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Abstract—Recent studies have revealed that
there are serious security risks to autonomous
driving, despite the notable advancements made by
deep neural networks in this field. Simple sticker
jamming has little experimental validation, despite
recent proposals for physical attacks successfully
implementing jamming in the real world and
misleading autonomous driving recognition. This
study focuses on the practicality of various sticker-
based physical jammers, such as background
noise, colorful stickers, smiley face stickers, and
QR code stickers. To boost the study’s actual
impartiality, we replace the genuine self-driving
car in this work with a smart car that performs
similar activities. We then utilize three models to
train our dataset and carry out five sets of tests.
Based on the results, it can be concluded that the
QR code sticker has the most potential to interfere
with the smart car. This interference causes the
smart car’s accuracy in recognizing road signs to
be between 30% and 40%, whereas the accuracy
of the other interferences is over 50%. Furthermore,
it demonstrated that, out of the three models,
Resnet18 had the best anti-interference capability.

Index Terms—Deep Neural Networks,
Autonomous Driving, Physical Attacks, Smart
Car, Stickers, Resnet18

1. INTRODUCTION

Deep Neural Networks (DNNs) [1] have achieved
amazing success in many fields, such as natural
language processing [2] and autonomous driving
[3]-[7]. However, new research shows that DNNs
are vulnerable to adversarial attacks, which can pose
significant security risks. Deliberate manipulation
of DNN inputs can lead to misbehavior, making
adversarial attacks a popular area of academic
research with practical implications for real-world
applications. In the field of computer vision, adversarial
attacks [8]-[10] are now divided into two categories,
digital and physical, with the main difference being
their different forms. The digital form, where the
attacker can feed the input digital image directly into
the DNN classifier, also suggests that most digital at-

tacks are white-box attacks, where the attacker needs
to know the full details of the model. Digital attacks
[11], [12], although they perform well in modeling,
are widespread and difficult to identify; they are
susceptible to their surroundings, making it difficult
to migrate the digital attacks to the physical world.
However, physical attacks [13], [14] are carried out
in real environments and are therefore more practical
and valuable for research and development compared
to digital attacks, so more people have gone into
physical attacks. But so far, physical attacks on
computer vision systems are still very challenging.
Physical attacks must be robust enough to withstand
variations in illumination, viewing distance, and
angle, and image distortion due to camera limitations.
There is a limit to the area that can be disturbed by
an attacking target. Any background image behind
a road sign in a captured image is an example of
a disturbance that an algorithm can introduce into
a digital image. However, since there is no stable
background in the real world, it is not possible to
perturb the background there. As a result, only the
attacked party itself can be attacked. Furthermore,
there are already several available attack techniques;
some of them produce complex patterns, while others
produce microscopic attacks that are imperceptible to
the human eye. A technique for misclassifying printed
hostile instances when viewed through a smartphone
camera has been demonstrated by Kurakin e al. [15].
Alternatively, it is more challenging to apply these
techniques in the real world. Others have gone on to
attack real stop signs so that self-driving cars do not
recognize them correctly and make poor decisions.
If the attacker can physically robustly manipulate the
road sign, the deep neural network may misclassify
it as some other action, which could lead to serious
consequences. For example, ShapeShifter [16] uses
formula execution to create adversarial stop signs
with complex designs, but implementation in real
traffic signs is challenging and prone to suspicion.
So, in response to the above problem, this paper
focuses on physical attacks that are effective in the
physical world, but we are different from most of the
research nowadays, which uses physical attacks that
are generated in code with targeted attacks, such that
the attacks have precision, some of them are so tiny
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that they may print out with missing pixel dots and
lose their effectiveness. Some attacks are large and
require the attacker to cover the entire road sign, but
such attacks are often too noticeable and cumbersome
to implement. The research in this paper is to find
physical attacks-physical stickers-which already exist
in the real world, and to experiment on traffic road
signs with physical stickers through an established
autonomous driving platform, and based on the
experimental results, to come up with physical sticker
attacks that are more threatening to the recognition
of the road signs by the self-driving cars.

The contributions of this paper are:

1. This paper proposes that QR code stickers
have the strongest ability to interfere with the
recognition of road signs by self-driving cars; however,
background noise has essentially no influence on the
recognition of road signs by self-driving cars.

2. This paper uses the same dataset to train three
kinds of deep network models resnet18, mobile net,
and Alex net, through the test with physical stickers
on the interference of road signs on the self-driving
car, the experimental results show that the Resnet18
in the three kinds of models in the strongest anti-
jamming ability.

II. LITERATURE REVIEW
A. Adversarial Attack

Adversarial Attacks are purposefully designed
input samples that allow machine learning models
to misclassify or misjudge. Such attacks may result
in a decrease in model performance or may fail.
A common application of adversarial attacks is in
image classification tasks, where the original image
is modified in such a way that the model outputs
incorrect classification results by making modifications
to the original image that are smart and imperceptible
to the human eye. X is the original input. X' in the
adversarial sample X' =X + §, which is obtained by
adding a smart perturbation J. f (X) is the model’s
output for the original input X. The goal of an
adversarial attack is to cause the model to misclassify
or miscategorize the original image, but the model’s
performance may be degraded. The goal of the
adversarial attack is to make the output of the adversarial
sample X' from the model different from the original
input X, so that arg max (X ") # arg max f(X).

Attacks against traffic signs were typically
conducted in a white box [17] setting in the early
days. Lu et al. [18] attacked the traffic sign detection
algorithm. But for the method to work, there had to
be significant perturbations because it was not stable
enough. Generative Adversarial Networks (GANs)
can also generate adversarial instances; however,
controlling the generation process of GANs makes
it challenging to employ them for focused attacks on
certain targets. White-box environments can yield

high success rates since they give complete access to
the machine-learning model. Nevertheless, the attack
method’s efficacy sharply declines when it is applied
to a black-box model. Black-box [19] assaults are
significantly more useful in the real world and have
received more practical research than white-box attacks.
Black-box attacks, such as generic disturbances,
are untargeted assaults that can be employed on any
image. The attack strategy presented in this research
is also under the category of black-box attacks, which
can create an assault that can spoof a target model
without the need for previous knowledge of the target
model’s structure and algorithms.

B. Physical-Realizability of Adversarial
Perturbations

The success of adversarial attacks in the real world
has been the subject of extensive academic research in
recent years. An overview and comparative analysis
of recent physical attacks are presented by Wei et al.
[20]. Physical adversarial samples must be adjusted
to varied camera processing and maintain their
effectiveness at varying distances, shooting angles, and
lighting conditions. Sittawarin et al. [21] suggested
atechnique in a similar study for concealing antagonistic
samples on billboards next to traffic signs. Through
the categorization attack, they altered the billboard
image to make the model’s output appear to be a traffic
sign. This assault is hard to detect since it tricks not
just the machine-learning model but also the human
observer. Furthermore, by printing actual-sized road
signs on paper and superimposing them over preexisting
signs, the RP2 [22] approach can similarly fool DNN
classifiers. In this work, we examine practical and
successful physical attacks, like those reported in the
previous investigations.

III. METHODOLOGY

In physical adversarial attacks, to maximize
the performance of the model with the stickers on
the sample targets and wrong classification results,
the cross-entropy loss of the adversarial samples is
generally minimized, and the loss function can be
generally defined as:

J(X"y=CrossEntropy(f (X"),y __ y+d*Regularization(d)

target

X is the original input, X' = Sticker(X) is the
adversarial sample, and f (X) is the adversarial
sample model output. CrossEntropy(f(x"), Y rarger
denotes the cross-entropy loss [ 14] of the adversarial
sample, and Yiarger is the target category set by the
attacker. A is the hyper-parameter used to balance
the adversarial loss and the regularization term.
Regularization(s) is the regularization of the
perturbation term, which can be either an L1 or L2
paradigm, to limit the size of the perturbation and
prevent over-modification. Minimization of this loss
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function will cause the model to produce incorrect
classification results on adversarial samples, as it
takes into account both classification error and a
penalty on the size of the perturbation.

The paper focuses on attacking traffic signs, and
this use case is chosen because self-driving cars have
a larger security problem for adversarial attacks, and
the response is obvious: in general, the real STOP road
sign is captured by the camera, and then recognized
by the DNN, predicted to be a STOP, and performs
the STOP action. However, putting a physical sticker
on the real STOP road sign will make the DNN
recognize it incorrectly, predict it as another road
sign, and execute the wrong action, which indicates
that the physical sticker poses a threat to the security
of autonomous driving. The adversarial physical
attack studied in this paper is not to intentionally
generate a targeted pattern in the digital world and
then print it to cover the original road sign; that way,
on the one hand, some tiny attacks will lose pixel
points when printed out, which may weaken the
effect of the attack. On the other hand, those with a
lot of interference would feel unrealistic. However,
the physical adversarial attacks studied in this paper
adopt those that can appear in the usual world, which
are closer to the real world and do not make people
suspicious. In this paper, we print and paste some
patterns that will not confuse people when they see
them, but will be recognized incorrectly by self-driving
cars when they see them. As in Fig. 1, QR codes are
very common in the real world. Usually, there may be
some unqualified individuals placing advertisements
on road signs with recognizable QR codes. The purpose
is to test whether the DNN identifies the error generated.
Asmiley face is a sticker that children like. The purpose
is to test whether this type of sticker will disrupt the
pattern of the road sign and cause the DNN to identify
the error. The colored bar is the interference of multiple
colors that occur in the real world. The purpose is to
test whether DNNs are interfered with by multiple
colors, and background noise is the cluttered background
that may occur on road signs in the real world, and
this purpose explores whether the attention of DNNs
is interfered with Overall, this paper aims to explore
the physical adversarial attacks that may occur in
the real world and to gain further understanding by
comparing the effects of these attacks on autonomous
driving.

(2) Smiley Face

ST
(3) Colored Bar
Fig. 1. Four types of physical stickers

(4) Background Noise

IV. EXPERIMENTAL SETUP
A. Experimental Environment

Due to the expensive and safety issues of
self-driving cars, this paper selects scale model cars
that can be used for self-driving research that simulate
self-driving in real scenarios, and uses a Jetson Nano
motherboard to make the car an independent agent.
The smart car uses a 2,200 mAh battery pack as a power
source, and, to approximate the most primitive
self-driving car, uses only a camera as an input source
to transmit data to the Jetson Nano for processing.
The framework of the smart car is shown in Fig. 2.
The Jetson Nano is equipped with a driver board that
transmits the processing signals from the Jetson Nano
to the motor to control the smart car, and incorporates
a deep neural network classifier that allows the road
sign recognition process to be observed in a more
realistic context, thus allowing for a more accurate
assessment of the model performance. In terms of the
experimental environment, we experiment indoors,
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and since we want to test whether the physical stickers
have an effect on the smart car’s recognition of road
signs, we have to maintain stable environmental
conditions. We used curtains to block the outside
light, kept the surroundings unchanged, minimized
other noises that could create interference, and kept
the indoor lighting stable to create consistent lighting
conditions.

Fig. 2. Frame with Jetson Nano motherboard, and smart car with
only one camera as input source

B. Dataset

In order to prevent experimentation by chance,
this paper uses 12 road signs, all with the same base
and material, to reduce the likelihood that the model
will be able to recognize a road sign by observing
differences in other aspects of the sign. Diversity is
also increased by having different shapes and colors
foreach category ofroad signs, making the four categories
much less different. With this design, this paper can
conduct an effective autonomous driving study in a
more realistic environment and improve the robustness
of the model for road signs.

Next, in this paper, we use the smart car to collect
pictures of the road signs made ourselves, we open the
Jupyter and run our code to collect the data, as shown
in Fig. 3, as we have four types of road signs about
forward, left, right, stop, so the dataset we collect
a four-category dataset with forward, left, RIGHT,
STOP four categories and the size of the data images
is 224*224. We collected 300 images for each of these
road signs in the respective category they belong to
as shown in Fig. 4. Specifically, we also collected
100 images of no road sign in front in the forward
category, to make the cart move forward without road
sign in front, in summary, this dataset, there are 3700
images in total, in order to be the model training is
better.

=

Fig. 3. Collecting images about four types of road signs: Forward,
left, right, and stop, using the Jupyter platform

Fig. 4. One of the 4 road signs in the dataset is used as an example

C. Modele Training

In this study, we use Google Colab for training.
The collated dataset was uploaded to Google Drive for
model training. We adopted the PyTorch framework,
specifically using torch 1.11.0, torch vision 0.12.0,
Python 3.11, and CUDA 12.1 versions. By training
in Colab, we expect to obtain models with good
performance.

We also used three deep neural network models
for training in our experiments to generate new deep
learning models with different performances. These
models are resnetl8, mobile net, and AlexNet three
models, ResNet18 has the advantage of depth and
residual connectivity, the model can learn constant
mapping, avoiding the loss of information, and maybe
more effective in dealing with complex image scenes;
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Mobile Net, due to its lightweight design, may be
more suitable in resource-constrained environments
and So it is more suitable to be used for smart cars in
this paper; while AlexNet, as a classical model, has
a wide range of applications in tasks such as image
classification, target detection, and object recognition,
and has better performance in various scenarios,
which can be used as a reference benchmark. We
chose these three different CNN methods for our
experiments, which can evaluate their performance
in road sign recognition tasks from different perspec-
tives. Finally, we deploy the trained models to Jetson
Nano for model testing and performance evaluation.

D. Experiment

We deployed the three trained models to the Jetson
Nano in sequence, after which we tested the following
five experiments with a smart car on road signs with
different physical stickers, as shown in Fig. 5:

* 12 original road signs without any interference
stickers; each road sign is tested ten times.

* 12 road signs with QR code stickers, each road
sign is tested ten times.

* 12 road signs with smiley face stickers, each
road sign tested ten times.

* 12 road signs with colored stickers; each road
sign was tested ten times.

* 12 road signs without any interference stickers,
but with ambient noise (background is changing),
tested ten times per road sign.

The flow chart is shown in Fig. 6, Each road sign
is tested 10 times, each time at a different angle and
distance, and As can be seen in Fig. 7, the intelligent
model car displays the probability distribution of the
actions predicted in real time on our visualization
interface when recognizing a road sign while making
actions with high probability, and statistically counting
the results based on this probability.

C. =
s T

(2) Smiley Face

T Rk G
(3) Colored Bar
Fig. 5. As an example, one of the forward road signs was
sequentially labeled with different physical stickers and placed
with background noise

(4) Background Noise

Dataset
A 4 * A 4
| ResNet18 l | MoblieNet | AlexNet l

A 4
_>EM‘E<_

A

Road Road Smiley
‘ sign + | QR code | sign | + ‘ face
Road Colord R.oad 4 Backgroud
sign bar sign noise
Road sign

Fig. 6. Experimental framework diagram: the three trained models
resnet18, MobileNet, and AlexNet, were deployed to the smart
car in turn to test the road sign without interference, the road sign
with QR code sticker, the road sign with smiley face sticker, the
road sign with colorful sticker, and the road sign with background
noise, respectively
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Fig. 7. The probability distribution of actions displayed on the
visualization interface when the intelligent model car recognizes
aroad sign is plotted: When there is a physical sticker, the forward
road sign is predicted to be left with a probability of 0. 94, and
when there is no physical sticker, the forward road sign is predicted
to be forward with a probability of 1

V. RESULT
A. Evaluation Methodology

Rather than utilizing the conventional mean
calculation method, the experimental evaluation
method presented in this study uses a four-category
confusion matrix. We have the results from earlier
experiments, but there is too much data for a direct
comparison. As a result, we decided to combine
and condense this fact using a scientific evaluation
process. We employed three evaluation measures,
which are as follows: precision, recall, F1, and
accuracy.

Precisi P
T E—
ecision TP+ FP
TP
R Il =—H
cacat TpiEN
2x PrecisionxRecall
Fl = —
Precision+Recall
Accuracy = Number of correctly classified samples

Total number of samples

Here, we present two metrics—P (Positive) and
N (Negative)—for assessing the model vehicle’s
capacity to perceive its surroundings. First, we
designate the remaining classifications as Negative
and present one as Positive. Here, P stands for a road
sign that is favorably categorized, and N for a road

sign that is negatively categorized. The smart car’s
predictions are shown by the letters T (True) and F
(False), respectively, indicating correct and incorrect
predictions. For instance, we utilize the other categories
as the negative categorization and the LEFT category
as the positive categorization to compute the
correlation metrics for the LEFT category. When
a road sign is correctly classified as positively
categorized, the model automobile is said to be in the
True Positive (TP) state; when wrongly classed as
negatively categorized, it is shown to be in the False
Positive (FP) state. The indicators TN (True Negative)
and FN (False Negative), respectively, show that
the model automobile accurately predicts negatively
classified road signs as negatively categorized and
incorrectly predicts negatively categorized road signs
as favorably categorized. The category to be calculated
is the reference for the associated calculation if the
pertinent metrics for other categories need to be
calculated.

B. Discussions

We performed the statistics by the evaluation
methods mentioned above, and as can be seen from
Table I, for the original road signs, the accuracy of
the smart car recognition is high, as high as 100%,
which indicates that the model is well fitted. Then we
test several kinds of road signs with physical stickers.
The results indicate that the QR code has the greatest
interference for the smart car, with the lowest accuracy
rate of 40%, and the ambient noise has the least
interference for the smart car to recognize the road
sign, with the highest accuracy rate of 98%. Smeily
Face and Colored bars also have little interference
for the smart car to acknowledge the road sign, but
they also have a certain degree of interference with
an accuracy rate of 89% and 75%.

From Table II and Table II1, it can be seen that the
same to Table I is that the QR code has the highest
interference for the smart car, then Colored bar, Smiley
face, and Background noise in that order, where
Background noise has the lowest interference, which
further indicates that the QR code has the highest
interference for the smart car. Moreover, according
to the provided experimental results, ResNetl8
shows 100% accuracy in the recognition of original
road signs, which indicates that ResNet18 has very
good fitting ability in the face of simple, undisturbed
situations. When confronted with road signs with
physical stickers, ResNet18 showed higher accuracy
relative to the other models. Even though the QR code
caused the most interference for all the models,
ResNet18 was able to maintain a relatively high
accuracy (40%) in this case, whereas the other models
showed a lower accuracy. This leads to the conclusion
that ResNet18 is the most resistant to interference,
and AlexNet is the least resistant.
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EXPERIMENTAL RESULTS OF RESNET18 RECOGNIZIEQ%];:;‘GIINAL ROAD SIGNS AND ROAD SIGNS AFFIXED WITH
DIFFERENT DISTURBANCES
List Class Original QR Smiley Face Colored Bar Background Noise
Precision Forward 1 0.44 0.93 0.72 0.96
Left 1 0.42 0.86 0.81 1
Right 1 0.61 1 1 0.96
Stop 1 0.30 0.79 0.61 1
Recall Forward 1 0.33 0.93 0.96 1
Left 1 0.40 0.86 0.73 0.96
Right 1 0.43 0.86 0.63 1
Stop 1 0.46 0.90 0.70 096
F1 Forward 1 0.36 0.93 0.85 0.97
Left 1 0.40 0.86 0.76 0.97
Right 1 0.50 0.92 0.77 0.97
Stop 1 0.36 0.84 0.65 0.97
Accuracy 100% 40% 89% 75% 98%
TABLE II

EXPERIMENTAL RESULTS OF MOBLIENET RECOGNIZING ORIGINAL ROAD SIGNS AND ROAD SIGNS AFFIXED WITH
DIFFERENT DISTURBANCES

List Class Original QR Smiley Face Colored Bar Background Noise
Precision Forward 0.85 0.33 0.74 0.51 0.82
Left 0.87 0.36 0.73 0.58 0.81
Right 0.89 0.54 0.80 1 0.89
Stop 0.85 0.23 0.65 0.45 0.84
Recall Forward 0.96 0.30 0.86 0.70 0.93
Left 0.90 0.30 0.73 0.56 0.86
Right 0.83 0.40 0.70 0.56 0.83
Stop 0.76 0.36 0.63 0.50 0.73
Fl1 Forward 0.90 0.31 0.79 0.59 0.87
Left 0.88 0.32 0.73 0.56 0.83
Right 0.85 0.45 0.74 0.71 0.85
Stop 0.80 0.28 0.63 0.47 0.78
Accuracy 86% 34% 73% 58% 84%
TABLE III

EXPERIMENTAL RESULTS OF ALEXNET RECOGNIZING ORIGINAL ROAD SIGNS AND ROAD SIGNS AFFIXED WITH
DIFFERENT DISTURBANCES

List Class Original QR Smiley Face Colored Bar Background Noise
Precision Forward 0.83 0.40 0.77 0.48 0.81
Left 0.82 0.30 0.68 0.53 0.76
Right 0.96 0.50 0.76 0.87 0.96
Stop 0.78 0.18 0.61 0.36 0.78
Recall Forward 0.86 0.40 0.80 0.56 0.86
Left 0.80 0.30 0.66 0.50 0.76
Right 0.86 0.26 0.66 0.46 0.83
Stop 0.86 0.26 0.70 0.50 0.83
Fl1 Forward 0.84 0.40 0.78 0.51 0.83
Left 0.80 0.30 0.66 0.51 0.76
Right 0.90 0.34 0.70 0.60 0.89
Stop 0.81 0.21 0.65 0.41 0.80
Accuracy 85% 30% 70% 50% 82%
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VI. CONCLUSION

With the development of automated driving
technology, road sign recognition as one of the key
tasks in the automated driving system, so there are
many researches to create interference for road sign
recognition, but there are some digital attacks that
cannot be migrated to the real world, which leads
to failure, and there are also some physical attacks
that create a larger interference, which is easy to
be detected. We have done this by finding out that
there are various physical interferences in the real
world, such as QR codes affixed and graffiti painted,
which may negatively affect the accuracy of road sign
recognition. In this paper, we test the interference
of QR code stickers, smiley face stickers, colored
stickers, and background noise on the recognition of
road signs by using a smart car, and the experimental
results show that the physical interference of QR code
stickers has the most significant impact on the accuracy
of road sign recognition by the smart car, and the
recognition accuracy is only 30% to 40%, which is
much lower than that of the smart car. 30% to 40%,
much lower than other types of interference. This
suggests that QR code interference may cause serious
safety hazards to the autonomous driving system
and requires special attention and targeted solutions.
In addition, the impact of other types of physical
interference on road sign recognition is relatively
small, and the recognition accuracy is kept above
50%, but there is still a certain degree of influence.
And, in the in-depth comparison of the performance
of the three different models, we further confirm the
excellent performance of the ResNetl18 model in
resisting interference. This indicates that ResNet18
performs well in coping with physical interference in
the street sign recognition task in the face of different
types of physical interference.

In summary, the results of this study highlight
the important impact of physical interference on the
performance of road sign recognition in automated
driving systems, especially the severity of QR code
interference. Future research can further explore the
mechanism of different types of physical interference
on road sign recognition, as well as the future
development towards physical defense that can be
made to cope with the impact of physical interference
on the road sign recognition performance of an
automated driving system. All these will help to
improve the robustness and safety of the system,
and promote the development of automatic driving
technology towards a more mature and reliable.
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