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	 Abstract—In this paper, we focus on improving 
the AMDF pitch detection algorithm (PDA) rather 
than designing a complete pitch detection system 
including many complex modification stages. As 
a hot classical PDA, generating half or multiple 
pitch errors is a usual defect of AMDF, especially  
in noisy conditions. Based on a deep analysis 
of many existing improvements of AMDF, we  
summarize two modified frameworks and classify 
the most outstanding improvements into them. 
Then we propose a novel and simple modified  
framework for AMDF to conquer the defect of 
AMDF. For our framework, we also present 
two kinds of falling trend extraction methods to  
obtain the proposed Trend Analysis based AMDF 
(TAAMDF). Finally, Experiments on the Keele  
database are conducted to evaluate our framework.  
Compared with some outstanding modified AMDFs 
and well-known ACF, modified AMDF based 
on our framework shows the best performance  
especially its robustness to different noises.

	 Index Terms—Pitch Detection Algorithm, 
AMDF, Falling Trend Analysis

I. INTRODUCTION

	 Pitch (or fundamental frequency) plays an 
important role in many fields of speech signal 
processing such as speech coding, speech recognition, 
speech enhancement, etc. This fact has motivated 
researchers to think of how to detect the pitch from 
speech signals accurately and effectively. As is known 
to all, breakthroughs of PDAs emerged decades ago. 
Since then, there are many classical pitch detection 
algorithms (PDAs) [1]-[3] and their improvements 
have been proposed. In spite of this, developing 
accurate and reliable PDAs is still challenging. 
There are still many excellent works reported in 
recent years [4], [5], and one of the most important 
features we notice is that nowadays researchers devote 
themselves to designing a complete pitch detection 

system for high accuracy and noise robustness that 
adds many pre-processing and post-processing stages 
to enhance the key part of the system i.e., their PDAs. 
However, a lot of outstanding software for speech 
signal analysis still adopts classical PDAs mentioned 
above to design their pitch detection module. For 
example, the Autocorrelation Function (ACF) based 
pitch detection module is included in the Praat [6] 
software. YIN [7], an excellent pitch estimator, is also 
based on ACF with some additional modifications. 
This situation indicates that these classical PDAs 
are still valuable and powerful. Hence, we hold a 
viewpoint that it is still meaningful and worthwhile 
to make these classical PDAs more powerful as well 
as develop a complete pitch detection system.
	 In this paper, we pay attention to another classical 
PDA, namely Average Magnitude Difference 
Function (AMDF) [2]. AMDF is also one of 
the most widely used PDAs because of its low 
computation and high precision. However, Zhang 
et al. [8] pointed out that a falling trend presents as 
a global feature in AMDF such that some detection 
errors that the estimated pitch is half or multiple of 
the actual sometimes happened. This is not only 
due to a single cause but a combination of complex 
factors such as formant, noise, and framing setup of 
speech signals. Furthermore, noise is the most usual 
and unavoidable factor for PDA. Therefore, it is 
important to improve AMDF to eliminate the falling 
trend and enhance the robustness to noise. To this end, 
Zhang et al. [8] proposed Circular AMDF (CAMDF) 
by introducing modulo operation to redefine the 
calculation AMDF of speech frame at each lag. 
CAMDF prevents the falling trend and achieves  
excellent detection performance. Another state-of- 
the-art modification of AMDF which is worth 
mentioning is Extended AMDF (EAMDF) presented 
by Muhammud [9]. EAMDF extends the length of the 
speech frame to supply the loss of overlap with lag 
increasing. Thus, EAMDF can overcome the falling 
trend effectively and outperforms the classical AMDF. 
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Although these modified AMDFs achieve promising 
performance, they are not very satisfactory due to 
changes of either definition or speech frame and will 
also bring estimated errors sometimes. In this paper, 
we propose a novel modified framework for AMDF. 
Different from many existing improvements, this is a 
simple and distinctive framework that can overcome 
the shortcoming of AMDF more effectively and is 
considerably robust to different types of noise.
	 The rest of this paper is organized as follows: 
Section 2 reviews AMDF and its representative  
improvements. Section 3 describes the proposed 
framework for AMDF. After that, experiments on 
the Keele database are conducted for testing and  
verifying the proposed framework in Section 4.  
Finally, the paper is concluded in Section 5.

II. REVIEW AND ANALYSIS OF AMDF AND 
ITS IMPROVEMENTS AMDF

The conventional AMDF [2] is defined as follows:

	 	  (1)

where x(n) denotes a voiced speech frame multiplied 
by a rectangular window of length N and τ denotes  
the lag number. For a periodic or quasi-periodic 
signal with a period of Tp, its AMDF DAMDF (τ)  
should exhibit valleys at lag nTp, where n  is an 

integer. Generally, we can estimate the raw pitch  
fp from AMDF according to Equation (2).

	  	 (2)

where fs denotes sample frequency of speech signals. 
As less data is used to calculate AMDF at higher 
lags, a falling trend may present as a global feature 
in the AMDF curve sometimes. Thus, the valley with 
true pitch information may not be the lowest and the 
multiple pitch errors may be produced according to 
Equation (2). Fig. 1 (b) shows a typical example of the 
double pitch error of classical AMDF. In the figure, 
the corresponding speech signal is a clean voiced 
frame (see Fig. 1 (a)). 
	 In order to overcome this shortcoming of AMDF, 
many outstanding modified AMDFs have been 
proposed. Among these modifications, CAMDF [8] 
and EAMDF [9] mentioned in the previous section 
are two representative ones. CAMDF was proposed 
to overcome the falling trend by a modulo operation 
and is defined as follows:

	 	 (3) 

where mod(n + τ, N) represents that n + τ modulo N .  
Muhammad [9] proposed EAMDF and define it as:

	 	 (4) 

 

Fig. 1. Comparison between (b) AMDF, (c) CAMDF, (d) EAMDF, (e) EMDAMDF and (f) TAAMDF of (a) a typical speech frame. EMDAMDF 
and TAAMDF detects the true pitch, while all the other produce double pitch errors.
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	 Actually, it should be noted that compared with 
the AMDF (Equation (2)), we can clearly find that 
CAMDF (Equation (3)) is improved by modifying 
the definition of AMDF whereas EAMDF (Equation 
(4)) promotes by means of adjusting the length of 
the speech frame which is used to calculate AMDF. 
As Fig. 1 (c) and Fig. 1 (d) depict, CAMDF and 
EAMDF can all achieve eliminating the falling trend. 
However, they still produce unexpected double pitch 
errors because of the adverse impact brought by the 
changes of speech frame or definition. We think that 
they represent two typical modified frameworks for 
improving AMDF, namely modifying the definition of 
AMDF and adjusting the length of the speech frame. 
Furthermore, our observation is that the vast majority 
of existing modified AMDFs can all be included in 
these two frameworks. For example, LVAMDF [10] 
adjusts the length of the speech frame and HRAMDF 
[11] both adjusts the frame and redefines AMDF by 
adding a normalized term. 

III. A NOVEL FRAMEWORK FOR IMPROVING AMDF

	 Ideally, we want to find a framework for AMDF 
that eliminates the falling trend effectively and 
produces no estimated errors because of adjustment. 
In our previous work [12], we employ Empirical 
Mode Decomposition (EMD) [13] to address the 
problem and improve AMDF. More specifically,  
let DAMDF (τ) be AMDF of a voiced speech frame. 
DAMDF (τ) can be decomposed into a series of Intrinsic 
Mode Functions (IMFs) ci (τ) and a residue rN (τ). 
Based on the principle of EMD, AMDF can be 
reconstructed by all IMFs and the residue, which 
can be expressed as:

	 	 (5)

where N is the number of IMFs. We find that the 
residue rN (τ) represents the trend of AMDF data points 
namely the falling trend which is mentioned in many 
literatures. Therefore, we spontaneously consider 
to reconstruct AMDF abandoning the residue, and 
obtain our EMD-based AMDF (EMDAMDF) [12]:

	 	 (6)

It is worth noting that EMDAMDF can also be written as:

	 	 (7)

For the speech frame in Figure 1(a), EMDAMDF can 
both eliminate the falling trend of AMDF and estimate 
the true pitch effectively as shown in Fig. 1 (e). It 
must be emphasized that although the two formulas 
above turn out the same results, their thoughts are 
distinct that the former is a reconstruction method 
and the latter is a removing one.

Fig. 2. Trend Analysis-based framework for improving AMDF.

	 Due to the fine performance of EMDAMDF and 
inspired by Equation (7) to calculate EMDAMDF, 
we propose a novel modified framework for AMDF 
as shown in Fig. 2. This is a simple framework and 
differs from the two ones mentioned in Section 2. As 
the figure describes, it consists of two steps, namely, 
Step 1. falling trend extraction, and Step 2. falling 
trend removal. More specifically, given an AMDF of 
speech frame denoted by DAMDF (τ) we first use some 
methods such as EMD mentioned above to analyze 
its mathematical form of the falling trend rtrend (τ) and 
then remove the falling trend from AMDF to obtain 
the modified AMDF that we call Trend Analysis 
based AMDF (TA-based AMDF or TAAMDF) as 
following:

	 	 (8)

Compared with the other two frameworks mentioned 
before, our framework aims to analyze the falling 
trend based on AMDF and then remove it from 
AMDF instead of modifying the definition of AMDF 
and changing the length of the speech frame.
	 It is clear that the key part of our framework is 
Step 1, i.e., how to extract the falling trend. Therefore, 
what we focus on is converted to a trend analysis 
problem in time series analysis. In time series analysis, 
trend analysis is not an easy question. For many 
complex uncertain trends, it is difficult to estimate 
their concrete form. Based on the further analysis of 
EMDAMDF, we can convince that the falling trend 
of AMDF is nearly a linear trend and our framework 
need not pursue preciseness of trend analysis. As 
shown in Fig. 1 (f) TAAMDF adopting linear trend 
and least square can eliminate the falling trend and 
obtain the accurate pitch as well as EMDAMDF. 
Therefore, we believe that although we do not know 
the mathematical form of the falling trend of AMDF, 
many existing conventional trend analysis methods 
are available for our framework.
	 As the trend analysis methods for time series 
analysis have no strict classification, we summarize 
two types of falling trend analysis methods for the 
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proposed framework. Generally, one can be called 
decomposition method such as EMD and the other 
can be called estimation method such as least square. 
Fig. 3 is an incomplete list of falling trend extraction 
methods we summarized. As shown in decomposition 
methods, we are also able to employ other signal 
analysis methods such as wavelet analysis to extract 
the falling trend instead of EMD. In estimation 
methods, least-square is a representative effective 
method to estimate the falling trend. Usually, the 
falling trend is assumed as a specified form such as 
Linear, Polynomial, Gaussian, etc. Then least square 
is used to estimate the parameters of the falling trend 
based on all data points of AMDF such that we can 
obtain the concrete form of the falling trend of AMDF.

Fig. 3. Two types of falling trend extraction methods for the 
proposed framework.

	 For completely understanding our framework, 
now we describe how to calculate TAAMDF 
using the estimation method with least square plus 
polynomial, for example. Suppose we have an 
AMDF of a voiced speech frame D(τ) and its lag  
τ = 1, 2, ⋯, n . Accordingly, all the data points of  
AMDF are (1, D(1)), (2, D(2)), ⋯, (n, D(n). We use 
polynomial with the degree m to estimate the falling 
trend of AMDF and denote it as:

	 (9)

Substituting all the data points into (9), we obtain that

	 (10)

 

Let   and 

  As is known that rank(A) = m+1<n  

the least square solution of the parameter vector x  
can be calculated by

	 (11)

Thus, we obtain the falling trend:

	 (12) 

Based on the proposed framework in Fig. 2, the 
TAAMDF can be calculated as:

		 (13) 

IV. EXPERIMENTS AND ANALYSIS

	 We test our trend analysis-based framework for 
AMDF using the Keele pitch extraction reference 
database [14]. The Keele database consists of 5 mature 
females and 5 mature male speakers. Each speaker 
read a phonetically balanced text. The speech signals 
are sampled at 20 kHz with 16-bits resolution. The 
Database provides reference pitch values at 100 Hz 
frame rate with 26.5 ms rectangular window. Some 
frames with uncertain reference pitch recorded as 
‘-1’ are totally cut down. The whole samples of the 
database are all employed here.
	 We choose EMD from decomposition methods 
and polynomial from estimation methods to extract 
the falling trend to obtain TAAMDFs based on 
our framework denoted by TAAMDF (EMD) (i.e.,  
EMDAMDF in [12]) and TAAMDF (Poly) 
respectively. Note that according to large numbers of 
experiments and analyses we obtain a reliable formula 
to determine the degree of the polynomials m  for 
TAAMDF, i.e., m = int (Lframe . fraw / fs) where int  is 
integer operation, Lframe is the frame length, fs is the 
sampling frequency and fraw is “raw pitch”. So-called 
“raw pitch” here actually refers to the empirical pitch 
ranges of females and males. Usually, we consider 
that in our framework it is feasible to set fraw as 100 
Hz for male and 200 Hz for female. Therefore, we 
can set the degree of polynomial of TAAMDF be 3 
for male speech and 5 for female speech with regard 
to the Keele database. We compare the TAAMDF 
with CAMDF and EAMDF which are two state-of-
the-art improvements of AMDF belonging to the 
other two frameworks discussed in the previous 
section. For showing the excellent performance of 
our framework, ACF, an outstanding classical PDA 
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used by lots of speech analysis software, is included 
in the experiments as well. The experimental results 
are reported in terms of percentage GPE denoted 
as % GPE which is short for gross pitch error and 
defined by Rabiner et al. [15]. The definition of GPE 
is that the detected pitch period for a frame defers 
1ms from the reference value. It should be noted that 
for fair comparison in all the experiments, both pre-
processing and post-processing methods for error 
prevention and noise robustness such as band-pass 
filtering, half-wave rectification, center clipping and 
pitch smooth, are not employed. We want to show the 
most original performance of all PDAs.

TABLE I
PERFORMANCE OF DIFFERENT ALGORITHMS FOR 

CLEAN SPEECH OF THE WHOLE KEELE DATABASE

Method Keele

AMDF 17.75

CAMDF 12.30

EAMDF  7.36

ACF 11.07

TAAMDF (EMD)  8.89

TAAMDF (Poly) 7.13

	 Table I gives % GPE of the whole Keele database 
detected by ACF, AMDF, CAMDF, EAMDF, 
TAAMDF (EMD), and TAAMDF (Poly). It can be 
observed that CAMDF, EAMDF, and two TAAMDFs 
all improve AMDF significantly. Although AMDF 
is not as good as ACF, its modifications can all turn 
the situation around (CAMDF is an exception but 
approximate). Besides, we notice that the proposed 
TAAMDF (Poly) has the least % GPE (7.13%) and 
owns the overall superiority among all PDAs while 
EAMDF performs excellently (7.36%) as well. 
TAAMDF (EMD) also achieves a fewer % GPE 
(8.89%) than CAMDF and ACF. Finally, from the 
experimental results, we notice that least square 
plus polynomial outperforms EMD for the proposed 
framework.
	 In order to further evaluate the performance 
especially the robustness of all PDAs, our experiments 
are also conducted by adding White, Babble, and 
Machinegun noise to the database at different  
Signal-to-Noise Ratio (SNR) set at 10, 5, 0, -5, and -10 dB  
respectively. Note that SNR is defined as, where 
S is the average power of the speech signal and 
N is the average power of the added noise. In our 
experiments, Babble and Machinegun noise are taken 
from NOISEX-92 database [16] and White noise is 
generated by awgn.m in MATLAB. Here we only 
choose the TAAMDF (poly) as the representative of 
our framework because of its performance shown 
in the former experiment. The experimental results 
are reported in Table II, Table III, and Table IV, 
respectively.

	 According to the results, something obvious can 
be observed. Firstly, different from the outcome for 
clean speech shown in Table I, ACF has remarkable 
progress in that it exceeds CAMDF and EAMDF and 
has a fewer % GPE than them. Then we can also find 
that although EAMDF has a very similar performance 
to TAAMDF for clean speech, its robustness to noise 
is so bad in noisy conditions. As is shown in Table 
II to Table IV, EAMDF always has the nearly most 
% GPE among these PDAs except AMDF in three 
noisy conditions. Finally, it is obvious that TAAMDF 
outperforms the other PDAs for every noise at any 
SNR. Besides, according to the definition of ACF, 
we know that ACF has the robustness to white noise 
(complete derivation can be seen in [17]). That is 
why for white noise ACF has a significant advantage 
over CAMDF and EAMDF. However, TAAMDF 
still has less % GPE than ACF in noisy conditions, 
especially for white noise. Therefore, we think that 
our framework is an efficient and reasonable way to 
improve AMDF. We also think that TAAMDF based 
on polynomial and least square within our framework 
is a more effective PDA than other modified AMDF 
and ACF.

TABLE II
PERFORMANCE OF DIFFERENT ALGORITHMS FOR 

THE WHOLE KEELE DATABASE POLLUTED BY WHITE NNOISE 
AT DIFFERENT SNR

Method 10 dB 5 dB 0 dB -5 dB -10 dB

AMDF 30.14 45.29 63.94 82.23 93.06

CAMDF 10.09 13.80 21.18 33.25 51.74

EAMDF 10.32 17.76 30.81 49.83 69.83

ACF  8.83 10.43 14.47 22.28 37.87

TAAMDF  6.35  7.42  9.77 15.03 24.60

TABLE III
PERFORMANCE OF DIFFERENT ALGORITHMS FOR 

THE WHOLE KEELE DATABASE POLLUTED BY BABBLE NOISE 
AT DIFFERENT SNR

Method 10 dB 5 dB 0 dB -5 dB -10 dB

AMDF 41.20 54.86 70.41 63.71 88.33

CAMDF 20.38 28.44 42.14 54.36 69.75

EAMDF 18.46 30.89 47.19 81.73 75.18

ACF 16.74 24.15 37.48 57.68 68.01

TAAMDF 12.68 19.00 30.86 45.92 59.42

TABLE IV
PERFORMANCE OF DIFFERENT ALGORITHMS FOR 

THE WHOLE KEELE DATABASE POLLUTED BY MACHINEGUN 
NOISE AT DIFFERENT SNR.

Method 10 dB 5 dB 0 dB -5 dB -10 dB

AMDF 30.81 36.37 43.28 50.77 58.64

CAMDF 19.28 23.86 29.71 36.13 42.97

EAMDF 15.94 22.36 29.67 37.74 45.50

ACF 17.15 21.86 28.12 34.99 42.18

TAAMDF 11.36 14.89 19.83 26.11 32.83
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V. CONCLUSIONS

	 In this paper, we address the problem that multiple 
pitch errors sometimes appear in classical AMDF for 
pitch detection. We begin with a systematical review 
and analysis of its existing state-of-art modifications 
and sum up their improved ways as two kinds of 
frameworks. Then we propose a novel modified 
framework and two types of efficient falling trend  
extraction methods for the framework. Finally,  
experiments on the Keele database are conducted to 
test and validate the rationality and effectiveness of 
our modified framework. We can claim that the trend 
analysis based AMDF which chooses effective falling 
trend method owns the best performance especially 
for noisy speech and outperforms obviously modified  
AMDFs based on the other two frameworks  
summarized before and ACF which is an outstanding 
and well-known classical PDA.
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