! Reference source not found. 

shows that the scenario S1, in which all groups were 

charged with the starting times normally distributed 

from 6 p.m. to 12 a.m. has the highest standard 

deviation value in every case. In 2028, the lowest 

average value of the standard deviation value of each 

demand group comes from applying EV charging 

scenario S3 to the load demand. Since solar power 

plug-in makes the net load demand dropped during 

midday, charging EVs during that time as in S3 can 

fill up the drop demand. In 2038, EV charging 

scenario S4 gives the smallest standard deviation 

value. Due to the amount of solar penetration, 

appropriate amount of charging with the starting 

times normally distributed in the solar PV  

operation time of the biggest group can fill in the 

drop of the net load demand. Others are charged with 

starting times uniformly distributed all day and 

therefore did not affect the standard deviation value 

much. Examples of the comparison among the 

netload demand without EV charging, the demand 

without controlled EV charging schedule, and the 

demand with controlled EV charging schedule for 

2028 and 2038 for each demand group are shown in 

Fig. 6 to Fig. 11. The results illustrate that the 

charging of EV with appropriate timing leads to a 

more effective load demand management of the 

power system which will provide efficient generator 

units operations. 
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Fig. 6. Total demand of summer weekend in 2028 

 

 
Fig. 7. Total demand of rainy weekend in 2028 

 

 
Fig. 8. Total demand of vocation day in 2028 
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Fig. 9. Total demand of summer weekday in 2038 

 

 
Fig. 10. Total demand of winter weekend in 2038 

 

 
Fig. 11. Total demand of vocation day in 2038



INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND TECHNOLOGY (ISJET), Vol. 4, No. 1 January-June 2020 31 

 

Indexed in the Thai-Journal Citation Index (TCI 2) 

 

TABLE IV 

THE STANDARD DEVIATION VALUE OF LOAD DEMAND FOR EACH EV CHARGING SCHEDULE SCENARIO (MWH) 

Year  2028 2038 

   Load demand with solar 

 power cases 

EV charging scenario 

D1 D2 D3 D1 D2 D3 

without EV charging 
2178.587 3422.03 5116.309 2007.732 5335.304 9884.803 

S1 
3730.570 4890.604 6435.925 19192.840 21532.410 24570.980 

S2 
1649.608 2566.629 4237.480 10010.450 7270.744 7094.198 

S3 
2094.521 2312.019 3715.659 15245.340 10885.570 7027.118 

S4 
2028.445 3071.839 4718.059 4374.174 2393.391 6093.654 

S5 1986.199 2602.342 4135.414 10186.260 5736.129 2618.362 

F. The resulting future load demand following 

solar PV installation and EV charging schedule 

To construct the future load demand range, the 

most equally distributed of the load demand with 

solar power and EV charging in the three cases D1 – 

D3 was analyzed. The result from Table IV shows 

that the scenario S1, in which all groups were 

charged with the starting times normally distributed 

from 6 p.m. to 12 a.m., has the highest standard 

deviation value in every case. For D1 case in 2028, 

the lowest standard deviation value comes from 

applying EV charging scenario S2 to the load 

demand. Since the D1 case comes from the upper 

bound of load demand and the lower bound of solar 

power, the peak of the resulting load demand 

appears from 8 p.m. to 11 p.m. The scenario S5 

makes the net load demand for this case fluctuated 

the least because the starting times are not in the 

peak period i.e. the most power consumption group 

starts charging during solar operation time while the 

starting times of other groups are normally 

distributed after midnight until 6 a.m. For the cases 

with more solar PV penetration (D2 and D3), the 

lowest standard deviation value comes from applying 

EV charging scenario S3. Since solar power plug-in 

makes the net load demand dropped during midday, 

charging EVs during that time as in S3 can fill up the 

drop demand. In 2038, the projected net load demand 

curve of D1 is almost flat. Thus, EV charging 

scenario S4, where all groups were charged with the 

starting times uniformly distributed all day, cause 

the curve fluctuated the least. The standard deviation 

value of the load with EV charging has the lowest 

value, which is the same as the load without EV 

charging. For load demand D2 in 2038, EV charging 

scenario S4 gives the smallest standard deviation 

value. Due to the amount of solar penetration, 

appropriate amount of charging with the starting 

times normally distributed in the solar PV operation 

time of the biggest group can fill in the drop of the 

net load demand. Others are charged with starting 

times uniformly distributed all day and therefore did 

not affect the standard deviation value much. In the  

 

case D3, the solar power penetration is very high. 

Therefore, EV charging scenario S5 which mainly 

charging in extended solar operation time give the 

smallest value of standard deviation. Scenario D2 

that includes the forecasted value of load demand 

and solar power was the most possible load demand 

whereas scenarios D1 and D3 that were the extreme 

cases were the possible largest and smallest load 

demand in the future,  respectively. Therefore, 

the estimated power load demand in 2028 and 2038 

come from the demand which is the most equally 

distributed in case D2 whereas the possible largest 

and smallest value come from the most equally 

distributed cases D1 and D3, respectively. The 

estimated power load demand range of 2028 is 

shown in Fig. 12. In this figure, the estimated load 

demand was generated from the load demand case 

D2 integrated with the scenario of EV charging 

S3.The possible largest was generated the from load 

demand case D1 with the scenario of EV charging 

S2 and the possible smallest was generated from the 

load demand case D3 with the scenario of EV 

charging S3. The estimated power load demand 

range of 2038 is shown in Fig. 13. In 2038, the 

estimated power load demand was generated from 

the load demand case D2 with the scenario of EV 

charging S4. The possible largest and smallest were 

generated from the load demand case D1 with the 

scenario of EV charging S4 and the load demand 

case D3 with the scenario of EV charging S5, 

respectively. 

The peak of the estimated load demand is also 

considered. The most possible load demand when 

solar PV and EV integrated to the system in 2028 

has peak 34,312 MW whereas the peak of possible 

largest load demand is 38,646 MW and the peak of 

possible smallest load demand is 29,978 MW. In 

2038, the most possible load demand when solar PV 

and EV integrated to the system has peaked at 

47,732 MW. The peak of possible largest load 

demand is 56,265 MW and the peak of possible 

smallest load demand is 38,457 MW. 
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Fig. 12. Estimated power consumption when controlled EV charging is scheduled in 2028. 

 

 
Fig. 13.  Estimated power consumption when controlled EV charging is scheduled in 2038. 

V. CONCLUSION AND DISCUSSION 

In this paper, the effect of solar PV and EV 

charging on daily load demand was studied. The 

possible load demand in the future was analyzed by 

varying the periods and distribution of EV charging. 

The future load demand and solar PV installation 

were forecasted by ARIMA model. Scenarios of EV 

charging were generated under the concept of a 

smart charging system and integrated into the load 

demand with solar power and then the most equally 

distributed scenario of load demand was observed 

and applied to construct the estimated load demand 

range in the future. 

The result shows that when the solar power is 

integrated to the power system, the net load demand 

in solar operation time is dropping. The more 

increase in solar PV installation in 2028 and 2038 

implies the more decrease of the net load demand in 

solar operation time period. The consumption from 

the EV charging integrated to the power system 

increases the total consumption of load demand. If 

the EV charging plugs into the power system 

without any control, the power consumption from 

EV charging will increase the peak of load demand  

 

at night that affects the stability of the power 

system. More effective demand management 

provides a more stable system. Therefore, the 

appropriate net load demand could only be obtained 

from the controlled scheduling of EV charging by 

the smart charging technology. This is the key future 

technology to provide better EV charging policy. It 

can be suggested that the EV should be promoted 

with the controlled charging period. From the most 

equally distributed load demand in results, the 

suitable charging period is during the solar operation 

period (6 a.m. – 7 p.m.) and after midnight period (12 
a.m. – 6 a.m.). Alternatively, if the smart charging 

technology is not a viable option, the government 

may use the pricing policy to provide incentive for 

EV charging during the certain period. 

From the point of view of the production sector, 

the most equally distributed load implied the 

stability of power production and reservation. 

Therefore, the best scenario that is suggested in this 

research can be applied to be the EV charging policy 

in the future. Moreover, the estimated load demand 

range can be the support information for power 

system management. For example, the peak of 
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forecasted total load demand in 2028 is 35,000 MW 

approximately, then EGAT which has current 

capacity of only 25,000 MW should have a plan for 

the increase of total consumption in 2028. 

REFERENCES 

[1] P. Sundarajumpaka. (2018). Thailand Solar PV Policy 

Paper 1/2018, Deutsche Gesellschaft für Internationale 

Zusammenarbeit ,  Germany.  [Online].  Available: 

http://www.thai-german 

cooperation.info/admin/uploads/publication/55b1dd373

23b0e40b63b2853f260a831en 

[2] W. Pannakkong, P. Saophan, R. Chaysiri, J. Tang, J. 

Buddhakulsomsiri, P. Parthanadee, C. Jeenanunta, and H.  

Vitharana. “Forecasting solar power for self-consumption 

of households in Thailand using system dynamics model,” 

in Proceedings of the 23rd Asia-Pacific Decision Science 

Institute International Conference-APDSI, 2018, pp. 264-

271. 

[3] C. Maitreesorasunte, J. Tang, R. Chaysiri, C. Jeenanunta, W. 

Pannakkong, H. Vitharana, and P. Parthanadee. 

“Forecasting self-consumption solar power capacity of 

industry and business sector in Thailand: a system dynamic 

model,” in Proceedings of the 2nd International Conference 

on Engineering Innovation, 2018, pp. 111-116. 

[4] A. Mellit, M. Benghanem, and S. A. Kalogirou. “An adaptive 

wavelet-network model for forecasting daily total solar-

radiation,” Applied Energy, vol. 83,  no. 7,  pp. 705-722, July. 2006. 

[5] C. Chen, S. Duan, T. Cai, and B. Liu. “Online 24-h solar 

power forecasting based on weather type classification using 

artificial neural network,” Solar energy, vol. 85, no. 11, pp. 

2856-2870, 2011. 

[6] R. Perez, M. Taylor, T. Hoff, and J. Ross. “Reaching 

Consensus in the Definition of Photovoltaics Capacity Credit 

in the USA: A Practical Application of Satellite-Derived 

Solar Resource Data,”IEEE Journal of Selected Topics in 

Applied Earth Observations and Remote Sensing, vol. 1, no. 

1, pp. 28-33, 2008. 

[7] G. J. Osório, J. M. Lujano-Rojas, J. C. O. Matias, and J. P. S. 

Catalão. “A new scenario generation-based method to solve 

the unit commitment problem with high penetration of 

renewable energies,”International Journal of Electrical 

Power & Energy Systems, vol. 64, pp. 1063-1072,  2015. 

[8] S. Kaewpasuk, B. Intiyot, and C. Jeenanunta. “Stochastic 

unit commitment model for power system with renewable 

energy,” in Proceeding of 2017 International Electrical 

Engineering Congress (iEECON), 2017, pp. 257-260. 

[9] C. Liu, A. Botterud, Z. Zhou, and P. Du. “Fuzzy energy and 

reserve co-optimization with high penetration of renewable 

energy,” IEEE Transactions on Sustainable Energy, vol. 8, 

no. 2, pp. 782-791, 2017. 

[10] IEA. (2018). Global EV Outlook 2018: Towards cross 

electrification.  IEA. France. [Online]. Available: 

https://webstore.iea.org/download/direct/1045?fileName=G

lobal_EV_Outlook_2018 

[11] D. Hurley, P. Peterson, and M. Whited. (2013). Synapse 

energy economics .  USA. [Onl ine] .  Avai lable :  

https://www.synapse-energy.com/project/demand-

response-power-system-resource 

[12] K. Qian, C. Zhou, M. Allan, and Y. Yuan. “Load model for 

prediction of electric vehicle charging demand,” in Proc. 

International Conference on Power System Technology, 

2010, pp. 1-6. 

[13] P. Vithayasrichareon, G. Mills,andI. MacGill. “Impact of 

Electric Vehicles and Solar PV on Future Generation 

Portfolio Investment,”IEEE Transactions on Sustainable 

Energy, vol. 6, no. 3, pp. 899–908, 2015. 

[14] Z. Yang, K. Li, Q. Niu, and Y. Xue. “A comprehensive study 

of economic unit commitment of power systems integrating 

various renewable generations and plug-in electric vehicles,” 

Energy Conversion and Management, vol. 132, pp. 460–481, 

2017. 

[15] T. Nguvauva, and S. Kittipiyakul. “Maximum Utilization of 

Allocated Power for Scheduling of Smart Home Appliances,” 

in Proc. ECTI-CON. 2018. 

[16] Fraunhofer Institute for Solar Energy Systems. 

(2018). “Photovolta ics  Report ,”  Fraunhofer  

Inst i tute ,  G e r m a n y . [ O n l i n e ] . A v a i l a b l e :  

https://www.ise.fraunhofer.de/content/dam/ise/de/document

s/publications/studies/Photovoltaics-Report.pdf 

[17] Electricity Generating Authority of Thailand, Metropolitan 

Electricity Authority, and Provincial Electricity 

Authority. (2016). “Summary report: Thailand’s electrical 

power system development plan for supporting  

electric vehicles,” Thailand. [Online]. A v a i l a b l e : 

http://www.mea.or.th/profile/3253 

[18] Alternative Fuels Data Center. (2016). “U.S. Plug-in 

Electric Vehicle Sales by Model,” USA. [Online]. 

Available: https://www.afdc.energy.gov/data/ 

 

Sukita Kaewpasuk is a Ph.D. 

student in Department of 

Mathematics and computer 

science,  Chulalongkorn  

University. She was born in 

Prachinburi, Thailand, in 1993. 

She received the bachelor’s 

degree of sciences in Applied 

mathematics from Thammasat 

university, 2015 and Master of Sciences in Applied 

Mathematics and computational Science from 

Chulalongkorn university, 2017. Her research interests 

are in area of operations research and optimization. 

 

Boonyar i t  In t iyot  i s  an  

assistant professor of 

Department of Mathematics 

and  Computer  Sc ience ,  

F a c u l t y  o f  S c i e n c e ,  

Chulalongkorn University. He 

received a B.S. degree in  

Mathematics from University 

of Delaware, a M.S. degree in 

Mathematics from University 

of Arizona, and a Ph.D. in Industrial and Systems 

Engineering from Virginia Polytechnic Institute 

and State University. His research interests are in 

area of linear optimization models and applications 

of operations research. 

 

Chawalit Jeenanunta is an 

associate professor of School 

of Management Technology 

(MT), Sirindhorn International 

Institute of Technology,  

Thammasa t  Un ive r s i ty ,  

Thailand. He received a B.S. 

degree in Mathematics and 

Computer Science, and M.Sc. 

in Management Science from 

University of Maryland and he received his Ph.D. in  

Industr ia l  and Systems Engineer ing f rom  

Virginia Polytechnic Institute and State University. 

His Research interests are in area of applications of 

operations research, simulation, large-scaled 

optimization and supply chain management. 

https://webstore.iea.org/download/direct/1045?fileName=Global_EV_Outlook_2018
https://webstore.iea.org/download/direct/1045?fileName=Global_EV_Outlook_2018
https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf
https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf
http://www.mea.or.th/profile/3253

