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Abstract—This paper presents a study of
a dedicated remanufacturing system using a
simulation-based optimization approach. The
remanufacturing system performs various
rework processes such as inspection, assembly,
disassembly, testing, and repair on used-products
and transforms them to be as-new products. In this
study, the original production line of this dedicated
remanufacturing system is shared with multiple
products and has a limited space to accommodate
arriving used products. Therefore, an appropriate
inventory capacity should be set and a proper
switching rule should be introduced to set up the
production line. Otherwise, excessive line switching
time and cost would be incurred. The objective of
this study is to sequentially improve and suggest
a method to optimize the production planning
of this dedicated remanufacturing system under
uncertain conditions, i.e., uncontrollable product
arrival and stochastic operational time. A case
study is used to demonstrate and identify possible
solutions, to show the advantages of the proposed
approach. This approach can assist in decision
making for the planning and management of
remanufacturing systems.

Index Terms—Meta-Heuristic Algorithm,
Production Planning, Remanufacturing System,
Simulation-Based Optimization, Switching Rule

[. INTRODUCTION

Remanufacturing is a critical choice that can
help to reduce the wastes that are generated from
manufacturers. Remanufacturing systems are viewed
as green processes that could develop environmental
sustainability and economic growth. It is a significant
market strategy that can avoid adverse effects (which
impact the environment) and make more profit for
manufacturers [1].

Remanufacturing can be separated into two

different strategies. The first strategy is a combined
model where the original manufacturer operates
the remanufacturing, combined with their normal
production processes. This strategy is mostly used
in European countries [2]. The second strategy is a
dedicated model where remanufacturing is operated
by third-party remanufacturers. This dedicated
outsourcing is more capable and productive, in terms
of the collection and recovery of used products. The
third-party remanufacturers have more knowledge in
recovery processes, which can minimize the waste
and operate with full capability in the recovery of
used products.

This paper presents a study of a dedicated
remanufacturing system. It operates under different
used-product conditions such as different patterns of
arrival and different priorities for each product type.
This study provides an in-depth analysis of a dedicated
remanufacturing system, concerning the material flow,
remanufacturing process, and associated problems.
A simulation-based optimization model is applied to
find and optimize the significant factors that can affect
the efficiency of a dedicated remanufacturing system
of electronic products. A meta-heuristic algorithm
is introduced to determine the optimal operating
parameters that yield the near or possibly highest,
system profit.

The remainder of the paper is organized as
follows. The literature review, which consists of
areview of a remanufacturing system, uncertainties in
remanufacturing, and system optimization, is provided
in Section II. Section III explains a simulation-
based optimization approach for the dedicated
remanufacturing, including an objective function
and the OptQuest optimization tool. Section IV
illustrates a case study including the model parameter
assumptions, decision variables, and simulation
model. Section V presents the results and discussion of
this study. Finally, Section VI provides the conclusion
and recommendations for further study.
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II. LITERATURE REVIEW

A. Remanufacturing Systems

Remanufacturing systems have been studied by
many researchers in the past because they can make
more value for used products, reduce production
costs, and promote environmental sustainability.
Remanufacturing, which is an industrialized circular
economy, can be considered an important solution to
environmental degradation and global warming [3].
For the automotive industry, a remanufacturing system
can help reduce the costs of manufacturing by up to
50%, the consumption of energy by up to 40%, and
consumption of materials by up to 30%, as compared
to manufacturing with new materials. Therefore, it can
provide benefits in both environmental and economic
aspects [4].

Regarding research on remanufacturing systems,
Fathi et al. [5] studied a remanufacturing system
that has two streams of used products, which are
remanufactured with a dedicated capacity and
a merged capacity. They used different variability
levels including (1) high variability in returned
product arrival that follows a hyper exponential
renewal process, and (2) low variability in returned
product arrival that follows a Poisson process. The
total expected profit of the remanufacturing system
was optimized, and the important effects of the
model parameters on the admission decisions were
illustrated.

B. Uncertainties in Remanufacturing Systems

Asignificant problem in remanufacturing systems
is their inherent uncertainties, which make planning
more difficult. A major drawback of a dedicated
remanufacturing system is the incoming flow of
arriving used products that is not stable and not certain
[6]. For a dedicated remanufacturing company, the
arrival pattern of used products is uncontrollable.
Used products have a variety of product types
with different residual values. Therefore, the
production planning and control of such a dedicated
remanufacturing system are more complex because of
the effects of high uncertainty and variation. Daniel
and Guide [7] built production planning and control
activities for remanufacturing where the production
planning and control activities are more complex for
remanufacturing companies due to uncertainties. These
uncertainties are stochastic returned product arrival,
return unbalancing, demand rates, and the unknown
conditions of returned products. Fang et al. [8]
considered a hybrid production system of new
and remanufactured products with two production
processes. For optimizing the hybrid production
strategy, the recycling uncertainty, demand rate,
limitation of capacity, component durability, and
differences between new and remanufactured products

were considered to obtain the lowest costs in the
system.

Wang and Huang [9] explored an optimal
disassembling policy under demand uncertainty.
They illustrated that after the disassembly process, the
used products can be fixed and sold to the secondary
market, or remanufactured, or reused to gain raw
materials, or discarded. They applied a two-stage
robust programming model to find the recycling
volume and recovery strategies. Shabanpour and
Colledani [10] varied the used-product conditions
that affect the remanufacturing efficiency and profit
to find the optimal design of a disassembly line under
the uncertainty of disassembly processing time.
They applied a mathematical optimization model
to maximize the profit and optimize the sequence of
disassembled components, assignment of disassembly
tasks to workstations, and allocation of buffers.

C. System Optimization

Optimization can be divided into two groups:
mathematical or analytical optimization and
simulation-based optimization. Each method has
its advantages and disadvantages, depending on
the usage purpose. The mathematical optimization
model can get the global optimal solution, but it is
more difficult to build when the problems are under
uncertain conditions. Simulation-based optimization
is suitable to solve big problems under uncertainties
in which they are too complex or too difficult to be
solved by the mathematical models. However, it may
not get the global optimal solution.

1) Mathematical Optimization

A mathematical model can normally be used to
solve certain optimization problems. It can be solved
with a single objective function or multiple objective
functions in both deterministic and stochastic (within
a certain level) situations. There are many mathematical
methods such as Linear Programming (LP) model,
Integer Programming (IP) model, and Mixed Integer
Linear Programming (MILP). Lee et al. [11] explored
the organization and design of a chilled water network
with improved efficiency, using mixed-integer
nonlinear programming models to solve the problem.
Their objectives were to improve the flexibility of the
network and reduce the complexity of the network.
Tahirov et al. [12] constructed a mathematical model
for a remanufacturing system to find which strategies
(among pure remanufacturing, pure production, and
mixed production) are more workable for multi-
items with returned subassemblies.Nuamchit and
Chiadamrong [13] then used the possibilistic linear
programming approach to optimize a problem of
hybrid manufacturing and remanufacturing systems
by incorporating fuzziness of data,represented by the
triangular distribution in their mathematical model.
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2) Simulation-based Optimization

A typical simulation model can only simulate
a system of interest but it cannot provide an optimal
solution to the problem. Therefore, simulation-based
optimization embedded with meta-heuristic
algorithms is applied to simulate the model and seek
the near or possibly optimal solution. Meta-heuristic
algorithms, such as Simulated Annealing (SA),
Tabu Search (TS), Scatter Search (SS), and Genetic
Algorithm (GA) are popular among researchers.
Simulation-based optimization has an advantage over
the mathematical optimization due to the fact that it
can optimize big and complex problems, especially
with the NP-hard problems as well asit can solve
the problems under a wide range of uncertainties.
However, its results cannot always guarantee the
optimal solution.

Mazzuco et al. [14] applied simulation-based
optimization with SA to the vehicle routing problem.
They optimized the product delivery schedules, to
find the best route that reduces the cost, delivery
time, or distance. Chu et al. [15] applied simulation-
based optimization with a cutting-plane algorithm to
multi-echelon inventory systems, which are under
uncertainty. They minimized the inventory cost while
sustaining satisfactory service levels, quantified by
the fill rate.

3) OptQuest

In this study, a simulation model of a dedicated
remanufacturing system is built and simulated by the
Arena simulation program, which has optimization
software, “OptQuest”. OptQuest is a meta-heuristic
algorithm that combines three meta-heuristics which
are a neural network, Scatter Search (SS), and Tabu
Search (TS) [16]. Jie and Li [17] used OptQuest
to solve and optimize the (s, S) inventory model.
They showed that OptQuest can effectively solve the
stochastic constrained optimization problem. Sadeghi
et al. [18] studied a three-echelon supply chain system
of a blood sugar strip manufacturer. They used the
OptQuest in the Simio software package to optimize
the inventory factors and cell utilization to minimize
the total costs. Their results showed that the Re-Order
Point (ROP) values generated from OptQuest are
different from the ROP values from mixed-integer
linear programming. However, the results are more
realistic, as uncertainties in the supply chain can be
included.

III. SIMULATION-BASED OPTIMIZATION FOR THE
DEDICATED REMANUFACTURING

The main objective of constructing and simulating
a dedicated remanufacturing system is to identify
the factors that affect the efficiency of the system.
Major features in this model consist of the inventory

space, number of operators in each station, buffer
size in each station, and run size of each product
type. These factors affect the production revenue
and costs, including raw material cost, redistribution
cost, remanufacturing cost, holding cost, and batch
transferring cost. Considering the size of the studied
problem with a large number of decision variables as
well as many uncertainty conditions, it is considered to
be an NP-hard problem. Hence, the simulation-based
optimization is deemed to be suitable for solving this
problem over the mathematical optimization.

A. Objective Function

To optimize the profit of our dedicated
remanufacturing system, important control variables
are separated into four categories: received arriving
product inventory capacity, run size of each product
type, number of operators in each station, and buffer
size of each station in the production line. As the
objective of this model is to optimize the profit from
these controllable variables, the objective function
of the dedicated remanufacturing model can be
formulated as follows:

Max f(I,W,B,Q) =TR —TC 1)
where / represents the inventory capacity of received
arriving used products, W=(w,w,,...,w,) represents the
number of operators in station / to n, B=(b,,b,, ...,b,)
represents the buffer size of each station, 0=(0,,0,, ...,
0,,) represents the run size of product type / to m,
TR represents the expected total revenue, and 7C
represents the expected total costs of the dedicated
remanufacturing system. The expected total revenue
is calculated as:

TR = L2 (R x V) (@)
where R, is the selling price of product type i and
V. is the total amount of product type i that is
remanufactured per replication length. The expected
total costs are:

TC= Cot+ Cr+C+Cs+Cp+Ci+Cy (3)

where C, is the raw material cost (including the
purchasing cost of used products from consumers
and the transportation cost from transporting the
used-products to the remanufacturing factory), Cy
is the redistribution cost that is incurred when the
inventory capacity is not enough to hold the arriving
used products, C, is the labor cost (cost of operators
for used products), Cy is the set-up cost (cost for
setting up the production line when it is switched),
Cy is the batch transferring cost (cost for handling
and transporting a run size (batch) of used products
from the received arriving product inventory to the
production line), C, is the operator idle cost (cost
incurred when the operators in each station are free),
C,, is the holding cost (including the holding cost
of parts in the arriving used-product inventory and
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work-in-process inventory in each station, as well as
inventory space cost).

B. Simulation-based Optimization with OptQuest

OptQuest combines the simulation with three
meta-heuristics, to optimize the problem. It is in the
ARENA simulation program. The parameters which
OptQuest requires are upper bound, lower bound,
suggested value, and step size value for each decision
variable. For the upper bound and lower bound, there
is the area for searching. It must be large enough to
guarantee that an optimal solution is inside the area.
In each iteration, all decision variables are generated.
The decision variables are simulated, to get a value
of the objective function where the decision variables
and the value are a solution in this iteration. Then,
this solution is used to generate the decision variables
in the next iteration. For the terminating condition of

the OptQuest optimization, automatic stopping of the
search occurs when the objective function value has
no improvement for 100 iterations.

IV. CASE STUDY

To simulate and optimize a dedicated
remanufacturing system, a case study of a dedicated
remanufacturing company adapted from Li et al.
[2] is used to be our base model for the experiment.
In the case study, this plant recovers, reuses, and
recycles two used-product types laptops and
desktops. Both products are remanufactured under
the same production line. Operations of the dedicated
remanufacturing system consist of nine stations as
illustrated in Fig. 1 product receiving, inspection,
inventory handling, testing, teardown, repairing,
labeling, packing, and shipping.

[ Product arrival ]

Laptop
Y

Desktop
A A

| Receiving station |

Accept or

Redistribute Redistribution ]

| Inspection station |

h 4 Entering the production
| Inventory line with run size
a
h 7y

v
| Testing station |

A A

| Tear down station

h 4

| Repair station |

Y

—>| Labeling station |

Y

| Packing station |

Production Line

A 4

| Shipping station |

Fig. 1. Basic processes of the dedicated remanufacturing system

Indexed in the Thai-Journal Citation Index (TCI 2)



INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND TECHNOLOGY, Vol. 4 No. 2 July-December 2020 5

Product receiving is the first operation that has
one receiving area to temporarily store arriving used-
products. These units are transported to the receiving
area by trucks. The characteristics of arriving used-
products are stochastic with a variety of product types,
uncertain arrival time, and uncertain quantities in each
arriving batch. Then, the received product inventory
is checked that it has enough space to hold the entire
batch of arriving used products. If it has enough space,
all arriving used products in this batch are received.
If not, as many as possible used products are received
considering the priority of each product type. Then,
the overflow units of the batch are redistributed and
a redistribution cost would incur. Next, the received
products are sent to an inspection station to investigate
and collect related information before sending them
to the received product inventory. For the production
line of this system, two different product types are
shared, to be remanufactured in the same line with
5 stations. There is a proportion of products (10%)
that cannot be remanufactured. These used products
are sent to the teardown station for further recycling.
The other used products are tested and repaired before
sending them to the labeling station. In each station,
there are one or more identical operators (number
of operators in each station is a decision variable)
working with uncertain processing time, which is
exponentially distributed. The operators immediately
start a job when they are available, and the product
leaves a station only when the next station becomes
available. Finally, the finished products are shipped
out from the shipping station and sold to customers.

A. Model Parameter Assumptions

Based on the case study of Li et al. [2], the inter-
arrival time of trucks, which transport the arriving
used-products, follows an exponential distribution
with a mean time of 4 hours, operating 8 hours a day.
For pick-up trucks, parts are randomly mixed with
two product types (laptop and desktop) in which the
capacity of one truck equals 260 sq. ft. The size of one
laptop and desktop is 0.5 and 1 sq. ft., respectively.
Hence, the number of laptops and desktops in one
shipment follows 0.5 x (number of laptops) + 1 x
(number of desktops) = 260. Then, the number of
laptops is randomized by a uniform distribution
between 0 and 520 units. The number of desktops is
also randomized with 260 — 0.5 x (number of laptops).
The finished products are instantly shipped and sold
after finishing the packaging process so there is no
need to hold the finished products in the inventory.
The prices of the finished laptops and desktops are
$45 and $20 per unit, respectively (finished products
are sold in form of semi-product components). Other
parameters of the dedicated remanufacturing system
are described in Table I.

1) Existing System
The inventory capacity for storing arriving
used products was set to 1,000 sq. ft. The dedicated
remanufacturing-system problem is to find the optimal
workforce level and optimal buffer size of each station
in the production line, to maximize the profit.

TABLE I
PARAMETERS OF THE DEDICATED REMANUFACTURING
SYSTEM
480 minutes per day
Labor Working time 350 working days
per year
. . Exponential
Inter-arrival time (240 minutes)
Truck Truck capacity 260 sq. ft.
Used laptop 0.5 sq. ft. per unit
Used desktop 1 sq. ft. per unit
For arriving used 1,000 sq. ft.
products
Inventory -
For finished
None
products
Set'up time per 60 minutes
Production switch
line Laptop run size q,
Desktop run size q»
X X Laptop $45 per unit
Selling price -
Desktop $20 per unit

2) First Improvement: Inventory Capacity

After investigating the existing system, it is
found that there are many overflow units from the
received product inventory due to its limited space.
The first improvement is to optimize the capacity of the
received product inventory. Therefore, the inventory
capacity is considered to be another decision variable.
It is optimized to reduce the number of redistributed
used products that cause a high redistribution cost.
By increasing the inventory capacity, the number of
redistribution units and their cost are reduced. A high
immoderate inventory capacity can cause the space
cost and holding cost to be too high.

3) Second Improvement: Switching Rule

The next improvement is to further improve
the profit of the system and reduce the flow time
of remanufacturing by applying the priority batch
switching rule to optimize the run sizes of laptops and
desktops for the production line. Since the production
line is shared between the laptops and desktops,
it needs to switch between the two products with a
set-up time of an hour. This switch happens when
the production line is free and all items of the current
product type in the batch (run size) are finished. The
priority batch switching rule is presented as follows:

a) If IL (number of laptops in the arriving used-
product inventory) > qL, the production line will keep
processing laptops. The priority is given to the laptops
as it has a higher selling price.
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b) Else if IL <qL and ID (number of desktops
in the arriving used-product inventory) >qD, the
production line will be switched to process desktops
and vice versa.

¢) Otherwise, it will wait for the arrival of
laptops and desktops to complete their run sizes before
the next production can be started.

B. Processing Time

Table II presents the processing time of each
station in minutes. The processing time of operators
in each station of the production line is assumed to
follow an exponential distribution, which is applied
when it is expected that they have a large variation
[19].

TABLE II
PROCESSING TIME FOR EACH STATION AND EACH
PRODUCT TYPE
Station Mean processing time (minutes)
Laptop Desktop

Receiving 3.24 3.24
Inspection 1.05 1.23
Inventory 0.543 0.543
Testing 6.5 7.32
Repairing 15 20
Labeling 5.66 5.66
Packing 9.146 9.146
Teardown 5.025 5.725
Shipping 1.65 1.65

C. Remanufacturing Costs

The operating costs that are related to this dedicated
remanufacturing plant are presented in Table III.

The raw material costs of arriving used products are
estimated to be $20 per laptop and $5 per desktop.
The redistribution cost is incurred when the arriving
used-product inventory does not have enough space to
hold the arriving used products for the current batch.
The redistribution cost is $5 for a redistributed laptop
and $1 for a redistributed desktop.

The remanufacturing costs of the system are
separated into four parts. The labor cost is $15 per hour
per operator for the inspection, inventory, testing, and
repairing stations and $12 per hour per operator for the
receiving, teardown, labeling, packing, and shipping
stations and also the production line switching. The
set-up cost is incurred when the production line is
switched. This set-up cost is $150 per time. The batch
transferring cost for internal logistics and transferring
equals $50 per batch. The last cost is the labor idle cost
that is incurred when the operators in each station are
free. This labor undertime cost is 30% of the normal
labor cost.

The inventory holding cost is divided into two
components. The first component is the cost of capital
for holding the arriving used products in the received
product inventory and work-in-process inventory
in each station. This component equals 50% of the
selling prices per year. This is based on the value of
the units held. The other component is the inventory
space costfor storing arriving used productsthat is
$0.15 per hour per sq. ft., which depends on the space
occupied by the inventory. This component represents
the construction cost of the inventory space that needs
to be built for holding the inventory.

RELATED REMANUFACTURING COSTS

. Laptop $20 per unit
Raw material cost (C,) -
Desktop $5 per unit
. Laptop $5 per redistribution
Redistribution cost (Cj) .
Desktop $1 per redistribution
$15 er hour per operator
Labor cost (C}) P Perop
$12 per hour per operator
. Set-up cost(Cy) $150 per time
Remanufacturing cost
Batch cost (Cp) $50 per batch
$4.5 er hour per operator
Idle cost (C) P perop
$3.6 per hour per operator
Holding cost 50% of selling price per year
Inventory cost (C,) - -
Space cost for the received product inventory $0.15 per hour per sq. ft.

D. Decision Variables

To optimize this dedicated remanufacturing
system, ten decision or control variables are searched
for their optimality by OptQuest: (1) the capacity of
inventory, (2) the buffer size of the repairing station,
(3) the buffer size of the labeling station, (4) the buffer
size of the packing station, (5) the number of operators
in the testing station, (6) the number of operators in

the repairing station, (7) the number of operators
in the labeling station, (8) the number of operators
in the packing station, (9) the run size of laptops, and
(10) the run size of desktops. The required decision
variables in each model and their bounds are shown
in Table I'V. The bounds of all control variables are
affirmed to certify that the optimal values are within
these bounds.
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TABLE IV
DECISION VARIABLES AND BOUNDS OF EACH SYSTEM
System Existin First Second Bound
an tl s Improvement Improvement Unit
Control variables ystem model model Lower Upper
Inventory capacity 1 2,000 Sq. ft.
Buffer size of repairing station v v 0 50 Units
Buffer size of labeling station v v v 0 50 Units
Buffer size of packing station v v v 0 50 Units
# operators in testing station v v v 1 50 Operators
# operators in repairing station v v v 1 50 Operators
# operators in labeling station v v v 1 50 Operators
# operators in packing station v v v 1 50 Operators
Run size of laptops - v 1 250 Units
E. Simulation Model switch the line between the two products. As lot-for-
The simulation model runs under non-terminating lot production is used, the line is switched to produce
conditions with 10 replications. The simulation length a new product when the current product is finished.
of each replication is 42,000 minutes (3 months) and This can happen quite frequently as arriving used
has another 42,000 minutes (3 months) for a warm-up products come randomly. However, OptQuest is used
period to generate a stable estimate of the steady-state to maximize the profit of the system by determining
results. Based on 10 replications, thg 95% confidence the optimal number of operators and buffer size in each
11:)terva.1 of the flow times has a width of less than station (see Table V for the optimal settings obtained
3 A’ of its mean. The simulation model runs on a PC by OptQuest). For the results of the existing system,
with CPU AMD Ryzen 7 2700 3.20GHz and RAM .
16.0 GB Fig. 2 shows the breakdown of the profit and costs.
’ ’ It shows a profit of $168,746.41, resulting from the
V. RESULTS AND DISCUSSIONS difference between the total revenue of $2,039,762.50
The results are Obtained from the simulation_ and the tOtal costs 0f$1,871,01609 The redistribution
based optimization by using the ARENA program cost of $11,078.10 is high since a lot of overflow units
to simulate the system (under uncertainties) and the are redistributed. This is due to the limited space in the
OptQuest optimization tool to search and optimize inventory capacity for new incoming used products.
the decision variables of the system, to maximize the In addition’ hlgh set-up and batch transferring costs
tot‘al PTOﬁt The resul.ts are separated into three cases: are a result of an inappropriate transferring batch size.
existing system, first improvement model, and second In this instance, all remaining products similar to the
improvement model. current product in the inventory space (an entire lot of
A. Casel: Existing Dedicated Remanufacturing similar model) would be transferred when the current
System product in the line is about to be finished. As a result,
In this case, the original inventory capacity is fixed there are higher batch transferring and line switching
at 1,000 square feet, and there is no switching rule to costs.
TABLE V
OPTIMAL OPERATING PARAMETERS OF THE EXISTING DEDICATED REMANUFACTURING SYSTEM
Decision Variables
Fixed
. Buffer Buffer Buffer # operators # operators # operators # operators
inventory
Control capacity size of size of size of in testing in repairing in labeling in packing
variables (square repairing labeling packing station station station station
feet) station station station (operators) (operators) (operators) (operators)
(units) (units) (units)
Values 1,000 34 48 26 15 41 15 24
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Results of Existing Dedicated Remanufacturing System

profit [ 168,746.41
Revennue

Total costs

IR 2,039,762.50
I 1, 871,016.09

Raw materil cost - |GG 06930500

Redistribution cost | 11,078.10
Labor cost [ 554,793.09
Set-up cost | 14,235.00

B 157,519.41
Inventory holding cost [jill 108,520.49

Idle cost
Batch transferring cost | 25,065.00

$- $500,000.00

$1,000,000.00
m Dollars (8)

$1,500,000.00 $2,000,000.00 $2,500,000.00

Fig. 2. Profit and cost distribution of the existing dedicated remanufacturing system

B. Case2: First Improvement Model with the
Inventory Capacity

Optimal settings of the parameters in the system
by OptQuest to maximize the profit are shown in
Table VI. Table VII shows the costs and operating
performance comparison between the existing
system and the first improvement model. For a fair
comparison, all models were set to have similar seeds
and streams of random numbers when creating the
arrival of used products. As a result, similar arrival
times and the number of arriving units are created,
resulting in the same raw material cost. From Table
VI, it was found that the inventory capacity needs to be
enlarged to 1,530 sq. ft. to accommodate the arriving
batches of received products (the existing system has

only 1,000 sq. ft.). This would result ina 21.28% and
66.80% reduction of the batch transferring cost and
redistribution cost, respectively. This is a result of a
larger inventory capacity. As a result, there would be
fewer units of overflow products to be redistributed
and fewer batch transferring times. However, the total
revenue is higher because a higher number of units can
be sent to the remanufacturing processes. From this
improvement, it was found that profit can be increased
by 19.67%, as compared to the existing system.
However, it was also found that the average flow
time in the system is much longer and the inventory
cost is higher because there is more inventory at the
arriving inventory area.

TABLE VI
OPTIMAL OPERATING PARAMETERS OF THE FIRST IMPROVEMENT DEDICATED REMANUFACTURING MODEL
Decision Variables

Fixed Buffer Buffer Buffer # operators # operators # operators # operators

Control inventory size of size of size of in testing in repairing in labeling in packing
variables capacity repairing labeling packing station station station station
(square station station station (operators) (operators) (operators) (operators)
feet) (units) (units) (units)

Values 1,530 42 38 47 14 39 14 23
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TABLE VII
RESULTS OF THE FIRST IMPROVEMENT DEDICATED REMANUFACTURING MODEL

Profit & cost breakdown Existing system | First improvement model %improvement

Profit ($) 168,746.41 201,937.02 19.67%
Total revenue ($) 2,039,762.50 2,109,665.50 3.43%
Total costs ($) 1,871,016.09 1,907,728.48 -1.96%
- Raw material cost ($) 969,805.00 969,805.00 0.00%
- Redistribution cost ($) 11,078.10 3,677.70 66.80%
- Labor cost ($) 584,793.09 603,788.01 -3.25%
- Set-up cost ($) 14,235.00 11,895.00 16.44%
- Idle cost ($) 157,519.41 133,752.28 15.09%
- Inventory holding cost ($) 108,520.49 165,080.50 -52.12%
- Batch transferring cost (§) 25,065.00 19,730.00 21.28%

Operating performance

Average part flow time in the system (minutes) 706.34 863.07 -22.19%
Average part flow time in testing station (minutes) 113.40 155.31 -36.96%
Average part flow time in repair station (minutes) 18.08 18.10 -0.12%
Average part flow time in labeling station (minutes) 6.53 6.65 -1.86%
Average part flow time in packing station (minutes) 9.82 9.75 0.69%
Number of line set-ups (times) 94.90 79.30 16.44%
Number of finished laptops (units) 36,999.00 38,217.50 3.29%
Number of finished desktops (units) 18,740.00 19,493.90 4.02%
g\rlleiz;i)ge inventory in the arriving inventory space 412.00 54147 31.42%

Remarks: These results are averaged from 10 replications

C. Case3: Second Improvement Model with the
Switching Rule

Table VIII shows the optimal settings of the
parameters in the system. Table IX presents a cost
and operating performance comparison between the
existing system, the first improvement model, and
the second improvement model. By simultaneously
imposing the inventory capacity and run size of
each product as the decision variables, the inventory
cost is decreased by 17.47% from the case of the
first improvement model. Even though the batch
transferring cost increases by 20.73% due to
a smaller inventory capacity and more transfers from

the arriving inventory capacity to the production line,
the average flow time has improved by 13.08%. In
addition, the switching rule and appropriate run sizes
help to reduce the number of line set-ups from 79.30
times in the case of the first improvement model
without the switching rule to 70.00 times. This is
a26.24% reduction and significantly reduces the flow
time in the testing station (77.01% reduction), which
is the first station in the production line (as the entire
lot would not be transferred at a time). In all, this
improvement helps to increase the system’s profit by
7.21% as compared to the first improvement model, or
by up to 28.29% as compared to the existingsystem.

TABLE VIII
OPTIMAL OPERATING PARAMETERS OF THE SECOND IMPROVEMENT DEDICATED REMANUFACTURING MODEL
Decision Variables

Fixed Buffer Buffer Buffer # operators # operators # operators # operators
Control inventory size of size of size of in testing in repairing in labeling in packing
variables capacity repairing labeling packing station station station station

(square station station station (operators) (operators) (operators) (operators)

feet) (units) (units) (units)
Values 1,530 42 38 47 14 39 14 23
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TABLE IX
RESULTS OF THE SECOND IMPROVEMENT DEDICATED REMANUFACTURING MODEL
Existin First Second
Profit & cost breakdown g improvement improvement | %improvement a. | %oimprovement b.
system
model model
Profit ($) 168,746.41 201,937.02 216,487.74 7.21% 28.29%
Total revenue ($) 2,039,762.50 2,109,665.50 2,102,879.00 -0.32% 3.09%
Total costs ($) 1,871,016.09 1,907,728.48 1,886,391.26 1.12% -0.82%
- Raw material cost ($) 969,805.00 969,805.00 969,805.00 0.00% 0.00%
- Redistribution cost ($) 11,078.10 3,677.70 4,615.60 -25.50% 58.34%
- Labor cost ($) 584,793.09 603,788.01 601,959.32 0.30% -2.94%
- Set-up cost ($) 14,235.00 11,895.00 10,500.00 11.73% 26.24%
- Idle cost ($) 157,519.41 133,752.28 139,454.64 -4.26% 11.47%
- Inventory holding cost ($) 108,520.49 165,080.50 136,236.70 17.47% -25.54%
- Batch transferring cost ($) 25,065.00 19,730.00 23,820.00 -20.73% -4.97%
Operating performance
Average part flow time in the system 706.34 863.07 750.22 13.08% -6.21%
(minutes)
Average part flow time in testing 113.40 155.31 35.70 77.01% 68.52%
station (minutes)
Average part flow time in repair 18.08 18.10 17.88 1.24% 1.12%
station (minutes)
Average part flow time in labeling
station (minutes) 6.53 6.65 6.67 -0.29% -2.15%
Average part flow time in packing
station (minutes) 9.82 9.75 9.71 0.42% 1.10%
Number of line set-ups (times) 94.90 79.30 70.00 11.73% 26.24%
Number of finished laptops (units) 36,999.00 38,217.50 38,122.20 -0.25% 3.04%
Number of finished desktops (units) 18,740.00 19,493.90 19,369.00 -0.64% 3.36%
Average inventory in the arriving 412.00 541.47 574.14 -6.03% -39.35%
inventory space (units)

Remarks: These results are averaged from 10 replications

a. %improvement of the second improvement model as compared to the first improvement model
b. %improvement of the second improvement model as compared to the existing system

D. Sensitivity Analysis

For a study dealing with the profit and cost
optimization, a sensitivity analysis based on different
cost structures is required to confirm the conclusion
that has been made. Even though there are many costs
used to calculate the system’s profit, not all of them
have a major influence on the outcome. Therefore, we
do the sensitivity analysis on four main costs, which
are redistribution cost, set-up cost, inventory holding
cost, and batch transferring cost. These costs are varied
+20% from their initial settings at a time, and we
observe the outcomes from varying these costs. Table
X presents the profits obtained from varying these

costs in each model, relative to their initial values.
The overall results show that the second improvement
model still outperforms the other models, in terms of
a higher profit, despite varying these four costs by up
to £20% from their initial values. This can confirm
the appropriateness of our findings and conclusion.
For instance, when the redistribution cost and set-up
cost are reduced by 20%, this should favor the existing
system as it has many redistribution units due to its
small inventory capacity and a greater number of line
set-ups. However, its profit still cannot outperform the
first and second improvement models.
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TABLE X
RESULTS OF ADJUSTING EACH EFFECTIVE COST FOR EACH MODEL
Effective costs Profit (9
Existing system First improvement model Second improvement model

-20% $162,052.57 $193,585.29 $220,639.19
+ Redistribution cost Initial value $168,746.41 $201,937.02 $216,487.74
+20% $159,458.73 $201,987.04 $215,841.27
-20% $180,402.29 $198,350.58 $210,759.47
+ Set-up cost Initial value $168,746.41 $201,937.02 $216,487.74
+20% $153,252.60 $194,013.04 $206,656.09
-20% $192,670.35 $230,928.76 $238,784.69
+ Inventory holding cost Initial value $168,746.41 $201,937.02 $216,487.74
+20% $149,241.15 $162,416.73 $179,522.10
-20% $177,535.81 $195,877.23 $206,093.77
+ Batch transferring cost Initial value $168,746.41 $201,937.02 $216,487.74
+20% $154,955.46 $188,252.47 $203,655.92

VI. CONCLUSION

The remanufacturing system has proven to help
environment as well as contribute to a higher company’s
return. However, it is unstable and hard to control
due to uncontrollable inputs. This paper purposed to
explore the problems of the remanufacturing system
based on a case study of a dedicated remanufacturing
system. A simulation-based optimization approach
was applied to this system incorporating uncertainties
of part arrival and operating conditions. While,
ARENA was used to simulate the system under
uncertain conditions, OptQuest was used to optimize
the operating parameters of the system.

A remanufacturing system helps the environment
and contributes to a higher company profit. However,
it is unstable and hard to control due to uncontrollable
inputs. This paper explores the problems of a
remanufacturing system based on a case study of
a dedicated remanufacturing system. A simulation-
based optimization approach was applied to this
system, incorporating uncertainties of part arrival and
operating conditions. ARENA was used to simulate
the system under uncertain conditions, and OptQuest
was used to optimize the operating parameters of the
system.

A few sequential steps of improvement have been
applied to the system, starting from recommending
optimal buffer size and an appropriate number of
operators in each station. We also enlarged the size
of arriving inventory space to accommodate more
arriving used products and imposed the switching
rule for setting up the production line with an
appropriate run size in each model. The findings
showed that adjusting one operating parameter would
affect the other parameters. The final step where all
improvements were applied increased the profit of the

system by up to 28.29% with a shorter average part
flow time and fewer line set-ups. This improvement
should not be the end as this method can be applied
to other parts of the system. A case study is used
to demonstrate and identify possible solutions and
their advantages of utilizing the simulation-based
optimization approach. These findings can help
decision makers to make the right decisions on the
near, or possible optimal, or feasible solution in a
certain situation under an uncertain environment.

For larger problems with a higher number of
decision variables, this simulation-based optimization
using OptQuest may need some adjustments to
reduce the computation time and further improve the
quality of the objective value. As the meta-heuristic
algorithm cannot guarantee an optimal result,
alternative algorithms such as Genetic Algorithms,
Particle Swarm Optimization, Ant Colony, or hybrid
optimization are worth exploring, to strive for a better
solution. This can be further introduced in the model
to improve its effectiveness.
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