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Abstract—One of the main problems in supply 
chain systems is the bullwhip effect that can 
generate a huge cost for the companies in a chain. 
In this study, the factors and their impacts that 
can cause the bullwhip effect (order variance and 
net stock amplification) are investigated by using 
a simulation-based optimization approach. The 
proposed meta-prediction model is built using 
regression analysis, to predict the Total Stage 
Variance Ratio (TSVR) of the system. A single-
echelon supply chain with uncertain customer 
demand operating under the periodic-review 
reorder cycle policy is studied. The parameters 
of the smoothing inventory replenishment and 
forecasting methods are required to search for their 
optimality in reducing the TSVR by OptQuest, 
an optimization tool in ARENA simulation 
software. Our results can assistdecision makers 
in the management of a supply chain, to realize, 
benchmark, and reduce the TSVR under an 
uncertain environment.

Index Terms—Bullwhip Effect, Exponential  
Smoothing, Simulation-based Optimization,  
Meta-prediction Model, Regression Analysis 

I. Introduction
A supply chain is a combined system or networking  

for suppliers, manufactures, and retailers that is used 
until the products are in the hands of end customers. 
It aims to distribute the right product, at the right 
quantity and quality, at the right time to get the 
lowest cost [1]. A well-managed supply chain can 
play a large role in companies’ logistics operations 
and the properties of the members in a chain. High 
attention must be paid in the logistics processes since 
better logistics processes could bring about better 
customer services [2]. However, the bullwhip effect 
can happen in a supply chain when orders, delivered 
to the manufacturers or suppliers, generate larger 

variance than the sales to the end customers. This 
order variance amplification is known as the bullwhip 
effect. 

Inventory replenishment is a logistics process to 
transport the inventory from an upstream echelon 
to a downstream echelon. There are two types of 
inventory replenishment of interest: the reorder level 
policy and the reorder cycle policy. The difference is 
when and how many order quantities can satisfy the 
customer demand. The reorder level policy orders 
when the inventory level shrinks to the minimum 
reorder level point and the order quantity is set to be 
equal to the Economic Order Quantity (EOQ) (every 
time). In contrast, the reorder cycle policy defines  
a pre-determined “reorder cycle period”. The difference  
between the on-hand stock at the review period and 
the maximum target stock level can be determined as 
the actual order quantity.

This study focuses on the replenishment by the 
Reorder Cycle Policy (ROC). With the ROC policy, 
the system is tracking the inventory position. The 
inventory position is reviewed periodically (daily, 
weekly, or monthly) and the order is fulfilled to the 
inventory position, up to the target stock level that 
determines order quantities [3]. When calculating 
the target stock level, the variation of the expected 
customer demand from the forecasting method is  
a key parameter, to control the variance in the supply 
chain system. Both the demand forecasting method 
and inventory replenishment policies are shown to 
contribute to the order variance and net stock variance 
problems. 

Traditionally, the performance in a supply chain 
is evaluated by the order variance and the inventory 
variance. More researchers have studied the order 
variance ratio as the performance measure than the 
inventory variance ratio but our study combines both 
of them into one objective function called the “Total 
Stage Variance Ratio” (TSVR). Similarly, the studies 
of Wang and Shalaby [4] and Costantino et al. [5] also 
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used the TSVRs to determine the overall performance 
of a supply chain. The order variance ratio increases 
the cost at the upstream echelon while the inventory 
variance ratio increases the holding and shortage 
costs. Hence, it is worthwhile to determine the TSVR, 
considering both factors as equally important at each 
echelon [6]. By minimizing the TSVR, the overall 
performance is improved in a supply chain. 

In this study, the simulation-based optimization 
model is run to minimize the TSVR by OptQuest so 
that all smoothing parameters of the replenishment 
inventory policy and the forecasting method are 
searched for their optimal settings. Based on 
the results, the meta-prediction model can be 
used to determine the best level of the TSVR for  
a single-echelon chain under the ROC policy with 
the exponential smoothing forecasting technique 
under fluctuating lead time and end-customer 
demand. The major contribution of this study is to 
assist decision makers in predicting and realizing 
the amount of the bullwhip effect. They can then 
prepare and benchmark their supply chain system’s 
performance to our optimal results, obtained from 
the meta-prediction model. The ordering quantity in 
each review period is searched for its optimality by 
adjusting two proportional controllers. Thus, a proper 
alleviation plan to reduce such effects can be made.

II. Literature Review

Only relevant research that is related to the 
bullwhip effect and inventory amplification problems 
are reviewed in this section

A.	 Bullwhip effect
The bullwhip effect has been measured by 

several models such as the statistical model [7], and 
[8], control theoretical model [3], [9], and [10], and 
simulation model [8], [11], and [12]. Chen et al. [7] 
studied the bullwhip effect of a two-stage supply chain 
using the statistical model. They considered only  
a retailer and a manufacturer. Their model applied two 
main factors (forecasting and lead time) to create the 
bullwhip effect. They concluded that the centralizing 
demand information can reduce the bullwhip effect 
but it cannot be eliminated. 

B. Inventory Replenishment
Inventory replenishment policies are one of the 

major foundations of the bullwhip effect, in terms 
of variance amplification of stocking inventory in  
a supply chain. A majority of researchers in inventory 
replenishment have used the Reorder Cycle (ROC) 
policy [3]. The quantity to order in the ROC policy 
updates in every review period to fulfill inventories 
between the target stock level and inventory on 
hand. Disney and Lambrecht [6] explored variance 
amplification based on the ROC policy using different 

forecasting methods, including various operational 
conditions.

Dejonckheere et al. [9] also identified the 
smoothing replenishment of the reorder cycle policy 
by adding proportional controllers to the net stock 
term and the WIP term to satisfy the demand changes. 
This smoothing replenishment also decreases the 
bullwhip effect in the studies of [12], [13], and [14].

B.	 Demand forecasting methods 
Demand forecasting is another factor causing the 

bullwhip effect [15] and [16]. Lee et al. [17] showed 
that both forecasting techniques (i.e., moving average 
and exponential smoothing method) always create 
demand variance amplification (bullwhip effect). An 
appropriate forecasting method can help reduce the 
bullwhip effect by minimizing the mean-square-error 
[15] and [18]. 

C.	  Simulation-based optimizations
Optimization is defined as the process of 

searching for the conditions that give the optimal 
value of a function, where the function indicates 
the efforts in that situation or environment. It is 
the act of gathering the best result under particular 
circumstances. There are two kinds of optimization 
algorithms to solve optimization problems: (1) the 
simplex algorithm that is usually used for the linear 
programming model, and (2) simulation based-
optimization with heuristic algorithms, which is used 
to solve the problems in a reasonable time and where 
the problems are too complex (containing uncertainty 
or are too big to handle with the mathematical model 
as in the case of our studied model). Mazzuco et al. 
[19] applied simulation-based optimization with 
Simulated Annealing (SA) to the Vehicle Routing 
Problem (VRP) to find the optimal path that gives 
the minimum cost and delivery time. In their study, 
the OptQuest optimization tool was used to find the 
optimal parameter settings in a single-echelon supply 
chain model. 

OptQuest is a powerful heuristic algorithm that 
is used in simulations. The OptQuest algorithm 
combines three metaheuristics, including scatter 
search, tabu search, and a neural network [20], and 
[21]. Bulut [22] used scatter search with OptQuest 
to solve the multi-scenario optimization problem on  
a large scale with the linear programming model. 

III. Modeling Methodology 

A.	 Supply chain model
The supply chain model in this study considers 

a single-echelon chain with the amount of end-
customer demand following the normal distribution. 
A generalized periodic review with the Reorder Cycle 
(ROC) Policy inventory replenishment is used with 
two smoothing controllers under the exponential 
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smoothing forecasting method. In practice, this is 
a case of a small supply chain where the retailers 
normally have higher bargaining power over the 
manufacturers due to the fact that they are closer 
to the end customers. As a result, they can control 
manufacturers’ operations and be assured the 
availability of their supplies.
	 1)	Single-echelon supply chain model

	 The retailer forecasts the expected demand and 
updates the target stock level in each period. Then, the 
retailer receives ordered products from the upstream 
echelon (i.e., manufacturer or supplier), and the actual 
demand (D1) is monitored and satisfied. Next, the 
retailer monitors and updates its stock (inventory 
position) and finally places an order (Ot) to the 
upstream echelon at the end of each review period. 
The number of orders is determined, to fill back to 
the Replenishment ROC level (Target stock level). 
A single echelon supply chain model is considered 
with only one retailer and one manufacturer. It 
is assumed that the manufacturer can assure and 
distribute unlimited ordered quantities as addressed 
by the retailer. This single echelon model is shown 
in Fig. 1.

Fig. 1.  Single-echelon supply chain model

	 2)	Reorder Cycle policy (ROC)
The classical ROC policy can operate as 

follows. At the end of each Review period (R), an 
Order(Ot) is issued to the upstream echelon if the 
amount of the Inventory Position (IPt) is less than 
the target stock level (St). The inventory position is 
reviewed at the end of every period, and an order is 
placed to raise the inventory position to the target 
stock level. The Inventory Position (IPt) is equal to 
the stock-on-hand plus the inventory on order, minus 
the amount of the backlog (Net stock + inventory on 
order). The target stock level (St) is determined by (1).

                               (1)
where
t 	 = 	Time period
St 	= 	Target stock level
Ld 	= 	Lead time
R 	= 	Review period
K	 = 	Safety stock parameter

 	=	 Expected demand in period t

According to [9], the classical ROC policy with 
exponential smoothing or moving average always 
generates the bullwhip effect for any demand process. 
Therefore, as the process of demand is Independent 

and Identically Distributed (I.I.D), the best possible 
forecast process is the simple average of all previous 
demands. As a result, the order quantity can be written 
as (2).

	 (2)
where
Ot  = Order quantity in period t 
IPt = Inventory position in period t

From Equation (2), the inventory position is 
equal to the Net Stock (NSt) plus the inventory on 
order (WIPt). The net stock is equal to the difference 
between the Stock-On-Hand (SOHt) and the backlog 
as shown in (3).		

                                       (3)
where
NSt  	 =	Net stock in period t
SOHt 	 =	Amount of stock on-hand in period t
after clearing the backlog from period t (if any)
Backlogt 	=	Amount of backlog in period t as SOHt 
equal to 0

                 (4)

                   (5)

In Equation (4), the order quatntity in each cycle 
is equal to the gap between the target stock level of 
that cycle minus the inventory position in that cycle. 
Equations (4) and (5) can be rearranged into three 
terms, which are the forecast term, the inventory 
discrepancy term, and the WIP discrepancy term. 
Therefore, the smoothing replenishment rule is applied 
to the order policies, in which the whole shortfall 
between the target stock level (St) and the available 
inventory may not be regained in each review period. 
As a result, only a fraction of the NS discrepancy 
and WIP discrepancy in each period is recovered. 
To implement smoothing replenishment patterns and 
adjust the amount of the gaps, an appropriate weight 
(Tn and Tw) is given to the gap term, as shown in (6)

  (6)
where
WIPt 	=	Work in process in period t
Tw	 =	 Proportional controller for work in process 
discrepancy
Tn 	 =	 Proportional controller for net stock

In Equation (6), two decision variables, Tw  and 
Tn , are added as proportional controllers. This allows 
us to alter the dynamic behavior of the supply chain 
and decide the optimal ordering quantity in each 
period. These decision variables are used as simple 
amplifiers and are the most common controllers in 
control systems. By changing both of the proportional 
controllers, a set of ordering patterns, ranging from 
order variance amplification (bullwhip) to dampening 
(smoothing), are created.
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B.	 Forecasting method
The forecasting method is introduced to calculate 

the expected demand for the next period  at the end 
of each period. In this study, as the end-customer 
demand has no seasonality and trend (normally 
distributed), Exponential Smoothing (ES) is used to 
forecast the expected demand.

Exponential Smoothing method (ES)
As ES can only be used to make a one-period 

ahead forecast, Equation (7) shows the calculation 
of expected demand.

	 (7)
where

 	 =  Expected demand in period t
 	 =  Real demand in period t

α 	 =  Smoothing parameter
From Equation (7), α represents a parameter for 

ES that gives the weight between the recent demand 
observation ( ) and historical forecasted demand 
( ).

C.	 Performance measure: Total Stage Variance 
Ratio (TSVR)

The efficiency of a supply chain can be measured 
by comparing the Total Stage Variance Ratio (TSVR) 
that can be calculated by the sum of the Order Variance 
Ratio (OVR) and Net Stock Amplification (NSA) 
[6], and [23]. This method assumes that the holding 
inventory cost is linearly close to the NSA and the 
production cost from inconsistent schedules is related 
to the OVR. It is also assumed that the costs of the 
OVR and NSA are equal so that the objective function 
minimizes the TSVR as shown in (8). Equations (9) 
and (10) represent the ratios of the order rate variance 
and net stock variance to the demand variance.
TSVR = OVR + NSA                                            (8)
OVR 	 = Order rate variance/Demand variance   (9)
NSA 	 = Net stock variance/Demand variance      (10)

D.	 Simulation-based optimization with OptQuest
In this study, the ARENA simulation program is 

used to simulate the supply chain network. ARENA 
has an optimization tool called ‘OptQuest’. The 
objective function minimizes the TSVR under various 
factors that might create the bullwhip effect and net 
stock amplification.	
	 Simulation model

The initial net stock (period 0) is assumed to be 
equal to the Target Stock Level (S0) to avoid any 
backlog during the initial state. In every period, 
the process starts by (1) picking up the required 
items from stock following the actual end-customer 
demand when the amount of stock is higher than 
the amount of demand. However, if the amount of 
stock is less than the amount of demand, all stock is 
picked up and any demand shortage is considered to 

be a backlog, (2) a demand ( ) is forecasted based 
on the used forecasting method and the target stock 
level (St) is updated, (3) the order quantity (Ot) 
is then calculated. If the net stock is less than the 
target stock level, the order is issued to the upstream 
echelon. Flowcharts of these supply chain operations 
are presented in Fig. 2 and Fig. 3. 

       
Fig. 2.  Customer buying processes

        

Fig. 3.  Retailer ordering processes

E.	 Experimental condition
All experimental models are simulated and 

optimized with one decision variable, which is 
a smoothing decision variable of the forecasting 
methods. Then, two more decision variables from 
the order replenishment policy, which are Tn and Tw 
(proportional controllers), are added to the model 
to smooth the replenishment pattern and reduce 
the bullwhip effect. Operating parameters of the 
base case model are imposed with a Review period  
(R)= 1 period, Lead time (Ld)= 2 periods, and Safety 
stock (K) =1. The actual customer demand is assumed 
to follow the normal distribution with a mean of 50 
units and a standard deviation of 5 units.

The simulation model is run under the terminating 
condition for 10 replications with a replication 
length of 5,000 periods and a warm-up period of 
1,000 periods. Based on the supply chain model 
with exponential smoothing, various levels of 
controllable variable values (Tn, Tw and α) were 
used to find the steady-state conditions. The plot in  
Fig. 4 of these responses with three levels of the TSVR 
shows a warm-up period of 1,000 periods. With 10 
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replications, results can be obtained to guarantee the 
variation of the TSVR to be less than 3% of its mean.

IV. Analysis of the Results

Our experiment is divided into 3 studies. The first 
study finds the significance of our factors of interest. 
Then, the second study explains the effects of varying 
each significant factor in relation to the base case 
model (i.e., Review period (R)= 1 period, Safety stock 
(K)= 1, and Lead time (Ld)= 2 periods). Finally, the 
third study builds a meta-prediction model to predict 
the bullwhip effect (including order variance and 
stock amplification (TSVR)) of a single-echelon 
supply chain under lead time and customer demand 
uncertainties. 

A.	 First experiment: Full factorial design  
The experiment uses the full factorial design to 

incorporate the four factors of interest (i.e., lead-
time duration, lead-time variation, customer demand 
variation, and safety stock) that might generate the 
bullwhip effect in the chain. The full factorial design 
uses 16 runs from 24 (each factor has two levels), 
with and without the two proportional controllers for 
the replenishment rule, as shown in Table I. These 
two levels of each factor cover the lower and upper 
limits and set the bounds of the experiment. Results 
of ANOVA are shown in Fig. 5 to Fig. 7 presents 
a Pareto chart of the TSVR with two proportional 
controllers.

Fig. 4.  Steady-state behavior of the TSVR

Table I  
Full Factorial Design of Four Factors

Demand 
Variation1

Lead time 
(period)

Lead-time 
Variation2 Safety stock TSVR3 without 

proportional controllers
TSVR3 with two 

proportional controllers

0.1 2 0 1 3.08 2.65

0.1 2 0.5 1 169.28 70.60

0.1 4 0 1 5.40 5.00

0.1 4 0.5 1 332.14 151.53

0.3 2 0 1 3.10 2.74

0.3 2 0.5 1 21.62 11.14

0.3 4 0 1 5.39 5.05

0.3 4 0.5 1 42.13 21.72

0.1 2 0 4 3.08 2.70

0.1 2 0.5 4 172.00 57.86

0.1 4 0 4 5.48 4.83

0.1 4 0.5 4 379.08 113.42

0.3 2 0 4 3.04 2.65

0.3 2 0.5 4 21.58 9.29

0.3 4 0 4 5.12 4.73

0.3 4 0.5 4 47.53 18.10

Remarks: 1. Demand variation = Standard deviation of demand/mean of demand
                2. Lead-time variation = Standard deviation of lead time/mean of lead time
                3. TSVR = Average TSVR from 10 replications
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Fig. 5. Analysis of variance (without two proportional controllers)

Fig. 6. Analysis of variance (with two proportional controllers)
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Fig. 7. Full factorial analysis under the 95% confidence level

According to Fig. 5 to 7, all main factors have 
a significant effect on the TSVR under the 95% 
confidence level, judging from the p-value. In 
addition, it is found that the lead-time variation has 
the most significant effect on the TSVR. Even though 
some main factors do not have a significant effect on 
the TSVR, their interactions have a significant effect. 
As a result, all factors of interest have a significant 
effect on the TSVR. Two proportional controllers 
for the replenishment rule are used to decide the best 
ordering quantity in each period. This significantly 
helps to reduce the effects of order variance and net 
stock amplification (see Table I for comparison). This 
allows us to alter the dynamic behavior of the supply 
chain and decide the optimal ordering quantity in 
each period.

B.	 Second experiment: Explanation of the effects 
of varying each significant factor 

1)	Base case model
The base case model is simulated under 

the ROC policy with the exponential smoothing 
forecasting method. There are three operating 
parameters in the base case model (i.e., Review 
period (R)= 1 period, Safety stock(K)= 1, and Lead 
time (Ld)=2 periods). Also, there are three smoothing 
decision variables to be optimized in the model; Tn, 
Tw and α. The results from the simulation-based 
optimization with OptQuest for the base case model 
are shown in Table II.

Table II 
Results of the Base Case Model 

Reorder cycle policy

Exponential smoothing with the end-customer 
demand = Norm (50,5) units

Tn Tw Α OVR NSA TSVR

1.64 1.65 0 0.432 2.211 2.645

According to Table II, the optimal value of α 
obtained from OptQuest is 0, meaning that the demand 
forecast is similar to the long-term average of the 
customer demand. Furthermore, the demand forecast 
is found to be constant in every period. Shaban and 
Shalaby [1] also reported an α value of 0 in their 
experiment under the same customer demand pattern 
with the normal distribution. They concluded that the 
demand forecast should be constant in every review 
period regardless of the variation of end-customer 
demand, providing that there are no seasonality and 
trend effects in the demand pattern. The Total Stage 
Variance Ratio (TSVR) of the base case model is equal 
to 2.645, which shows a high level of the bullwhip 
effect. In addition, the net stock amplification appears 
to cause more variance amplification than the order 
variance. This is because the order variance has Tw 
and Tn as proportional controllers, to alter the dynamic 
behavior as stated earlier.  

2)	Lead-time duration variation
In this experiment, the lead-time duration 

(Ld) is varied from 1, 2, 3, to 4 periods while other 
parameters are fixed. This is similar to the base 
case model at the R = 1 period, and K = 1 under the 
reorder cycle policy with the exponential smoothing 
forecasting method. 

Table III  
Lead-Time Duration Variation

Reorder cycle policy

Exponential smoothing with the end-customer 
demand = Norm (50,5) units

Lead times Tn Tw α OVR NSA TSVR

1 1.59 1.61 0 0.484 1.227 1.711

2 1.64 1.65 0 0.432 2.211 2.645

3 1.49 1.49 0 0.507 3.148 3.656

4 1.63 1.64 0 0.520 4.483 5.003
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Fig. 8. Lead-time duration variation using the Tukey comparison test under the 95% confidence level

The results from the simulation-based 
optimization with OptQuest in each level of lead-
time duration are shown in Table III. The lead time 
has an impact on the TSVR since there is a significant 
difference among the four different levels of the lead 
time under the 95% confidence level using the Tukey 
comparison test as shown in Fig. 8. When the lead-
time duration is longer, the TSVR is also higher, 
mainly caused by the net stock amplification. While 
increasing the lead-time duration, a higher variance is 
mainly caused by the net stock term. After increasing 
the lead time, the net stock amplification becomes 
higher as a result of the end-customer demand 
fluctuation. The Order Variance Ratio (OVR) is 
stable throughout all levels of the lead time since 
the number of orders in each cycle is stable under 
the same pattern of end-customer demand due to 
the smoothing replenishment with two proportional 
controllers.  

3)	Lead-time variation
In this experiment, the lead-time duration 

(Ld)  follows the normal distribution with the mean 
varying from 1 to 3 periods. The standard deviation 
at each mean level is varied into 2 levels (i.e., 50 and 
100 percent of its mean) while other parameters are 
fixed at R = 1 period, and K = 1, similar to the base 
case model under the recycle order policy with the 
exponential smoothing forecasting method. Tables 
IV and V show the results from simulation-based 
optimization with OptQuest with lead-time variation.

The results from Tables IV and V show that 
the lead-time variation causes a huge TSVR in the 
supply chain system. The variance comes from 
the amplification of the net stock rather than the 
order variance due to the severe stock shortage and 
backlog. As the lead-time variation increases, the 
TSL (calculated from equation (1)) also varies and 
fluctuates in each period, causing a huge amplification 
in the net stock.

Table IV
  Lead-Time Variation with Standard Deviation Equal 

to 50% of Its Mean

Reorder cycle policy

Exponential smoothing with the end-customer 
demand = Norm (50,5) units

Lead time 
(period) Tn Tw α OVR NSA TSVR

norm (1,0.5) 5.91 3.70 0.01 3.58 26.79 30.37

norm (2,1) 5.30 4.83 0.01 7.49 63.17 70.67

norm (3,1.5) 12.38 7.66 0.00 10.13 99.62 109.75

Table V
  Lead-Time Variation with Standard Deviation Equal 

to 100% of Its Mean

Reorder cycle policy

Exponential smoothing with the end-customer 
demand = Norm (50,5) units

Lead time 
(period) Tn Tw α OVR NSA TSVR

norm (1,1) 9.01 4.26 0 9.01 55.41 64.42

norm (2,2) 7.83 7.38 0 16.70 116.71 133.41

norm (3,3) 748.1 10.72 0 21.99 175.92 198.01

4)	End-customer demand variation
In this experiment, the end-customer demand 

follows the normal distribution with the mean fixed 
at 50 units but the standard deviation is varied with 
4 levels (i.e., 10%, 20%, 30% and 40% of the mean). 
Other parameters are set similar to the base case 
model where the Review period (R) = 1 period, Safety 
stock (k)  = 1, and Lead time (Ld)  = 2 periods under 
the exponential smoothing forecasting method with 
the reorder cycle policy. The obtained optimal values 
of the TSVR from OptQuest of the four levels of 
standard deviation are shown in Table VI. 
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Table VI 
End-Customer Demand Variation

Reorder cycle policy

Exponential smoothing with the end-customer 
demand = Norm (50,5) units

S.D. of end-
customer demand Tn Tw α OVR NSA TSVR

10% of the mean 1.64 1.65 0 0.43 2.21 2.64

20% of the mean 1.40 1.40 0 0.55 2.10 2.65

30% of the mean 1.67 1.67 0 0.44 2.29 2.73

40% of the mean 1.44 1.41 0 0.55 2.36 2.91

Fig. 9. Tukey comparison test of four levels of the end-customer 
demand following the normal distribution with the mean equal to 
50 units under the 95% confidence level

From Table VI and Fig. 9, it was found that 
increasing the variation of the end-customer demand 
can cause a certain bullwhip effect, in terms of the 
TSVR. However, the severity is worsened with a 
higher level of the demand variation from its standard 
deviation of 30% or higher (as indicated by the Tukey 
comparison test). Most of the effect comes from 
the net stock as the order variance is stable despite 
increasing the demand variation.

5)	Safety stock level
The main parameters from the base case model 

are fixed except the safety-stock (K), which is varied 
from K=1 to 4. The results from the simulation-based 
optimization with OptQuest while varying the value 
of K are shown in Table VII. The Tukey comparison 
test is presented in Fig. 10, showing that varying 
only the level of the safety stock does not have a 
significant effect on the TSVR. This result is in the 
same direction as the result obtained from the analysis 
of variance in the first experiment, in which the safety 
stock level alone does not have a significant effect on 
the TSVR. However, its interaction with the lead-time 
variation has a significant effect on the TSVR.

Table VII  
Safety Stock Variation

Reorder cycle policy

Exponential smoothing with the end-customer 
demand = Norm (50,5) units

Safety stock (K) Tn Tw α OVR NSA TSVR

1 1.64 1.65 0 0.432 2.211 2.645

2 1.48 1.48 0 0.507 2.134 2.641

3 1.47 1.47 0 0.515 2.136 2.652

4 1.46 1.46 0 0.525 2.132 2.657

Fig. 10. Tukey comparison test of the safety stock level under the 95% confidence level

C.	 Third experiment: Meta-prediction model
A meta-prediction model was designed to 

predict the performance (TSVR) under a single-
echelon supply chain with the ROC policy using 
the exponential smoothing forecasting method with 
and without the proportional controllers. The main 
purpose of this study is to assess the impact of the 
factors of interest on the severity of the bullwhip 
effect, in terms of the Total Stage Variance Ratio 
(TSVR). The independent variables include the lead-
time duration, the standard deviation of lead time, the 
standard deviation of customer demand, and the level 
of safety stock. From the ANOVA results (Fig. 5 and 6),  
a multiple regression model can be built based on 
these 4 independent factors.

The behavior of these independent variables has 
a statistically significant effect on the TSVR, except 
for some interaction terms. However, some 3-way 
or 4-way interaction terms covering all main factors 

have a significant effect on the TSVR judged by a 
p-value of less than 0.05. Both R2 (Adjusted) of the 
model with and without the proportional controllers 
indicate that both regression models can explain the 
TSVRs. This was also guaranteed by the lack-of-fit 
test, in which there is not enough evidence to state 
that the model has a “lack of fit” since the p-value is 
greater than 0.05, meaning that the prediction model 
is significant. Subsequently, the regression equation 
can be obtained.

Regression equation without two proportional 
controllers (replenishment policy):

TSVR = 0.8 - 0.1 Demand variation + 1.13 
Lead-time duration
	+	37.4 Lead-time variation - 0.06 Safety stock
level
	+ 	0.2 Demand variation*Lead-time duration
	 - 	110 Demand variation*Lead-time variation
	+ 	0.4 Demand variation*Safety stock level
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	+ 	220.0 Lead-time duration*Lead-time 
variation
	+ 	0.04 Lead-time duration*Safety stock level
	 - 	20.7 Lead-time variation*Safety stock level
	 - 	678.8 Demand variation*Lead-time   
duration*Lead-time variation
	 - 	0.24 Demand variation*Lead-time 
duration*Safety stock level
	+ 	56.6 Demand variation*Lead-time 
variation*Safety stock level
	+ 	11.71 Lead-time duration*Lead-time 
variation*Safety stock level
	 - 	32.8 Demand variation*Lead-time 
duration*Lead-time variation*Safety stock level
Regression equation with two proportional 

controllers (replenishment policy):
TSVR = 0.1 + 0.9 Demand variation 
	+ 	1.23 Lead-time duration
	- 	44.4 Lead-time variation 
	+ 	0.12 Safety stock level
	- 	0.1 Demand variation*Lead-time duration
	+	149 Demand variation*Leadtime variation
	- 	0.2 Demand variation*Safety stock level
	+ 	126.0 Lead-time duration*Lead-time variation
	- 	0.04 Lead-time duration*Safety stock level
	+ 	12.4 Lead-time variation*Safety stock level
	- 	390.8 Demand variation*Lead-time
 duration*Lead-time variation
	+ 	0.00 Demand variation*Lead-time 
duration*Safety stock level
	- 	41.8 Demand variation*Lead-time 
variation*Safety stock level
	- 	12.31 Lead-time duration*Lead-time 
variation*Safety stock level
	+ 	39.3 Demand variation*Lead-time 
duration*Lead-time
variation*Safety stock level

Measure of accuracy by Mean Absolute Percent-
age Error (MAPE)

The MAPE is used to indicate the accuracy of the 
meta-prediction model as shown in (11). 

MAPE =                            (11)

The MAPE is expressed in terms of a percentage 
value. It is used to compare the error between the 
actual outcome and the outcome from the meta-
prediction model. The lower the MAPE value, the 
better the accuracy of the prediction model. Lewis 
[24] proposed that if the value of the MAPE is from 
10 to 20%, the model generates a good prediction. If 
the value of the MAPE is from 20 to 50%, the model 
is considered to be a reasonable predicting model. 
However, if it is more than 50%, the model cannot 
be used to predict any results.

Tables VIII and IX report the results in terms of 
the accuracy of the prediction model. The results 
are compared between the actual TSVR from the 
simulation model and the estimated TSVR from the 
meta-prediction model. We use similar input data 
within the boundary of the problem (Lead time = 1 
to 4 periods, Lead-time variation from 0 to 50 percent 
of its mean, Demand variability from 0 to 40 percent 
of its mean, Safety stock (K) = 1 to 4). The results for 
similar input data within the boundary of the problem 
with proportional controllers show that the average 
MAPE is 1.84%. However, the results for different 
input data (but within the boundary of the problem) 
are slightly higher at 3.65%. Both MAPE values from 
these two tests are less than 5%, meaning that the 
meta-prediction model from the regression analysis 
is sufficiently accurate to predict the TSVR under a 
single-echelon supply chain operating with the ROC 
policy.

Table VIII
  MAPE with Similar Input Data Within the Boundary

MAPE with similar input data

Demand Variation Lead time (period) Lead-time 
variation Safety stock TSVR (predicted) MAPE

0.1 2 0 1 2.64 1.4

0.1 2 0.5 1 70.59 1.81

0.1 4 0 1 5.00 2.01

0.1 4 0.5 1 151.53 2.49

0.3 2 0 1 2.74 1.45

0.3 2 0.5 1 11.14 1.94

0.3 4 0 1 5.05 1.9

0.3 4 0.5 1 21.72 2.16

0.1 2 0 4 2.70 1.25
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MAPE with similar input data

Demand Variation Lead time (period) Lead-time 
variation Safety stock TSVR (predicted) MAPE

0.1 2 0.5 4 57.86 1.27

0.1 4 0 4 4.83 1.9

0.1 4 0.5 4 113.42 2.24

0.3 2 0 4 2.65 1.73

0.3 2 0.5 4 9.29 1.73

0.3 4 0 4 4.73 1.94

0.3 4 0.5 4 18.10 2.24

AVERAGE 1.84

Table IX 
 Mape with Different Input Data Within the Boundary

MAPE with different input

Demand Variation Lead time (period) Lead-time 
variation Safety stock TSVR (Predicted) MAPE

0.2 2 0 1 2.69 1.57

0.15 2 0 1 2.67 2.64

0.1 3 0 1 3.82 4.57

0.1 2 0 2 2.66 0.6

0.1 2 0 3 2.68 3.36

0.1 3 0.5 1 111.07 3.65

0.25 2 0 1 2.71 1.97

0.1 2 0 3.5 2.69 3.99

0.15 2 0 2 2.67 0.95

AVERAGE 2.25

Table VIII
  Mape with Similar Input Data Within the Boundary (Cont.)

For instance, to predict the TSVR with two 
proportional controllers when the Safety stock (K) = 
1, Lead time (Ld) = 2 periods, Lead-time variability 
= 50 percent of its mean, and Demand variability = 
10 percent of its mean:

T S V R = 0 . 1 + 0 . 9 * 0 . 1 + 1 . 2 2 9 * 2 -   
44.39*0.5+0.121*1
	 -	0.11*0.1*2+149.3*0.1*0.5-0.25*0.1*1
	 +	126.03*2*0.5-0.039*2*1 
	 +	12.41*0.5*1-390.82*0.1*2*0.5
	 -	41.8*0.1*0.5*1
	 -	12.311*2*0.5*1
	 +	39.32*0.1*2*0.5*1

As a result, TSVR = 70.59 as compared to TSVRs 
ranging from 68.405 to 74.711 from ten replications 
that were obtained from the simulation model running 
with the above-mentioned parameters. This prediction 
obtains a MAPE of 1.81%. Such a prediction model 
would help decision makers to be aware of the amount 
of the bullwhip effect in advance. This information 
would be of value to the decision makers for managing 

and benchmarking their supply chain operations, 
with or without the optimal ordering quantity. They 
can use the obtained information for deciding their 
operating conditions in their chains by realizing when 
each factor may need to be varied (and its effects), 
such as reducing the lead time or increasing the level 
of safety stock.

V. Conclusion 
The bullwhip effect commonly occurs in a 

supply chain operating under uncertainties. This 
study examined four factors, which can generate 
the bullwhip in terms of order variance and net 
stock amplification: lead-time duration, lead-time 
variability, customer demand variability, and safety 
stock level. The performance of a supply chain is 
determined by the summation of the order variance 
and the net stock amplification (TSVR). The 
simulation-based optimization was applied in this 
study to find the optimal level of required parameters 
to minimize the bullwhip effect. A single-echelon 
supply chain model was simulated and optimized by 
ARENA software with the OptQuest optimization 
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tool. Also, this study proposed the meta-prediction 
model based on regression analysis, to predict the 
total amplification. 

This single-echelon supply chain operates 
with end-customer demand following the normal 
distribution under the Reorder Cycle (ROC) 
replenishment policy with the exponential smoothing 
forecasting technique. To compare the performances 
of each experiment, the Tukey comparison test 
is used at the 95 % confidence level. The results 
showed that all factors of interest, including the 
lead-time duration, lead-time variability, safety 
stock level, and end-customer demand variability, 
are significant, causing the bullwhip effect and net 
stock amplification. The lead-time variation has the 
highest significant effect on the severity of the TSVR. 
Two proportional controllers can alter the dynamic 
behavior of the supply chain system. They help to 
smooth the replenishment pattern by giving the 
optimal ordering quantity in each review period, and 
they significantly help to reduce the bullwhip effect 
and net stock amplification. In addition, the results 
obtained from the prediction model are accurate, 
giving a MAPE value of less than 3% for similar 
input data and less than 5% for different input data 
within the boundary of interest. Our findings would 
be of value to decision makers to realize, prepare, 
and benchmark the effects from uncontrollable 
uncertainties so that a proper alleviation plan can be 
made in advance. 

Our study considered only one type of inventory 
ordering policy (i.e., the reorder cycle policy), which 
can be further explored with other types of inventory 
replenishment policies such as the reorder level 
policy, etc. In addition, our model was simulated only 
with a single-echelon supply chain. A further study 
can be extended to a multi-echelon supply chain with 
centralized or decentralized ordering policies (with or 
without information sharing). A combination of these 
policies can be studied for their roles in the bullwhip 
effect and net stock amplification. This could be  
a major research area that is worth exploring. 
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