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Abstract—One of the main problems in supply
chain systems is the bullwhip effect that can
generate a huge cost for the companies in a chain.
In this study, the factors and their impacts that
can cause the bullwhip effect (order variance and
net stock amplification) are investigated by using
a simulation-based optimization approach. The
proposed meta-prediction model is built using
regression analysis, to predict the Total Stage
Variance Ratio (TSVR) of the system. A single-
echelon supply chain with uncertain customer
demand operating under the periodic-review
reorder cycle policy is studied. The parameters
of the smoothing inventory replenishment and
forecasting methods are required to search for their
optimality in reducing the TSVR by OptQuest,
an optimization tool in ARENA simulation
software. Our results can assistdecision makers
in the management of a supply chain, to realize,
benchmark, and reduce the TSVR under an
uncertain environment.

Index Terms—Bullwhip Effect, Exponential
Smoothing, Simulation-based Optimization,
Meta-prediction Model, Regression Analysis

[. INTRODUCTION

A supply chain is a combined system or networking
for suppliers, manufactures, and retailers that is used
until the products are in the hands of end customers.
It aims to distribute the right product, at the right
quantity and quality, at the right time to get the
lowest cost [1]. A well-managed supply chain can
play a large role in companies’ logistics operations
and the properties of the members in a chain. High
attention must be paid in the logistics processes since
better logistics processes could bring about better
customer services [2]. However, the bullwhip effect
can happen in a supply chain when orders, delivered
to the manufacturers or suppliers, generate larger

variance than the sales to the end customers. This
order variance amplification is known as the bullwhip
effect.

Inventory replenishment is a logistics process to
transport the inventory from an upstream echelon
to a downstream echelon. There are two types of
inventory replenishment of interest: the reorder level
policy and the reorder cycle policy. The difference is
when and how many order quantities can satisfy the
customer demand. The reorder level policy orders
when the inventory level shrinks to the minimum
reorder level point and the order quantity is set to be
equal to the Economic Order Quantity (EOQ) (every
time). In contrast, the reorder cycle policy defines
apre-determined “reorder cycle period”. The difference
between the on-hand stock at the review period and
the maximum target stock level can be determined as
the actual order quantity.

This study focuses on the replenishment by the
Reorder Cycle Policy (ROC). With the ROC policy,
the system is tracking the inventory position. The
inventory position is reviewed periodically (daily,
weekly, or monthly) and the order is fulfilled to the
inventory position, up to the target stock level that
determines order quantities [3]. When calculating
the target stock level, the variation of the expected
customer demand from the forecasting method is
a key parameter, to control the variance in the supply
chain system. Both the demand forecasting method
and inventory replenishment policies are shown to
contribute to the order variance and net stock variance
problems.

Traditionally, the performance in a supply chain
is evaluated by the order variance and the inventory
variance. More researchers have studied the order
variance ratio as the performance measure than the
inventory variance ratio but our study combines both
of them into one objective function called the “Total
Stage Variance Ratio” (TSVR). Similarly, the studies
of Wang and Shalaby [4] and Costantino et al. [5] also
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used the TSVRs to determine the overall performance
of a supply chain. The order variance ratio increases
the cost at the upstream echelon while the inventory
variance ratio increases the holding and shortage
costs. Hence, it is worthwhile to determine the TSVR,
considering both factors as equally important at each
echelon [6]. By minimizing the TSVR, the overall
performance is improved in a supply chain.

In this study, the simulation-based optimization
model is run to minimize the TSVR by OptQuest so
that all smoothing parameters of the replenishment
inventory policy and the forecasting method are
searched for their optimal settings. Based on
the results, the meta-prediction model can be
used to determine the best level of the TSVR for
a single-echelon chain under the ROC policy with
the exponential smoothing forecasting technique
under fluctuating lead time and end-customer
demand. The major contribution of this study is to
assist decision makers in predicting and realizing
the amount of the bullwhip effect. They can then
prepare and benchmark their supply chain system’s
performance to our optimal results, obtained from
the meta-prediction model. The ordering quantity in
each review period is searched for its optimality by
adjusting two proportional controllers. Thus, a proper
alleviation plan to reduce such effects can be made.

II. LITERATURE REVIEW

Only relevant research that is related to the
bullwhip effect and inventory amplification problems
are reviewed in this section

A. Bullwhip effect

The bullwhip effect has been measured by
several models such as the statistical model [7], and
[8], control theoretical model [3], [9], and [10], and
simulation model [8], [11], and [12]. Chen et al. [7]
studied the bullwhip effect of a two-stage supply chain
using the statistical model. They considered only
aretailer and a manufacturer. Their model applied two
main factors (forecasting and lead time) to create the
bullwhip effect. They concluded that the centralizing
demand information can reduce the bullwhip effect
but it cannot be eliminated.

B. Inventory Replenishment

Inventory replenishment policies are one of the
major foundations of the bullwhip effect, in terms
of variance amplification of stocking inventory in
a supply chain. A majority of researchers in inventory
replenishment have used the Reorder Cycle (ROC)
policy [3]. The quantity to order in the ROC policy
updates in every review period to fulfill inventories
between the target stock level and inventory on
hand. Disney and Lambrecht [6] explored variance
amplification based on the ROC policy using different

forecasting methods, including various operational
conditions.

Dejonckheere et al. [9] also identified the
smoothing replenishment of the reorder cycle policy
by adding proportional controllers to the net stock
term and the WIP term to satisfy the demand changes.
This smoothing replenishment also decreases the
bullwhip effect in the studies of [12], [13], and [14].

B. Demand forecasting methods

Demand forecasting is another factor causing the
bullwhip effect [15] and [16]. Lee et al. [17] showed
that both forecasting techniques (i.e., moving average
and exponential smoothing method) always create
demand variance amplification (bullwhip effect). An
appropriate forecasting method can help reduce the
bullwhip effect by minimizing the mean-square-error
[15] and [18].

C. Simulation-based optimizations

Optimization is defined as the process of
searching for the conditions that give the optimal
value of a function, where the function indicates
the efforts in that situation or environment. It is
the act of gathering the best result under particular
circumstances. There are two kinds of optimization
algorithms to solve optimization problems: (1) the
simplex algorithm that is usually used for the linear
programming model, and (2) simulation based-
optimization with heuristic algorithms, which is used
to solve the problems in a reasonable time and where
the problems are too complex (containing uncertainty
or are too big to handle with the mathematical model
as in the case of our studied model). Mazzuco et al.
[19] applied simulation-based optimization with
Simulated Annealing (SA) to the Vehicle Routing
Problem (VRP) to find the optimal path that gives
the minimum cost and delivery time. In their study,
the OptQuest optimization tool was used to find the
optimal parameter settings in a single-echelon supply
chain model.

OptQuest is a powerful heuristic algorithm that
is used in simulations. The OptQuest algorithm
combines three metaheuristics, including scatter
search, tabu search, and a neural network [20], and
[21]. Bulut [22] used scatter search with OptQuest
to solve the multi-scenario optimization problem on
a large scale with the linear programming model.

[II. MODELING METHODOLOGY

A. Supply chain model

The supply chain model in this study considers
a single-echelon chain with the amount of end-
customer demand following the normal distribution.
A generalized periodic review with the Reorder Cycle
(ROC) Policy inventory replenishment is used with
two smoothing controllers under the exponential
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smoothing forecasting method. In practice, this is
a case of a small supply chain where the retailers
normally have higher bargaining power over the
manufacturers due to the fact that they are closer
to the end customers. As a result, they can control
manufacturers’ operations and be assured the
availability of their supplies.

1) Single-echelon supply chain model

The retailer forecasts the expected demand and
updates the target stock level in each period. Then, the
retailer receives ordered products from the upstream
echelon (i.e., manufacturer or supplier), and the actual
demand (D,) is monitored and satisfied. Next, the
retailer monitors and updates its stock (inventory
position) and finally places an order (O,) to the
upstream echelon at the end of each review period.
The number of orders is determined, to fill back to
the Replenishment ROC level (Target stock level).
A single echelon supply chain model is considered
with only one retailer and one manufacturer. It
is assumed that the manufacturer can assure and
distribute unlimited ordered quantities as addressed
by the retailer. This single echelon model is shown
in Fig. 1.
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Fig. 1. Single-echelon supply chain model
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2) Reorder Cycle policy (ROC)

The classical ROC policy can operate as
follows. At the end of each Review period (R), an
Order(0,) is issued to the upstream echelon if the
amount of the Inventory Position (/P)) is less than
the target stock level (S,). The inventory position is
reviewed at the end of every period, and an order is
placed to raise the inventory position to the target
stock level. The Inventory Position (/P,) is equal to
the stock-on-hand plus the inventory on order, minus
the amount of the backlog (Net stock + inventory on
order). The target stock level (S)) is determined by (1).

St = (La + R +K) (Do) M
where

t = Time period

S, = Target stock level

L, = Lead time

R = Review period

K = Safety stock parameter

D, = Expected demand in period ¢

According to [9], the classical ROC policy with
exponential smoothing or moving average always
generates the bullwhip effect for any demand process.
Therefore, as the process of demand is Independent

and Identically Distributed (I.I.D), the best possible
forecast process is the simple average of all previous
demands. As a result, the order quantity can be written
as (2).

0, = Max{(S, — IP,),0} 2)

where

O, = Order quantity in period ¢

1P, = Inventory position in period ¢

From Equation (2), the inventory position is
equal to the Net Stock (NS,) plus the inventory on
order (WIP)). The net stock is equal to the difference
between the Stock-On-Hand (SOH,) and the backlog
as shown in (3).

NS, = SOH, -Backlog, (3)
where
NS, = Net stock in period ¢

SOH, = Amount of stock on-hand in period ¢
after clearing the backlog from period t (if any)
Backlog,= Amount of backlog in period t as SOH,
equal to 0

0, = D,(Ly + R) + KD, — (NS, + WIP,) )]

O, = RD, + [L4D,- WIP,] + [KD,~NS,] %)

In Equation (4), the order quatntity in each cycle
is equal to the gap between the target stock level of
that cycle minus the inventory position in that cycle.
Equations (4) and (5) can be rearranged into three
terms, which are the forecast term, the inventory
discrepancy term, and the WIP discrepancy term.
Therefore, the smoothing replenishment rule is applied
to the order policies, in which the whole shortfall
between the target stock level (S,) and the available
inventory may not be regained in each review period.
As a result, only a fraction of the NS discrepancy
and WIP discrepancy in each period is recovered.
To implement smoothing replenishment patterns and
adjust the amount of the gaps, an appropriate weight
(T, and T,) is given to the gap term, as shown in (6)

Oy = RD; + [LyD- WIP]/T, + [KDi~ NS;1/T, (6)
where
WIP, = Work in process in period ¢

T, = Proportional controller for work in process
discrepancy
T, = Proportional controller for net stock

In Equation (6), two decision variables, 7, and
T, , are added as proportional controllers. This allows
us to alter the dynamic behavior of the supply chain
and decide the optimal ordering quantity in each
period. These decision variables are used as simple
amplifiers and are the most common controllers in
control systems. By changing both of the proportional
controllers, a set of ordering patterns, ranging from
order variance amplification (bullwhip) to dampening
(smoothing), are created.
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B. Forecasting method

The forecasting method is introduced to calculate
the expected demand for the next period at the end
of each period. In this study, as the end-customer
demand has no seasonality and trend (normally
distributed), Exponential Smoothing (ES) is used to
forecast the expected demand.

Exponential Smoothing method (ES)

As ES can only be used to make a one-period
ahead forecast, Equation (7) shows the calculation
of expected demand.

D, = aD,y + 1+ a)D,, (7

where

D, = Expected demand in period ¢

D, = Real demand in period ¢

o = Smoothing parameter

From Equation (7), a represents a parameter for
ES that gives the weight between the recent demand
observation (D;_,) and historical forecasted demand
(D)

C. Performance measure: Total Stage Variance
Ratio (TSVR)

The efficiency of a supply chain can be measured
by comparing the Total Stage Variance Ratio (TSVR)
that can be calculated by the sum of the Order Variance
Ratio (OVR) and Net Stock Amplification (NSA)
[6], and [23]. This method assumes that the holding
inventory cost is linearly close to the NSA and the
production cost from inconsistent schedules is related
to the OVR. It is also assumed that the costs of the
OVR and NSA are equal so that the objective function
minimizes the TSVR as shown in (8). Equations (9)
and (10) represent the ratios of the order rate variance
and net stock variance to the demand variance.
TSVR = OVR + NSA ®)
OVR = Order rate variance/Demand variance (9)
NSA = Net stock variance/Demand variance ~ (10)

D. Simulation-based optimization with OptQuest

In this study, the ARENA simulation program is
used to simulate the supply chain network. ARENA
has an optimization tool called ‘OptQuest’. The
objective function minimizes the TSVR under various
factors that might create the bullwhip effect and net
stock amplification.

Simulation model

The initial net stock (period 0) is assumed to be
equal to the Target Stock Level (S,) to avoid any
backlog during the initial state. In every period,
the process starts by (1) picking up the required
items from stock following the actual end-customer
demand when the amount of stock is higher than
the amount of demand. However, if the amount of
stock is less than the amount of demand, all stock is
picked up and any demand shortage is considered to

be a backlog, (2) a demand (D) is forecasted based
on the used forecasting method and the target stock
level (St) is updated, (3) the order quantity (O,
is then calculated. If the net stock is less than the
target stock level, the order is issued to the upstream
echelon. Flowcharts of these supply chain operations
are presented in Fig. 2 and Fig. 3.

Check stock

availability

Net stock >
Demand

Pick-up remaining
net stock

Yes

Assign the shortage
amount as the

Pick-up stock backlog

Fig. 2. Customer buying processes
Forecast the
expected demand

Calculate Target ~
Stock Level (TSL) | St = (La + R +K) (Do)

Calculate order

. 0. = RD, + [LaD;~ WIP]/T, + [KDe- NS/T,
quantity

No N End of the
process

Net stock < TSL

Yes

Order in
process

Fig. 3. Retailer ordering processes

E. Experimental condition

All experimental models are simulated and
optimized with one decision variable, which is
a smoothing decision variable of the forecasting
methods. Then, two more decision variables from
the order replenishment policy, which are T, and T,
(proportional controllers), are added to the model
to smooth the replenishment pattern and reduce
the bullwhip effect. Operating parameters of the
base case model are imposed with a Review period
(R)= 1 period, Lead time (L,)= 2 periods, and Safety
stock (K) =1. The actual customer demand is assumed
to follow the normal distribution with a mean of 50
units and a standard deviation of 5 units.

The simulation model is run under the terminating
condition for 10 replications with a replication
length of 5,000 periods and a warm-up period of
1,000 periods. Based on the supply chain model
with exponential smoothing, various levels of
controllable variable values (7,, 7, and a) were
used to find the steady-state conditions. The plot in
Fig. 4 of these responses with three levels of the TSVR
shows a warm-up period of 1,000 periods. With 10
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replications, results can be obtained to guarantee the
variation of the TSVR to be less than 3% of its mean.

IV. ANALYSIS OF THE RESULTS

Our experiment is divided into 3 studies. The first
study finds the significance of our factors of interest.
Then, the second study explains the effects of varying
each significant factor in relation to the base case
model (i.e., Review period (R)= 1 period, Safety stock
(K)=1, and Lead time (L,)= 2 periods). Finally, the
third study builds a meta-prediction model to predict
the bullwhip effect (including order variance and
stock amplification (TSVR)) of a single-echelon
supply chain under lead time and customer demand
uncertainties.

INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND TECHNOLOGY, Vol. 4 No. 2 July-December 2020

A. First experiment: Full factorial design

The experiment uses the full factorial design to
incorporate the four factors of interest (i.e., lead-
time duration, lead-time variation, customer demand
variation, and safety stock) that might generate the
bullwhip effect in the chain. The full factorial design
uses 16 runs from 2* (each factor has two levels),
with and without the two proportional controllers for
the replenishment rule, as shown in Table 1. These
two levels of each factor cover the lower and upper
limits and set the bounds of the experiment. Results
of ANOVA are shown in Fig. 5 to Fig. 7 presents
a Pareto chart of the TSVR with two proportional
controllers.

TSVR
12
10 T, T,,and a
s 1, 1 and 0.25
) —p—g =~ ~ot> 1.5, 1.5 and 0.25
° 1,1 and0.13
4
2
"ssssssgssssseeEsgegasggegy g Period
Fig. 4. Steady-state behavior of the TSVR
TABLE [
FULL FACTORIAL DESIGN OF FOUR FACTORS

Demand Lead time Lead-time TSVR’ without TSVR' with two

Variatio"1 (period) Variation® Safety stock proportional controllers proportional controllers
0.1 2 0 1 3.08 2.65
0.1 2 0.5 1 169.28 70.60
0.1 4 0 1 5.40 5.00
0.1 4 0.5 1 332.14 151.53
0.3 2 0 1 3.10 2.74
0.3 2 0.5 1 21.62 11.14
0.3 4 0 1 5.39 5.05
0.3 4 0.5 1 42.13 21.72
0.1 2 0 4 3.08 2.70
0.1 2 0.5 4 172.00 57.86
0.1 4 0 4 5.48 4.83
0.1 4 0.5 4 379.08 113.42
0.3 2 0 4 3.04 2.65
0.3 2 0.5 4 21.58 9.29
0.3 4 0 4 5.12 4.73
0.3 4 0.5 4 47.53 18.10

Remarks: 1. Demand variation = Standard deviation of demand/mean of demand
2. Lead-time variation = Standard deviation of lead time/mean of lead time

3. TSVR = Average TSVR from 10 replications
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Analysis of Variance (without two proportional controllers)

Source DF AdjSS AdjMS  F-Value P-Value

Regression 152,205,957 147,064  530.02 0.000
Demand V 1 0 0 0.00 0.999
Lead time 1 5 5 0.02 0.889
Lead time V 1 74 74 0.27 0.607
Safety stock 1 0 0 0.00 0.994
Demand V*Lead time 1 0 0 0.00 0.996
Demand V*Lead time V 1 32 32 0.12 0.73
Demand V*Safety stock 1 0 0 0.00 0.992
Lead time*Lead time V 1 25,612 25,612 92.31 0.000
Lead time*Safety stock 1 0 0 0.00 0.989
Lead time V*Safety stock 1 190 190 0.68 0.409
Demand V*Lead time*Lead time V 1 12,194 12,194 43.95  0.000
Demand V*Lead time*Safety stock 1 0 0 0.00 0.985
Demand V*Lead time V*Safety stock 1 71 71 0.26 0.613
Lead time*Lead time V*Safety stock 1 o6l6 616 2.22 0.138
Demand V*Lead time*Lead time V*Safety stock 1 242 242 0.87 0.352

Error 144 39,956 277

Total 159 2,245,912

Demand V = End-customer demand variation
Lead time V = Lead-time variation
Lead time = Lead-time duration variation
g R-sq R-sq (adj) R-sq (pred) Safety stock = Safety stock level
166574 98.22% 98.04% 97.85%

Model Summary

Fig. 5. Analysis of variance (without two proportional controllers)

Analysis of Variance (with two proportional controllers)

Source DF Adj SS Adj MS F-Value P-Value
Regression 15 306,525 2.04350 7.83522 0.000
Demand V 1 0 0.0 001 0.933
lead time 1 6 6.4 245 0.120
lead time V 1 104 1043 3999 0.000
safety stock 1 0 0.1 0.02 0.887
Demand V=lead time 1 0 0.0 0.00 0974
Demand V=lead time V 1 59 59.0 2262 0.000
Demand V=safety stock 1 0 0.0 0.00 0.948

lead time+lead time V 1 8.409 8.4002 3.22426 0.00
lead time=safety stock 1 0 0.1 0.02 0.886

lead time V=safety stock 1 69 693 26.58 0.000
Demand V=lead time=lead time V 1 4,043 40431 1,55021 0.000
Demand V=lead time=safety stock 1 0 0.0 0.00 0999
Demand V=lead time V+safety stock 1 39 394 1511 0.000
lead time+lead time V+safety stock 1 682 6820 26149 0000
Demand V=lead time=lead time V=safety stock 1 348 3479 13338 0000

Error 144 376 26

Total 159 306,901

Demand V = End-customer demand variation
Lead time V = Lead-time variation

Lead time = Lead-time duration variation
Safety stock = Safety stock level

Model Summary

S R-sq R-sqadj) R-sqpred)
161496 9988x 99.86% 99.85%

Fig. 6. Analysis of variance (with two proportional controllers)
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Fig. 7. Full factorial analysis under the 95% confidence level

According to Fig. 5 to 7, all main factors have
a significant effect on the TSVR under the 95%
confidence level, judging from the p-value. In
addition, it is found that the lead-time variation has
the most significant effect on the TSVR. Even though
some main factors do not have a significant effect on
the TSVR, their interactions have a significant effect.
As a result, all factors of interest have a significant
effect on the TSVR. Two proportional controllers
for the replenishment rule are used to decide the best
ordering quantity in each period. This significantly
helps to reduce the effects of order variance and net
stock amplification (see Table I for comparison). This
allows us to alter the dynamic behavior of the supply
chain and decide the optimal ordering quantity in
each period.

B. Second experiment: Explanation of the effects
of varying each significant factor

1) Base case model

The base case model is simulated under
the ROC policy with the exponential smoothing
forecasting method. There are three operating
parameters in the base case model (i.e., Review
period (R)= 1 period, Safety stock(K)= 1, and Lead
time (L,)=2 periods). Also, there are three smoothing
decision variables to be optimized in the model; 7,
T, and o. The results from the simulation-based
optimization with OptQuest for the base case model

are shown in Table II.
TABLE II
RESULTS OF THE BASE CASE MODEL

Reorder cycle policy

Exponential smoothing with the end-customer
demand = Norm (50,5) units

T, Tw A OVR NSA TSVR

1.64 1.65 0 0.432 2.211 2.645

According to Table II, the optimal value of a
obtained from OptQuest is 0, meaning that the demand
forecast is similar to the long-term average of the
customer demand. Furthermore, the demand forecast
is found to be constant in every period. Shaban and
Shalaby [1] also reported an a value of 0 in their
experiment under the same customer demand pattern
with the normal distribution. They concluded that the
demand forecast should be constant in every review
period regardless of the variation of end-customer
demand, providing that there are no seasonality and
trend effects in the demand pattern. The Total Stage
Variance Ratio (TSVR) of the base case model is equal
to 2.645, which shows a high level of the bullwhip
effect. In addition, the net stock amplification appears
to cause more variance amplification than the order
variance. This is because the order variance has T,
and 7', as proportional controllers, to alter the dynamic
behavior as stated earlier.

2) Lead-time duration variation
In this experiment, the lead-time duration
(L,) is varied from 1, 2, 3, to 4 periods while other
parameters are fixed. This is similar to the base
case model at the R = | period, and K = 1 under the
reorder cycle policy with the exponential smoothing
forecasting method.

TABLE III
LEAD-TIME DURATION VARIATION

Reorder cycle policy

Exponential smoothing with the end-customer
demand = Norm (50,5) units

Lead times T, T, a OVR | NSA | TSVR
1 1.59 1.61 0 0484 | 1.227 | 1.711
2 1.64 | 1.65 0 0432 | 2211 | 2.645
3 1.49 1.49 0 0.507 | 3.148 | 3.656
4 1.63 1.64 0 0.520 | 4.483 | 5.003
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Tukey Pairwise Comparisons

Grouping Information Using the Tukey Method and 9%5% Confidence

Factor N Mean Grouping
SD 20 10 2.%1378 A

SD 15 10 2.73422 B

SD 10 10 2.e4578 c

SD 5 10 2.6€3676 c

Means that do not share a letter are significantly different.

Fig. 8. Lead-time duration variation using the Tukey comparison test under the 95% confidence level

The results from the simulation-based
optimization with OptQuest in each level of lead-
time duration are shown in Table III. The lead time
has an impact on the TSVR since there is a significant
difference among the four different levels of the lead
time under the 95% confidence level using the Tukey
comparison test as shown in Fig. 8. When the lead-
time duration is longer, the TSVR is also higher,
mainly caused by the net stock amplification. While
increasing the lead-time duration, a higher variance is
mainly caused by the net stock term. After increasing
the lead time, the net stock amplification becomes
higher as a result of the end-customer demand
fluctuation. The Order Variance Ratio (OVR) is
stable throughout all levels of the lead time since
the number of orders in each cycle is stable under
the same pattern of end-customer demand due to
the smoothing replenishment with two proportional
controllers.

3) Lead-time variation

In this experiment, the lead-time duration
(L, follows the normal distribution with the mean
varying from 1 to 3 periods. The standard deviation
at each mean level is varied into 2 levels (i.e., 50 and
100 percent of its mean) while other parameters are
fixed at R = 1 period, and K = 1, similar to the base
case model under the recycle order policy with the
exponential smoothing forecasting method. Tables
IV and V show the results from simulation-based
optimization with OptQuest with lead-time variation.

The results from Tables IV and V show that
the lead-time variation causes a huge TSVR in the
supply chain system. The variance comes from
the amplification of the net stock rather than the
order variance due to the severe stock shortage and
backlog. As the lead-time variation increases, the
TSL (calculated from equation (1)) also varies and
fluctuates in each period, causing a huge amplification
in the net stock.

TABLE IV
LEAD-TIME VARIATION WITH STANDARD DEVIATION EQUAL
TO 50% OF ITS MEAN

Reorder cycle policy

Exponential smoothing with the end-customer
demand = Norm (50,5) units

Lead time T, | T™w | « |OVR|NSa| TSVR
(period) "

norm (1,0.5) 5.91 3.70 | 0.01 3.58 | 26.79 30.37

norm (2,1) 530 | 483 | 001 749 | 63.17 | 70.67

norm (3,1.5) | 1238 | 7.66 | 000 | 10.13 | 99.62 | 109.75

TABLE V
LEAD-TIME VARIATION WITH STANDARD DEVIATION EQUAL
TO 100% OF ITS MEAN

Reorder cycle policy

Exponential smoothing with the end-customer
demand = Norm (50,5) units

(Lpe:r‘iiog')“e T, | ™w | a« |OVR|Nsa| 1svr
norm (1,1) 9.01 | 426 0 9.01 | 5541 64.42
norm (2,2) 783 | 738 0 16.70 | 116.71 | 13341
norm (3,3) | 748.1 | 10.72 0 2199 | 17592 | 198.01

4) End-customer demand variation

In this experiment, the end-customer demand
follows the normal distribution with the mean fixed
at 50 units but the standard deviation is varied with
4 levels (i.e., 10%, 20%, 30% and 40% of the mean).
Other parameters are set similar to the base case
model where the Review period (R) = 1 period, Safety
stock (k) =1, and Lead time (L,) =2 periods under
the exponential smoothing forecasting method with
the reorder cycle policy. The obtained optimal values
of the TSVR from OptQuest of the four levels of
standard deviation are shown in Table VI.
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TABLE VI
END-CUSTOMER DEMAND VARIATION

Reorder cycle policy

Exponential smoothing with the end-customer
demand = Norm (50,5) units

S.D. of end-
VR NSA | TSVR
customer demand T, T, @|o0 s s

10% of the mean | 1.64 | 1.65
20% of the mean | 1.40 | 1.40

0.43 221 2.64

0.55 2.10 2.65

30% of the mean | 1.67 | 1.67
40% of the mean | 1.44 | 1.41

0.44 2.29 2.73

o | |o | <

0.55 2.36 291

Fig. 9. Tukey comparison test of four levels of the end-customer
demand following the normal distribution with the mean equal to
50 units under the 95% confidence level

From Table VI and Fig. 9, it was found that
increasing the variation of the end-customer demand
can cause a certain bullwhip effect, in terms of the
TSVR. However, the severity is worsened with a
higher level of the demand variation from its standard
deviation of 30% or higher (as indicated by the Tukey
comparison test). Most of the effect comes from
the net stock as the order variance is stable despite
increasing the demand variation.

5) Safety stock level

The main parameters from the base case model
are fixed except the safety-stock (K), which is varied
from K=1 to 4. The results from the simulation-based
optimization with OptQuest while varying the value
of K are shown in Table VII. The Tukey comparison
test is presented in Fig. 10, showing that varying
only the level of the safety stock does not have a
significant effect on the TSVR. This result is in the
same direction as the result obtained from the analysis
of variance in the first experiment, in which the safety
stock level alone does not have a significant effect on
the TSVR. However, its interaction with the lead-time
variation has a significant effect on the TSVR.

TABLE VII
SAFETY STOCK VARIATION

Reorder cycle policy

Exponential smoothing with the end-customer
demand = Norm (50,5) units

Safety stock (K) T, Tw a OVR | NSA | TSVR
1 1.64 1.65 0 | 0432 | 2211 | 2645
2 1.48 1.48 0 | 0.507 | 2.134 | 2.641
3 1.47 1.47 0 | 0515 | 2.136 | 2.652
4 1.46 1.46 0 | 0.525 | 2.132 | 2.657

Tukey Pairwise Comparisons

Grouping Information Using the Tukey Method and 95% Confidence

Factor N Mean Grouping
K 4 10 2.6569 A
K 3 10 2.6518 &
R 2 10 2.e4le &
K 1 10 2.6456 A

Means that do not share a letter are significantly different.

Fig. 10. Tukey comparison test of the safety stock level under the 95% confidence level

C. Third experiment: Meta-prediction model

A meta-prediction model was designed to
predict the performance (TSVR) under a single-
echelon supply chain with the ROC policy using
the exponential smoothing forecasting method with
and without the proportional controllers. The main
purpose of this study is to assess the impact of the
factors of interest on the severity of the bullwhip
effect, in terms of the Total Stage Variance Ratio
(TSVR). The independent variables include the lead-
time duration, the standard deviation of lead time, the
standard deviation of customer demand, and the level
of safety stock. From the ANOVA results (Fig. 5 and 6),
a multiple regression model can be built based on
these 4 independent factors.

The behavior of these independent variables has
a statistically significant effect on the TSVR, except
for some interaction terms. However, some 3-way
or 4-way interaction terms covering all main factors

have a significant effect on the TSVR judged by a
p-value of less than 0.05. Both R* (Adjusted) of the
model with and without the proportional controllers
indicate that both regression models can explain the
TSVRs. This was also guaranteed by the lack-of-fit
test, in which there is not enough evidence to state
that the model has a “lack of fit” since the p-value is
greater than 0.05, meaning that the prediction model
is significant. Subsequently, the regression equation
can be obtained.

Regression equation without two proportional
controllers (replenishment policy):

TSVR =0.8 - 0.1 Demand variation + 1.13
Lead-time duration

+ 37.4 Lead-time variation - 0.06 Safety stock
level

+ 0.2 Demand variation*Lead-time duration

- 110 Demand variation*Lead-time variation
+ 0.4 Demand variation*Safety stock level
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+ 220.0 Lead-time duration*Lead-time
variation

+ 0.04 Lead-time duration*Safety stock level

- 20.7 Lead-time variation*Safety stock level

- 678.8 Demand variation*Lead-time
duration*Lead-time variation

- 0.24 Demand variation*Lead-time
duration*Safety stock level
+ 56.6 Demand variation*Lead-time
variation*Safety stock level
+ 11.71 Lead-time duration*Lead-time
variation*Safety stock level
- 32.8 Demand variation*Lead-time
duration*Lead-time variation*Safety stock level
Regression equation with two proportional
controllers (replenishment policy):

TSVR = 0.1 + 0.9 Demand variation

+ 1.23 Lead-time duration

- 44 4 Lead-time variation

+ (.12 Safety stock level

- 0.1 Demand variation*Lead-time duration
+ 149 Demand variation*Leadtime variation
- 0.2 Demand variation*Safety stock level

+ 126.0 Lead-time duration*Lead-time variation
- 0.04 Lead-time duration*Safety stock level
+ 12.4 Lead-time variation*Safety stock level
- 390.8 Demand variation*Lead-time
duration*Lead-time variation

+ 0.00 Demand variation*Lead-time
duration*Safety stock level

- 41.8 Demand variation*Lead-time
variation*Safety stock level

- 12.31 Lead-time duration*Lead-time
variation*Safety stock level

+ 39.3 Demand variation*Lead-time
duration*Lead-time
variation*Safety stock level

Measure of accuracy by Mean Absolute Percent-
age Error (MAPE)

The MAPE is used to indicate the accuracy of the
meta-prediction model as shown in (11).

|Actual—-predicted)|

MAPE = ——Acual (11)

n

The MAPE is expressed in terms of a percentage
value. It is used to compare the error between the
actual outcome and the outcome from the meta-
prediction model. The lower the MAPE value, the
better the accuracy of the prediction model. Lewis
[24] proposed that if the value of the MAPE is from
10 to 20%, the model generates a good prediction. If
the value of the MAPE is from 20 to 50%, the model
is considered to be a reasonable predicting model.
However, if it is more than 50%, the model cannot
be used to predict any results.

Tables VIII and IX report the results in terms of
the accuracy of the prediction model. The results
are compared between the actual TSVR from the
simulation model and the estimated TSVR from the
meta-prediction model. We use similar input data
within the boundary of the problem (Lead time = 1
to 4 periods, Lead-time variation from 0 to 50 percent
of its mean, Demand variability from 0 to 40 percent
of its mean, Safety stock (K) =1 to 4). The results for
similar input data within the boundary of the problem
with proportional controllers show that the average
MAPE is 1.84%. However, the results for different
input data (but within the boundary of the problem)
are slightly higher at 3.65%. Both MAPE values from
these two tests are less than 5%, meaning that the
meta-prediction model from the regression analysis
is sufficiently accurate to predict the TSVR under a
single-echelon supply chain operating with the ROC
policy.

TABLE VIII
MAPE WITH SIMILAR INPUT DATA WITHIN THE BOUNDARY
MAPE with similar input data

Demand Variation | Lead time (period) I;:?_?;:ii:::le Safety stock TSVR (predicted) MAPE
0.1 2 0 1 2.64 1.4
0.1 2 0.5 1 70.59 1.81
0.1 4 0 1 5.00 2.01
0.1 4 0.5 1 151.53 2.49
0.3 2 0 1 2.74 1.45
0.3 2 0.5 1 11.14 1.94
0.3 4 0 1 5.05 1.9
0.3 4 0.5 1 21.72 2.16
0.1 2 0 4 2.70 1.25
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TABLE VIIL
MAPE WITH SIMILAR INPUT DATA WITHIN THE BOUNDARY (CONT.)
MAPE with similar input data
Demand Variation | Lead time (period) I;:i(:;:ii:;e Safety stock TSVR (predicted) MAPE

0.1 2 0.5 4 57.86 1.27
0.1 4 0 4 4.83 1.9
0.1 4 0.5 4 113.42 2.24
0.3 2 0 4 2.65 1.73
0.3 2 0.5 4 9.29 1.73
0.3 4 0 4 4.73 1.94
0.3 4 0.5 4 18.10 2.24

AVERAGE 1.84

MAPE WITH DIFFERENT INPUT DATA WITHIN THE BOUNDARY

MAPE with different input
Demand Variation | Lead time (period) I;Z?_?;g:::le Safety stock TSVR (Predicted) MAPE

0.2 2 0 1 2.69 1.57
0.15 2 0 1 2.67 2.64
0.1 3 0 1 3.82 4.57
0.1 2 0 2 2.66 0.6
0.1 2 0 3 2.68 3.36
0.1 3 0.5 1 111.07 3.65
0.25 2 0 1 2.71 1.97
0.1 2 0 3.5 2.69 3.99
0.15 2 0 2 2.67 0.95

AVERAGE 225

For instance, to predict the TSVR with two
proportional controllers when the Safety stock (K) =
1, Lead time (L,) = 2 periods, Lead-time variability
= 50 percent of its mean, and Demand variability =
10 percent of its mean:

TSVR=0.1+0.9*%0.1+1.229%*2-
44.39*0.5+0.121*1

- 0.11*0.1*2+149.3*0.1*0.5-0.25*0.1*1
+126.03*2*0.5-0.039*2*1
+12.41*0.5%1-390.82*0.1%2*0.5

- 41.8%0.1*%0.5*1

- 12.311%2*0.5*1

+39.32*%0.1*%2*0.5*1

As aresult, TSVR =70.59 as compared to TSVRs
ranging from 68.405 to 74.711 from ten replications
that were obtained from the simulation model running
with the above-mentioned parameters. This prediction
obtains a MAPE of 1.81%. Such a prediction model
would help decision makers to be aware of the amount
of the bullwhip effect in advance. This information
would be of value to the decision makers for managing

and benchmarking their supply chain operations,
with or without the optimal ordering quantity. They
can use the obtained information for deciding their
operating conditions in their chains by realizing when
each factor may need to be varied (and its effects),
such as reducing the lead time or increasing the level
of safety stock.

V. CONCLUSION

The bullwhip effect commonly occurs in a
supply chain operating under uncertainties. This
study examined four factors, which can generate
the bullwhip in terms of order variance and net
stock amplification: lead-time duration, lead-time
variability, customer demand variability, and safety
stock level. The performance of a supply chain is
determined by the summation of the order variance
and the net stock amplification (TSVR). The
simulation-based optimization was applied in this
study to find the optimal level of required parameters
to minimize the bullwhip effect. A single-echelon
supply chain model was simulated and optimized by
ARENA software with the OptQuest optimization
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tool. Also, this study proposed the meta-prediction
model based on regression analysis, to predict the
total amplification.

This single-echelon supply chain operates
with end-customer demand following the normal
distribution under the Reorder Cycle (ROC)
replenishment policy with the exponential smoothing
forecasting technique. To compare the performances
of each experiment, the Tukey comparison test
is used at the 95 % confidence level. The results
showed that all factors of interest, including the
lead-time duration, lead-time variability, safety
stock level, and end-customer demand variability,
are significant, causing the bullwhip effect and net
stock amplification. The lead-time variation has the
highest significant effect on the severity of the TSVR.
Two proportional controllers can alter the dynamic
behavior of the supply chain system. They help to
smooth the replenishment pattern by giving the
optimal ordering quantity in each review period, and
they significantly help to reduce the bullwhip effect
and net stock amplification. In addition, the results
obtained from the prediction model are accurate,
giving a MAPE value of less than 3% for similar
input data and less than 5% for different input data
within the boundary of interest. Our findings would
be of value to decision makers to realize, prepare,
and benchmark the effects from uncontrollable
uncertainties so that a proper alleviation plan can be
made in advance.

Our study considered only one type of inventory
ordering policy (i.e., the reorder cycle policy), which
can be further explored with other types of inventory
replenishment policies such as the reorder level
policy, etc. In addition, our model was simulated only
with a single-echelon supply chain. A further study
can be extended to a multi-echelon supply chain with
centralized or decentralized ordering policies (with or
without information sharing). A combination of these
policies can be studied for their roles in the bullwhip
effect and net stock amplification. This could be
a major research area that is worth exploring.
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