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	 Abstract—Recent studies have revealed that 
there are serious security risks to autonomous 
driving, despite the notable advancements made by 
deep neural networks in this field. Simple sticker  
jamming has little experimental validation, despite 
recent proposals for physical attacks successfully  
implementing jamming in the real world and 
misleading autonomous driving recognition. This 
study focuses on the practicality of various sticker- 
based physical jammers, such as background 
noise, colorful stickers, smiley face stickers, and 
QR code stickers. To boost the study’s actual  
impartiality, we replace the genuine self-driving 
car in this work with a smart car that performs 
similar activities. We then utilize three models to 
train our dataset and carry out five sets of tests. 
Based on the results, it can be concluded that the 
QR code sticker has the most potential to interfere 
with the smart car. This interference causes the 
smart car’s accuracy in recognizing road signs to 
be between 30% and 40%, whereas the accuracy  
of the other interferences is over 50%. Furthermore,  
it demonstrated that, out of the three models,  
Resnet18 had the best anti-interference capability.

	 Index Terms—Deep Neural Networks,  
Autonomous Driving, Physical Attacks, Smart 
Car, Stickers, Resnet18

I. INTRODUCTION

	 Deep Neural Networks (DNNs) [1] have achieved 
amazing success in many fields, such as natural  
language processing [2] and autonomous driving 
[3]-[7]. However, new research shows that DNNs 
are vulnerable to adversarial attacks, which can pose 
significant security risks. Deliberate manipulation 
of DNN inputs can lead to misbehavior, making  
adversarial attacks a popular area of academic  
research with practical implications for real-world  
applications. In the field of computer vision, adversarial  
attacks [8]-[10] are now divided into two categories, 
digital and physical, with the main difference being 
their different forms. The digital form, where the  
attacker can feed the input digital image directly into 
the DNN classifier, also suggests that most digital at-

tacks are white-box attacks, where the attacker needs 
to know the full details of the model. Digital attacks 
[11], [12], although they perform well in modeling, 
are widespread and difficult to identify; they are 
susceptible to their surroundings, making it difficult 
to migrate the digital attacks to the physical world. 
However, physical attacks [13], [14] are carried out 
in real environments and are therefore more practical 
and valuable for research and development compared 
to digital attacks, so more people have gone into  
physical attacks. But so far, physical attacks on  
computer vision systems are still very challenging. 
Physical attacks must be robust enough to withstand 
variations in illumination, viewing distance, and  
angle, and image distortion due to camera limitations. 
There is a limit to the area that can be disturbed by 
an attacking target. Any background image behind 
a road sign in a captured image is an example of 
a disturbance that an algorithm can introduce into 
a digital image. However, since there is no stable 
background in the real world, it is not possible to 
perturb the background there. As a result, only the 
attacked party itself can be attacked. Furthermore, 
there are already several available attack techniques; 
some of them produce complex patterns, while others 
produce microscopic attacks that are imperceptible to 
the human eye. A technique for misclassifying printed 
hostile instances when viewed through a smartphone 
camera has been demonstrated by Kurakin et al. [15]. 
Alternatively, it is more challenging to apply these 
techniques in the real world. Others have gone on to 
attack real stop signs so that self-driving cars do not 
recognize them correctly and make poor decisions. 
If the attacker can physically robustly manipulate the 
road sign, the deep neural network may misclassify 
it as some other action, which could lead to serious 
consequences. For example, ShapeShifter [16] uses 
formula execution to create adversarial stop signs 
with complex designs, but implementation in real 
traffic signs is challenging and prone to suspicion.
	 So, in response to the above problem, this paper 
focuses on physical attacks that are effective in the 
physical world, but we are different from most of the 
research nowadays, which uses physical attacks that 
are generated in code with targeted attacks, such that 
the attacks have precision, some of them are so tiny 
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that they may print out with missing pixel dots and 
lose their effectiveness. Some attacks are large and 
require the attacker to cover the entire road sign, but 
such attacks are often too noticeable and cumbersome 
to implement. The research in this paper is to find 
physical attacks-physical stickers-which already exist 
in the real world, and to experiment on traffic road 
signs with physical stickers through an established  
autonomous driving platform, and based on the  
experimental results, to come up with physical sticker 
attacks that are more threatening to the recognition 
of the road signs by the self-driving cars.
	 The contributions of this paper are:
	 1. 	This paper proposes that QR code stickers  
have the strongest ability to interfere with the  
recognition of road signs by self-driving cars; however,  
background noise has essentially no influence on the 
recognition of road signs by self-driving cars.
	 2. 	This paper uses the same dataset to train three 
kinds of deep network models resnet18, mobile net, 
and Alex net, through the test with physical stickers 
on the interference of road signs on the self-driving 
car, the experimental results show that the Resnet18 
in the three kinds of models in the strongest anti- 
jamming ability.

II. LITERATURE REVIEW

A.	 Adversarial Attack 

	 Adversarial Attacks are purposefully designed 
input samples that allow machine learning models 
to misclassify or misjudge. Such attacks may result 
in a decrease in model performance or may fail.  
A common application of adversarial attacks is in 
image classification tasks, where the original image 
is modified in such a way that the model outputs  
incorrect classification results by making modifications  
to the original image that are smart and imperceptible  
to the human eye.  is the original input.  in the 
adversarial sample  =  + δ, which is obtained by 
adding a smart perturbation δ. f ( ) is the model’s  
output for the original input . The goal of an  
adversarial attack is to cause the model to misclassify 
or miscategorize the original image, but the model’s  
performance may be degraded. The goal of the  
adversarial attack is to make the output of the adversarial  
sample  from the model different from the original 
input , so that arg max f ( ) ≠ arg max f ( ).
	 Attacks against traffic signs were typically  
conducted in a white box [17] setting in the early 
days. Lu et al. [18] attacked the traffic sign detection 
algorithm. But for the method to work, there had to 
be significant perturbations because it was not stable 
enough. Generative Adversarial Networks (GANs) 
can also generate adversarial instances; however, 
controlling the generation process of GANs makes 
it challenging to employ them for focused attacks on 
certain targets. White-box environments can yield 

high success rates since they give complete access to 
the machine-learning model. Nevertheless, the attack 
method’s efficacy sharply declines when it is applied 
to a black-box model. Black-box [19] assaults are 
significantly more useful in the real world and have  
received more practical research than white-box attacks.  
Black-box attacks, such as generic disturbances,  
are untargeted assaults that can be employed on any 
image. The attack strategy presented in this research 
is also under the category of black-box attacks, which 
can create an assault that can spoof a target model 
without the need for previous knowledge of the target 
model’s structure and algorithms.

B.	 Phys ica l -Rea l i zab i l i t y  of  Adversar ia l  
Perturbations 

	 The success of adversarial attacks in the real world 
has been the subject of extensive academic research in 
recent years. An overview and comparative analysis 
of recent physical attacks are presented by Wei et al. 
[20]. Physical adversarial samples must be adjusted  
to varied camera processing and maintain their  
effectiveness at varying distances, shooting angles, and 
lighting conditions. Sittawarin et al. [21] suggested  
a technique in a similar study for concealing antagonistic  
samples on billboards next to traffic signs. Through 
the categorization attack, they altered the billboard 
image to make the model’s output appear to be a traffic  
sign. This assault is hard to detect since it tricks not 
just the machine-learning model but also the human  
observer. Furthermore, by printing actual-sized road 
signs on paper and superimposing them over preexisting  
signs, the RP2 [22] approach can similarly fool DNN 
classifiers. In this work, we examine practical and 
successful physical attacks, like those reported in the 
previous investigations.

III. METHODOLOGY

	 In physical adversarial attacks, to maximize 
the performance of the model with the stickers on 
the sample targets and wrong classification results, 
the cross-entropy loss of the adversarial samples is  
generally minimized, and the loss function can be 
generally defined as: 

	 J( )=CrossEntropy(f ( ),ytarget)+ʎ*Regularization(δ)

	  is the original input,  = Sticker( ) is the  
adversarial sample, and f ( ) is the adversarial  
sample model output. CrossEntropy(f( ), ytarget  
denotes the cross-entropy loss [14] of the adversarial  
sample, and ytarget is the target category set by the 
attacker. ʎ is the hyper-parameter used to balance  
the adversarial loss and the regularization term. 
Regularization(δ) is the regularization of the  
perturbation term, which can be either an L1 or L2 
paradigm, to limit the size of the perturbation and 
prevent over-modification. Minimization of this loss 
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function will cause the model to produce incorrect 
classification results on adversarial samples, as it 
takes into account both classification error and a 
penalty on the size of the perturbation.
	 The paper focuses on attacking traffic signs, and 
this use case is chosen because self-driving cars have 
a larger security problem for adversarial attacks, and 
the response is obvious: in general, the real STOP road 
sign is captured by the camera, and then recognized 
by the DNN, predicted to be a STOP, and performs 
the STOP action. However, putting a physical sticker  
on the real STOP road sign will make the DNN  
recognize it incorrectly, predict it as another road 
sign, and execute the wrong action, which indicates 
that the physical sticker poses a threat to the security  
of autonomous driving. The adversarial physical  
attack studied in this paper is not to intentionally  
generate a targeted pattern in the digital world and 
then print it to cover the original road sign; that way, 
on the one hand, some tiny attacks will lose pixel 
points when printed out, which may weaken the  
effect of the attack. On the other hand, those with a 
lot of interference would feel unrealistic. However, 
the physical adversarial attacks studied in this paper 
adopt those that can appear in the usual world, which 
are closer to the real world and do not make people 
suspicious. In this paper, we print and paste some  
patterns that will not confuse people when they see 
them, but will be recognized incorrectly by self-driving  
cars when they see them. As in Fig. 1, QR codes are 
very common in the real world. Usually, there may be 
some unqualified individuals placing advertisements 
on road signs with recognizable QR codes. The purpose  
is to test whether the DNN identifies the error generated.  
A smiley face is a sticker that children like. The purpose  
is to test whether this type of sticker will disrupt the 
pattern of the road sign and cause the DNN to identify  
the error. The colored bar is the interference of multiple  
colors that occur in the real world. The purpose is to 
test whether DNNs are interfered with by multiple  
colors, and background noise is the cluttered background  
that may occur on road signs in the real world, and 
this purpose explores whether the attention of DNNs 
is interfered with Overall, this paper aims to explore 
the physical adversarial attacks that may occur in 
the real world and to gain further understanding by 
comparing the effects of these attacks on autonomous 
driving.

Fig. 1. Four types of physical stickers

IV. EXPERIMENTAL SETUP

A.	 Experimental Environment

	 Due to the expensive and safety issues of 
self-driving cars, this paper selects scale model cars 
that can be used for self-driving research that simulate 
self-driving in real scenarios, and uses a Jetson Nano 
motherboard to make the car an independent agent.  
The smart car uses a 2,200 mAh battery pack as a power  
source, and, to approximate the most primitive 
self-driving car, uses only a camera as an input source 
to transmit data to the Jetson Nano for processing. 
The framework of the smart car is shown in Fig. 2. 
The Jetson Nano is equipped with a driver board that 
transmits the processing signals from the Jetson Nano 
to the motor to control the smart car, and incorporates 
a deep neural network classifier that allows the road 
sign recognition process to be observed in a more 
realistic context, thus allowing for a more accurate 
assessment of the model performance. In terms of the 
experimental environment, we experiment indoors, 
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and since we want to test whether the physical stickers  
have an effect on the smart car’s recognition of road 
signs, we have to maintain stable environmental  
conditions. We used curtains to block the outside 
light, kept the surroundings unchanged, minimized 
other noises that could create interference, and kept 
the indoor lighting stable to create consistent lighting 
conditions.

Fig. 2. Frame with Jetson Nano motherboard, and smart car with 
only one camera as input source

B.	 Dataset

	 In order to prevent experimentation by chance, 
this paper uses 12 road signs, all with the same base 
and material, to reduce the likelihood that the model 
will be able to recognize a road sign by observing 
differences in other aspects of the sign. Diversity is 
also increased by having different shapes and colors  
for each category of road signs, making the four categories  
much less different. With this design, this paper can 
conduct an effective autonomous driving study in a 
more realistic environment and improve the robustness  
of the model for road signs.
	 Next, in this paper, we use the smart car to collect 
pictures of the road signs made ourselves, we open the 
Jupyter and run our code to collect the data, as shown 
in Fig. 3, as we have four types of road signs about 
forward, left, right, stop, so the dataset we collect 
a four-category dataset with forward, left, RIGHT, 
STOP four categories and the size of the data images 
is 224*224. We collected 300 images for each of these 
road signs in the respective category they belong to 
as shown in Fig. 4. Specifically, we also collected 
100 images of no road sign in front in the forward 
category, to make the cart move forward without road 
sign in front, in summary, this dataset, there are 3700 
images in total, in order to be the model training is 
better.

Fig. 3. Collecting images about four types of road signs: Forward, 
left, right, and stop, using the Jupyter platform

Fig. 4. One of the 4 road signs in the dataset is used as an example

C.	 Modele Training

	 In this study, we use Google Colab for training. 
The collated dataset was uploaded to Google Drive for 
model training. We adopted the PyTorch framework,  
specifically using torch 1.11.0, torch vision 0.12.0, 
Python 3.11, and CUDA 12.1 versions. By training 
in Colab, we expect to obtain models with good  
performance.
	 We also used three deep neural network models 
for training in our experiments to generate new deep 
learning models with different performances. These 
models are resnet18, mobile net, and AlexNet three 
models, ResNet18 has the advantage of depth and 
residual connectivity, the model can learn constant 
mapping, avoiding the loss of information, and maybe 
more effective in dealing with complex image scenes; 
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Mobile Net, due to its lightweight design, may be 
more suitable in resource-constrained environments 
and So it is more suitable to be used for smart cars in 
this paper; while AlexNet, as a classical model, has 
a wide range of applications in tasks such as image 
classification, target detection, and object recognition,  
and has better performance in various scenarios, 
which can be used as a reference benchmark. We 
chose these three different CNN methods for our  
experiments, which can evaluate their performance 
in road sign recognition tasks from different perspec-
tives. Finally, we deploy the trained models to Jetson 
Nano for model testing and performance evaluation.

D.	 Experiment

	 We deployed the three trained models to the Jetson 
Nano in sequence, after which we tested the following 
five experiments with a smart car on road signs with 
different physical stickers, as shown in Fig. 5: 
	 • 12 original road signs without any interference 
stickers; each road sign is tested ten times.
	 • 12 road signs with QR code stickers, each road 
sign is tested ten times.
	 • 12 road signs with smiley face stickers, each 
road sign tested ten times.
	 • 12 road signs with colored stickers; each road 
sign was tested ten times.
	 • 12 road signs without any interference stickers, 
but with ambient noise (background is changing), 
tested ten times per road sign.
	 The flow chart is shown in Fig. 6, Each road sign 
is tested 10 times, each time at a different angle and 
distance, and As can be seen in Fig. 7, the intelligent 
model car displays the probability distribution of the 
actions predicted in real time on our visualization 
interface when recognizing a road sign while making  
actions with high probability, and statistically counting  
the results based on this probability.

Fig. 5. As an example, one of the forward road signs was  
sequentially labeled with different physical stickers and placed 
with background noise

Fig. 6. Experimental framework diagram: the three trained models 
resnet18, MobileNet, and AlexNet, were deployed to the smart 
car in turn to test the road sign without interference, the road sign 
with QR code sticker, the road sign with smiley face sticker, the 
road sign with colorful sticker, and the road sign with background 
noise, respectively
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Fig. 7. The probability distribution of actions displayed on the 
visualization interface when the intelligent model car recognizes 
a road sign is plotted: When there is a physical sticker, the forward 
road sign is predicted to be left with a probability of 0. 94, and 
when there is no physical sticker, the forward road sign is predicted 
to be forward with a probability of 1

V. RESULT

A.	 Evaluation Methodology

	 Rather than utilizing the conventional mean  
calculation method, the experimental evaluation 
method presented in this study uses a four-category 
confusion matrix. We have the results from earlier 
experiments, but there is too much data for a direct 
comparison. As a result, we decided to combine 
and condense this fact using a scientific evaluation  
process. We employed three evaluation measures, 
which are as follows: precision, recall, F1, and  
accuracy.

	 Precision =Pr TPecision
TP FP

=
+

	

	 Reacall   =Re TPacall
TP FN

=
+

	

	 F1		       =
2 Pr Re1

Pr Re
ecision callF

ecision call
× ×

=
+

	

	
    

   
Number of correctly classified samples

Total number of samples
Accuracy =

	
	 Here, we present two metrics—P (Positive) and  
N (Negative)—for assessing the model vehicle’s 
capacity to perceive its surroundings. First, we  
designate the remaining classifications as Negative 
and present one as Positive. Here, P stands for a road 
sign that is favorably categorized, and N for a road 

sign that is negatively categorized. The smart car’s 
predictions are shown by the letters T (True) and F 
(False), respectively, indicating correct and incorrect  
predictions. For instance, we utilize the other categories  
as the negative categorization and the LEFT category  
as the positive categorization to compute the  
correlation metrics for the LEFT category. When 
a road sign is correctly classified as positively  
categorized, the model automobile is said to be in the 
True Positive (TP) state; when wrongly classed as 
negatively categorized, it is shown to be in the False 
Positive (FP) state. The indicators TN (True Negative)  
and FN (False Negative), respectively, show that 
the model automobile accurately predicts negatively 
classified road signs as negatively categorized and 
incorrectly predicts negatively categorized road signs  
as favorably categorized. The category to be calculated  
is the reference for the associated calculation if the 
pertinent metrics for other categories need to be  
calculated.

B.	 Discussions

	 We performed the statistics by the evaluation 
methods mentioned above, and as can be seen from 
Table I, for the original road signs, the accuracy of 
the smart car recognition is high, as high as 100%, 
which indicates that the model is well fitted. Then we 
test several kinds of road signs with physical stickers. 
The results indicate that the QR code has the greatest  
interference for the smart car, with the lowest accuracy  
rate of 40%, and the ambient noise has the least  
interference for the smart car to recognize the road 
sign, with the highest accuracy rate of 98%. Smeily 
Face and Colored bars also have little interference 
for the smart car to acknowledge the road sign, but 
they also have a certain degree of interference with 
an accuracy rate of 89% and 75%.
	 From Table II and Table III, it can be seen that the 
same to Table I is that the QR code has the highest  
interference for the smart car, then Colored bar, Smiley  
face, and Background noise in that order, where 
Background noise has the lowest interference, which 
further indicates that the QR code has the highest 
interference for the smart car. Moreover, according  
to the provided experimental results, ResNet18 
shows 100% accuracy in the recognition of original 
road signs, which indicates that ResNet18 has very 
good fitting ability in the face of simple, undisturbed  
situations. When confronted with road signs with 
physical stickers, ResNet18 showed higher accuracy  
relative to the other models. Even though the QR code  
caused the most interference for all the models,  
ResNet18 was able to maintain a relatively high  
accuracy (40%) in this case, whereas the other models 
showed a lower accuracy. This leads to the conclusion 
that ResNet18 is the most resistant to interference, 
and AlexNet is the least resistant.
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TABLE I
EXPERIMENTAL RESULTS OF RESNET18 RECOGNIZING ORIGINAL ROAD SIGNS AND ROAD SIGNS AFFIXED WITH 

DIFFERENT DISTURBANCES

List Class Original QR Smiley Face Colored Bar Background Noise

Precision Forward 1 0.44 0.93 0.72 0.96

Left 1 0.42 0.86 0.81 1

Right 1 0.61 1 1 0.96

Stop 1 0.30 0.79 0.61 1

Recall Forward 1 0.33 0.93 0.96 1

Left 1 0.40 0.86 0.73 0.96

Right 1 0.43 0.86 0.63 1

Stop 1 0.46 0.90 0.70 096

F1 Forward 1 0.36 0.93 0.85 0.97

Left 1 0.40 0.86 0.76 0.97

Right 1 0.50 0.92 0.77 0.97

Stop 1 0.36 0.84 0.65 0.97

Accuracy 100% 40% 89% 75% 98%

TABLE II
EXPERIMENTAL RESULTS OF MOBLIENET RECOGNIZING ORIGINAL ROAD SIGNS AND ROAD SIGNS AFFIXED WITH 

DIFFERENT DISTURBANCES

List Class Original QR Smiley Face Colored Bar Background Noise

Precision Forward 0.85 0.33 0.74 0.51 0.82

Left 0.87 0.36 0.73 0.58 0.81

Right 0.89 0.54 0.80 1 0.89

Stop 0.85 0.23 0.65 0.45 0.84

Recall Forward 0.96 0.30 0.86 0.70 0.93

Left 0.90 0.30 0.73 0.56 0.86

Right 0.83 0.40 0.70 0.56 0.83

Stop 0.76 0.36 0.63 0.50 0.73

F1 Forward 0.90 0.31 0.79 0.59 0.87

Left 0.88 0.32 0.73 0.56 0.83

Right 0.85 0.45 0.74 0.71 0.85

Stop 0.80 0.28 0.63 0.47 0.78

Accuracy 86% 34% 73% 58% 84%

TABLE Ⅲ
EXPERIMENTAL RESULTS OF ALEXNET RECOGNIZING ORIGINAL ROAD SIGNS AND ROAD SIGNS AFFIXED WITH 

DIFFERENT DISTURBANCES

List Class Original QR Smiley Face Colored Bar Background Noise

Precision Forward 0.83 0.40 0.77 0.48 0.81

Left 0.82 0.30 0.68 0.53 0.76

Right 0.96 0.50 0.76 0.87 0.96

Stop 0.78 0.18 0.61 0.36 0.78

Recall Forward 0.86 0.40 0.80 0.56 0.86

Left 0.80 0.30 0.66 0.50 0.76

Right 0.86 0.26 0.66 0.46 0.83

Stop 0.86 0.26 0.70 0.50 0.83

F1 Forward 0.84 0.40 0.78 0.51 0.83

Left 0.80 0.30 0.66 0.51 0.76

Right 0.90 0.34 0.70 0.60 0.89

Stop 0.81 0.21 0.65 0.41 0.80

Accuracy 85% 30% 70% 50% 82%
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VI. CONCLUSION

	 With the development of automated driving  
technology, road sign recognition as one of the key 
tasks in the automated driving system, so there are 
many researches to create interference for road sign 
recognition, but there are some digital attacks that 
cannot be migrated to the real world, which leads 
to failure, and there are also some physical attacks 
that create a larger interference, which is easy to 
be detected. We have done this by finding out that 
there are various physical interferences in the real 
world, such as QR codes affixed and graffiti painted, 
which may negatively affect the accuracy of road sign  
recognition. In this paper, we test the interference 
of QR code stickers, smiley face stickers, colored 
stickers, and background noise on the recognition of 
road signs by using a smart car, and the experimental 
results show that the physical interference of QR code  
stickers has the most significant impact on the accuracy  
of road sign recognition by the smart car, and the 
recognition accuracy is only 30% to 40%, which is 
much lower than that of the smart car. 30% to 40%, 
much lower than other types of interference. This 
suggests that QR code interference may cause serious  
safety hazards to the autonomous driving system 
and requires special attention and targeted solutions.  
In addition, the impact of other types of physical  
interference on road sign recognition is relatively 
small, and the recognition accuracy is kept above 
50%, but there is still a certain degree of influence. 
And, in the in-depth comparison of the performance 
of the three different models, we further confirm the 
excellent performance of the ResNet18 model in 
resisting interference. This indicates that ResNet18 
performs well in coping with physical interference in 
the street sign recognition task in the face of different 
types of physical interference.
	 In summary, the results of this study highlight 
the important impact of physical interference on the 
performance of road sign recognition in automated 
driving systems, especially the severity of QR code 
interference. Future research can further explore the 
mechanism of different types of physical interference  
on road sign recognition, as well as the future  
development towards physical defense that can be 
made to cope with the impact of physical interference  
on the road sign recognition performance of an  
automated driving system. All these will help to  
improve the robustness and safety of the system, 
and promote the development of automatic driving  
technology towards a more mature and reliable.
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