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	 Abstract—Road tracking as an essential task 
in autonomous driving is crucial for artificial  
intelligence. Most research is conducted in virtual 
environments, but it is vital to conduct practical 
experiments on real cars. The current researchers  
use toy cars for road track, but the toy cars can 
only drive at a fixed speed and a fixed angle for 
steering, which leads to reproduction errors during 
the experiment. We built a smart car based on a 
scale model using Jetson Nano as a mainboard, 
which can adjust the speed and steering gain to 
improve road tracking performance and reduce 
reproduction errors. To analyze the impact of  
hyperparameters, we conducted experiments 
on 48 autonomous driving models and proposed  
optimal hyperparameter configuration schemes, 
and trained the optimal autonomous driving 
model BH-ResNet. In addition, we also research 
the effect of the speed and steering gain on the 
performance of the smart car and propose an  
optimal gain value. Moreover, we compare BH-ResNet  
with other existing models, and BH-ResNet  
outperforms other models, scoring the highest 
in both tracks, with 94 and 90. Furthermore, the 
BH-ResNet model can also achieve road tracks 
with superior performance in unseen scenes, and 
our proposed model has excellent applicability 
and practicality.

	 Index Terms—Autonomous Driving, Convolutional  
Neural Networks, Deep learning, Deep residual 
network, Jetson Nano 

I. INTRODUCTION

	 Deep learning is one of the current breakthroughs 
in artificial intelligence, and the application of deep 
learning methods to autonomous driving research has 
solid practical and theoretical significance [1], [2].
	 Road tracking is the primary task of autonomous 
driving. In the existing autonomous driving research, 
most of the research remains in the virtual stage to 
save costs and ensure the safety of the experiment. Lin 
et al. chose a software simulator as the experimental  
environment platform to obtain the relative positions 
of the car and the road using deep neural networks as 

the computational framework. Finally, they achieved 
road track on the simulator track [3]. Although it  
is convenient and safe to conduct experiments in  
a virtual environment, this approach is not as accurate 
as training autonomous cars directly in the real world. 
Therefore, we propose to make a self-made car and 
an autonomous driving track in the real world, where 
the steps of data collection and model testing are done 
in the world.
	 Although more and more research is being done to 
achieve experiments in the real world using self-made 
cars, most research usually uses toy cars as research cars.  
Hossain et al. and Karni et al. conducted autonomous 
driving research by modifying abandoned toy cars, 
but toy cars are different from real cars [4], [5]. For 
example, a toy car cannot adjust the speed gain and 
steering gain like a real car. The toy car can only 
drive at a fixed speed and a fixed range for steering  
during the experiment, so the toy car often has  
reproduction errors, which affects the experimental  
results. We propose to achieve the autonomous driving  
experiment by building an autonomous driving 
smart car, which can replicate the driving situation 
of the actual car to the greatest extent. In addition, 
by fine-tuning the speed and steering gain, the  
autonomous driving performance of the smart car  
can be improved. For example, it can drive with low 
steering gain when there are many curves. The second 
is the use of sensors. Most of the existing research 
uses sensors to assist the smart car in achieving the 
autonomous driving experiment, but this makes the 
smart car not intelligent enough and independent. 
Banerjee et al. installed radar sensors on the smart 
car [6], and Yilmaz et al. installed many sensors 
such as infrared sensors and ultrasonic sensors [7]. 
However, humans do not use sensors when driving 
a car and only make judgments through hearing and 
vision. Therefore, the research needs to achieve the 
autonomous driving task of the smart car using fewer 
sensors. This article proposes that the smart car uses  
only one camera as a sensor for environmental  
perception to achieve the task of road tracking. As the 
brain of the smart car, the choice of the mainboard of 
the smart car is critical. The mainboard with powerful 
computing power can increase the performance of 
intelligent agents. Most of the research often uses 
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Arduino, and Raspberry Pi, as the mainboard of the 
intelligent agent. Yuenyong et al. used Arduino as 
the computing platform for reinforcement learning 
training in the research, but the computing power 
of Arduino is low, and a computer needs to be used 
as a backend for computing [8]. Do et al. used the 
Raspberry Pi for autonomous driving research, which 
was also limited by the low computing speed and 
performance of the Raspberry [9]. In order to solve 
the above problems, this article proposes to use Jetson  
Nano with superior computing power as the mainboard,  
which can make the smart car not attached to any 
back-end and can independently calculate and load 
the autonomous driving model, and the performance 
of the smart car is outstanding.
	 In addition, the construction of the track is also a 
critical step in achieving the road-tracking task. Both 
Zhang et al. and Li et al. built a circular track [10, 11],  
but these tracks are simple, which is not conducive 
to the test of the steering ability of the smart car. 
Therefore, we need a more complex track. This article 
makes two different tracks to meet the track diversity 
required for autonomous driving.
	 In achieving road tracking experiments, training 
deep neural networks and the optimal selection of 
structural parameters (different networks, batch size, 
epoch) is a challenging task. Do et al. constructed 
a new Convolutional Neural Network (CNN) to 
achieve the road tracking task by mapping the raw 
input image to a predicted steering angle through the 
CNN [9]. Rausch V et al. proposed an end-to-end  
control system based on Convolutional Neural  
Networks (CNN) for steering autonomous driving 
cars [12]. In the above research, the difference in 
the neural network will directly affect the accuracy 
of the smart car in achieving the automatic driving  
task. Therefore, this article proposes to use two  
popular neural networks, ResNet-18 and ResNet-50, 
to conduct experiments to research the impact of  
different neural networks on autonomous driving and 
select the optimal neural network to achieve the road 
tracking task.
	 In addition to the neural network, two hyper- 
parameters, batch size, and epoch, also affect model 
training results. Radiuk et al. explored the approach 
of improving the performance of convolutional neural 
networks and researched the effect of batch size on the 
network also researched the batch size and found the 
optimal batch size for training the Deep Q network  
on the shopping cart system [14]. However, they 
did not extend their research to autonomous driving.  
Similar to batch size, the choice of epoch will vary for 
different research. Chowdhuri et al. and Kocić et al.  
obtained the minimum error values in different epoch  
intervals, respectively [15], [16], so selecting different  
epoch intervals for different experiments is essential.  
We propose using different batch sizes and epochs  

to train the autonomous driving model to get the  
optimal batch size and epoch and their relationship 
with autonomous driving performance.
	 In summary, this article proposes to use a 
scale model to build an autonomous driving car 
in the real world that uses only one camera as an  
environment perception sensor, which can drive at an  
adjustable speed and steering range just like a real car.  
Furthermore, we choose Jetson Nano as the  
computing platform, which makes the autonomous 
driving smart car in this article an independent agent. 
Since hyperparameters play a vital role in the success 
of the model training stage, this article discusses and 
conducts a series of experiments on the effects of 
different hyperparameters on autonomous driving.  
Finally, we propose the optimal hyperparameter  
configuration scheme. In addition, we also discussed 
the influence of speed gain and steering gain on the 
smart car and proposed a set of optimal gain values, 
which further improved the performance of the smart 
car to achieve road tracks. Finally, we put the smart 
car in an unseen scene for experiments to verify the  
applicability of the optimal hyperparameter  
configuration scheme proposed in this article. In total, 
we compared 48 sets of hyperparameter configuration  
schemes, found possible optimal combinations, and 
trained the optimal model. In addition, we also compared  
five sets of speed gain values and five sets of steering  
gain values and found the optimal gain value. In  
addition, we also compared the optimal autonomous 
driving model with three groups of other models 
and achieved road-tracking experiments in unseen  
scenarios.

II. LITERATURE REVIEW

	 In recent years, autonomous driving technology  
has developed rapidly, and there has been much  
research on the hardware and hyperparameters of 
autonomous driving smart cars.

A.	 Hardware Improvement of Autonomous Driving 
Smart Cars

	 Research on autonomous driving is usually divided  
into virtual and real experiments. Most researchers use 
virtual platforms to ensure the safety and convenience  
of experiments. Lin et al. achieved road tracking in 
a virtual environment. After the trained virtual car 
obtains its position relative to the track, it can use 
this information as the basis for feedback control 
and eventually achieve road track in the simulator 
[3]. However, the results obtained in the virtual  
environment are usually affected by sunlight, shadows,  
chromatic aberrations, and noise when migrated to 
the real world, resulting in poor autonomous driving 
performance in the real world. Therefore, researchers  
have gradually used self-made cars to achieve  
autonomous driving research in the real world.
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	 In this article, autonomous driving smart cars are 
roughly divided into two categories: toy cars and smart 
cars. Most research is based on toy cars and modified  
to build autonomous driving cars. As shown in  
Fig. 1(a), Hossain et al. aimed to build autonomous  
driving cars using very low-cost and readily available 
hardware, so they developed a low-cost mini rover 
using a toy car that could roam around the area it 
wanted to observe [4]. As shown in Fig. 1(b), Karni  
et al. also researched autonomous driving cars 
based on toy cars, aiming to achieve the task of road  
tracking [5]. However, the disadvantage of the toy 
car is that the experiment can only be carried out at 
a fixed speed and a fixed angle for steering. In the 
experiment, the actual operation effect of the toy car 
is often affected because the speed and steering gain 
cannot be adjusted. Therefore, we improved on this 
in our research. We propose to build an autonomous  
driving smart car that can adjust the speed and steering  
gain to ensure the improvement of the autonomous 
driving performance of the smart car.

Fig. 1. (a) Autonomous driving toy car by Hossain et al., (b)  
Autonomous driving toy car by Karni et al.

	 With the improvement of technology, most research  
often installs many sensors on the autonomous car to 
make the car easy to achieve the experimental task. 
The environmental perception part of the autonomous 
driving car is divided into two types: a combination 
of multiple sensors, either only using a camera as a 
sensor. Iqbal et al. to enable the car to achieve road 
tracking, infrared and ultrasonic sensors are installed 
on the autonomous driving car [17]. Banerjee et al. 
install radar sensors on the autonomous car, and radar 
sensors detect the safe distance between the vehicle 
and obstacles [6]. This article proposes to use only a 
camera as a sensor for environmental perception and 
the road tracking task, which can make the car imitate 
human behavior to the greatest extent.
	 Choosing an excellent mainboard is also an approach  
to improving autonomous driving performance. Many 
mainboards cannot achieve deep learning or rein-
forcement learning tasks independently due to their 
lack of computational power. A computer is needed as 
a back-end to assist in achieving the tasks. Yuenyong 
et al. chose Arduino as the mainboard of a small RC 
car to achieve reinforcement learning tasks, but the  
disadvantage is that Arduino is only a specific 
purpose microcontroller and cannot handle research 
that requires large-scale computing. They need to use 
a computer with a GTX 980Ti GPU as the back-end 

for data calculation and connect the computer to the 
car using Bluetooth [8]. Do et al. although the use of 
Raspberry Pi solves the problem that Arduino cannot  
handle large-scale computing, the performance 
of Raspberry Pi is also limited due to the lack of  
a powerful GPU [9]. Therefore, this article proposes 
to use Jetson Nano as a smart car computing platform, 
which supports most of the current deep learning 
frameworks and contains a powerful GPU, which 
allows the autonomous driving car to achieve all  
research independently.
	 As the test link of autonomous driving, the design 
of the autonomous driving track is critical. As shown 
in Fig. 2, Zhang et al. and Li et al. only test the road 
track by building a simple circular track task [10], [11], 
which is far from enough because the performance  
of the smart car when passing through the curve 
can better test the autonomous driving ability of the 
smart car. Therefore, this article designs two different  
complex tracks to increase the diversity of autonomous  
driving tracks and restore the authenticity of racing 
tracks in real life as much as possible.

Fig. 2. (a) The track of Zhang et al., (b) The track of Li et al.

B.	 Research on Hyperparameters in Autonomous 
Driving

	 In addition to building an autonomous driving smart 
car, achieving the task of road tracking also requires 
setting the optimal hyperparameter configuration  
scheme before starting the training phase of the neural 
network. These hyperparameters include the neural 
network, batch size, epoch, and different datasets. 
These hyperparameters have a significant impact 
on the training of the model and the performance of  
autonomous driving.
	 1)	Deep Neural Network
		  Autonomous driving technology requires 
many deep-learning algorithms to process complex 
data. Deep learning is a multi-layer perceptron that 
includes an input layer, multiple hidden layers, and 
an output layer, which can be composed of numerous 
processing layers. It is very good at finding complex 
structures in high-dimensional data. Deep learning 
uses backpropagation algorithms to instruct machines 
to change their internal parameters to find complex 
systems in large datasets [18]. Fig. 3 is a multi-layer  
neural network described by the backpropagation  
algorithm, which is a three-layer neural network  
consisting of an input layer with two input units, two 
hidden layers, and an output layer [19].

(a)

(a)

(b)

(b)
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Fig. 3. Convolutional neural network architecture diagram

	 In deep learning, many deep neural networks are 
commonly used, among which convolutional neural 
networks are now more popular.
	 Convolutional Neural Network (CNN) is a deep 
learning neural network for image recognition and 
classification [20]. Each input image in the CNN 
model goes through a series of convolution layers, 
pooling layers, and fully connected layers and applies 
the softmax function to classify the objects. The steps 
of CNN are roughly divided into four steps: input, 
feature learning, classification, and output [21]. The 
feature learning step consists of the convolution layer, 
excitation layer, and pooling layer. The classification 
consists of the flattening layer, fully connected layer, 
and softmax classification layer. The specific steps of 
CNN are shown in Fig. 4.

Fig. 4. Neural network architecture diagram

	 Convolution is the first layer and extracts features 
from the input image. Convolution uses small squares 

of input data to learn image features to preserve the 
relationship between pixels. The purpose of convolution  
operations is to extract high-level features from the 
input image, which has profound implications for 
image processing. For example, Fig. 5(a) is an image 
matrix with an input image of 7*7, and its image pixel 
values are 0 and 1. Fig. 5(b) is a 5*5 filter matrix 
called a convolution kernel.

Fig. 5. (a) The input image is an image matrix of 7*7, (b) The 
filter matrix of 5*5

	 As shown in Fig. 6(a), multiplying the convolution  
of the 7*7 image matrix by the 5*5 filter matrix becomes  
a “feature map”. The value in Fig. 6(b) is 4, which 
is obtained after one convolution. Convolving the 
image with different filters (convolution kernels) 
can perform edge detection and blurring operations. 
The filter will move to the right by a particular “step  
value” until the entire image is walked, completing 
the convolution process.

(a) 7*7 image matrix (b) 5*5 filter matrix
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		                    (a)			            (b)

Fig. 6. (a) Process of convolution operation, (b) Results of the 
convolution operation

	 After the convolutional layer completes the  
convolution and extracts the information in the input 
image, it will perform a nonlinear mapping on the  
output of the convolutional layer through the excitation  
layer because the calculation of the convolutional 
layer is still linear, and the data in the real-world 
hope what is learned by CNN is a non-negative linear  
value.
	 Pooling is also known as spatial pooling. The 
pooling layer has two functions. First, by reducing 
the dimension of the feature map, the space size of the 
convolutional feature is reduced, and the computing 
power required to process the data is reduced. Second, 
maintain the process of effectively training the model, 
extracting essential features invariant to rotation and 
position. Its most common pooling methods are max 
pooling and average pooling [22]. The method of the 
max pooling layer is to use the maximum value of 
each region of the input part to perform max pooling 
and generate the max pooling layer, as shown (a) in 
Fig. 7. The method of the average pooling layer is to 
use the average value of each region of the input part 
to perform average pooling (b). Fig. 7 is an example 
of the average pooling layer.

Fig. 7. Example of the calculation process of max pooling and 
average pooling

	 The last layer of the CNN starts classification. First, 
the matrix is converted into a vector by a flattening  
layer, then sent to a fully connected layer. Adding a 
fully connected layer is a common way to learn non- 
linear high-level features, represented by the output  
of a convolutional layer. The combined method  

finally classifies the output with a softmax or sigmoid 
and a classification function.
	 We summarize the processing steps of convolutional  
neural networks. First, the input image is provided to 
the convolutional layer. Second, the parameters are 
chosen, and filters with stride and padding are applied 
if necessary. Next, convolve the image and apply an 
activation function to the matrix. Then merge and  
reduce the dimensionality. Add as many convolutional  
layers as possible. Finally, flatten the output and 
send it to a fully connected layer, use the activation 
function to output the class, and merge the classified 
images.
	 Much research also uses different networks based 
on CNN for experiments in the current research.  
Do et al. proposed a 9-layer structure, including five 
convolutional layers, and four fully connected layers to 
form a new deep neural network, and build a monocular  
vision autonomous car with Raspberry Pi as the  
mainboard, using the end-to-end method to directly 
map the input image to the predicted steering angle 
as the output, and finally achieved the road tracking  
task [9]. Rausch et al. proposed a convolutional  
neural network consisting of three convolutional  
layers, two pooling layers, and one fully connected  
layer for end-to-end driving of the autonomous driving  
car. The trained terminal controller of the network 
directly transmits instructions through the mapping  
relationship between pixel data and steering  
commands, enabling the smart car to achieve the task 
of autonomous driving [12]. In the above research, 
the experimental results are directly related to deep 
neural networks. Therefore, we propose to use ResNet 
as the basic model, train different ResNet networks, 
explore the impact of different neural networks on 
autonomous driving, and select the optimal neural 
network to achieve the road tracking experiment.
	 2) 	Batch Size and Epoch
		  Batch size and epoch play an essential role in 
the model training process. Radiuk et al. researched 
a parameter of the training set: batch size. The goal  
was to find out the effect of the batch size on the 
performance of the neural network. They used the 
MNIST dataset and CIFAR-10 datasets to obtain  
consistent results and concluded that batch size affects 
experimental accuracy [13]. In the research of Choi , 
he fixed other hyperparameter values, and the neural 
network was trained for ten different batch sizes and 
obtained the logarithm of the quadratic relationship 
between the total training time and batch size [14]. 
However, they did not extend the results to other  
research. The research on epoch is also gradually  
increasing. In training the neural network of autonomous 
driving, Chowdhuri et al. neneedso choose the epoch 
that minimizes the average error of the network, which 
occurs at the 23rd epoch [15]. Kocić et al. proposed  
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an end-to-end deep neural network, J-Net, for  
autonomous driving, where J-Net provided the best 
driving performance when trained for sixth epochs 
[16]. We found that the epoch interval of the best 
training model is different, and the choice of epoch  
affects the fitting degree of the neural network. 
Therefore, this article will research batch size and 
epoch and propose their optimal hyperparameters for 
road-tracking experiments.
	 To sum up, this article will explore the influence 
of hyperparameters on model training and the actual 
operation effect of autonomous driving and propose 
an optimal configuration scheme of hyperparameters, 
which will ultimately enable the autonomous driving 
smart car to achieve the road tracking task. We will 
elaborate on the construction of the smart car and the 
autonomous driving track.

III. OUR APPROACH

	 This article proposes a set of optimal hyperparameter  
configuration schemes and independently builds an 
autonomous driving smart car and achieves road  
tracking in the real world. In addition, we also conducted  
experiments to adjust the speed and steering gain 
and proposed a set of optimal gain values, which can 
further improve the performance of the smart car. 
We trained the optimal autonomous driving model 
using the optimal hyperparameter configuration and 
compared it with existing research and other neural 
network models. Finally, to verify the applicability 
of our model, we also test in unseen scenarios. The 
detailed flow chart of this research is shown in Fig. 8.

Fig. 8. Overview of the detailed process for achieving road tracking

A. 	Hardware settings of the Jetson Nano Autonomous  
Driving Smart Car

	 The hardware connection diagram of the Jetson 
Nano autonomous driving smart car is shown in Fig. 9.  

We chose Jetson Nano as the mainboard of the smart 
car, and the Jetson Nano is the center to send control 
signals to various components of the smart car so 
that the smart car can achieve the road tracking task.

Block E*3Block D*6Block C*4Block B*3Block A
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Fig. 9. The hardware framework of Jetson Nano smart car

	 1) 	Jetson Nano Mainboard
		  This article uses a smart car with only one 
camera as a sensor for research and collects data on 
the real track through the camera of the smart car 
for model training. Also, most of the research uses  
Raspberry Pi or Arduino as the mainboard for  
intelligent agents, but Arduino alone cannot do deep 
learning. The computing power and efficiency of the 
Raspberry Pi are low, and it cannot carry complex 
deep learning networks. We propose to use Jetson 
Nano as the mainboard of the smart car, which has 
a powerful GPU. The CPU of the Jetson Nano is a 
quad-core Cortex-A57, and the GPU is a graphics 
card of the NVIDIA Maxwell architecture. It has 
128 CUDA units. We train the model using a ResNet  
network based on the Pytorch framework to recognize 
lane lines and output driving instructions [23], [24]. 
A picture of the Jetson Nano is shown in Fig. 10.

Fig. 10. Jetson Nano mainboard

	 The difference between the Raspberry Pi and 
the Jetson Nano is that the Jetson Nano has a higher  
performance and a more powerful GPU. As shown 
in Table I, Jetson Nano supports many deep learning 
frameworks, enabling us to use more complex deep 

learning models, obtain faster computing speeds, and 
reduce development time by 70%.

TABLE I
MAINBOARD INFORMATION TABLE

List Raspberry Pi 4B NVIDIA Jetson 
Nano

CPU
Quad-core ARM 

Cortex-A72 64-bit @ 
1.5 GHz

Quad-core ARM 
Cortex-A57 64-bit @ 

1.42 GHz

GPU Broadcom VideoCore 
VI (32-bit)

NVIDIA Maxwell 
w/128 CUDA cores 

@ 921 Mhz

Memory 4 GB LPDDR4 4 GB LPDDR4

Net
working

Gigabit Ethernt/
Wifi 802.1 1ac

Gigabit Ethernt/
M.2 

Key E 

Display 2x micro-HDMI 
(up to 4Kp60)

HDMI 2.0 and 
eDP 1.1

USB 2x USB 3.0,2x USB 2.0 4x USB 3.0, 
USB 2.0 Micro-B

Other 40-pin GPIO 40-pin GPIO

Video 
Encode H264(1080P30) H.264/H.265

(4Kp30)

Video 
Decode

H.265(4Kp60), 
H.264(1080P60)

H.264/H.265
(4Kp60,2x 4Kp30)

Camera MIPI CSI port*1 MIPI CSI port*2

	 2) 	Materials Used in Jetson Nano Smart Car
 		  Using the Jetson Nano mainboard as the core 
is an excellent choice for building an autonomous 
driving smart car. The smart car has the ability of 
independent computing. The smart car perceives the 
environment through high-definition cameras and 
uses the trained neural network to achieve the road 
tracking task. The hardware required to assemble the 
smart car is shown in Table II.

Control

Return 
data
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TABLE II
JETSON NANO SMART CAR MATERIAL TABLE

Serial Number Part Specifications/Remarks Quantity

1 Jetson Nano - 1

2 IC Expansion Board - 1

3 Motor 370P 2

4 Servo - 2

5 Smart Car Chassis Including Servo and Camera Mount 1

6 Camera Sony 8 Million HD Camera 1

7 Wireless Network Card - 1

8 Track - 1

9 Battery - 1

10 Smart Car Crawler Gear - 4

	 3)	Jetson Nano Autonomous Driving Smart Car 
Achieved
		  The Jetson Nano autonomous driving smart 
car we built using the scale model is shown in Fig.11. 
The toy cars in the existing research have simple 
structures and can only drive with a fixed speed gain 
and a fixed steering gain. Therefore, toy cars often 
have reproduction errors during experiments, and toy 
cars have poor autonomous driving performance. The 
smart car in this article can improve the automatic 

driving performance of the smart car by adjusting the 
speed and steering gain. In addition, the experimental 
effects brought by different speeds and steering gains 
will also be different. For example, if the steering gain 
is large, the turning range of the smart car will be 
large when it is in a curve, and sometimes it will drive 
out of the track. Therefore, we will also research the 
speed and steering gain of the smart car and strive to 
propose an optimal gain value to improve the nomous 
driving performance.

Fig. 11. Flowchart for achieving the road tracking of the Jetson Nano smart car
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	 The achievement of the road tracking task of the 
Jetson Nano smart car is shown in Fig.12. It can be 
divided into four parts: the car control program, the 
training data acquisition program, the model training 
program, and the model prediction program.

Fig. 12. Overview of the Jetson Nano autonomous driving smart car

B. 	Simulation Site Construction

	 We build a simulation site to simulate the driving 
of an autonomous driving car on the road. We added 
four corners and an S-curve to a standard circular road 
to restore the actual route and facilitate testing the 
steering of the Jetson Nano smart car when turning.  
The white line is the boundary line of the track, and 
the yellow line is the lane line of the track. The width 
of the entire track is 44 cm, and the distance between 
the yellow and white lines is 22 cm. Using two-lane 
lines in two colors can give the smart car better results  
in the road tracking experiment. Finally, we collect 
data and test the final model in the self-made racing 
track to determine the performance of road tracking  
under different neural networks, batch sizes, and  
different amounts of datasets and epochs. Fig.13 
and Fig.14 are schematic diagrams of the smart car  
simulation site.

Fig.13. Simulation site model diagram

Fig.14. Actual map of the simulation site

C. 	Use of Neural Networks

	 The road tracking of the smart car is to collect  
a large amount of data and divides it into a training 
set and a test set. After deep neural network training, 
a model is formed, and the road tracking experiment 
is achieved. In this experiment, the lane lines taken 
by the camera of the smart car on the self-made track 
will be used as training data. The selected deep neural  
network is ResNet, and different ResNet neural networks  
are used to train under different epochs and batch sizes.  
Finally, the quality of the training results is compared. 
However, different ResNet neural networks achieve 
different effects. To improve the accuracy and impact 
of the model as much as possible while the smart car 
can be within the limits of Jetson Nano memory and 
computing power, we must rationally use different 
ResNet neural networks and choose an appropriate 
number of datasets, epochs, and batch sizes. This 
research compares the verification loss value of the 
ResNet-18 neural network and the ResNet-50 neural 
network with a certain number of datasets, epochs, 
and batch sizes and analyzes the impact of these  
hyperparameters on the verification loss value.  
Moreover, we will also load the trained model into 
the smart car for actual operation and analyze the real 
operation effect.

IV. EXPERIMENTAL SETUP

	 The experimental process is divided into data  
collection, model training, and model testing. Finally, 
an autonomous driving model is trained to enable the 
Jetson Nano smart car to achieve road tracks.
	 In the data collection stage, we placed the smart 
car at different positions on the track and used the 
real-time camera as input for data collection. We  
collected six sets of datasets, respectively, and this 
is to compare the autonomous driving performance 
of the smart car with different numbers of datasets.
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	 During the model training stage, different  
hyperparameters have a significant impact on the  
performance of the autonomous driving model. 
Therefore, we train the autonomous driving model 
using different deep neural networks, batch sizes, 
epochs, and different datasets and finally propose a 
set of optimal hyperparameter configuration schemes.
Finally, we load the trained model on the smart car to 
achieve road tracks. We also analyzed the number of 
datasets and the impact of different hyperparameters  
on autonomous driving according to the actual  
operation effect and verification loss value. The  
experimental procedure diagram is shown in Fig.15.

Fig. 15. Experimental procedure diagram

	 In addition, we also research the effect of different 
speed and steering gains on the performance of road 
tracking and propose a set of optimal gain values. 
Finally, to verify the applicability of our optimal  
autonomous driving model, we will achieve the road 
tracking task in unseen and untrained scenarios.

A.	 Data collection

	 The first step in this experiment is data collection. 
The quality of the training dataset will directly affect 
the performance of the autonomous driving model. 
The steps of data collection are shown in Fig.16.

Fig. 16. Diagram of data collection steps

	 We initialize and display our camera. We choose 
to use a 224x224 pixel image as input. We set the 
photo to this size to minimize the memory of the 
dataset and speed up the training of the model.

	 Then the approach we take photos with is handle 
shooting. We create an instance of the PlayStation 
controller and collect images through the buttons on 
the controller.
	 We will place the smart car on different positions 
of the track according to the lane line and move the “x” 
and “y” sliders to mark the “green dot” in the center 
of the lane line during the road tracking experiment.  
The position marked by the green dot is the target 
position to be reached when the smart car drives. 
After the action is completed, press the “L1” button 
on the handle to save. At the same time, we will create 
a component to display the real-time image feed, the  
number of collected images, and the value of the  
storage target. It can be seen in Fig. 17 that the number  
of collected data is 1050 photos, and the method of 
moving the green dots can be seen in Fig. 18.

Fig. 17. Live preview of data collection (1050 represents the number  
of photos collected as 1050)

Fig. 18. The method of collecting points (drag X can change the 
left and right position of the green dot, and drag Y can change the 
distance of the green dot)

	 Finally, the collected data set is automatically saved 
to the corresponding new folder after collecting the 
corresponding data. When we train, we will transfer  
the data to the PC to load the image and parse the x 
and y values in the filename. Fig.19 is an example 
of the contents of the data folder. Each photo in the 
dataset folder is named with its x and y coordinates.
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Fig. 19. Example of the contents of the data folder

B.	 Model Training

	 We can train the optimal autonomous driving  
model through model training, and this step is essential.  
The model training part aims to use the trained  
artificial neural network to reproduce the values when 
collecting the data: the x and y values. The steps of 
model training are shown in Fig. 20.

Fig. 20. The steps of model training

	 In training the model, the dataset will be divided 
into the training set and testing set. This research 
split the data into 90% as the training set and 10% 
as the testing set. The training set is used to train the 
autonomous driving model, and the testing set will 
be used to verify the accuracy of our trained model.
Then we load the data in batches and shuffle the data. 
Most of the current research usually sets batch size=8, 
epoch=30 for training. Therefore, our initial batch 
size is set to 8, and the initial epoch is set to 30.  
we increase the batch size and epoch to 16 and 70, 
respectively, depending on the GPUs available in 
memory. This allows us to research the effect of 
different batch sizes and epochs on the autonomous 
driving model.
	 Next, we use the now popular ResNet-18 and  
ResNet-50 neural networks to train the model and 
transfer it to the GPU to run the model training 
through “CUDA”. Once the model is trained, it 
will generate a model file that we will use for road  
tracking.
	 Table III shows the 48 hyperparameter settings  
in this experiment. They are trained with different  
neural networks, different numbers of datasets,  
different batch sizes, and epochs.

TABLE III
HYPERPARAMETER SETTINGS for ROAD TRACKING MODELS

Neural Network Dataset Batch Size Epoch

ResNet-18

300

8 30450

600

ResNet-50

750

16 70900

1050

	 Through model training, we can get the validation 
loss value of each model. The validation loss value 
can reflect the performance of the model. We also 
load the trained autonomous driving model on the 
smart car for experiments, which can more accurately  
judge the impact of different hyperparameters on 
autonomous driving. We can get accurate results by 
combining the verification loss value with the actual 
operation effect of the smart car.

C.	 Model Testing

	 Through the training of the models, we were able 
to obtain the validation loss values for each model 
separately. The validation loss values can show the 
performance of the models on the data, and in order to 
get more accurate results, we also need to combine the 
real effects of the smart car operation, so we started 
the final step of the experiment by loading the trained 
models on the smart car and testing the models on a 
real track.
	 We can reduce the reproduction errors of toy cars 
often by setting the speed and steering gain. We drive 
the smart car with an initial speed and initial steering  
angle of 0.65 and 0.21, according to the design  
of the smart car. After obtaining the influence of  
hyperparameters on the autonomous driving model and 
proposing the optimal hyperparameter configuration  
scheme, we conduct research on the influence of 
the gain value on the autonomous driving model by 
adjusting the speed and steering gains and propose 
an optimal gain value to improve the road tracking 
performance.
	 When the smart car is driving in a straight 
line, no matter what dataset, neural network, batch 
size, or epoch, the smart car can achieve excellent  
performance. However, when the smart car is driving 
on a curve, the performance of different autonomous 
driving models can be demonstrated.
	 Therefore, to accurately compare the actual  
performance of autonomous driving models trained 
with different hyperparameter configuration schemes, 
we selected three points as measurement points at the 
S-turn of the self-made racing track.
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	 We will judge the performance of the smart car  
according to two judgment criteria. 1) The distance  
between the center of the smart car and the measurement  
point when the smart car is driving. The smaller 
the distance between the centerline of the smart car 
and the measurement point, the better road tracking  
performance. 2) When the smart car is driving, the angle 
between the center of the smart car and the measurement  
point. The smaller the angle that the centerline  
of the smart car deviates from the measurement  
point, the better the performance of road tracks. The 
autonomous driving model it loaded will be better. 
In addition, we also marked a standard block on the 
map, and we can scale the standard block to the actual  
distance to get the accurate distance and angle.  
As shown in Fig. 21, P1, P2, and P3 are three  
measurement points, respectively. The white squares 
marked with green fonts are the standard blocks we 
reserved. Fig. 21(a) is the actual track map with 
the measurement points and the standard block 
marked. Fig. 21(b) is the track model diagram with 
marked measurement points and the standard block.  
Moreover, we also marked the detailed dimensions 
of the track in the track model diagram.

Fig. 21(a). The actual track map with the measurement points and 
standard blocks marked

Fig. 21(b). The track model diagram with marked measurement 
points and the standard block, and detailed dimensions of the track

	 We shot the video with a camera and tripod during 
the experiment, took screenshots when the center of the 
smart car passed the measurement point, and measured.  
During the experiment, we will keep the light consistent  
and the measurement height and position unchanged 
to ensure the accuracy of the experiment. The specific 
experimental situation is shown in Fig. 22.

Fig. 22. Specific experimental situation diagram

	 We will obtain the performance of 48 models 
trained by different hyperparameter configuration 
schemes in actual operation through the above  
experiments. The next chapter will discuss obtained 
validation loss values and actual measurements.

V. EXPERIMENTAL RESULTS AND ANALYSIS

	 This chapter will describe and analyze the impact 
of different neural networks, datasets, batch sizes, and 
epochs on the validation loss and the actual operation 
effect of smart cars. Finally, we propose an optimal 
hyperparameter configuration scheme and train an 
optimal autonomous driving model.

A.	 The Impact of Different Neural Networks, Differ-
ent Datasets, Batch Sizes, and Epochs on the Verifi-
cation Loss Value

	 The validation loss value can reflect the perfor-
mance of the model. Table IV shows the validation 
loss values of our 48 sets of autonomous driving 
models trained with different hyperparameter con-
figuration schemes to analyze the effect of different 
hyperparameters on the validation loss values.
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TABLE IV
THE VALIDATION LOSS VALUES OF 48 SETS OF AUTONOMOUS DRIVING MODELS TRAINED WITH DIFFERENT 

HYPERPARAMETER CONFIGURATION SCHEMES

Neural 
Network Dataset Batch 

Size Epoch Loss Neural 
Network Dataset Batch 

Size Epoch Loss

ResNet-18

300

8
30 0.011001

ResNet-50

300

8
30 0.013148

70 0.010553 70 0.005804

16
30 0.011973

16
30 0.011661

70 0.007873 70 0.006367

450

8
30 0.006913

450

8
30 0.01226

70 0.008783 70 0.009035

16
30 0.012878

16
30 0.01102

70 0.006626 70 0.011696

600

8
30 0.011351

600

8
30 0.008344

70 0.008674 70 0.008863

16
30 0.011769

16
30 0.011322

70 0.011649 70 0.008776

750

8
30 0.008598

750

8
30 0.007925

70 0.011314 70 0.009001

16
30 0.01077

16
30 0.011043

70 0.009004 70 0.009863

900

8
30 0.011724

900

8
30 0.018298

70 0.014531 70 0.015377

16
30 0.019155

16
30 0.018096

70 0.012837 70 0.011401

1050

8
30 0.0214

1050

8
30 0.018373

70 0.015585 70 0.019586

16
30 0.01889

16
30 0.015242

70 0.021052 70 0.019499

	 1) 	The Impact of Different Neural Networks on 
Verification Loss Value
		  Based on the experimental results of 48 sets of 
autonomous driving models, we judge the influence  
of different neural networks on the validation loss value.  
Fig. 23 is a plot of validation loss results trained with 
ResNet-18 and ResNet-50. The horizontal ordinate 
is a different setting. For example, “P300_B8_E30”  
means that the dataset is 300 photos, batch size=8, 
epoch=30, the blue line represents the model trained 
with the ResNet-18 neural network, and the red line  
represents the model trained with the ResNet-50  
neural network.

	 As shown in Fig. 23, when the model is trained 
with ResNet-50, the validation loss value is generally  
lower than the model trained with ResNet-18.  
As the depth of the network deepens, the degree of 
abstraction of features is higher. The accuracy of the 
trained model will increase, and the validation loss 
will decrease,
	 The maximum value appears in “ResNet-18_
P1050_B80_E30”, the validation loss value is 0.0214,  
and the minimum value appears in “ResNet-50_
P300_B8_E70”, and the validation loss value is 
0.005804.
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Fig. 23. The results of verification loss for different neural networks

	 2) 	The impact of different numbers of datasets on 
verification loss value
		  The amount of data in the dataset also affects 
model training. In this research, six datasets with  
different numbers of data were selected for training, 
and the impact of dataset on the model was explored. 
Fig. 24 shows the validation loss results when training 
with six datasets.
		  As shown in Fig. 24, when the dataset is 300  
photos, 450 photos or 900 photos, 1050 photos,  
the validation loss value will fluctuate wildly.  

Furthermore, the validation loss is significantly  
reduced when using the ResNet-50 neural network.  
Through experiments, the number of datasets for 
the ResNet-18 neural network is not inversely  
proportional to the validation loss value, but for 
the ResNet-50 neural network, the larger the  
number of datasets, the smaller the validation loss value.  
Therefore, the size of the dataset has a more  
significant impact on the deep network. As the network  
depth deepens, the amount of data required to train 
the model also needs to increase.

Fig. 24. The results of verification loss for different numbers of datasets

	 3) 	The impact of Different Batch Sizes on Verifi-
cation Loss Value
		  Batch size is a crucial hyperparameter in deep 
learning. Batch size will affect memory utilization, 
processing speed, and model accuracy. Therefore, 
the choice of batch size also affects the quality of the 
model.
		  Most research usually sets the batch size to 8.  
We increase the batch size during training to 16  

according to the available GPU in memory, set batch 
size=8 and 16 for model training, respectively, and 
then judge the impact of batch size for model training 
and validation loss. 
		  Fig. 25 shows the validation loss results for 
batch size=8 and 16 training. It can be seen that  
the small batch size has little effect on the model 
validation loss.
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Fig. 25. The results of verification loss for different batch sizes

	 4) 	The Impact of Different Epochs on Verification 
Loss Value
		  Epoch refers to the number of times to train all 
data. Most research usually sets the epoch to 30 for 
model training. We also increased the epoch value 
to 70 according to the available GPU conditions and 
analyzed the impact of different epochs on the model 
validation loss value.

		  Fig. 26 is a plot of the validation loss results for 
training with epoch=30 and 70. As shown in Fig. 26, 
the validation loss value of the model with epoch=70 
is smaller than epoch=30. Therefore, on the premise 
that the model does not enter the overfitting state, the 
more iterations of weight update, the more epoch, the 
smaller the validation loss of the model, and the better 
the effect of training the model.

Fig. 26. The results of verification loss for different epochs

	 5) 	Summary of Validation Loss Values of  
Models Trained Under Different Hyperparameter 
Configuration Schemes
		  This experiment trains 48 autonomous driving  
models according to different hyperparameter  
configuration schemes. Fig. 27 shows the validation 
loss values for 48 autonomous driving models. From 

Fig. 27, it can be seen that the validation loss values  
of the autonomous driving model trained with  
ResNet-50 are smaller than those of the model using 
ResNet-18. Among them, when the dataset is 300 
photos, batch size=8, epoch=70, the validation loss 
is the smallest, 0.005804.
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Fig. 27. The validation loss values for 48 autonomous driving models

		  Although the validation loss value can reflect 
the performance of the model, when the models are 
trained with ResNet-18, the difference in the validation  
loss value of each model is very small. 
		  Therefore, to get accurate results, we need to 
evaluate further the quality of the autonomous driving 
model based on the actual road tracking performance 
after loading the model into the smart car. Finally, 
an optimal hyperparameter configuration scheme is 
proposed.

B. 	The Impact of Different Neural Networks, Different  
Datasets, Batch Sizes, and Epochs on the Actual  
Performance of the Smart Car

	 We load the trained model on the autonomous 
driving smart car. We analyze the performance of 
autonomous driving models trained by different  
hyperparameter configuration schemes by comparing 
the average offset distance and average offset angle of 
the smart car when passing through 3 measurement 
points and analyze different neural networks, different  
datasets, batch sizes, and epochs on the actual  
performance of the smart car.
	 Table V shows the actual operating results of the 
smart car after loading different autonomous driving 
models. The neural network used in Table V (A) is 
ResNet-18, and the neural network used in Table V 
(B) is ResNet-50.

TABLE V (A)
THE ACTUAL OPERATION RESULTS OF THE SMART CAR (RESNET-18)

Neural Network Dataset Batch Size Epoch Distance (P1 P2 P3) cm Average Distance Angle (P1 P2 P3)° Average Angle

ResNet-18

300
8

30
70

5.19
6.2

2.61
2.5

2.24
0.72

3.35
3.14

16
3

6
8

1
5

7.67
5.33

16 30
70

5.4
4.56

1.94
0.47

0.88
4.36

2.74
3.13

10
7

1
7

4
5

5
6.33

450
8

30
70

5.66
7.51

1.16
1.06

2.66
0.75

3.16
3.11

1
10

11
26

5
19

5.67
18.33

16 30
70

7.38
5.86

1.1
0.64

2.8
4.35

3.76
3.62

3
1

1
0

7
11

3.67
4

600
8

30
70

4.42
3.99

0.91
1.66

0.77
2.4

2.03
2.68

4
9

2
4

6
0

4
4.33

16 30
70

8.46
3.91

3.77
1.88

1.86
1.05

4.7
2.28

1
5

6
3

2
3

3
3.67

750
8

30
70

5.24
5.99

2.09
1.81

3.04
1.3

3.46
3.03

4
5

2
0

6
4

4
3

16 30
70

6.84
6.39

2.65
1.13

0.66
0.62

3.38
2.71

8
9

2
0

5
11

5
6.67

900
8

30
70

6.59
5.6

2.75
1.34

0.44
1.44

3.26
2.79

6
7

3
7

5
2

4.67
5.33

16 30
70

5.11
5.6

2.47
3.18

1.4
1.25

2.99
3.34

17
6

1
5

11
4

9.67
5

1050
8

30
70

7.66
6.37

1.92
1.99

1.09
1.48

3.56
3.28

3
11

11
5

3
3

5.67
6.33

16 30
70

6.28
5.68

1.6
1.83

0.9
0.66

2.93
2.72

8
9

2
8

6
12

5.33
9.67
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TABLE V (B)
THE ACTUAL OPERATION RESULTS OF THE SMART CAR (RESNET-50)

Neural Network Dataset Batch Size Epoch Distance (P1 P2 P3) cm Average Distance Angle (P1 P2 P3)° Average Angle

ResNet-50

300
8 30

70
4.98
7.32

36.45
33.9

95.36
65.65

45.6
35.62

15
3

96
79

3
25

38
35.67

16 30
70

5.63
3.3

22.34
26.41

32.22
51.6

20.06
27.1

10
61

18
44

7
41

11.67
48.67

450
8 30

70
7.59
2.16

18.09
23.52

24.76
88.96

16.81
38.21

0
22

10
76

17
153

9
83.67

16 30
70

2.17
4.52

5.89
6.32

10.07
13.45

6.04
8.1

9
43

1
4

33
74

14.33
40.33

600
8 30

70
4.39
3.61

2.16
4.35

42.72
45.93

16.42
17.96

14
25

11
28

139
145

54.67
66

16 30
70

2.59
2.07

4.31
22.42

15.88
10.36

7.59
11.62

5
21

19
27

14
118

12.67
55.33

750
8 30

70
0.92
1.72

19.66
12.71

23.54
7.76

14.71
7.4

27
1

30
115

44
39

33.67
51.67

16 30
70

3.01
3.46

27.93
33.76

17.05
96.78

16
44.67

19
86

14
1.3

61
53

31.33
46.77

900
8 30

70
7.19
5.78

23.37
23.76

57.02
60.94

29.19
30.16

39
54

67
131

15
114

40.33
99.67

16 30
70

8.89
5.75

11.37
4.79

13.4
24.67

11.22
11.74

13
71

39
13

14
38

22
40.67

1050
8 30

70
4.54
3.25

5.13
14.77

20.14
3.11

9.94
7.04

27
7

16
4

62
34

35
15

16 30
70

7.12
1.36

6.39
23.61

4.43
6.01

5.98
10.33

19
33

19
0

23
74

20.33
35.67

	 1) 	The Impact of Different Neural Networks on 
the Actual Operation Effect of the Model
		  We judge the impact of different neural  
networks on model quality by analyzing the actual 
effect of smart car operation. Fig. 28 is the actual 
operation of the model trained with ResNet-18 and 
ResNet-50. The horizontal ordinate is the autonomous 
driving model trained with different hyperparameter 
configuration schemes, the ordinate is the average 
offset distance when the smart car is driving, and the 
second coordinate is the average offset angle.

		  According to Fig. 28, we can see that although 
the validation loss value of ResNet-50 is generally 
smaller than that of ResNet-18, the actual performance  
of the model trained with ResNet-18 is significantly 
better than that of ResNet-50. Moreover, as the number  
of photos in the dataset increases, the actual performance  
of ResNet-50 gradually improves. Therefore, in 
experiments with small datasets, even if a deeper  
network can bring better nonlinear expression  
capabilities, the actual effect of the ResNet-50 neural 
network is still far worse than that of the ResNet-18 
neural network.

Fig. 28. Actual operation effect diagram of different neural network
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		  The neural network in the hyperparameter 
configuration scheme of this article will choose  
ResNet-18 as the neural network.
	 2) 	The Impact of Different Numbers of Datasets 
on the Actual Operation Effect of the Model
		  Fig. 29 shows the impact of different numbers 
of datasets on the actual operation. From Fig. 29, 
we can see that when using ResNet-18 as the neural 
network, regardless of the number of photos in the 
dataset, the average offset distance and average offset 
angle are small, and the fluctuations are flat. However,  
when the neural network training is changed to  

ResNet-50, the average offset distance and offset  
angle increase sharply, and the road tracking  
experiments do not perform excellently. As the  
number of photos increases, the average distance and 
angle gradually decrease, and the actual operating  
effect gradually improves. This is due to the small 
number of our datasets, and ResNet-50 requires 
large-scale data to train a model with excellent  
performance. This article chooses to use the dataset 
of 600 photos with the best overall performance as 
the training dataset for the optimal hyperparameter 
configuration scheme.

Fig. 29. Actual operation effect diagram of different numbers of datasets

	 3) 	The Impact of Different Batch Sizes on the  
Actual Operation Effect of the Model
		  From the analysis of batch size in the previous 
section, we can conclude that the small batch size 
has little effect on the model validation loss value. In 
order to further verify the conclusion, we analyzed the  
effect of different batch sizes on the actual operation of 
the smart car. Fig. 30 shows the actual driving effect of 
the model under different batch sizes. The histograms  
and curves also represent the actual average offset 
distance and angle of the model under different batch 
sizes.

	 As shown in Fig. 30, when the neural network 
is ResNet-18, the batch size has little effect on the 
average offset distance and offset angle. However, 
when the neural network is ResNet-50, the model 
trained with batch size=16 performs better than the 
model trained with batch size=8. Moreover, as the 
number of datasets increases, the actual effect of the 
model using batch size=16 becomes more and more 
stable.

Fig. 30. Actual operation effect diagram of different batch sizes
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		  Fig. 31 shows the effect of different epochs on 
the actual performance of the smart car. As shown in 
Fig. 31, the actual performance of the model trained 
with the ResNet-18 neural network is less affected 
by the epoch. However, when the model was trained 
with ResNet-50, the average offset distance and angle 
of the smart car gradually decreased with increasing  
epoch. Furthermore, as the number of photos increases,  
the impact of epochs on how well the model runs is 
slowly decreasing.

	 Therefore, combined with the analysis of the 
verification loss value and the actual performance, 
the batch size=8 in the hyperparameter configuration 
scheme of this article is used for training with the 
ResNet-18 neural network. Under the condition of  
ensuring the training accuracy and actual performance,  
the training time and GPU consumption are reduced.
	 1) 	The Impact of Different Epochs on the Actual 
Operation Effect of the Model

Fig. 31. Actual operation effect diagram of different epochs

		  Therefore, combined with the selection of  
neural network, dataset, and batch size, we set the 
epoch in the hyperparameter configuration scheme 
of this article to 8, which can effectively reduce the 
model training time and memory loss while ensuring 
the model accuracy and road tracking performance.
	 2) 	Summary of the Actual Operation Effects of 
Models Trained Under Different Hyperparameter 
Configuration Schemes
		  Fig. 32 shows the average offset distances  
and angles for 48 autonomous driving models 
trained according to the different hyperparameter  

configuration schemes. As shown in Fig. 32, the 
model trained using ResNet-18 as a neural network 
performs excellent, but the actual operation effect 
drops significantly after using ResNet-50 to train the 
model. In addition, with the increase in the number of 
photos and the increase in batch size, the performance 
of the model with ResNet-50 as the neural network 
is gradually getting better. It can be seen that the  
ResNet-18 neural network can be trained using  
small-batch datasets, and the number of datasets, batch 
size, and epoch have little effect on its autonomous  
driving performance.

Fig. 32. The Actual operation effect for 48 autonomous driving models
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		  Combining the influence of different hyper- 
parameters on the verification loss value and the actual  
operation effect of the smart car, we propose a set 
of optimal hyperparameter configuration schemes in 
which the neural network is ResNet-18, the batch size 
is 8, the epoch is 30. The dataset of 600 photos for 
training and the optimal autonomous driving model 
is obtained. The validation loss value of the optimal 
autonomous driving model is 0.011351. When the 
road tracking experiment was achieved, the average 
offset angle from the measurement point was 2.03cm, 
and the average offset angle was 4°.
	 3) Correlation Analysis of Verification Loss Value 
and Actual Operation Effect of Smart Car
		  In this section, we will focus on analyzing the 
relationships between the validation loss value and 
the actual performance of the model. Fig. 33 and  
Fig. 34 are the relationships between the verification  

loss value and the actual operation of the smart car 
when the neural network is ResNet-18 and ResNet-50,  
respectively.
	 As shown in Fig. 33 and Fig. 34, when the validation  
loss value is extreme (such as the minimum or maximum  
value), the change of the actual operating effect  
fluctuates wildly, and the performance is not excellent.  
When the verification loss value tends to the median, 
the variation and fluctuation of the actual operation 
effect are small, and the performance is excellent. 
Furthermore, the choice of neural network has a  
significant impact on the performance of the model.
	 The verification loss value can reflect the model 
training results, but it cannot directly determine the 
actual performance of the model. We need to make a 
comprehensive judgment on the performance of the 
model combined with the verification loss value and 
the actual operation effect.

Fig. 33. ResNet-18_Verify the relationship between the loss value and the actual operation effect of the model

Fig. 34. ResNet-50_Verify the relationship between the loss value and the actual operation effect of the model
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C. 	The Impact of Different Speed Gain and Steering 
Gain on Road Tracking

	 The main difference between an autonomous  
driving smart car and a toy car is that the smart car  
can reduce reproduction errors and improve the  
performance of autonomous driving by adjusting 
the speed gain and steering gain. Therefore, we will  
research the effect of gain value on autonomous  
driving performance by adjusting the speed and  
steering gain values and find the optimal gain value 
in the experimental results. The model used in the 
experiment is the optimal autonomous driving model 
trained with our proposed optimal hyperparameter  
configuration scheme. The neural network is ResNet-18,  
the batch size is 8, the epoch is 6, and the dataset is 
600 photos.
	 Since speed gain and steering gain significantly  
impact autonomous driving, excessive speed or steering  
cause the smart car to drive off the track. Therefore, 
we propose a new evaluation criterion that can more 
intuitively represent the performance of autonomous 
driving models. We set the road tracking task as a 
100-point scoring system. If the smart car touches 
the white line, 1 point will be deducted from the total 
score. 5 points will be deducted from the total score if 
the smart car drives off the track. We achieved three 
laps of road tracking experiments on the track and 
finally calculated the total score. The higher the final 
total score, the better the performance of the model, 
and we call this criterion the TO criterion. (touch the 
white line and off-track)
	 When the speed gain is below 0.35, the smart car 
cannot start the motor at this speed. When the speed 
exceeds 0.95, the smart car will drive out of the track 
and cannot achieve road tracks. Therefore, we choose 
six groups of speed gains for research in the range of 
speed gain from 0.35 to 0.95. The steering gain is set 
to the default value of 0.21. Table VI (A) shows the 
road tracking performance of different speed gains.

TABLE VI (A)
ROAD TRACKING PERFORMANCE FOR DIFFERENT SPEED 

GAINS

Speed Gain Touch White Line Off Track Total Score

0.35 11 1 84

0.5 8 0 92

0.65 6 0 94

0.8 10 1 85

0.95 13 2 77

	 As shown in Table VI (A), with the increase of the 
speed gain, the driving state of the smart car changes 
from bad to good and then from good to bad. When 
the speed gain is 0.65, the performance of the smart 
car to achieve road tracking is the best. Therefore, 
0.65 is the optimal speed gain value for the smart car.

	 When the steering gain is below 0.11, the smart 
car loses the ability to turn. When the steering gain is 
above 0.31, the smart car is very sensitive to steering 
and spins in place. Therefore, we select six groups 
of steering gains in the range of 0.11 to 0.31 for the 
research. The speed gain was set to the optimal speed 
gain value we obtained, 0.65. Table VI (B) shows 
the road tracking performance with different steering 
gains.

TABLE VI (B)
ROAD TRACKING PERFORMANCE WITH  

DIFFERENT STEERING GAINS

Steering Gain Touch White Line Off Track Total Score

0.11 12 1 83

0.16 10 0 90

0.21 6 0 94

0.26 8 2 82

0.31 7 3 78

	 As shown in Table VI (B), when the steering gain 
is 0.21, the smart car has the highest performance 
score. 0.21 is the optimal steering gain value for the 
smart car. When the steering gain is 0.31, the smart 
car will many times drive out of the track.
	 In summary, we found the optimal gain values, 
where the speed gain is 0.65, and the steering gain 
is 0.21. Our optimal autonomous driving model  
performs best at this gain value.

D. 	Validation Experiment of the Optimal Hyper- 
parameter Configuration Scheme

	 This article proposes a set of optimal hyper- 
pa-rameter configuration schemes and trains the optimal  
autonomous driving model, which we call BH-ResNet.  
We compare this model with the excellent model  
proposed by Gupta P et al., which we call the GP-VGG  
model [25]. In addition, we also compare BH-ResNet  
with popular neural networks, DenseNet-121 proposed  
by Huang et al. [26], and AlexNet proposed by 
Krizhevsky et al. [27]. The performance of our 
BH-ResNet is validated by comparison with these 
existing models. Among them, the optimal speed 
gain and the optimal steering gain are applied in the 
existing method, and the evaluation standard we use 
is the TO criterion.

TABLE VII
COMPARISON TABLE OF BH-RESNET AND  

EXCELLENT MODELS

Model  Verification 
Loss Value

Touch 
White 
Line

Off Track Total 
Score

BH-ResNet 0.011351 6 0 94

GP-VGG 0.121545 14 4 66

DenseNet-121 0.011744 12 1 83

AlexNet 0.011654 8 2 82
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	 The comparison table of BH-ResNet and the  
excellent model is shown in Table VII. In the road 
tracking experiment, the validation loss value of 
BH-ResNet was lower than that of other models, and 
the validation loss of the GP-VGG model was the 
highest. In addition, according to the score of the TO 
scoring standard, we can see that BH-ResNet has the 
highest score of 94 points. Combining the validation 
loss value and the TO scoring criteria, the BH-ResNet 
model performs best.

E.	 Road Tracking Experiment in Unseen Scenes

	 Autonomous driving cars are challenging to  
train in all possible environments, so an excellent 
autonomous driving model can perform road-tracking 
tasks even in unfamiliar environments. Therefore, we 
designed a new track, which is a new environment 
that the smart car has not seen or trained. Fig. 35 is 
an unseen scene environment.

Fig. 35. An unseen scene environment

	 We conduct road tracking experiments in this  
unseen scene to verify the applicability of BH-ResNet.  
In addition, the three excellent models in the previous  
section are also involved in the experiments, which can 
accurately verify the performance of our BH-ResNet.  
The judging standard we use is the TO criterion.  
Table VIII shows the experimental results under the 
unseen scenario.

TABLE VIII
EXPERIMENTAL RESULTS IN THE UNSEEN SCENARIO

Model Touch White Line Off Track Total Score

BH-ResNet 10 0 90

GP-VGG 17 6 53

DenseNet-121 15 3 70

AlexNet 12 5 63

	 Table VIII shows that the BH-ResNet model can 
also achieve the road tracking task even though the 
number of times touching the white line increases  
in unseen scenes. This means that our proposed 
BH-ResNet model can handle unseen environments, 
and the model has broad applicability and utility.  
Furthermore, the effects of the remaining three models  
are inferior, which shows that the BH-ResNe model 

has more ability to predict unfamiliar environments 
and a stronger ability to adapt to the external environ-
ment and resist external noise. After being trained in 
a limited environment, the smart car can be achieved 
road tracking in more unseen scenarios.

F.	 Summarize of Discussion

	 1)	Using Jetson Nano as the mainboard of the 
smart car can allow the car to load more complex and  
efficient deep network models, and the calculation 
speed is excellent. The smart car can achieve all tasks  
independently without needing a computer as a  
back-end for processing operations. If the Jetson  
Nano is mounted on the toy car, it still cannot get 
superior performance, which is caused by the  
reproduction error brought by the hardware defect 
of the toy car. Therefore, we built an autonomous  
driving smart car based on a scale model in the real 
world, which can adjust the speed gain and steering  
gain, improves the performance of autonomous  
driving, and effectively reduces the problem of  
reproduction error of toy cars, which improves the 
accuracy of the experiment.
		  2)	The hyperparameter setting is a crucial  
factor affecting the performance of smart cars. For 
different neural networks, we found that the validation  
loss values for models trained with ResNet-50 were 
generally lower than those trained with ResNet-18. 
The validation loss value fluctuates wildly for different  
datasets when the dataset is 300 or 1050 photos. 
When the dataset is 600 photos, the validation loss 
value is small and stable, and we need to choose the 
right amount of data according to the neural network 
used. The small batch size has little effect on the 
model validation loss for different batch sizes. For 
different epochs, on the premise that the model does 
not enter the overfitting state, the more iterations of 
weight update, the smaller the model validation loss.
		  3)	The verification loss value can reflect the 
performance of the model. In order to make the  
experimental results more reliable, we need to make 
judgments based on the actual operation effect of 
the smart car. Therefore, we loaded 48 autonomous  
driving models into smart cars for actual measurements.  
The model trained by ResNet-18 performs significantly  
better for different neural networks than the model  
trained by ResNet-50. For different numbers of datasets,  
the size of the dataset has less impact on the model 
with ResNet-18 as the neural network but has a more 
significant impact on the model with ResNet-50 as the 
neural network, and the larger the number of datasets, 
the better the effect. For different batch sizes, when 
the neural network is ResNet-50, the batch size has 
a more significant impact on the results. For different 
epochs. The increase in epochs did not substantially 
improve the performance of the model.
		  4)	Choosing the correct hyperparameters is very 
important. Based on the research on the verification  



Indexed in the Thai-Journal Citation Index (TCI 2)

INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND TECHNOLOGY,  Vol. 7, No. 1 January-June 2023	 23

loss value and the actual operation effect of the smart 
car, we propose a set of optimal hyperparameter  
configuration schemes. The neural network is  
ResNet-18, the batch size is 8, and the epoch is 30. 
The optimal autonomous driving model BH-ResNet 
is obtained by training with a dataset of 600 photos.
		  5)	Our smart car can adjust the speed gain and 
steering gain like a real car, so we researched the  
influence of the gain value on the smart car and finally 
proposed a set of optimal gain values. The optimal 
speed gain value is 0.65, and the optimal steering gain 
value is 0.21. The optimal gain value can significantly 
improve the performance of the smart car.
		  6)	We compare BH-ResNet with three existing  
groups of excellent models, and we find that the 
BH-ResNet model outperforms other models in 
both validation loss value and actual operating effect, 
which also verifies the superiority of our model. In  
addition, the BH-ResNet model can achieve 
road-tracking experiments in unseen scenes. This 
demonstrates the practical utility of the model.

VI. CONCLUSION

	 Road tracking is a critical task in autonomous  
driving research. In the research, we use a scale model to 
build an autonomous driving smart car with adjustable  
speed gain and steering gain, equipped with a Jetson 
Nano which includes a high-performance GPU to 
achieve the road tracking task. Furthermore, we propose  
a set of optimal hyperparameter configuration 
schemes and train the optimal autonomous driving 
model BH-ResNet, which is proven to achieve road 
tracking tasks with excellent performance.
	 In the model training part, we tested the effect of 
different hyperparameters on the model validation 
loss value. We found that batch size has less effect on 
validation loss, and the different neural networks and 
datasets have more effect on validation loss. When 
the neural network is ResNet-50, the batch size is 8,  
the epoch is 70, and the dataset is 300, the validation  
loss is the smallest value of 0.005804. In the actual 
experiment part, we found that although the validation  
loss of ResNet-50 is lower than that of ResNet-18, 
the actual performance is far worse than that of  
ResNet-18. In addition, batch size and epoch have 
less impact on the model.
	 Integrating the research of validation loss values 
and actual operation effects, we proposed a set of 
optimal hyperparameter configuration schemes with 
the neural network of ResNet-18, a batch size of 8, an 
epoch of 30, and a set of 600. We trained the optimal 
autonomous driving model BH-ResNet.
	 In addition, we found that when the speed gain 
and steering gain increase, the number of times the 
smart car drives out of the track increases, and when 
the speed gain and steering gain decrease, the number 

of times the smart car touches the white line increases. 
When the speed gain is 0.65 and the steering gain is 
0.21, the performance of the smart car to achieve the 
road tracking task is the best.
	 We compared BH-ResNet with DenseNet-121, 
Alexnet, and GP-VGG and found that all models can 
achieve road track, but DenseNet-121, Alexnet, and 
GP-VGG all have problems with touching the line or 
driving off the track when turning, with a total score 
of 83, 82, and 66, respectively. BH-ResNet has the 
highest score of 94. Compared with GP-VGG, the 
performance of the BH-ResNet model is improved 
by 42.4%.
	 A good model should have the ability to handle the 
unseen environment. Therefore, we designed a new 
track and proved that BH-ResNet could still achieve 
road tracking with high performance in an unseen  
environment. The existing models all showed many 
touchlines and driving off the track, with DenseNet-121  
scoring 70, AlexNet scoring 63, and GP-VGG  
scoring 53. Our BH-ResNet has the highest score of 
90. Compared with GP-VGG, the BH-ResNet model 
outperforms 69.8% in unseen environments.
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