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Abstract—Road tracking as an essential task
in autonomous driving is crucial for artificial
intelligence. Most research is conducted in virtual
environments, but it is vital to conduct practical
experiments on real cars. The current researchers
use toy cars for road track, but the toy cars can
only drive at a fixed speed and a fixed angle for
steering, which leads to reproduction errors during
the experiment. We built a smart car based on a
scale model using Jetson Nano as a mainboard,
which can adjust the speed and steering gain to
improve road tracking performance and reduce
reproduction errors. To analyze the impact of
hyperparameters, we conducted experiments
on 48 autonomous driving models and proposed
optimal hyperparameter configuration schemes,
and trained the optimal autonomous driving
model BH-ResNet. In addition, we also research
the effect of the speed and steering gain on the
performance of the smart car and propose an
optimal gain value. Moreover, we compare BH-ResNet
with other existing models, and BH-ResNet
outperforms other models, scoring the highest
in both tracks, with 94 and 90. Furthermore, the
BH-ResNet model can also achieve road tracks
with superior performance in unseen scenes, and
our proposed model has excellent applicability
and practicality.

Index Terms—Autonomous Driving, Convolutional
Neural Networks, Deep learning, Deep residual
network, Jetson Nano

1. INTRODUCTION

Deep learning is one of the current breakthroughs
in artificial intelligence, and the application of deep
learning methods to autonomous driving research has
solid practical and theoretical significance [1], [2].

Road tracking is the primary task of autonomous
driving. In the existing autonomous driving research,
most of the research remains in the virtual stage to
save costs and ensure the safety of the experiment. Lin
et al. chose a software simulator as the experimental
environment platform to obtain the relative positions
of the car and the road using deep neural networks as

the computational framework. Finally, they achieved
road track on the simulator track [3]. Although it
is convenient and safe to conduct experiments in
a virtual environment, this approach is not as accurate
as training autonomous cars directly in the real world.
Therefore, we propose to make a self-made car and
an autonomous driving track in the real world, where
the steps of data collection and model testing are done
in the world.

Although more and more research is being done to
achieve experiments in the real world using self-made
cars, mostresearch usually uses toy cars as research cars.
Hossain et al. and Karni et al. conducted autonomous
driving research by modifying abandoned toy cars,
but toy cars are different from real cars [4], [5]. For
example, a toy car cannot adjust the speed gain and
steering gain like a real car. The toy car can only
drive at a fixed speed and a fixed range for steering
during the experiment, so the toy car often has
reproduction errors, which affects the experimental
results. We propose to achieve the autonomous driving
experiment by building an autonomous driving
smart car, which can replicate the driving situation
of the actual car to the greatest extent. In addition,
by fine-tuning the speed and steering gain, the
autonomous driving performance of the smart car
can be improved. For example, it can drive with low
steering gain when there are many curves. The second
is the use of sensors. Most of the existing research
uses sensors to assist the smart car in achieving the
autonomous driving experiment, but this makes the
smart car not intelligent enough and independent.
Banerjee et al. installed radar sensors on the smart
car [6], and Yilmaz et al. installed many sensors
such as infrared sensors and ultrasonic sensors [7].
However, humans do not use sensors when driving
a car and only make judgments through hearing and
vision. Therefore, the research needs to achieve the
autonomous driving task of the smart car using fewer
sensors. This article proposes that the smart car uses
only one camera as a sensor for environmental
perception to achieve the task of road tracking. As the
brain of the smart car, the choice of the mainboard of
the smart car is critical. The mainboard with powerful
computing power can increase the performance of
intelligent agents. Most of the research often uses
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Arduino, and Raspberry Pi, as the mainboard of the
intelligent agent. Yuenyong et al. used Arduino as
the computing platform for reinforcement learning
training in the research, but the computing power
of Arduino is low, and a computer needs to be used
as a backend for computing [8]. Do et al. used the
Raspberry Pi for autonomous driving research, which
was also limited by the low computing speed and
performance of the Raspberry [9]. In order to solve
the above problems, this article proposes to use Jetson
Nano with superior computing power as the mainboard,
which can make the smart car not attached to any
back-end and can independently calculate and load
the autonomous driving model, and the performance
of the smart car is outstanding.

In addition, the construction of the track is also a
critical step in achieving the road-tracking task. Both
Zhang et al. and Li et al. built a circular track [ 10, 11],
but these tracks are simple, which is not conducive
to the test of the steering ability of the smart car.
Therefore, we need a more complex track. This article
makes two different tracks to meet the track diversity
required for autonomous driving.

In achieving road tracking experiments, training
deep neural networks and the optimal selection of
structural parameters (different networks, batch size,
epoch) is a challenging task. Do et al. constructed
a new Convolutional Neural Network (CNN) to
achieve the road tracking task by mapping the raw
input image to a predicted steering angle through the
CNN [9]. Rausch V et al. proposed an end-to-end
control system based on Convolutional Neural
Networks (CNN) for steering autonomous driving
cars [12]. In the above research, the difference in
the neural network will directly affect the accuracy
of the smart car in achieving the automatic driving
task. Therefore, this article proposes to use two
popular neural networks, ResNet-18 and ResNet-50,
to conduct experiments to research the impact of
different neural networks on autonomous driving and
select the optimal neural network to achieve the road
tracking task.

In addition to the neural network, two hyper-
parameters, batch size, and epoch, also affect model
training results. Radiuk et al. explored the approach
of improving the performance of convolutional neural
networks and researched the effect of batch size on the
network also researched the batch size and found the
optimal batch size for training the Deep Q network
on the shopping cart system [14]. However, they
did not extend their research to autonomous driving.
Similar to batch size, the choice of epoch will vary for
different research. Chowdhuri et al. and Koci¢ et al.
obtained the minimum error values in different epoch
intervals, respectively [15], [16], so selecting different
epoch intervals for different experiments is essential.
We propose using different batch sizes and epochs

to train the autonomous driving model to get the
optimal batch size and epoch and their relationship
with autonomous driving performance.

In summary, this article proposes to use a
scale model to build an autonomous driving car
in the real world that uses only one camera as an
environment perception sensor, which can drive at an
adjustable speed and steering range just like a real car.
Furthermore, we choose Jetson Nano as the
computing platform, which makes the autonomous
driving smart car in this article an independent agent.
Since hyperparameters play a vital role in the success
of the model training stage, this article discusses and
conducts a series of experiments on the effects of
different hyperparameters on autonomous driving.
Finally, we propose the optimal hyperparameter
configuration scheme. In addition, we also discussed
the influence of speed gain and steering gain on the
smart car and proposed a set of optimal gain values,
which further improved the performance of the smart
car to achieve road tracks. Finally, we put the smart
car in an unseen scene for experiments to verify the
applicability of the optimal hyperparameter
configuration scheme proposed in this article. In total,
we compared 48 sets of hyperparameter configuration
schemes, found possible optimal combinations, and
trained the optimal model. In addition, we also compared
five sets of speed gain values and five sets of steering
gain values and found the optimal gain value. In
addition, we also compared the optimal autonomous
driving model with three groups of other models
and achieved road-tracking experiments in unseen
scenarios.

II. LITERATURE REVIEW

In recent years, autonomous driving technology
has developed rapidly, and there has been much
research on the hardware and hyperparameters of
autonomous driving smart cars.

A. Hardware Improvement of Autonomous Driving
Smart Cars

Research on autonomous driving is usually divided
into virtual and real experiments. Most researchers use
virtual platforms to ensure the safety and convenience
of experiments. Lin et al. achieved road tracking in
a virtual environment. After the trained virtual car
obtains its position relative to the track, it can use
this information as the basis for feedback control
and eventually achieve road track in the simulator
[3]. However, the results obtained in the virtual
environment are usually affected by sunlight, shadows,
chromatic aberrations, and noise when migrated to
the real world, resulting in poor autonomous driving
performance in the real world. Therefore, researchers
have gradually used self-made cars to achieve
autonomous driving research in the real world.
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In this article, autonomous driving smart cars are
roughly divided into two categories: toy cars and smart
cars. Most research is based on toy cars and modified
to build autonomous driving cars. As shown in
Fig. 1(a), Hossain et al. aimed to build autonomous
driving cars using very low-cost and readily available
hardware, so they developed a low-cost mini rover
using a toy car that could roam around the area it
wanted to observe [4]. As shown in Fig. 1(b), Karni
et al. also researched autonomous driving cars
based on toy cars, aiming to achieve the task of road
tracking [5]. However, the disadvantage of the toy
car is that the experiment can only be carried out at
a fixed speed and a fixed angle for steering. In the
experiment, the actual operation effect of the toy car
is often affected because the speed and steering gain
cannot be adjusted. Therefore, we improved on this
in our research. We propose to build an autonomous
driving smart car that can adjust the speed and steering
gain to ensure the improvement of the autonomous
driving performance of the smart car.
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-
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: - (b)
Fig. 1. (a) Autonomous driving toy car by Hossain et al., (b)
Autonomous driving toy car by Karni et al.

With the improvement of technology, most research
often installs many sensors on the autonomous car to
make the car easy to achieve the experimental task.
The environmental perception part of the autonomous
driving car is divided into two types: a combination
of multiple sensors, either only using a camera as a
sensor. Igbal et al. to enable the car to achieve road
tracking, infrared and ultrasonic sensors are installed
on the autonomous driving car [17]. Banerjee et al.
install radar sensors on the autonomous car, and radar
sensors detect the safe distance between the vehicle
and obstacles [6]. This article proposes to use only a
camera as a sensor for environmental perception and
the road tracking task, which can make the car imitate
human behavior to the greatest extent.

Choosing an excellent mainboard is also an approach
to improving autonomous driving performance. Many
mainboards cannot achieve deep learning or rein-
forcement learning tasks independently due to their
lack of computational power. A computer is needed as
a back-end to assist in achieving the tasks. Yuenyong
et al. chose Arduino as the mainboard of a small RC
car to achieve reinforcement learning tasks, but the
disadvantage is that Arduino is only a specific
purpose microcontroller and cannot handle research
that requires large-scale computing. They need to use
a computer with a GTX 980Ti GPU as the back-end

for data calculation and connect the computer to the
car using Bluetooth [8]. Do et al. although the use of
Raspberry Pi solves the problem that Arduino cannot
handle large-scale computing, the performance
of Raspberry Pi is also limited due to the lack of
a powerful GPU [9]. Therefore, this article proposes
to use Jetson Nano as a smart car computing platform,
which supports most of the current deep learning
frameworks and contains a powerful GPU, which
allows the autonomous driving car to achieve all
research independently.

As the test link of autonomous driving, the design
of the autonomous driving track is critical. As shown
in Fig. 2, Zhang et al. and Li et al. only test the road
track by building a simple circular track task [10], [11],
which is far from enough because the performance
of the smart car when passing through the curve
can better test the autonomous driving ability of the
smart car. Therefore, this article designs two different
complex tracks to increase the diversity of autonomous
driving tracks and restore the authenticity of racing
tracks in real life as much as possible.

Fig. 2. (a) The track of Zhang et al., (b) The track of Li et al.

B. Research on Hyperparameters in Autonomous
Driving

In addition to building an autonomous driving smart
car, achieving the task of road tracking also requires
setting the optimal hyperparameter configuration
scheme before starting the training phase of the neural
network. These hyperparameters include the neural
network, batch size, epoch, and different datasets.
These hyperparameters have a significant impact
on the training of the model and the performance of
autonomous driving.

1) Deep Neural Network

Autonomous driving technology requires
many deep-learning algorithms to process complex
data. Deep learning is a multi-layer perceptron that
includes an input layer, multiple hidden layers, and
an output layer, which can be composed of numerous
processing layers. It is very good at finding complex
structures in high-dimensional data. Deep learning
uses backpropagation algorithms to instruct machines
to change their internal parameters to find complex
systems in large datasets [18]. Fig. 3 is a multi-layer
neural network described by the backpropagation
algorithm, which is a three-layer neural network
consisting of an input layer with two input units, two
hidden layers, and an output layer [19].
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Fig. 3. Convolutional neural network architecture diagram

In deep learning, many deep neural networks are
commonly used, among which convolutional neural
networks are now more popular.

Convolutional Neural Network (CNN) is a deep
learning neural network for image recognition and
classification [20]. Each input image in the CNN
model goes through a series of convolution layers,
pooling layers, and fully connected layers and applies
the softmax function to classify the objects. The steps
of CNN are roughly divided into four steps: input,
feature learning, classification, and output [21]. The
feature learning step consists of the convolution layer,
excitation layer, and pooling layer. The classification
consists of the flattening layer, fully connected layer,
and softmax classification layer. The specific steps of
CNN are shown in Fig. 4.

Input layer Hidden layer 1 Hidden layer 2 Output layer

Fig. 4. Neural network architecture diagram

Convolution is the first layer and extracts features
from the input image. Convolution uses small squares

of input data to learn image features to preserve the
relationship between pixels. The purpose of convolution
operations is to extract high-level features from the
input image, which has profound implications for
image processing. For example, Fig. 5(a) is an image
matrix with an input image of 7*7, and its image pixel
values are 0 and 1. Fig. 5(b) is a 5*5 filter matrix
called a convolution kernel.

(a) 7*7 image matrix (b) 5*5 filter matrix
Fig. 5. (a) The input image is an image matrix of 7*7, (b) The
filter matrix of 5*5

As shown in Fig. 6(a), multiplying the convolution
of the 7*7 image matrix by the 5*5 filter matrix becomes
a “feature map”. The value in Fig. 6(b) is 4, which
is obtained after one convolution. Convolving the
image with different filters (convolution kernels)
can perform edge detection and blurring operations.
The filter will move to the right by a particular “step
value” until the entire image is walked, completing
the convolution process.
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(@ (b)
Fig. 6. (a) Process of convolution operation, (b) Results of the
convolution operation

After the convolutional layer completes the
convolution and extracts the information in the input
image, it will perform a nonlinear mapping on the
output of the convolutional layer through the excitation
layer because the calculation of the convolutional
layer is still linear, and the data in the real-world
hope what is learned by CNN is a non-negative linear
value.

Pooling is also known as spatial pooling. The
pooling layer has two functions. First, by reducing
the dimension of the feature map, the space size of the
convolutional feature is reduced, and the computing
power required to process the data is reduced. Second,
maintain the process of effectively training the model,
extracting essential features invariant to rotation and
position. Its most common pooling methods are max
pooling and average pooling [22]. The method of the
max pooling layer is to use the maximum value of
each region of the input part to perform max pooling
and generate the max pooling layer, as shown (a) in
Fig. 7. The method of the average pooling layer is to
use the average value of each region of the input part
to perform average pooling (b). Fig. 7 is an example
of the average pooling layer.

23 28 11 8 2 1 8
0 5 2 0 0 1 21 22

13 16 19 12 14 16

(a) Max pooling

21 1 2 17 13 15

g )
1 0

(b) Average pooling

6

6 8 4 1 9 9

Fig. 7. Example of the calculation process of max pooling and
average pooling

The last layer of the CNN starts classification. First,
the matrix is converted into a vector by a flattening
layer, then sent to a fully connected layer. Adding a
fully connected layer is a common way to learn non-
linear high-level features, represented by the output
of a convolutional layer. The combined method

finally classifies the output with a softmax or sigmoid
and a classification function.

‘We summarize the processing steps of convolutional
neural networks. First, the input image is provided to
the convolutional layer. Second, the parameters are
chosen, and filters with stride and padding are applied
if necessary. Next, convolve the image and apply an
activation function to the matrix. Then merge and
reduce the dimensionality. Add as many convolutional
layers as possible. Finally, flatten the output and
send it to a fully connected layer, use the activation
function to output the class, and merge the classified
images.

Much research also uses different networks based
on CNN for experiments in the current research.
Do et al. proposed a 9-layer structure, including five
convolutional layers, and four fully connected layers to
form a new deep neural network, and build a monocular
vision autonomous car with Raspberry Pi as the
mainboard, using the end-to-end method to directly
map the input image to the predicted steering angle
as the output, and finally achieved the road tracking
task [9]. Rausch et al. proposed a convolutional
neural network consisting of three convolutional
layers, two pooling layers, and one fully connected
layer for end-to-end driving of the autonomous driving
car. The trained terminal controller of the network
directly transmits instructions through the mapping
relationship between pixel data and steering
commands, enabling the smart car to achieve the task
of autonomous driving [12]. In the above research,
the experimental results are directly related to deep
neural networks. Therefore, we propose to use ResNet
as the basic model, train different ResNet networks,
explore the impact of different neural networks on
autonomous driving, and select the optimal neural
network to achieve the road tracking experiment.

2) Batch Size and Epoch

Batch size and epoch play an essential role in
the model training process. Radiuk et al. researched
a parameter of the training set: batch size. The goal
was to find out the effect of the batch size on the
performance of the neural network. They used the
MNIST dataset and CIFAR-10 datasets to obtain
consistent results and concluded that batch size affects
experimental accuracy [13]. In the research of Choi,
he fixed other hyperparameter values, and the neural
network was trained for ten different batch sizes and
obtained the logarithm of the quadratic relationship
between the total training time and batch size [14].
However, they did not extend the results to other
research. The research on epoch is also gradually
increasing. In training the neural network of autonomous
driving, Chowdhuri et al. neneedso choose the epoch
that minimizes the average error of the network, which
occurs at the 23rd epoch [15]. Koci¢ et al. proposed
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an end-to-end deep neural network, J-Net, for
autonomous driving, where J-Net provided the best
driving performance when trained for sixth epochs
[16]. We found that the epoch interval of the best
training model is different, and the choice of epoch
affects the fitting degree of the neural network.
Therefore, this article will research batch size and
epoch and propose their optimal hyperparameters for
road-tracking experiments.

To sum up, this article will explore the influence
of hyperparameters on model training and the actual
operation effect of autonomous driving and propose
an optimal configuration scheme of hyperparameters,
which will ultimately enable the autonomous driving
smart car to achieve the road tracking task. We will
elaborate on the construction of the smart car and the
autonomous driving track.

III. OUR APPROACH

This article proposes a set of optimal hyperparameter
configuration schemes and independently builds an
autonomous driving smart car and achieves road
tracking in the real world. In addition, we also conducted
experiments to adjust the speed and steering gain
and proposed a set of optimal gain values, which can
further improve the performance of the smart car.
We trained the optimal autonomous driving model
using the optimal hyperparameter configuration and
compared it with existing research and other neural
network models. Finally, to verify the applicability
of our model, we also test in unseen scenarios. The
detailed flow chart of this research is shown in Fig. 8.

Neural network

The neural network architecture of ResNet-18
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Fig. 8. Overview of the detailed process for achieving road tracking

A. Hardware settings of the Jetson Nano Autonomous
Driving Smart Car

The hardware connection diagram of the Jetson
Nano autonomous driving smart car is shown in Fig. 9.

We chose Jetson Nano as the mainboard of the smart
car, and the Jetson Nano is the center to send control
signals to various components of the smart car so
that the smart car can achieve the road tracking task.
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Power supply module
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Road tracking

Training model
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Fig. 9. The hardware framework of Jetson Nano smart car

1) Jetson Nano Mainboard

This article uses a smart car with only one
camera as a sensor for research and collects data on
the real track through the camera of the smart car
for model training. Also, most of the research uses
Raspberry Pi or Arduino as the mainboard for
intelligent agents, but Arduino alone cannot do deep
learning. The computing power and efficiency of the
Raspberry Pi are low, and it cannot carry complex
deep learning networks. We propose to use Jetson
Nano as the mainboard of the smart car, which has
a powerful GPU. The CPU of the Jetson Nano is a
quad-core Cortex-A57, and the GPU is a graphics
card of the NVIDIA Maxwell architecture. It has
128 CUDA units. We train the model using a ResNet
network based on the Pytorch framework to recognize

learning models, obtain faster computing speeds, and
reduce development time by 70%.

TABLE I
MAINBOARD INFORMATION TABLE
List Raspberry Pi 4B NVIDIA Jetson
Nano

Quad-core ARM Quad-core ARM

lane lines and output driving instructions [23], [24].
A picture of the Jetson Nano is shown in Fig. 10.

40PIN
GIPIO
expansion
interface

MIPI CSI camera
interface

DISPLAYPORT
display interface

Micro
USB
interface

HDMI Gigabit

Dc high- USB 3.0

interface  Cihemet

definition interface

interface

Fig. 10. Jetson Nano mainboard

The difference between the Raspberry Pi and
the Jetson Nano is that the Jetson Nano has a higher
performance and a more powerful GPU. As shown
in Table I, Jetson Nano supports many deep learning
frameworks, enabling us to use more complex deep

CPU Cortex-A72 64-bit @  Cortex-A57 64-bit @
1.5 GHz 1.42 GHz
. NVIDIA Maxwell
GPU Br"“‘iﬁ;’g;’_ ﬁf)(’c"re w/128 CUDA cores
@ 921 Mhz
Memory 4 GB LPDDR4 4 GB LPDDR4
Net Gigabit Ethernt/ G‘gabll\t/[Ezthemt/
working Wifi 802.1 lac Key E
Displa 2x micro-HDMI HDMI 2.0 and
Py (up to 4Kp60) eDP 1.1
4x USB 3.0,
USB 2x USB 3.0,2x USB 2.0 USB 2.0 Micro-B
Other 40-pin GPIO 40-pin GPIO
Video H.264/H.265
Encode H264(1080P30) (4Kp30)
Video H.265(4Kp60), H.264/H.265
Decode H.264(1080P60) (4Kp60,2x 4Kp30)
Camera MIPI CSI port*1 MIPI CSI port*2

2) Materials Used in Jetson Nano Smart Car

Using the Jetson Nano mainboard as the core
is an excellent choice for building an autonomous
driving smart car. The smart car has the ability of
independent computing. The smart car perceives the
environment through high-definition cameras and
uses the trained neural network to achieve the road
tracking task. The hardware required to assemble the
smart car is shown in Table II.
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JETSON NANO SMART CAR MATERIAL TABLE

Serial Number Part Specifications/Remarks Quantity
1 Jetson Nano - 1
2 1C Expansion Board - 1
3 Motor 370P 2
4 Servo - 2
5 Smart Car Chassis Including Servo and Camera Mount 1
6 Camera Sony 8 Million HD Camera 1
7 Wireless Network Card - 1
8 Track - 1
9 Battery - 1
10 Smart Car Crawler Gear - 4

3) Jetson Nano Autonomous Driving Smart Car
Achieved
The Jetson Nano autonomous driving smart
car we built using the scale model is shown in Fig.11.
The toy cars in the existing research have simple
structures and can only drive with a fixed speed gain
and a fixed steering gain. Therefore, toy cars often
have reproduction errors during experiments, and toy
cars have poor autonomous driving performance. The
smart car in this article can improve the automatic

driving performance of the smart car by adjusting the
speed and steering gain. In addition, the experimental
effects brought by different speeds and steering gains
will also be different. For example, if the steering gain
is large, the turning range of the smart car will be
large when it is in a curve, and sometimes it will drive
out of the track. Therefore, we will also research the
speed and steering gain of the smart car and strive to
propose an optimal gain value to improve the nomous
driving performance.

Car program control

Decision making
As a library file

>

wn

o

g_.

i Training data collection Model training program

o .

Providg data Transform
Model prediction program Training data conversion program
Provide model
Perceive

Fig. 11. Flowchart for achieving the road tracking of the Jetson Nano smart car
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The achievement of the road tracking task of the
Jetson Nano smart car is shown in Fig.12. It can be
divided into four parts: the car control program, the
training data acquisition program, the model training
program, and the model prediction program.

Fig. 12. Overview of the Jetson Nano autonomous driving smart car

B. Simulation Site Construction

We build a simulation site to simulate the driving
of an autonomous driving car on the road. We added
four corners and an S-curve to a standard circular road
to restore the actual route and facilitate testing the
steering of the Jetson Nano smart car when turning.
The white line is the boundary line of the track, and
the yellow line is the lane line of the track. The width
of the entire track is 44 cm, and the distance between
the yellow and white lines is 22 cm. Using two-lane
lines in two colors can give the smart car better results
in the road tracking experiment. Finally, we collect
data and test the final model in the self-made racing
track to determine the performance of road tracking
under different neural networks, batch sizes, and
different amounts of datasets and epochs. Fig.13
and Fig.14 are schematic diagrams of the smart car
simulation site.

AN

-

Fig.13. Simulation site model diagram

Fig.14. Actual map of the simulation site

C. Use of Neural Networks

The road tracking of the smart car is to collect
a large amount of data and divides it into a training
set and a test set. After deep neural network training,
a model is formed, and the road tracking experiment
is achieved. In this experiment, the lane lines taken
by the camera of the smart car on the self-made track
will be used as training data. The selected deep neural
network is ResNet, and different ResNet neural networks
are used to train under different epochs and batch sizes.
Finally, the quality of the training results is compared.
However, different ResNet neural networks achieve
different effects. To improve the accuracy and impact
of the model as much as possible while the smart car
can be within the limits of Jetson Nano memory and
computing power, we must rationally use different
ResNet neural networks and choose an appropriate
number of datasets, epochs, and batch sizes. This
research compares the verification loss value of the
ResNet-18 neural network and the ResNet-50 neural
network with a certain number of datasets, epochs,
and batch sizes and analyzes the impact of these
hyperparameters on the verification loss value.
Moreover, we will also load the trained model into
the smart car for actual operation and analyze the real
operation effect.

IV. EXPERIMENTAL SETUP

The experimental process is divided into data
collection, model training, and model testing. Finally,
an autonomous driving model is trained to enable the
Jetson Nano smart car to achieve road tracks.

In the data collection stage, we placed the smart
car at different positions on the track and used the
real-time camera as input for data collection. We
collected six sets of datasets, respectively, and this
is to compare the autonomous driving performance
of the smart car with different numbers of datasets.
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During the model training stage, different
hyperparameters have a significant impact on the
performance of the autonomous driving model.
Therefore, we train the autonomous driving model
using different deep neural networks, batch sizes,
epochs, and different datasets and finally propose a
set of optimal hyperparameter configuration schemes.
Finally, we load the trained model on the smart car to
achieve road tracks. We also analyzed the number of
datasets and the impact of different hyperparameters
on autonomous driving according to the actual
operation effect and verification loss value. The
experimental procedure diagram is shown in Fig.15.

(7300 )
e
600 1050 |

ResNet-18
e
ResNet-50

L8 )
Batch size
16

&=

Y
Model testing Road tracking ‘

Fig. 15. Experimental procedure diagram

Model training

S

In addition, we also research the effect of different
speed and steering gains on the performance of road
tracking and propose a set of optimal gain values.
Finally, to verify the applicability of our optimal
autonomous driving model, we will achieve the road
tracking task in unseen and untrained scenarios.

A. Data collection

The first step in this experiment is data collection.
The quality of the training dataset will directly affect
the performance of the autonomous driving model.
The steps of data collection are shown in Fig.16.

‘ Load camera and set the image size ‘

v

‘ Connect handle controller and collect data ‘

’

’ Save image and X,y values ‘

Fig. 16. Diagram of data collection steps

We initialize and display our camera. We choose
to use a 224x224 pixel image as input. We set the
photo to this size to minimize the memory of the
dataset and speed up the training of the model.

Then the approach we take photos with is handle
shooting. We create an instance of the PlayStation
controller and collect images through the buttons on
the controller.

We will place the smart car on different positions
of the track according to the lane line and move the “x”
and “y” sliders to mark the “green dot” in the center
of the lane line during the road tracking experiment.
The position marked by the green dot is the target
position to be reached when the smart car drives.
After the action is completed, press the “L1” button
on the handle to save. At the same time, we will create
a component to display the real-time image feed, the
number of collected images, and the value of the
storage target. It can be seen in Fig. 17 that the number
of collected data is 1050 photos, and the method of
moving the green dots can be seen in Fig. 18.

count | 1050

Fig. 17. Live preview of data collection (1050 represents the number

of photos collected as 1050)

X -0.50

y -0.57

Fig. 18. The method of collecting points (drag X can change the
left and right position of the green dot, and drag Y can change the
distance of the green dot)

Finally, the collected data set is automatically saved
to the corresponding new folder after collecting the
corresponding data. When we train, we will transfer
the data to the PC to load the image and parse the x
and y values in the filename. Fig.19 is an example
of the contents of the data folder. Each photo in the
dataset folder is named with its x and y coordinates.
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Fig. 19. Example of the contents of the data folder

B. Model Training

We can train the optimal autonomous driving
model through model training, and this step is essential.
The model training part aims to use the trained
artificial neural network to reproduce the values when
collecting the data: the x and y values. The steps of
model training are shown in Fig. 20.

Select the different hyperparameters in turn

Load different datasets to the
training set and the testing set

!

‘ Training model ‘

!

‘ Save model ‘

Fig. 20. The steps of model training

In training the model, the dataset will be divided
into the training set and testing set. This research
split the data into 90% as the training set and 10%
as the testing set. The training set is used to train the
autonomous driving model, and the testing set will
be used to verify the accuracy of our trained model.
Then we load the data in batches and shuffle the data.
Most of the current research usually sets batch size=8,
epoch=30 for training. Therefore, our initial batch
size is set to 8, and the initial epoch is set to 30.
we increase the batch size and epoch to 16 and 70,
respectively, depending on the GPUs available in
memory. This allows us to research the effect of
different batch sizes and epochs on the autonomous
driving model.

Next, we use the now popular ResNet-18 and
ResNet-50 neural networks to train the model and
transfer it to the GPU to run the model training
through “CUDA”. Once the model is trained, it
will generate a model file that we will use for road
tracking.

Table III shows the 48 hyperparameter settings
in this experiment. They are trained with different
neural networks, different numbers of datasets,
different batch sizes, and epochs.

TABLE III
HYPERPARAMETER SETTINGS for ROAD TRACKING MODELS

Neural Network Dataset Batch Size Epoch

300

ResNet-18 450 8 30

600

750
ResNet-50 900 16 70

1050

Through model training, we can get the validation
loss value of each model. The validation loss value
can reflect the performance of the model. We also
load the trained autonomous driving model on the
smart car for experiments, which can more accurately
judge the impact of different hyperparameters on
autonomous driving. We can get accurate results by
combining the verification loss value with the actual
operation effect of the smart car.

C. Model Testing

Through the training of the models, we were able
to obtain the validation loss values for each model
separately. The validation loss values can show the
performance of the models on the data, and in order to
get more accurate results, we also need to combine the
real effects of the smart car operation, so we started
the final step of the experiment by loading the trained
models on the smart car and testing the models on a
real track.

We can reduce the reproduction errors of toy cars
often by setting the speed and steering gain. We drive
the smart car with an initial speed and initial steering
angle of 0.65 and 0.21, according to the design
of the smart car. After obtaining the influence of
hyperparameters on the autonomous driving model and
proposing the optimal hyperparameter configuration
scheme, we conduct research on the influence of
the gain value on the autonomous driving model by
adjusting the speed and steering gains and propose
an optimal gain value to improve the road tracking
performance.

When the smart car is driving in a straight
line, no matter what dataset, neural network, batch
size, or epoch, the smart car can achieve excellent
performance. However, when the smart car is driving
on a curve, the performance of different autonomous
driving models can be demonstrated.

Therefore, to accurately compare the actual
performance of autonomous driving models trained
with different hyperparameter configuration schemes,
we selected three points as measurement points at the
S-turn of the self-made racing track.
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We will judge the performance of the smart car
according to two judgment criteria. 1) The distance
between the center of the smart car and the measurement
point when the smart car is driving. The smaller
the distance between the centerline of the smart car
and the measurement point, the better road tracking
performance. 2) When the smart car is driving, the angle
between the center of the smart car and the measurement
point. The smaller the angle that the centerline
of the smart car deviates from the measurement
point, the better the performance of road tracks. The
autonomous driving model it loaded will be better.
In addition, we also marked a standard block on the
map, and we can scale the standard block to the actual
distance to get the accurate distance and angle.
As shown in Fig. 21, P1, P2, and P3 are three
measurement points, respectively. The white squares
marked with green fonts are the standard blocks we
reserved. Fig. 21(a) is the actual track map with
the measurement points and the standard block
marked. Fig. 21(b) is the track model diagram with
marked measurement points and the standard block.
Moreover, we also marked the detailed dimensions
of the track in the track model diagram.

Fig. 21(a). The actual track map with the measurement points and
standard blocks marked

78.8cm 212.1cm

187.8cm
Standard block 133.3cm

290.9cm
Fig. 21(b). The track model diagram with marked measurement

points and the standard block, and detailed dimensions of the track

We shot the video with a camera and tripod during
the experiment, took screenshots when the center of the
smart car passed the measurement point, and measured.
During the experiment, we will keep the light consistent
and the measurement height and position unchanged
to ensure the accuracy of the experiment. The specific
experimental situation is shown in Fig. 22.

&

Fig. 22. Specific experimental situation diagram

We will obtain the performance of 48 models
trained by different hyperparameter configuration
schemes in actual operation through the above
experiments. The next chapter will discuss obtained
validation loss values and actual measurements.

V. EXPERIMENTAL RESULTS AND ANALYSIS

This chapter will describe and analyze the impact
of different neural networks, datasets, batch sizes, and
epochs on the validation loss and the actual operation
effect of smart cars. Finally, we propose an optimal
hyperparameter configuration scheme and train an
optimal autonomous driving model.

A. The Impact of Different Neural Networks, Differ-
ent Datasets, Batch Sizes, and Epochs on the Verifi-
cation Loss Value

The validation loss value can reflect the perfor-
mance of the model. Table IV shows the validation
loss values of our 48 sets of autonomous driving
models trained with different hyperparameter con-
figuration schemes to analyze the effect of different
hyperparameters on the validation loss values.
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TABLE IV
THE VALIDATION LOSS VALUES OF 48 SETS OF AUTONOMOUS DRIVING MODELS TRAINED WITH DIFFERENT
HYPERPARAMETER CONFIGURATION SCHEMES

Neural Batch Neural Batch
Network Dataset Size Epoch Loss Network Dataset Size Epoch Loss
30 0.011001 30 0.013148
8 8
70 0.010553 70 0.005804
300 300
30 0.011973 30 0.011661
16 16
70 0.007873 70 0.006367
30 0.006913 30 0.01226
8 8
70 0.008783 70 0.009035
450 450
30 0.012878 30 0.01102
16 16
70 0.006626 70 0.011696
30 0.011351 30 0.008344
8 8
70 0.008674 70 0.008863
600 600
30 0.011769 30 0.011322
16 16
70 0.011649 70 0.008776
ResNet-18 ResNet-50
30 0.008598 30 0.007925
8 8
70 0.011314 70 0.009001
750 750
30 0.01077 30 0.011043
16 16
70 0.009004 70 0.009863
30 0.011724 30 0.018298
8 8
70 0.014531 70 0.015377
900 900
30 0.019155 30 0.018096
16 16
70 0.012837 70 0.011401
30 0.0214 30 0.018373
8 8
70 0.015585 70 0.019586
1050 1050
30 0.01889 30 0.015242
16 16
70 0.021052 70 0.019499

1) The Impact of Different Neural Networks on
Verification Loss Value
Based on the experimental results of 48 sets of
autonomous driving models, we judge the influence
of different neural networks on the validation loss value.
Fig. 23 is a plot of validation loss results trained with
ResNet-18 and ResNet-50. The horizontal ordinate
is a different setting. For example, “P300_ B8 E30”
means that the dataset is 300 photos, batch size=8,
epoch=30, the blue line represents the model trained
with the ResNet-18 neural network, and the red line
represents the model trained with the ResNet-50
neural network.

As shown in Fig. 23, when the model is trained
with ResNet-50, the validation loss value is generally
lower than the model trained with ResNet-18.
As the depth of the network deepens, the degree of
abstraction of features is higher. The accuracy of the
trained model will increase, and the validation loss
will decrease,

The maximum value appears in “ResNet-18
P1050 B80 E30”, the validation loss value is 0.0214,
and the minimum value appears in “ResNet-50
P300 B8 E707”, and the validation loss value is
0.005804.
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Fig. 23. The results of verification loss for different neural networks

2) The impact of different numbers of datasets on
verification loss value
The amount of data in the dataset also affects
model training. In this research, six datasets with
different numbers of data were selected for training,
and the impact of dataset on the model was explored.
Fig. 24 shows the validation loss results when training
with six datasets.
As shown in Fig. 24, when the dataset is 300

photos, 450 photos
the validation loss

or 900 photos, 1050 photos,
value will fluctuate wildly.

Furthermore, the validation loss is significantly
reduced when using the ResNet-50 neural network.
Through experiments, the number of datasets for
the ResNet-18 neural network is not inversely
proportional to the validation loss value, but for
the ResNet-50 neural network, the larger the
number of datasets, the smaller the validation loss value.
Therefore, the size of the dataset has a more
significant impact on the deep network. As the network
depth deepens, the amount of data required to train
the model also needs to increase.

The impact of different numbers of datasets on verification loss value
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Fig. 24. The results of verification loss for different numbers of datasets

3) The impact of Different Batch Sizes on Verifi-
cation Loss Value
Batch size is a crucial hyperparameter in deep
learning. Batch size will affect memory utilization,
processing speed, and model accuracy. Therefore,
the choice of batch size also affects the quality of the
model.
Most research usually sets the batch size to 8.
We increase the batch size during training to 16

according to the available GPU in memory, set batch
size=8 and 16 for model training, respectively, and
then judge the impact of batch size for model training
and validation loss.

Fig. 25 shows the validation loss results for
batch size=8 and 16 training. It can be seen that
the small batch size has little effect on the model
validation loss.
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The impact of different batch sizes on verification loss value
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Fig. 25. The results of verification loss for different batch sizes

4) The Impact of Different Epochs on Verification
Loss Value
Epoch refers to the number of times to train all
data. Most research usually sets the epoch to 30 for
model training. We also increased the epoch value
to 70 according to the available GPU conditions and
analyzed the impact of different epochs on the model
validation loss value.

Fig. 26 is a plot of the validation loss results for
training with epoch=30 and 70. As shown in Fig. 26,
the validation loss value of the model with epoch=70
is smaller than epoch=30. Therefore, on the premise
that the model does not enter the overfitting state, the
more iterations of weight update, the more epoch, the
smaller the validation loss of the model, and the better
the effect of training the model.

The impact of different epochs on verification loss value
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Fig. 26. The results of verification loss for different epochs

5) Summary of Validation Loss Values of
Models Trained Under Different Hyperparameter
Configuration Schemes

This experiment trains 48 autonomous driving
models according to different hyperparameter
configuration schemes. Fig. 27 shows the validation
loss values for 48 autonomous driving models. From

£ ResNet-18 P1050 B16
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Fig. 27, it can be seen that the validation loss values
of the autonomous driving model trained with
ResNet-50 are smaller than those of the model using
ResNet-18. Among them, when the dataset is 300
photos, batch size=8, epoch=70, the validation loss
is the smallest, 0.005804.
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The verification loss value of the 48 hyperparameter
configuration schemes
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Fig. 27. The validation loss values for 48 autonomous driving models

Although the validation loss value can reflect
the performance of the model, when the models are
trained with ResNet-18, the difference in the validation
loss value of each model is very small.

Therefore, to get accurate results, we need to
evaluate further the quality of the autonomous driving
model based on the actual road tracking performance
after loading the model into the smart car. Finally,
an optimal hyperparameter configuration scheme is
proposed.

B. The Impact of Different Neural Networks, Different
Datasets, Batch Sizes, and Epochs on the Actual
Performance of the Smart Car

We load the trained model on the autonomous
driving smart car. We analyze the performance of
autonomous driving models trained by different
hyperparameter configuration schemes by comparing
the average offset distance and average offset angle of
the smart car when passing through 3 measurement
points and analyze different neural networks, different
datasets, batch sizes, and epochs on the actual
performance of the smart car.

Table V shows the actual operating results of the
smart car after loading different autonomous driving
models. The neural network used in Table V (A) is
ResNet-18, and the neural network used in Table V
(B) is ResNet-50.

TABLE V (A)
THE ACTUAL OPERATION RESULTS OF THE SMART CAR (RESNET-18)

Neural Network Dataset Batch Size Epoch Distance (P1 P2 P3) cm Average Distance  Angle (P1 P2 P3)°  Average Angle

30 519 261 224 3.35 16 6 1 7.67

300 8 70 6.2 2.5 0.72 3.14 3 8 5 5.33
16 30 5.4 1.94  0.88 2.74 10 1 4 5

70 456 047 436 3.13 7 7 5 6.33

30 566 1.16  2.66 3.16 1 11 5 5.67

450 8 70 7.51 1.06  0.75 3.11 10 26 19 18.33

16 30 7.38 1.1 2.8 3.76 3 1 7 3.67
70 586  0.64 435 3.62 1 0 11 4
30 442 091 077 2.03 4 2 6 4

600 8 70 3.99 1.66 24 2.68 9 4 0 433
16 30 846 377 186 4.7 1 6 2 3

70 3.91 1.88 1.05 2.28 5 3 3 3.67
ResNet-18 30 524 209 3.04 3.46 4 2 6 4
s 8 70 599 181 13 3.03 5 0 4 3
16 30 6.84 265  0.66 3.38 8 2 5 5

70 6.39 1.13  0.62 2.71 9 0 11 6.67

30 6.59 275 044 3.26 6 3 5 4.67

900 8 70 5.6 1.34 144 2.79 7 7 2 5.33

16 30 5.11 247 14 2.99 17 1 11 9.67
70 5.6 3.18 1.25 3.34 6 5 4 5

30 7.66 192 1.09 3.56 3 11 3 5.67

1050 8 70 6.37 1.99 148 3.28 11 5 3 6.33

16 30 6.28 1.6 0.9 2.93 8 2 6 5.33

70 5.68 1.83  0.66 2.72 9 8 12 9.67
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TABLE V (B)
THE ACTUAL OPERATION RESULTS OF THE SMART CAR (RESNET-50)
Neural Network Dataset Batch Size Epoch Distance (P1 P2 P3) cm Average Distance Angle (P1 P2 P3)° Average Angle

3 30 498 3645 95.36 45.6 15 96 3 38
300 70 732 339 65.65 35.62 3 79 25 35.67
16 30 5.63 2234 3222 20.06 10 18 7 11.67
70 33 2641 51.6 27.1 61 44 41 48.67

3 30 7.59 18.09 24.76 16.81 0 10 17 9
450 70 2.16 2352 88.96 38.21 22 76 153 83.67
16 30 2.17 5.89  10.07 6.04 9 1 33 14.33
70 4.52 632 1345 8.1 43 4 74 40.33
3 30 4.39 2.16 42.72 16.42 14 11 139 54.67

600 70 3.61 435 4593 17.96 25 28 145 66
16 30 2.59 431 1588 7.59 5 19 14 12.67
70 2.07 2242 1036 11.62 21 27 118 55.33

ResNet-50

3 30 092 19.66 23.54 14.71 27 30 44 33.67
750 70 .72 1271 7.76 7.4 1 115 39 51.67
16 30 3.01 2793 17.05 16 19 14 61 31.33
70 346 3376 96.78 44.67 86 1.3 53 46.77
3 30 7.19 2337 57.02 29.19 39 67 15 40.33
900 70 578 23.76  60.94 30.16 54 131 114 99.67

16 30 8.89 11.37 134 11.22 13 39 14 22
70 5.75 4.79 24.67 11.74 71 13 38 40.67

3 30 4.54 5.13  20.14 9.94 27 16 62 35

1050 70 325 1477 3.11 7.04 7 4 34 15
16 30 7.12 6.39 443 5.98 19 19 23 20.33
70 1.36 23.61 6.01 10.33 33 0 74 35.67

1) The Impact of Different Neural Networks on
the Actual Operation Effect of the Model
We judge the impact of different neural
networks on model quality by analyzing the actual
effect of smart car operation. Fig. 28 is the actual
operation of the model trained with ResNet-18 and
ResNet-50. The horizontal ordinate is the autonomous
driving model trained with different hyperparameter
configuration schemes, the ordinate is the average
offset distance when the smart car is driving, and the
second coordinate is the average offset angle.

According to Fig. 28, we can see that although
the validation loss value of ResNet-50 is generally
smaller than that of ResNet-18, the actual performance
of the model trained with ResNet-18 is significantly
better than that of ResNet-50. Moreover, as the number
of photos in the dataset increases, the actual performance
of ResNet-50 gradually improves. Therefore, in
experiments with small datasets, even if a deeper
network can bring better nonlinear expression
capabilities, the actual effect of the ResNet-50 neural
network is still far worse than that of the ResNet-18
neural network.

The impact of different neural networks on the actual operation effect of
the model
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Fig. 28. Actual operation effect diagram of different neural network
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The neural network in the hyperparameter
configuration scheme of this article will choose
ResNet-18 as the neural network.

2) The Impact of Different Numbers of Datasets
on the Actual Operation Effect of the Model

Fig. 29 shows the impact of different numbers
of datasets on the actual operation. From Fig. 29,
we can see that when using ResNet-18 as the neural
network, regardless of the number of photos in the
dataset, the average offset distance and average offset
angle are small, and the fluctuations are flat. However,
when the neural network training is changed to
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ResNet-50, the average offset distance and offset
angle increase sharply, and the road tracking
experiments do not perform excellently. As the
number of photos increases, the average distance and
angle gradually decrease, and the actual operating
effect gradually improves. This is due to the small
number of our datasets, and ResNet-50 requires
large-scale data to train a model with excellent
performance. This article chooses to use the dataset
of 600 photos with the best overall performance as
the training dataset for the optimal hyperparameter
configuration scheme.

The impact of different numbers of datasets on the actual operation effect of
the model
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Fig. 29. Actual operation effect diagram of different numbers of datasets

3) The Impact of Different Batch Sizes on the
Actual Operation Effect of the Model
From the analysis of batch size in the previous
section, we can conclude that the small batch size
has little effect on the model validation loss value. In
order to further verify the conclusion, we analyzed the
effect of different batch sizes on the actual operation of
the smart car. Fig. 30 shows the actual driving effect of
the model under different batch sizes. The histograms
and curves also represent the actual average offset
distance and angle of the model under different batch
sizes.

—Pics_900_angle

Pics_750_Distance
—Pics_450_angle
—Pics_1050_angle

As shown in Fig. 30, when the neural network
is ResNet-18, the batch size has little effect on the
average offset distance and offset angle. However,
when the neural network is ResNet-50, the model
trained with batch size=16 performs better than the
model trained with batch size=8. Moreover, as the
number of datasets increases, the actual effect of the

model using batch size=16 becomes more and more
stable.

The impact of ditferent batch sizes on the actual operation cffect of the modcl
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Therefore, combined with the analysis of the
verification loss value and the actual performance,
the batch size=8 in the hyperparameter configuration
scheme of this article is used for training with the
ResNet-18 neural network. Under the condition of
ensuring the training accuracy and actual performance,
the training time and GPU consumption are reduced.

1) The Impact of Different Epochs on the Actual
Operation Effect of the Model

19

Fig. 31 shows the effect of different epochs on
the actual performance of the smart car. As shown in
Fig. 31, the actual performance of the model trained
with the ResNet-18 neural network is less affected
by the epoch. However, when the model was trained
with ResNet-50, the average offset distance and angle
of the smart car gradually decreased with increasing
epoch. Furthermore, as the number of photos increases,
the impact of epochs on how well the model runs is
slowly decreasing.

The impact of different epochs on the actual operation effect of the model
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Fig. 31. Actual operation effect diagram of different epochs

Therefore, combined with the selection of
neural network, dataset, and batch size, we set the
epoch in the hyperparameter configuration scheme
of this article to 8, which can effectively reduce the
model training time and memory loss while ensuring
the model accuracy and road tracking performance.

2) Summary of the Actual Operation Effects of
Models Trained Under Different Hyperparameter
Configuration Schemes

Fig. 32 shows the average offset distances
and angles for 48 autonomous driving models
trained according to the different hyperparameter
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configuration schemes. As shown in Fig. 32, the
model trained using ResNet-18 as a neural network
performs excellent, but the actual operation effect
drops significantly after using ResNet-50 to train the
model. In addition, with the increase in the number of
photos and the increase in batch size, the performance
of the model with ResNet-50 as the neural network
is gradually getting better. It can be seen that the
ResNet-18 neural network can be trained using
small-batch datasets, and the number of datasets, batch
size, and epoch have little effect on its autonomous
driving performance.

The actual operation effect of the 48 hyperparameter configuration schemes
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Fig. 32. The Actual operation effect for 48 autonomous driving models
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Combining the influence of different hyper-
parameters on the verification loss value and the actual

operation effect of the smart car, we propose a set respectively.

of optimal hyperparameter configuration schemes in
which the neural network is ResNet-18, the batch size
is 8, the epoch is 30. The dataset of 600 photos for
training and the optimal autonomous driving model
is obtained. The validation loss value of the optimal
autonomous driving model is 0.011351. When the
road tracking experiment was achieved, the average
offset angle from the measurement point was 2.03cm,
and the average offset angle was 4°.
3) Correlation Analysis of Verification Loss Value
and Actual Operation Effect of Smart Car
In this section, we will focus on analyzing the
relationships between the validation loss value and
the actual performance of the model. Fig. 33 and
Fig. 34 are the relationships between the verification
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loss value and the actual operation of the smart car
when the neural network is ResNet-18 and ResNet-50,

Asshown in Fig. 33 and Fig. 34, when the validation
loss value is extreme (such as the minimum or maximum
value), the change of the actual operating effect
fluctuates wildly, and the performance is not excellent.
When the verification loss value tends to the median,
the variation and fluctuation of the actual operation
effect are small, and the performance is excellent.
Furthermore, the choice of neural network has a
significant impact on the performance of the model.

The verification loss value can reflect the model
training results, but it cannot directly determine the
actual performance of the model. We need to make a
comprehensive judgment on the performance of the
model combined with the verification loss value and
the actual operation effect.
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C. The Impact of Different Speed Gain and Steering
Gain on Road Tracking

The main difference between an autonomous
driving smart car and a toy car is that the smart car
can reduce reproduction errors and improve the
performance of autonomous driving by adjusting
the speed gain and steering gain. Therefore, we will
research the effect of gain value on autonomous
driving performance by adjusting the speed and
steering gain values and find the optimal gain value
in the experimental results. The model used in the
experiment is the optimal autonomous driving model
trained with our proposed optimal hyperparameter
configuration scheme. The neural network is ResNet-18,
the batch size is 8, the epoch is 6, and the dataset is
600 photos.

Since speed gain and steering gain significantly
impact autonomous driving, excessive speed or steering
cause the smart car to drive off the track. Therefore,
we propose a new evaluation criterion that can more
intuitively represent the performance of autonomous
driving models. We set the road tracking task as a
100-point scoring system. If the smart car touches
the white line, 1 point will be deducted from the total
score. 5 points will be deducted from the total score if
the smart car drives off the track. We achieved three
laps of road tracking experiments on the track and
finally calculated the total score. The higher the final
total score, the better the performance of the model,
and we call this criterion the TO criterion. (touch the
white line and off-track)

When the speed gain is below 0.35, the smart car
cannot start the motor at this speed. When the speed
exceeds 0.95, the smart car will drive out of the track
and cannot achieve road tracks. Therefore, we choose
six groups of speed gains for research in the range of
speed gain from 0.35 to 0.95. The steering gain is set
to the default value of 0.21. Table VI (A) shows the
road tracking performance of different speed gains.

TABLE VI (A)
ROAD TRACKING PERFORMANCE FOR DIFFERENT SPEED
GAINS
Speed Gain Touch White Line Off Track  Total Score
0.35 11 1 84
0.5 8 0 92
0.65 6 0 94
0.8 10 1 85
0.95 13 2 77

As shown in Table VI (A), with the increase of the
speed gain, the driving state of the smart car changes
from bad to good and then from good to bad. When
the speed gain is 0.65, the performance of the smart
car to achieve road tracking is the best. Therefore,
0.65 is the optimal speed gain value for the smart car.

When the steering gain is below 0.11, the smart
car loses the ability to turn. When the steering gain is
above 0.31, the smart car is very sensitive to steering
and spins in place. Therefore, we select six groups
of steering gains in the range of 0.11 to 0.31 for the
research. The speed gain was set to the optimal speed
gain value we obtained, 0.65. Table VI (B) shows
the road tracking performance with different steering
gains.

TABLE VI (B)
ROAD TRACKING PERFORMANCE WITH
DIFFERENT STEERING GAINS

Steering Gain Touch White Line Off Track Total Score

0.11 12 1 83
0.16 10 0 90
0.21 6 0 94
0.26 8 2 82
0.31 7 3 78

As shown in Table VI (B), when the steering gain
is 0.21, the smart car has the highest performance
score. 0.21 is the optimal steering gain value for the
smart car. When the steering gain is 0.31, the smart
car will many times drive out of the track.

In summary, we found the optimal gain values,
where the speed gain is 0.65, and the steering gain
is 0.21. Our optimal autonomous driving model
performs best at this gain value.

D. Validation Experiment of the Optimal Hyper-
parameter Configuration Scheme

This article proposes a set of optimal hyper-
pa-rameter configuration schemes and trains the optimal
autonomous driving model, which we call BH-ResNet.
We compare this model with the excellent model
proposed by Gupta P et al., which we call the GP-VGG
model [25]. In addition, we also compare BH-ResNet
with popular neural networks, DenseNet-121 proposed
by Huang et al. [26], and AlexNet proposed by
Krizhevsky et al. [27]. The performance of our
BH-ResNet is validated by comparison with these
existing models. Among them, the optimal speed
gain and the optimal steering gain are applied in the
existing method, and the evaluation standard we use
is the TO criterion.

TABLE VII
COMPARISON TABLE OF BH-RESNET AND

EXCELLENT MODELS

. . Touch
Model ~ Yerification i OfTrack [°!
Loss Value . Score
Line
BH-ResNet 0.011351 6 0 94
GP-VGG 0.121545 14 4 66
DenseNet-121  0.011744 12 1 83
AlexNet 0.011654 8 2 82
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The comparison table of BH-ResNet and the
excellent model is shown in Table VII. In the road
tracking experiment, the validation loss value of
BH-ResNet was lower than that of other models, and
the validation loss of the GP-VGG model was the
highest. In addition, according to the score of the TO
scoring standard, we can see that BH-ResNet has the
highest score of 94 points. Combining the validation
loss value and the TO scoring criteria, the BH-ResNet
model performs best.

E. Road Tracking Experiment in Unseen Scenes

Autonomous driving cars are challenging to
train in all possible environments, so an excellent
autonomous driving model can perform road-tracking
tasks even in unfamiliar environments. Therefore, we
designed a new track, which is a new environment
that the smart car has not seen or trained. Fig. 35 is
an unseen scene environment.

Fig. 35. An unseen scene environment

We conduct road tracking experiments in this
unseen scene to verify the applicability of BH-ResNet.
In addition, the three excellent models in the previous
section are also involved in the experiments, which can
accurately verify the performance of our BH-ResNet.
The judging standard we use is the TO criterion.
Table VIII shows the experimental results under the
unseen scenario.

TABLE VIII
EXPERIMENTAL RESULTS IN THE UNSEEN SCENARIO

Model Touch White Line Off Track  Total Score

BH-ResNet 10 0 90
GP-VGG 17 6 53
DenseNet-121 15 3 70
AlexNet 12 5 63

Table VIII shows that the BH-ResNet model can
also achieve the road tracking task even though the
number of times touching the white line increases
in unseen scenes. This means that our proposed
BH-ResNet model can handle unseen environments,
and the model has broad applicability and utility.
Furthermore, the effects of the remaining three models
are inferior, which shows that the BH-ResNe model

has more ability to predict unfamiliar environments
and a stronger ability to adapt to the external environ-
ment and resist external noise. After being trained in
a limited environment, the smart car can be achieved
road tracking in more unseen scenarios.

F. Summarize of Discussion

1) Using Jetson Nano as the mainboard of the
smart car can allow the car to load more complex and
efficient deep network models, and the calculation
speed is excellent. The smart car can achieve all tasks
independently without needing a computer as a
back-end for processing operations. If the Jetson
Nano is mounted on the toy car, it still cannot get
superior performance, which is caused by the
reproduction error brought by the hardware defect
of the toy car. Therefore, we built an autonomous
driving smart car based on a scale model in the real
world, which can adjust the speed gain and steering
gain, improves the performance of autonomous
driving, and effectively reduces the problem of
reproduction error of toy cars, which improves the
accuracy of the experiment.

2) The hyperparameter setting is a crucial
factor affecting the performance of smart cars. For
different neural networks, we found that the validation
loss values for models trained with ResNet-50 were
generally lower than those trained with ResNet-18.
The validation loss value fluctuates wildly for different
datasets when the dataset is 300 or 1050 photos.
When the dataset is 600 photos, the validation loss
value is small and stable, and we need to choose the
right amount of data according to the neural network
used. The small batch size has little effect on the
model validation loss for different batch sizes. For
different epochs, on the premise that the model does
not enter the overfitting state, the more iterations of
weight update, the smaller the model validation loss.

3) The verification loss value can reflect the
performance of the model. In order to make the
experimental results more reliable, we need to make
judgments based on the actual operation effect of
the smart car. Therefore, we loaded 48 autonomous
driving models into smart cars for actual measurements.
The model trained by ResNet-18 performs significantly
better for different neural networks than the model
trained by ResNet-50. For different numbers of datasets,
the size of the dataset has less impact on the model
with ResNet-18 as the neural network but has a more
significant impact on the model with ResNet-50 as the
neural network, and the larger the number of datasets,
the better the effect. For different batch sizes, when
the neural network is ResNet-50, the batch size has
amore significant impact on the results. For different
epochs. The increase in epochs did not substantially
improve the performance of the model.

4) Choosing the correct hyperparameters is very
important. Based on the research on the verification
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loss value and the actual operation effect of the smart
car, we propose a set of optimal hyperparameter
configuration schemes. The neural network is
ResNet-18, the batch size is 8, and the epoch is 30.
The optimal autonomous driving model BH-ResNet
is obtained by training with a dataset of 600 photos.

5) Our smart car can adjust the speed gain and
steering gain like a real car, so we researched the
influence of the gain value on the smart car and finally
proposed a set of optimal gain values. The optimal
speed gain value is 0.65, and the optimal steering gain
value is 0.21. The optimal gain value can significantly
improve the performance of the smart car.

6) We compare BH-ResNet with three existing
groups of excellent models, and we find that the
BH-ResNet model outperforms other models in
both validation loss value and actual operating effect,
which also verifies the superiority of our model. In
addition, the BH-ResNet model can achieve
road-tracking experiments in unseen scenes. This
demonstrates the practical utility of the model.

VI. CONCLUSION

Road tracking is a critical task in autonomous
driving research. In the research, we use a scale model to
build an autonomous driving smart car with adjustable
speed gain and steering gain, equipped with a Jetson
Nano which includes a high-performance GPU to
achieve the road tracking task. Furthermore, we propose
a set of optimal hyperparameter configuration
schemes and train the optimal autonomous driving
model BH-ResNet, which is proven to achieve road
tracking tasks with excellent performance.

In the model training part, we tested the effect of
different hyperparameters on the model validation
loss value. We found that batch size has less effect on
validation loss, and the different neural networks and
datasets have more effect on validation loss. When
the neural network is ResNet-50, the batch size is 8,
the epoch is 70, and the dataset is 300, the validation
loss is the smallest value of 0.005804. In the actual
experiment part, we found that although the validation
loss of ResNet-50 is lower than that of ResNet-18,
the actual performance is far worse than that of
ResNet-18. In addition, batch size and epoch have
less impact on the model.

Integrating the research of validation loss values
and actual operation effects, we proposed a set of
optimal hyperparameter configuration schemes with
the neural network of ResNet-18, a batch size of 8, an
epoch of 30, and a set of 600. We trained the optimal
autonomous driving model BH-ResNet.

In addition, we found that when the speed gain
and steering gain increase, the number of times the
smart car drives out of the track increases, and when
the speed gain and steering gain decrease, the number

of times the smart car touches the white line increases.
When the speed gain is 0.65 and the steering gain is
0.21, the performance of the smart car to achieve the
road tracking task is the best.

We compared BH-ResNet with DenseNet-121,
Alexnet, and GP-VGG and found that all models can
achieve road track, but DenseNet-121, Alexnet, and
GP-VGGQG all have problems with touching the line or
driving off the track when turning, with a total score
of 83, 82, and 66, respectively. BH-ResNet has the
highest score of 94. Compared with GP-VGG, the
performance of the BH-ResNet model is improved
by 42.4%.

A good model should have the ability to handle the
unseen environment. Therefore, we designed a new
track and proved that BH-ResNet could still achieve
road tracking with high performance in an unseen
environment. The existing models all showed many
touchlines and driving off the track, with DenseNet-121
scoring 70, AlexNet scoring 63, and GP-VGG
scoring 53. Our BH-ResNet has the highest score of
90. Compared with GP-VGG, the BH-ResNet model
outperforms 69.8% in unseen environments.
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