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Abstract—This paper presents a study of 
a dedicated remanufacturing system using a 
simulation-based optimization approach. The 
remanufacturing system performs various 
rework processes such as inspection, assembly, 
disassembly, testing, and repair on used-products 
and transforms them to be as-new products. In this 
study, the original production line of this dedicated 
remanufacturing system is shared with multiple 
products and has a limited space to accommodate 
arriving used products. Therefore, an appropriate 
inventory capacity should be set and a proper 
switching rule should be introduced to set up the 
production line. Otherwise, excessive line switching 
time and cost would be incurred. The objective of 
this study is to sequentially improve and suggest 
a method to optimize the production planning 
of this dedicated remanufacturing system under 
uncertain conditions, i.e., uncontrollable product 
arrival and stochastic operational time. A case 
study is used to demonstrate and identify possible 
solutions, to show the advantages of the proposed 
approach. This approach can assist in decision 
making for the planning and management of 
remanufacturing systems.

Index Terms—Meta-Heuristic Algorithm, 
Production Planning, Remanufacturing System, 
Simulation-Based Optimization, Switching Rule

I.  Introduction

Remanufacturing is a critical choice that can 
help to reduce the wastes that are generated from 
manufacturers. Remanufacturing systems are viewed 
as green processes that could develop environmental 
sustainability and economic growth. It is a significant 
market strategy that can avoid adverse effects (which 
impact the environment) and make more profit for 
manufacturers [1].

Remanufacturing can be separated into two 

different strategies. The first strategy is a combined 
model where the original manufacturer operates 
the remanufacturing, combined with their normal 
production processes. This strategy is mostly used 
in European countries [2]. The second strategy is a 
dedicated model where remanufacturing is operated 
by third-party remanufacturers. This dedicated 
outsourcing is more capable and productive, in terms 
of the collection and recovery of used products. The 
third-party remanufacturers have more knowledge in 
recovery processes, which can minimize the waste 
and operate with full capability in the recovery of 
used products.

This paper presents a study of a dedicated 
remanufacturing system. It operates under different 
used-product conditions such as different patterns of 
arrival and different priorities for each product type. 
This study provides an in-depth analysis of a dedicated 
remanufacturing system, concerning the material flow,  
remanufacturing process, and associated problems.  
A simulation-based optimization model is applied to 
find and optimize the significant factors that can affect 
the efficiency of a dedicated remanufacturing system 
of electronic products. A meta-heuristic algorithm 
is introduced to determine the optimal operating 
parameters that yield the near or possibly highest, 
system profit.

The remainder of the paper is organized as 
follows. The literature review, which consists of  
a review of a remanufacturing system, uncertainties in  
remanufacturing, and system optimization, is provided 
in Section II. Section III explains a simulation-
based optimization approach for the dedicated 
remanufacturing, including an objective function 
and the OptQuest optimization tool. Section IV 
illustrates a case study including the model parameter 
assumptions, decision variables, and simulation 
model. Section V presents the results and discussion of 
this study. Finally, Section VI provides the conclusion 
and recommendations for further study.
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II.  Literature Review

A.	 Remanufacturing Systems
Remanufacturing systems have been studied by 

many researchers in the past because they can make 
more value for used products, reduce production 
costs, and promote environmental sustainability. 
Remanufacturing, which is an industrialized circular 
economy, can be considered an important solution to 
environmental degradation and global warming [3]. 
For the automotive industry, a remanufacturing system 
can help reduce the costs of manufacturing by up to 
50%, the consumption of energy by up to 40%, and 
consumption of materials by up to 30%, as compared 
to manufacturing with new materials. Therefore, it can 
provide benefits in both environmental and economic 
aspects [4].

Regarding research on remanufacturing systems, 
Fathi et al. [5] studied a remanufacturing system 
that has two streams of used products, which are 
remanufactured with a dedicated capacity and  
a merged capacity. They used different variability 
levels including (1) high variability in returned 
product arrival that follows a hyper exponential 
renewal process, and (2) low variability in returned 
product arrival that follows a Poisson process. The 
total expected profit of the remanufacturing system 
was optimized, and the important effects of the 
model parameters on the admission decisions were 
illustrated.

B.	 Uncertainties in Remanufacturing Systems
A significant problem in remanufacturing systems 

is their inherent uncertainties, which make planning 
more difficult. A major drawback of a dedicated 
remanufacturing system is the incoming flow of 
arriving used products that is not stable and not certain 
[6]. For a dedicated remanufacturing company, the 
arrival pattern of used products is uncontrollable. 
Used products have a variety of product types 
with different residual values. Therefore, the 
production planning and control of such a dedicated 
remanufacturing system are more complex because of 
the effects of high uncertainty and variation. Daniel 
and Guide [7] built production planning and control 
activities for remanufacturing where the production 
planning and control activities are more complex for 
remanufacturing companies due to uncertainties. These 
uncertainties are stochastic returned product arrival, 
return unbalancing, demand rates, and the unknown 
conditions of returned products. Fang et al. [8]  
considered a hybrid production system of new 
and remanufactured products with two production 
processes. For optimizing the hybrid production 
strategy, the recycling uncertainty, demand rate, 
limitation of capacity, component durability, and 
differences between new and remanufactured products 

were considered to obtain the lowest costs in the 
system.

Wang and Huang [9] explored an optimal 
disassembling policy under demand uncertainty. 
They illustrated that after the disassembly process, the 
used products can be fixed and sold to the secondary 
market, or remanufactured, or reused to gain raw 
materials, or discarded. They applied a two-stage 
robust programming model to find the recycling 
volume and recovery strategies. Shabanpour and 
Colledani [10] varied the used-product conditions 
that affect the remanufacturing efficiency and profit 
to find the optimal design of a disassembly line under 
the uncertainty of disassembly processing time. 
They applied a mathematical optimization model 
to maximize the profit and optimize the sequence of 
disassembled components, assignment of disassembly 
tasks to workstations, and allocation of buffers.

C.	 System Optimization
Optimization can be divided into two groups: 

mathematical or analytical optimization and 
simulation-based optimization. Each method has 
its advantages and disadvantages, depending on 
the usage purpose. The mathematical optimization 
model can get the global optimal solution, but it is 
more difficult to build when the problems are under 
uncertain conditions. Simulation-based optimization 
is suitable to solve big problems under uncertainties 
in which they are too complex or too difficult to be 
solved by the mathematical models. However, it may 
not get the global optimal solution.

	 1)	 Mathematical Optimization
	 A mathematical model can normally be used to 

solve certain optimization problems. It can be solved 
with a single objective function or multiple objective 
functions in both deterministic and stochastic (within  
a certain level) situations. There are many mathematical 
methods such as Linear Programming (LP) model, 
Integer Programming (IP) model, and Mixed Integer 
Linear Programming (MILP). Lee et al. [11] explored 
the organization and design of a chilled water network 
with improved efficiency, using mixed-integer 
nonlinear programming models to solve the problem. 
Their objectives were to improve the flexibility of the 
network and reduce the complexity of the network. 
Tahirov et al. [12] constructed a mathematical model 
for a remanufacturing system to find which strategies 
(among pure remanufacturing, pure production, and 
mixed production) are more workable for multi-
items with returned subassemblies.Nuamchit and 
Chiadamrong [13] then used the possibilistic linear 
programming approach to optimize a problem of 
hybrid manufacturing and remanufacturing systems 
by incorporating fuzziness of data,represented by the 
triangular distribution in their mathematical model.
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	 2)	 Simulation-based Optimization
	 A typical simulation model can only simulate  

a system of interest but it cannot provide an optimal  
solution to the problem. Therefore, simulation-based 
optimization embedded with meta-heuristic 
algorithms is applied to simulate the model and seek 
the near or possibly optimal solution. Meta-heuristic 
algorithms, such as Simulated Annealing (SA), 
Tabu Search (TS), Scatter Search (SS), and Genetic 
Algorithm (GA) are popular among researchers. 
Simulation-based optimization has an advantage over 
the mathematical optimization due to the fact that it 
can optimize big and complex problems, especially 
with the NP-hard problems as well asit can solve 
the problems under a wide range of uncertainties. 
However, its results cannot always guarantee the 
optimal solution.

	 Mazzuco et al. [14] applied simulation-based 
optimization with SA to the vehicle routing problem. 
They optimized the product delivery schedules, to 
find the best route that reduces the cost, delivery 
time, or distance. Chu et al. [15] applied simulation-
based optimization with a cutting-plane algorithm to 
multi-echelon inventory systems, which are under 
uncertainty. They minimized the inventory cost while 
sustaining satisfactory service levels, quantified by 
the fill rate.

	 3)	 OptQuest
	 In this study, a simulation model of a dedicated 

remanufacturing system is built and simulated by the 
Arena simulation program, which has optimization 
software, “OptQuest”. OptQuest is a meta-heuristic 
algorithm that combines three meta-heuristics which 
are a neural network, Scatter Search (SS), and Tabu 
Search (TS) [16]. Jie and Li [17] used OptQuest 
to solve and optimize the (s, S) inventory model. 
They showed that OptQuest can effectively solve the 
stochastic constrained optimization problem. Sadeghi 
et al. [18] studied a three-echelon supply chain system 
of a blood sugar strip manufacturer. They used the 
OptQuest in the Simio software package to optimize 
the inventory factors and cell utilization to minimize 
the total costs. Their results showed that the Re-Order 
Point (ROP) values generated from OptQuest are 
different from the ROP values from mixed-integer 
linear programming. However, the results are more 
realistic, as uncertainties in the supply chain can be 
included.

III. Simulation-Based Optimization for the 
Dedicated Remanufacturing

The main objective of constructing and simulating 
a dedicated remanufacturing system is to identify 
the factors that affect the efficiency of the system. 
Major features in this model consist of the inventory 

space, number of operators in each station, buffer 
size in each station, and run size of each product 
type. These factors affect the production revenue 
and costs, including raw material cost, redistribution 
cost, remanufacturing cost, holding cost, and batch 
transferring cost. Considering the size of the studied 
problem with a large number of decision variables as 
well as many uncertainty conditions, it is considered to 
be an NP-hard problem. Hence, the simulation-based 
optimization is deemed to be suitable for solving this 
problem over the mathematical optimization.

A.	 Objective Function
To optimize the profit of our dedicated 

remanufacturing system, important control variables 
are separated into four categories: received arriving 
product inventory capacity, run size of each product 
type, number of operators in each station, and buffer 
size of each station in the production line. As the 
objective of this model is to optimize the profit from 
these controllable variables, the objective function 
of the dedicated remanufacturing model can be 
formulated as follows:

	 (1)
where I represents the inventory capacity of received 
arriving used products, W=(w1,w2,…,wn) represents the 
number of operators in station 1 to n, B=(b1,b2,…,bn) 
represents the buffer size of each station, Q=(Q1,Q2,…, 
Qm) represents the run size of product type 1 to m, 
TR represents the expected total revenue, and TC 
represents the expected total costs of the dedicated 
remanufacturing system. The expected total revenue 
is calculated as:

	 (2)
where Ri is the selling price of product type i and 
Vi is the total amount of product type i that is 
remanufactured per replication length. The expected 
total costs are:

	 (3)
where CC is the raw material cost (including the 
purchasing cost of used products from consumers 
and the transportation cost from transporting the 
used-products to the remanufacturing factory), CR 
is the redistribution cost that is incurred when the 
inventory capacity is not enough to hold the arriving 
used products, CL is the labor cost (cost of operators 
for used products), CS is the set-up cost (cost for 
setting up the production line when it is switched), 
CB is the batch transferring cost (cost for handling 
and transporting a run size (batch) of used products 
from the received arriving product inventory to the 
production line), CI is the operator idle cost (cost 
incurred when the operators in each station are free), 
CH is the holding cost (including the holding cost 
of parts in the arriving used-product inventory and 
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work-in-process inventory in each station, as well as 
inventory space cost).

B.	 Simulation-based Optimization with OptQuest
OptQuest combines the simulation with three 

meta-heuristics, to optimize the problem. It is in the 
ARENA simulation program. The parameters which 
OptQuest requires are upper bound, lower bound, 
suggested value, and step size value for each decision 
variable. For the upper bound and lower bound, there 
is the area for searching. It must be large enough to 
guarantee that an optimal solution is inside the area. 
In each iteration, all decision variables are generated. 
The decision variables are simulated, to get a value 
of the objective function where the decision variables 
and the value are a solution in this iteration. Then, 
this solution is used to generate the decision variables 
in the next iteration. For the terminating condition of 

the OptQuest optimization, automatic stopping of the 
search occurs when the objective function value has 
no improvement for 100 iterations.

IV.  Case Study

To simulate and optimize a dedicated  
remanufacturing system, a case study of a dedicated 
remanufacturing company adapted from Li et al. 
[2] is used to be our base model for the experiment. 
In the case study, this plant recovers, reuses, and 
recycles two used-product types laptops and 
desktops. Both products are remanufactured under 
the same production line. Operations of the dedicated 
remanufacturing system consist of nine stations as 
illustrated in Fig. 1 product receiving, inspection, 
inventory handling, testing, teardown, repairing, 
labeling, packing, and shipping.

Fig. 1. Basic processes of the dedicated remanufacturing system
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Product receiving is the first operation that has 
one receiving area to temporarily store arriving used-
products. These units are transported to the receiving 
area by trucks. The characteristics of arriving used-
products are stochastic with a variety of product types, 
uncertain arrival time, and uncertain quantities in each 
arriving batch. Then, the received product inventory 
is checked that it has enough space to hold the entire 
batch of arriving used products. If it has enough space, 
all arriving used products in this batch are received. 
If not, as many as possible used products are received 
considering the priority of each product type. Then, 
the overflow units of the batch are redistributed and 
a redistribution cost would incur. Next, the received 
products are sent to an inspection station to investigate 
and collect related information before sending them 
to the received product inventory. For the production 
line of this system, two different product types are 
shared, to be remanufactured in the same line with 
5 stations. There is a proportion of products (10%) 
that cannot be remanufactured. These used products 
are sent to the teardown station for further recycling. 
The other used products are tested and repaired before 
sending them to the labeling station. In each station, 
there are one or more identical operators (number 
of operators in each station is a decision variable) 
working with uncertain processing time, which is 
exponentially distributed. The operators immediately 
start a job when they are available, and the product 
leaves a station only when the next station becomes 
available. Finally, the finished products are shipped 
out from the shipping station and sold to customers.

A.	 Model Parameter Assumptions
Based on the case study of Li et al. [2], the inter-

arrival time of trucks, which transport the arriving 
used-products, follows an exponential distribution 
with a mean time of 4 hours, operating 8 hours a day. 
For pick-up trucks, parts are randomly mixed with 
two product types (laptop and desktop) in which the 
capacity of one truck equals 260 sq. ft. The size of one 
laptop and desktop is 0.5 and 1 sq. ft., respectively. 
Hence, the number of laptops and desktops in one 
shipment follows 0.5 x (number of laptops) + 1 x 
(number of desktops) = 260. Then, the number of 
laptops is randomized by a uniform distribution 
between 0 and 520 units. The number of desktops is 
also randomized with 260 – 0.5 x (number of laptops). 
The finished products are instantly shipped and sold 
after finishing the packaging process so there is no 
need to hold the finished products in the inventory. 
The prices of the finished laptops and desktops are 
$45 and $20 per unit, respectively (finished products 
are sold in form of semi-product components). Other 
parameters of the dedicated remanufacturing system 
are described in Table I.

1)	Existing System
The inventory capacity for storing arriving 

used products was set to 1,000 sq. ft. The dedicated 
remanufacturing-system problem is to find the optimal 
workforce level and optimal buffer size of each station 
in the production line, to maximize the profit.

Table I
Parameters of the Dedicated Remanufacturing 

System

Labor Working time
480 minutes per day

350 working days 
per year

Truck

Inter-arrival time Exponential 
(240 minutes)

Truck capacity 260 sq. ft.
Used laptop 0.5 sq. ft. per unit
Used desktop 1 sq. ft. per unit

Inventory

For arriving used 
products 1,000 sq. ft.

For finished 
products None

Production 
line

Setup time per 
switch 60 minutes

Laptop run size qL

Desktop run size qD

Selling price
Laptop $45 per unit
Desktop $20 per unit

2)	First Improvement: Inventory Capacity
	 After investigating the existing system, it is 

found that there are many overflow units from the 
received product inventory due to its limited space. 
The first improvement is to optimize the capacity of the 
received product inventory. Therefore, the inventory 
capacity is considered to be another decision variable. 
It is optimized to reduce the number of redistributed 
used products that cause a high redistribution cost. 
By increasing the inventory capacity, the number of 
redistribution units and their cost are reduced. A high 
immoderate inventory capacity can cause the space 
cost and holding cost to be too high.

3)	Second Improvement: Switching Rule
	 The next improvement is to further improve 

the profit of the system and reduce the flow time 
of remanufacturing by applying the priority batch 
switching rule to optimize the run sizes of laptops and 
desktops for the production line. Since the production 
line is shared between the laptops and desktops,  
it needs to switch between the two products with a  
set-up time of an hour. This switch happens when 
the production line is free and all items of the current 
product type in the batch (run size) are finished. The 
priority batch switching rule is presented as follows:

	 a) If IL (number of laptops in the arriving used-
product inventory) > qL, the production line will keep 
processing laptops. The priority is given to the laptops 
as it has a higher selling price.
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	 b) Else if IL <qL and ID (number of desktops 
in the arriving used-product inventory) >qD, the 
production line will be switched to process desktops 
and vice versa.

	 c) Otherwise, it will wait for the arrival of 
laptops and desktops to complete their run sizes before 
the next production can be started.

B.	 Processing Time
	 Table II presents the processing time of each 
station in minutes. The processing time of operators 
in each station of the production line is assumed to 
follow an exponential distribution, which is applied 
when it is expected that they have a large variation 
[19].

Table II
Processing Time for Each Station and Each  

Product Type

Station
Mean processing time (minutes)

Laptop Desktop
Receiving 3.24 3.24
Inspection 1.05 1.23
Inventory 0.543 0.543
Testing 6.5 7.32
Repairing 15 20
Labeling 5.66 5.66
Packing 9.146 9.146
Teardown 5.025 5.725
Shipping 1.65 1.65

C.	 Remanufacturing Costs
The operating costs that are related to this dedicated 

remanufacturing plant are presented in Table III.  

The raw material costs of arriving used products are 
estimated to be $20 per laptop and $5 per desktop. 
The redistribution cost is incurred when the arriving 
used-product inventory does not have enough space to 
hold the arriving used products for the current batch. 
The redistribution cost is $5 for a redistributed laptop 
and $1 for a redistributed desktop.

The remanufacturing costs of the system are 
separated into four parts. The labor cost is $15 per hour 
per operator for the inspection, inventory, testing, and 
repairing stations and $12 per hour per operator for the 
receiving, teardown, labeling, packing, and shipping 
stations and also the production line switching. The 
set-up cost is incurred when the production line is 
switched. This set-up cost is $150 per time. The batch 
transferring cost for internal logistics and transferring 
equals $50 per batch. The last cost is the labor idle cost 
that is incurred when the operators in each station are 
free. This labor undertime cost is 30% of the normal 
labor cost.

The inventory holding cost is divided into two 
components. The first component is the cost of capital 
for holding the arriving used products in the received 
product inventory and work-in-process inventory 
in each station. This component equals 50% of the 
selling prices per year. This is based on the value of 
the units held. The other component is the inventory 
space costfor storing arriving used productsthat is 
$0.15 per hour per sq. ft., which depends on the space 
occupied by the inventory. This component represents 
the construction cost of the inventory space that needs 
to be built for holding the inventory.

Table III
Related Remanufacturing Costs

Raw material cost (CC)
Laptop $20 per unit
Desktop $5 per unit

Redistribution cost (CR)
Laptop $5 per redistribution
Desktop $1 per redistribution

Remanufacturing cost

Labor cost (CL)
$15 per hour per operator
$12 per hour per operator

Set-up cost(CS) $150 per time
Batch cost (CB) $50 per batch

Idle cost (CI)
$4.5 per hour per operator
$3.6 per hour per operator

Inventory cost (CH)
Holding cost 50% of selling price per year
Space cost for the received product inventory $0.15 per hour per sq. ft.

D.	 Decision Variables
To optimize this dedicated remanufacturing 

system, ten decision or control variables are searched 
for their optimality by OptQuest: (1) the capacity of 
inventory, (2) the buffer size of the repairing station, 
(3) the buffer size of the labeling station, (4) the buffer 
size of the packing station, (5) the number of operators 
in the testing station, (6) the number of operators in 

the repairing station, (7) the number of operators 
in the labeling station, (8) the number of operators  
in the packing station, (9) the run size of laptops, and 
(10) the run size of desktops. The required decision 
variables in each model and their bounds are shown 
in Table IV. The bounds of all control variables are  
affirmed to certify that the optimal values are within 
these bounds.
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Table IV
Decision Variables and Bounds of Each System

System Existing 
System

First 
Improvement 

model

Second 
Improvement 

model

Bound
Unit

Control variables Lower Upper

Inventory capacity - ✔ ✔ 1 2,000 Sq. ft.

Buffer size of repairing station ✔ ✔ ✔ 0 50 Units

Buffer size of labeling station ✔ ✔ ✔ 0 50 Units

Buffer size of packing station ✔ ✔ ✔ 0 50 Units

# operators in testing station ✔ ✔ ✔ 1 50 Operators

# operators in repairing station ✔ ✔ ✔ 1 50 Operators

# operators in labeling station ✔ ✔ ✔ 1 50 Operators

# operators in packing station ✔ ✔ ✔ 1 50 Operators

Run size of laptops - - ✔ 1 250 Units

E.	 Simulation Model
The simulation model runs under non-terminating  

conditions with 10 replications. The simulation length 
of each replication is 42,000 minutes (3 months) and 
has another 42,000 minutes (3 months) for a warm-up 
period to generate a stable estimate of the steady-state 
results. Based on 10 replications, the 95% confidence 
interval of the flow times has a width of less than 
5% of its mean. The simulation model runs on a PC 
with CPU AMD Ryzen 7 2700 3.20GHz and RAM 
16.0 GB.

V. Results and Discussions

The results are obtained from the simulation-
based optimization by using the ARENA program 
to simulate the system (under uncertainties) and the 
OptQuest optimization tool to search and optimize 
the decision variables of the system, to maximize the 
total profit. The results are separated into three cases: 
existing system, first improvement model, and second 
improvement model.

A.	 Case1: Existing Dedicated Remanufacturing 
System
	 In this case, the original inventory capacity is fixed 
at 1,000 square feet, and there is no switching rule to 

switch the line between the two products. As lot-for-
lot production is used, the line is switched to produce 
a new product when the current product is finished. 
This can happen quite frequently as arriving used 
products come randomly. However, OptQuest is used 
to maximize the profit of the system by determining 
the optimal number of operators and buffer size in each 
station (see Table V for the optimal settings obtained 
by OptQuest). For the results of the existing system, 
Fig. 2 shows the breakdown of the profit and costs. 
It shows a profit of $168,746.41, resulting from the 
difference between the total revenue of $2,039,762.50 
and the total costs of $1,871,016.09. The redistribution 
cost of $11,078.10 is high since a lot of overflow units 
are redistributed. This is due to the limited space in the 
inventory capacity for new incoming used products. 
In addition, high set-up and batch transferring costs 
are a result of an inappropriate transferring batch size. 
In this instance, all remaining products similar to the 
current product in the inventory space (an entire lot of 
similar model) would be transferred when the current 
product in the line is about to be finished. As a result, 
there are higher batch transferring and line switching 
costs.

Table V
Optimal Operating Parameters of the Existing Dedicated Remanufacturing System

Control 
variables

Fixed
inventory 
capacity
(square 

feet)

Decision Variables

Buffer 
size of 

repairing 
station
(units)

Buffer 
size of 

labeling 
station 
(units)

Buffer 
size of 

packing 
station 
(units)

# operators 
in testing 

station 
(operators)

# operators 
in repairing 

station 
(operators)

# operators 
in labeling 

station 
(operators)

# operators 
in packing 

station 
(operators)

Values 1,000 34 48 26 15 41 15 24
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Fig. 2. Profit and cost distribution of the existing dedicated remanufacturing system

Table VI
Optimal Operating Parameters of the First Improvement Dedicated Remanufacturing Model

Control 
variables

Decision Variables

Fixed
inventory 
capacity
(square 

feet)

Buffer 
size of 

repairing 
station
(units)

Buffer 
size of 

labeling 
station 
(units)

Buffer 
size of 

packing 
station 
(units)

# operators 
in testing 

station 
(operators)

# operators 
in repairing 

station 
(operators)

# operators 
in labeling 

station 
(operators)

# operators 
in packing 

station 
(operators)

Values 1,530 42 38 47 14 39 14 23

B.	 Case2: First Improvement Model with the 
Inventory Capacity

Optimal settings of the parameters in the system 
by OptQuest to maximize the profit are shown in 
Table VI. Table VII shows the costs and operating 
performance comparison between the existing 
system and the first improvement model. For a fair 
comparison, all models were set to have similar seeds 
and streams of random numbers when creating the 
arrival of used products. As a result, similar arrival 
times and the number of arriving units are created, 
resulting in the same raw material cost. From Table 
VI, it was found that the inventory capacity needs to be 
enlarged to 1,530 sq. ft. to accommodate the arriving 
batches of received products (the existing system has 

only 1,000 sq. ft.). This would result in a 21.28% and 
66.80% reduction of the batch transferring cost and 
redistribution cost, respectively. This is a result of a 
larger inventory capacity. As a result, there would be 
fewer units of overflow products to be redistributed 
and fewer batch transferring times. However, the total 
revenue is higher because a higher number of units can 
be sent to the remanufacturing processes. From this 
improvement, it was found that profit can be increased 
by 19.67%, as compared to the existing system. 
However, it was also found that the average flow 
time in the system is much longer and the inventory 
cost is higher because there is more inventory at the 
arriving inventory area.
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Table VII
Results of the First Improvement Dedicated Remanufacturing Model

Profit & cost breakdown Existing system First improvement model %improvement

Profit ($) 168,746.41 201,937.02 19.67%

Total revenue ($) 2,039,762.50 2,109,665.50 3.43%

Total costs ($) 1,871,016.09 1,907,728.48 -1.96%

 - Raw material cost ($) 969,805.00 969,805.00 0.00%

 - Redistribution cost ($)   11,078.10 3,677.70 66.80%

 - Labor cost ($) 584,793.09  603,788.01 -3.25%

 - Set-up cost ($)  14,235.00  11,895.00 16.44%

 - Idle cost ($)  157,519.41  133,752.28 15.09%

 - Inventory holding cost ($) 108,520.49  165,080.50 -52.12%

 - Batch transferring cost ($)  25,065.00  19,730.00 21.28%

 Operating performance

Average part flow time in the system (minutes) 706.34 863.07 -22.19%

Average part flow time in testing station (minutes) 113.40 155.31 -36.96%

Average part flow time in repair station (minutes) 18.08 18.10 -0.12%

Average part flow time in labeling station (minutes) 6.53 6.65 -1.86%

Average part flow time in packing station (minutes) 9.82 9.75 0.69%

Number of line set-ups (times) 94.90 79.30 16.44%

Number of finished laptops (units) 36,999.00 38,217.50 3.29%

Number of finished desktops (units) 18,740.00 19,493.90 4.02%

Average inventory in the arriving inventory space 
(units) 412.00 541.47 -31.42%

Remarks: These results are averaged from 10 replications

C.	 Case3: Second Improvement Model with the 
Switching Rule

Table VIII shows the optimal settings of the 
parameters in the system. Table IX presents a cost 
and operating performance comparison between the 
existing system, the first improvement model, and 
the second improvement model. By simultaneously 
imposing the inventory capacity and run size of 
each product as the decision variables, the inventory 
cost is decreased by 17.47% from the case of the 
first improvement model. Even though the batch 
transferring cost increases by 20.73% due to  
a smaller inventory capacity and more transfers from 

the arriving inventory capacity to the production line, 
the average flow time has improved by 13.08%. In 
addition, the switching rule and appropriate run sizes 
help to reduce the number of line set-ups from 79.30 
times in the case of the first improvement model 
without the switching rule to 70.00 times. This is  
a 26.24% reduction and significantly reduces the flow 
time in the testing station (77.01% reduction), which 
is the first station in the production line (as the entire 
lot would not be transferred at a time). In all, this 
improvement helps to increase the system’s profit by 
7.21% as compared to the first improvement model, or 
by up to 28.29% as compared to the existingsystem.

Table VIII
Optimal Operating Parameters of the Second Improvement Dedicated Remanufacturing Model

Control 
variables

Decision Variables

Fixed
inventory 
capacity
(square 

feet)

Buffer 
size of 

repairing 
station
(units)

Buffer 
size of 

labeling 
station 
(units)

Buffer 
size of 

packing 
station 
(units)

# operators 
in testing 

station 
(operators)

# operators 
in repairing 

station 
(operators)

# operators 
in labeling 

station 
(operators)

# operators 
in packing 

station 
(operators)

Values 1,530 42 38 47 14 39 14 23
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Table IX
Results of the Second Improvement Dedicated Remanufacturing Model

Profit & cost breakdown Existing 
system

First 
improvement 

model

Second 
improvement 

model
%improvement a. %improvement b.

Profit ($) 168,746.41 201,937.02 216,487.74 7.21% 28.29%

Total revenue ($) 2,039,762.50 2,109,665.50 2,102,879.00 -0.32% 3.09%

Total costs ($) 1,871,016.09 1,907,728.48 1,886,391.26 1.12% -0.82%

 - Raw material cost ($) 969,805.00 969,805.00 969,805.00 0.00% 0.00%

 - Redistribution cost ($) 11,078.10 3,677.70 4,615.60 -25.50% 58.34%

 - Labor cost ($) 584,793.09 603,788.01 601,959.32 0.30% -2.94%

 - Set-up cost ($) 14,235.00 11,895.00 10,500.00 11.73% 26.24%

 - Idle cost ($) 157,519.41 133,752.28 139,454.64 -4.26% 11.47%

 - Inventory holding cost ($) 108,520.49 165,080.50 136,236.70 17.47% -25.54%

 - Batch transferring cost ($) 25,065.00 19,730.00 23,820.00 -20.73% -4.97%

 Operating performance

Average part flow time in the system 
(minutes) 706.34 863.07 750.22 13.08% -6.21%

Average part flow time in testing 
station (minutes) 113.40 155.31 35.70 77.01% 68.52%

Average part flow time in repair 
station (minutes) 18.08 18.10 17.88 1.24% 1.12%

Average part flow time in labeling 
station (minutes) 6.53 6.65 6.67 -0.29% -2.15%

Average part flow time in packing 
station (minutes) 9.82 9.75 9.71 0.42% 1.10%

Number of line set-ups (times) 94.90 79.30 70.00 11.73% 26.24%

Number of finished laptops (units) 36,999.00 38,217.50 38,122.20 -0.25% 3.04%

Number of finished desktops (units) 18,740.00 19,493.90 19,369.00 -0.64% 3.36%

Average inventory in the arriving 
inventory space (units) 412.00 541.47 574.14 -6.03% -39.35%

Remarks: These results are averaged from 10 replications
       a. %improvement of the second improvement model as compared to the first improvement model
       b. %improvement of the second improvement model as compared to the existing system

D.	 Sensitivity Analysis
For a study dealing with the profit and cost 

optimization, a sensitivity analysis based on different 
cost structures is required to confirm the conclusion 
that has been made. Even though there are many costs 
used to calculate the system’s profit, not all of them 
have a major influence on the outcome. Therefore, we 
do the sensitivity analysis on four main costs, which 
are redistribution cost, set-up cost, inventory holding 
cost, and batch transferring cost. These costs are varied 
±20% from their initial settings at a time, and we 
observe the outcomes from varying these costs. Table 
X presents the profits obtained from varying these 

costs in each model, relative to their initial values. 
The overall results show that the second improvement 
model still outperforms the other models, in terms of 
a higher profit, despite varying these four costs by up 
to ±20% from their initial values. This can confirm 
the appropriateness of our findings and conclusion. 
For instance, when the redistribution cost and set-up 
cost are reduced by 20%, this should favor the existing 
system as it has many redistribution units due to its 
small inventory capacity and a greater number of line 
set-ups. However, its profit still cannot outperform the 
first and second improvement models.



INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND TECHNOLOGY,  Vol. 4 No. 2 July-December 2020	 11

Indexed in the Thai-Journal Citation Index (TCI 2)

Table X
Results of Adjusting Each Effective Cost for Each Model

Effective costs
Profit ($)

Existing system First improvement model Second improvement model

± Redistribution cost

-20% $162,052.57 $193,585.29 $220,639.19

Initial value $168,746.41 $201,937.02 $216,487.74

+20% $159,458.73 $201,987.04 $215,841.27

± Set-up cost

-20% $180,402.29 $198,350.58 $210,759.47

Initial value $168,746.41 $201,937.02 $216,487.74

+20% $153,252.60 $194,013.04 $206,656.09

± Inventory holding cost

-20% $192,670.35 $230,928.76 $238,784.69

Initial value $168,746.41 $201,937.02 $216,487.74

+20% $149,241.15 $162,416.73 $179,522.10

± Batch transferring cost

-20% $177,535.81 $195,877.23 $206,093.77

Initial value $168,746.41 $201,937.02 $216,487.74

+20% $154,955.46 $188,252.47 $203,655.92

VI.  Conclusion

The remanufacturing system has proven to help 
environment as well as contribute to a higher company’s 
return. However, it is unstable and hard to control 
due to uncontrollable inputs. This paper purposed to 
explore the problems of the remanufacturing system 
based on a case study of a dedicated remanufacturing 
system. A simulation-based optimization approach 
was applied to this system incorporating uncertainties 
of part arrival and operating conditions. While, 
ARENA was used to simulate the system under 
uncertain conditions, OptQuest was used to optimize 
the operating parameters of the system. 

A remanufacturing system helps the environment 
and contributes to a higher company profit. However, 
it is unstable and hard to control due to uncontrollable 
inputs. This paper explores the problems of a 
remanufacturing system based on a case study of 
a dedicated remanufacturing system. A simulation-
based optimization approach was applied to this 
system, incorporating uncertainties of part arrival and 
operating conditions. ARENA was used to simulate 
the system under uncertain conditions, and OptQuest 
was used to optimize the operating parameters of the 
system. 

A few sequential steps of improvement have been 
applied to the system, starting from recommending 
optimal buffer size and an appropriate number of 
operators in each station. We also enlarged the size 
of arriving inventory space to accommodate more 
arriving used products and imposed the switching 
rule for setting up the production line with an 
appropriate run size in each model. The findings 
showed that adjusting one operating parameter would 
affect the other parameters. The final step where all 
improvements were applied increased the profit of the 

system by up to 28.29% with a shorter average part 
flow time and fewer line set-ups. This improvement 
should not be the end as this method can be applied 
to other parts of the system. A case study is used 
to demonstrate and identify possible solutions and 
their advantages of utilizing the simulation-based 
optimization approach. These findings can help 
decision makers to make the right decisions on the 
near, or possible optimal, or feasible solution in a 
certain situation under an uncertain environment.

For larger problems with a higher number of 
decision variables, this simulation-based optimization 
using OptQuest may need some adjustments to 
reduce the computation time and further improve the 
quality of the objective value. As the meta-heuristic  
algorithm cannot guarantee an optimal result, 
alternative algorithms such as Genetic Algorithms, 
Particle Swarm Optimization, Ant Colony, or hybrid 
optimization are worth exploring, to strive for a better 
solution. This can be further introduced in the model 
to improve its effectiveness.
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