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	 Abstract—Shrimp is one of the most widely 
consumed seafood items globally, yet consumers  
frequently encounter fraud, such as weight  
manipulation through adulteration injections, 
which poses significant health and economic 
risks. This research presents a practical system for  
detecting anomalies in shrimp weight. A cross- 
platform mobile application has been developed 
to classify shrimp as either normal or abnormal 
in weight. The application integrates a shrimp  
segmentation model, developed using Mask 
R-CNN, and a weight prediction model based on 
the random forest algorithm, utilizing features 
such as area, perimeter, length, and width of 
the shrimp image. The weight prediction model 
achieves a value of 0.821 and a Mean Absolute 
Error (MAE) of 1.786 grams, which is less than 
10% of the average shrimp weight in the dataset. 
Final classification is performed by comparing the 
predicted weight with the actual weight, measured 
using a 7-segment digit recognition module. The 
developed mobile application represents a novel  
integration of machine learning with mobile 
technology to address both non-adulterated and 
adulterated shrimp scenarios. It offers a reliable,  
accessible tool for consumers to detect weight-based  
adulteration, thereby helping to mitigate health 
risks and economic losses in the seafood supply 
chain.

	 Index Terms—Anomaly Detection, Weight 
Prediction, Shrimp Fraud, Authentic Food, Food 
Engineering, Random Forest

I. INTRODUCTION

	 Authentic food plays a vital role in human 
well-being. Today, various efforts, both digital and 
non-digital [1]-[3], are being employed to enhance 
the seafood supply chain. These efforts encompass 
improvements in farming [4]-[7], classification 
[8]-[10], and most importantly, the elimination of 

fraud utilizing both technology [11]-[14] and policy 
[15]-[17]. There are nine recognized types of fraud,  
commonly referred to as the ‘nine sins of seafood’. 
Such fraudulent practices undermine food integrity, 
pose risks to public health, and have adverse economic  
impacts.
	 Undeclared product extension is a type of fraud that 
involves using technology to increase the perceived  
weight of seafood. For example, injecting gelatin-like 
substances, derived from animal skins and bones, 
into shrimp can increase their weight by 20-30% [18]  
and also make them appear larger. This practice 
poses a serious threat to international standards by  
endangering consumer health through various side 
effects.
	 Shrimp is the most-consumed seafood product 
in the United States. U.S. citizens face the problem 
of shrimp fraud, which led to the founding of the 
Southern Shrimp Alliance, an organization that works 
to protect millions of U.S. shrimp consumers from 
such fraud. This problem is not limited to the U.S. 
but also occurs in Japan and many other countries. 
Since ASEAN is one of the biggest shrimp exporters, 
its member nations have been experiencing incidents 
of fraud and adulteration for the past 20 years [19]-
[21].
	 Detecting adulteration that increases shrimp 
weight is challenging without scientific laboratory  
tools. This issue could potentially be addressed 
through shrimp weight prediction or estimation  
research. In studies [22], [23], a specialized setup 
was utilized to capture the shadow of the shrimp 
area, with weight predictions made using power and 
forced power equations. Another study [24] proposed  
a method for predicting the weight of shelled shrimp 
using machine vision. This approach involved  
predicting weight through a polynomial equation 
based on the shrimp’s area and perimeter pixel  
features, which were extracted using image processing  
methods. However, this system is not user-friendly due 
to the prerequisite hardware and the software being  
developed for personal computers. In study [25], 
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a computer program was proposed for estimating  
the weight of Vannamei shrimp. The program utilized 
the number of pixels in conjunction with a non-linear 
regression equation for weight estimation. However, 
the system has limitations, as shrimp with the same 
number of pixels can have significantly different 
weights. While previous studies contribute valuable 
techniques, they are often constrained by limited  
accuracy in adulterated cases, reliance on specialized  
equipment, and lack of real-time, mobile-ready  
deployment. Most existing systems are designed for 
desktop platforms, which limits their usability for 
smartphone consumers. Currently, few solutions fully 
provide an integrated, consumer-accessible system 
capable of detecting shrimp weight anomalies in  
practical environments. 
	 To provide a solution tailored for real-life  
conditions, it is essential to have convenient tools 
for detecting anomalies in shrimp weight, especially  
tools that are easy to use. The primary benefit of 
such a system is its accessibility, as it eliminates the 
need for specialized laboratory equipment, making it 
suitable for both shrimp consumers and businesses. 
By accurately detecting weight-based adulteration 
in shrimp, the system mitigates the risks associated  
with consuming products injected with gelatin-like  
substances, thereby protecting public health.  
Additionally, it promotes economic integrity by  
preventing fraudulent practices in the seafood  
supply chain, which can lead to financial losses for  
consumers and businesses alike. The adoption of this 
tool enhances consumer trust and promotes adherence 
to international food safety standards, contributing to 
a healthier and more transparent seafood industry. 
	 Given these advantages, this research proposes  
a real-time system for detecting shrimp weight  
anomalies, thereby bridging the gap between  
research innovations and practical consumer needs. 
The developed system enables users to determine 
whether a shrimp’s weight is normal or abnormal by 
capturing an image of the shrimp placed on a digital 
weighing scale, with the output simply indicating 
either ‘Normal’ or ‘Abnormal’. The system consists 
of a cross-platform mobile application that integrates 
shrimp detection, morphological feature extraction, 
7-segment digit recognition, and weight prediction.

II. OBJECTIVE

	 This study aims to develop an intelligent and  
practical mobile application for shrimp consumers 
that can detect weight-based adulteration in shrimp.

III. MATERIALS AND METHODS

	 The proposed system consists of a cross-platform 
mobile application, Shrimp, a digital weighing scale, 

and an Application Programming Interface (API) 
server. The process begins with the user capturing  
a top-view photograph of a shrimp placed on the 
digital weighing scale using the developed mobile 
application. This image is then transmitted to the API 
server over a wireless network. Upon receiving the 
image, the API server processes it to classify the result 
of shrimp weight anomaly detection, as illustrated 
in Fig. 1. 

Fig. 1. Proposed system overview

	 The system workflow starts with the user capturing  
a photo of the shrimp placed on a digital weighing 
scale using the mobile application. The system then 
separates the shrimp image from the scale display 
to recognize the digits on the 7-segment display.  
Simultaneously, it generates a shrimp mask to extract 
the necessary features. The shrimp weight is predicted 
using a machine learning model. These two results—
the actual weight from the scale and the predicted 
weight—are then compared to classify the shrimp 
as either ‘normal’ or ‘abnormal’. Finally, all input 
and output data are stored in a cloud database, and 
relevant information is presented to the user via the 
mobile application, as shown in Fig. 2. The proposed 
system was developed across seven modules, which 
are described in the following subsections.
 

Fig. 2. The proposed system workflow
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	 1)	Cross-Platform Mobile Application Develop-
ment
		  The mobile application was developed in two 
parts: the frontend and the backend. Flutter was  
chosen as the frontend framework due to its ability  
to build mobile, web, and desktop applications 
from a single codebase. In this research, which 
aims to provide a practical approach for identifying  
anomalies affecting shrimp weight, the mobile  
application serves multiple functions: Capturing  
images of shrimp on a digital weighing scale, detecting  
the 7-segment display, and providing the user interface  
for interacting with the instance segmentation and 
weight prediction model.
	 As illustrated in Fig. 1, the proposed system  
utilizes an API server to handle high-computation 
tasks, a common approach in research within this field 
[26]. FastAPI was chosen as the backend development  
framework due to its high performance in API  
management [27]. By employing this technique, the 
system avoids the challenges of deploying machine 
learning models directly on mobile devices [28].
	 Two API endpoints were implemented: the first 
utilizes the HTTP POST method for preprocessing 
and uploading shrimp images to cloud storage, along 
with storing related data in a cloud database. The 
second endpoint employs the HTTP GET method 
to return shrimp weight predictions, incorporating 
both feature extraction and the execution of a shrimp 
weight prediction model.
	 The authentication system, including sign-in and 
sign-up modules, seamlessly integrates with cloud-based  
authentication services. Additionally, data such as 
shrimp images, user locations, and prediction results 
are securely stored in a NoSQL database, leveraging 
appropriate cloud infrastructure.
	 2)	7-Segment Digit Recognition
		  In this research, digit recognition from 7-segment  
displays was facilitated using a point-by-point color  
comparison method. This technique analyzes the 
color at seven key points of the 7-segment display, 
converting this data into digital values, as shown 
in Fig. 3. This method ensures accurate and rapid 
digit recognition under varied lighting conditions,  
outperforming traditional OCR methods, which  
often struggle with segmented displays [29]. As 
shown in Fig. 4 (a-c), this process involves converting 
the original image to binary and setting the reading 
points of the 7 segments.

Fig. 3. The 7-Segment digit recognition workflow

(a)

(b)

(c)

Fig. 4. The 7-Segment digit recognition process: (a) Original image 
of numbers from a digital scale, (b) Image converted to binary, (c) 
Setting the reading points of the 7 segments
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		  A notable limitation of this method is the need 
to define a precise frame for capturing images, which 
can be challenging and lead to errors if not done 
correctly. Ensuring that the picture frame matches  
the reference in the application can be difficult,  
potentially affecting the accuracy of digit recognition. 
To address this, integrating LiDAR technology in 
smartphones was considered. LiDAR can dynamically  
adjust the focus and framing based on distance,  
facilitating optimal image capture. However, the 
limited availability of LiDAR in high-end models 
restricts widespread use, indicating a need for future 
research on more accessible solutions [29].
	 3)	Shrimp Dataset Collection
		  The shrimp dataset used in this research was 
gathered using four different mobile devices. Each 
captured image showed a shrimp placed on a digital  
weighing scale. As shown in Fig. 5, the dataset  
included variations in the digital weighing scale, the 
shrimp’s pose, and the mobile device used for image 
capture. The dataset contained a total of 1,286 images.

Fig. 5. Examples of images in the dataset

	 4) 	Instance Segmentation Model Development
		  A shrimp instance segmentation model 
was developed using the Mask R-CNN, utilizing  
MMDetection, a comprehensive toolbox for object  
detection and instance segmentation. Built on  
PyTorch and distributed under an open-source  
license, MMDetection supports numerous well-known  
models such as Mask R-CNN, YOLO, and Cascade 
R-CNN. It has been benchmarked using standard 

datasets, including COCO, PASCAL VOC, and  
Cityscapes, and is optimized for both speed and 
memory efficiency during training and inference. 
Additionally, MMDetection’s modular architecture 
allows developers to easily modify the toolbox to suit 
specific requirements [31].
		  This process involved both dataset annotation 
and model development. The VGG Image Annotator  
was used to annotate the dataset and establish  
ground truth. Model development focused on tuning 
dataset-specific, model-specific, and training-specific  
hyperparameters.
		  During annotation, each shrimp image was 
marked with a polygon outlining the shrimp’s edges, 
and the entire shrimp was labeled as ‘white_shrimp’. 
The annotated dataset was then formatted according 
to the COCO standard.
		  The developed model was evaluated using the 
CocoMetric class, which supports various standard 
metrics, including Average Precision and Average 
Recall at different Intersection over Union (IoU) 
thresholds. These metrics assess both bounding 
box and instance segmentation performance. Once 
the desired metrics were achieved, the final model  
produced a mask image as output. In this mask image, 
black pixels represent the shrimp, and white pixels 
represent the background.
	 5)	Shrimp Features Extraction
		  Regression analysis is the primary method for 
developing shrimp weight prediction models [32], 
[33]. While various imagery techniques can extract  
predictive features, including statistical, textural, 
and color-based features [34], [35] morphological  
features have shown the strongest correlation 
with shrimp weight. This is because shrimp have 
a distinctive morphology, with curved bodies  
exhibiting a weight directly proportional to their size.  
Four key morphological features are extracted from 
shrimp images: Total area, perimeter, head-to-tail  
length, and maximum width. These measurements are 
expressed in pixels and derived using pixel counting,  
contour analysis, skeletonization, and circular base 
measurement, respectively [36]. 
		  This investigation employed a four-step feature 
extraction process to derive these morphological traits 
from shrimp images, which are crucial for accurate 
weight prediction. Each step is detailed below.
		  First, the shrimp’s area was quantified. This 
was achieved by counting the black pixels within the 
mask image, with each pixel representing a part of 
the shrimp to provide a total area. Fig. 6 (a) shows 
the area inside the shrimp.
		  Second, the perimeter was calculated. The 
shrimp’s contour was detected in the mask image, and 
the number of pixels along the contour was counted. 
Fig. 6 (b) shows the perimeter of the shrimp.
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		  Third, the shrimp’s length was determined. The 
mask image was skeletonized, as depicted in Fig. 7 (a),  
and endpoints were identified on the resulting structure,  
as shown in Fig. 7 (b). Distances between all pairs 
of endpoints were calculated. The endpoints with the 
maximum distance were used to denote the shrimp’s 
head-to-tail length, as illustrated in Fig. 7 (c).

(a) (b)
Fig. 6. The process of determining shrimp area and perimeter: (a) 
The area of the shrimp, (b) The perimeter of the shrimp

(a) (b) (c)
Fig. 7. The process of determining shrimp length: (a) Skeleton 
from the mask image, (b) Endpoints on the skeleton, (c) Calculated 
length between endpoints

		  Finally, the shrimp’s width was measured. 
This was achieved by iteratively placing increasingly 
larger circles over the mask image until the shrimp 
region was fully encompassed. The diameter of the 
encompassing circle represents the shrimp’s width. 
To enhance efficiency, the Multiscale Approximation 
(MSA) technique was employed, downscaling the  
image to quickly identify the optimal placement for 
this circle. Fig. 8 shows the width determination  
results, which were verified using 16 points by checking  
the number of white pixels within the circle. 
		  The extracted features and their corresponding 
weights in grams were compiled into a structured 
dataset. This dataset was used for the development 
of the weight prediction model, facilitating further 
analysis and model training.
	 6) 	Weight Prediction Model Development
		  The weight prediction model developed in this 
research is a supervised learning model, implemented  
using both linear and non-linear regression algorithms.  
For non-linear regression, the Random Forest algorithm,  
which leverages the bagging ensemble learning 
method, was designed and utilized. A Random Forest  
consists of multiple base learners, denoted as  

decision trees, each trained using a sample from  
feature randomness. Once each learner has produced 
a continuous value, all values are averaged to produce 
the final output, as shown in Fig. 9.
		  By using the bagging ensemble algorithm,  
Random Forests address the high variance of decision  
tree models without increasing bias. Moreover, 
bagging requires less computation time than most 
machine learning algorithms when training on large 
datasets [37], and it has been utilized across several 
research domains [38], [39].

Fig. 8. The shrimp’s width is measured by iteratively placing a 
16-point circle entirely encompassing the shrimp region

Fig. 9. Bagging ensemble algorithm in random forest regression.

		  The developed model utilizes features extracted  
from the shrimp feature extraction process. Specifically,  
the features denoted as area, perimeter, length, and 
width are considered as independent variables, while 
the weight is treated as the dependent variable. Before 
model development, the entire dataset was visualized 
to identify and eliminate outliers. The dataset was 
then randomly split into training and testing sets. All 
features in the dataset were standardized as in (1), 
where z represents the standardized samples, is the 
original sample, 𝒳 is the mean of the sample, µ and is 
the standard deviation of the training samples. 

		  				           (1)

		  The model and dataset-specific hyperparameters  
were tuned during the development of the random 
forest model. This included the number of trees in the 
forest, the maximum depth of the trees, the minimum 
number of samples required at a leaf node and to 
split an internal node, and the number of features to 
consider when determining the best split.
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		  To evaluate the model’s performance and  
robustness, the coefficient of determination (R2) and 
the Mean Absolute Error (MAE) were used. A higher 
indicates a better fit between the model and the data, 
while a lower MAE indicates a smaller difference 
between the predicted and actual values. Additionally, 
the model evaluation was repeated 30 times, and the 
average and MAE were recorded as the results.
	 7) 	Determining the Final Classification
		  The proposed system produces two possible 
classifications: ‘Normal’ and ‘Abnormal’. ‘Normal’ 
indicates that the shrimp is not subject to weight- 
increasing fraud, while ‘Abnormal’ signals the  
detection of an anomaly in the shrimp’s weight.
		  To determine the final classification, the system  
integrates recognized digits from the 7-segment 
digit recognition module with the predicted shrimp 
weight generated by the weight prediction model.  
If the variation between these two numbers does not  

exceed 10% of the average weight in the dataset 
(1.816 grams), the system classifies the shrimp as 
‘Normal’. Conversely, if the variation exceeds 10%, 
the shrimp is classified as ‘Abnormal’.

IV. EXPERIMENT SETUP

	 Three experiments were set up to align with the 
proposed method described in the previous section. 
These experiments are detailed in the following  
subsections. 
	 1)	Generate a Shrimp Mask Image
		  The shrimp mask images, as illustrated in  
Fig. 10 (a), were generated using the instance  
segmentation model proposed in subsection 2. 4. The 
corresponding shrimp dataset, depicted in Fig. 10 (b), 
was then divided into training, validation, and testing 
sets with a ratio of 70:20:10. To further enhance the 
diversity of the training set, data augmentation was 
applied using the random flip technique.

	 	  

			 
(a)	 (b)

Fig. 10. The comparison of: (a) shrimp mask images obtained from the instance segmentation model, (b) shrimp images captured from  
a mobile application

		  A pre-trained ResNet-50 model was utilized 
as the backbone for development. The model was 
trained for 12 epochs using the SGD optimizer, with 
a learning rate of 0.0025, a momentum of 0.9, and 
a weight decay factor of 0.0001. The evaluation  
results, reported using CocoMetric, include  
a segmentation mean Average Precision (mAP) of 
0.601 at IoU thresholds ranging from 0.5 to 0.95 in 
increments of 0.05, and a segmentation mean Average 
Recall (mAR) of 0.648 at the same IoU thresholds.
	 2) 	Feature Analysis And Visualization
		  The extracted features from the proposed 
method were analyzed using descriptive statistics, 

as shown in Table I, to summarize the dataset. This 
analysis provides insights into the central tendency 
and variability of each variable. Due to differences 
in units between the dependent variable (weight),  
measured in grams, and the independent variables, 
measured in pixels, a log scale transformation was 
applied to all variables. The results were visualized 
using a box-and-whisker plot, as shown in Fig. 11,  
to better illustrate variability. The plot reveals 
that “Weight” exhibits high variance, with “Area”  
displaying the highest variance among the independent  
variables. Additionally, the other independent  
variables also demonstrate significant variability.
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TABLE I  
DESCRIPTIVE STATISTICS OF THE COLLECTED DATASET

Variable (Unit) Range 
(max-min) Mean S.D.

Area (pixels) 2220 1864.872 426.384

Perimeter (pixels) 177 287.461 33.311

Length (pixels) 72 115.739 13.323

Width (pixels) 24 19.076 3.122

Weight (grams) 25.5 18.160 5.357

		  This analysis suggests that the selected variables  
are well-suited for regression model development, 
as high variance in both independent and dependent 
variables improves the model’s ability to effectively 
capture diverse patterns and relationships within the 
data [40], [41].

Fig. 11. Log-scaled box-and-whisker plot of variables in the dataset

		  Additionally, the scatterplot matrix and  
correlation coefficients, as illustrated in Fig. 12 and 
Fig. 13, were visualized to understand the strength of 
the relationships between the independent variables 
and the dependent variable. This analysis aids in the 
model and feature selection process by identifying 
which variables are most relevant for predicting the 
target outcome.

Fig. 12. Scatterplot matrix of variables in the shrimp dataset

Fig. 13. Correlation coefficient heat map of the extracted shrimp 
features

	 3) 	Weight Prediction Model Training
		  This experiment focuses on the model and 
feature selection process. Both linear and non-linear  
algorithms were explored based on the patterns 
observed between the independent and dependent 
variables. Initially, a linear regression algorithm 
was employed to develop a weight prediction model  
using shrimp area, as this feature exhibited the highest 
correlation coefficient with the dependent variable. 
The dataset was divided into training and testing 
sets, with 80% used for training and 20% for testing, 
to evaluate model performance. The experimental  
results showed that shrimp weight can be predicted 
using (2), where y denotes the predicted weight and 
area represents the number of black pixels in the 
shrimp mask image. The model evaluation yielded  
a R2 value of 0.777 and an MAE of 2.021. 

		  y =	 -1.9634 + 0.0108 Í area		         (2)

		  As the performance of the initial linear model  
was unsatisfactory, a multiple linear regression  
model was developed. To avoid multicollinearity, the  
correlation coefficients in Fig. 13 were used for feature  
selection, with a correlation threshold set at 0.8 [42]. 
This process led to the selection of shrimp area and 
shrimp width as features. The resulting model is  
presented in (3), where y represents the predicted 
weight, area refers to the number of black pixels 
in the shrimp mask image, and width denotes the  
diameter of the largest circle that fits within the 
shrimp mask. The model evaluation yielded an R2 
value of 0.779 and an MAE of 2.01.

		  y =	 -2.4994 + (0.0105 Í area) 	       (3) 
			   + (0.0569 Í width)

		  The two linear models developed earlier were 
still unsatisfactory. Therefore, an ensemble model,  
specifically a Random Forest, was employed. This 
model was developed using GridSearchCV to  
perform an exhaustive search through a specified  
hyperparameter grid, as shown in Table II. 
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	 Additionally, 10-fold cross-validation was  
applied during this process to improve the model’s  
generalization. 

TABLE II  
SPECIFIED HYPERPARAMETERS

Hyperparameter Value Purpose

n_estimators 300 To specify the number of trees 
in the forest, which can improve  
model accuracy.

max_depth 5 To specify the maximum depth 
of each tree, which can prevent 
model overfitting.

min_samples_leaf 5 To specify the minimum number  
of samples required to be at a 
leaf node, which can improve 
the model’s generalization.

min_samples_split 1% To specify the minimum fraction  
of samples required to split an 
internal node, which can prevent  
model overfitting.

max_features Square 
Root

To specify the number of  
features considered at each 
split as the square root of 
the total number of features, 
which can help reduce model 
variance.

V. RESULTS

1) 	Weight Prediction Model
	 The proposed model in this study was developed 
using Random Forest Regression and trained on the 
collected shrimp dataset, with 80% of the data used for 
training and 20% reserved for model evaluation. The 
training phase included hyperparameter tuning and 
10-fold cross-validation to improve generalization.  
To enhance the reliability of the results, the evaluation  
process was repeated 30 times, and the average  
performance metrics were recorded. The evaluation 
results for the weight prediction model are presented 
in Table III.
	 The results indicate that the weight prediction 
model developed using random forest best fits the 
observed data, as reflected by the value. Additionally,  
the average magnitude of the errors, represented  
by the MAE, is the lowest among the compared  
algorithms.

TABLE III  
WEIGHT PREDICTION MODELS PERFORMANCE

Regression Model Feature R2 MAE

Linear Area 0.777 2.021

Multiple Linear Area & Width 0.779 2.010

Random Forest All Features 0.821 1.786

2) 	Mobile Application
	 Upon opening the developed application, users 
can create their accounts or log in using third-party 
authentication. On the home page, users can view 

summarized information, including recommendations 
on places to buy shrimp and a pie chart illustrating the 
proportion of normal and abnormal shrimp weights 
they have predicted. To predict shrimp weight, users 
can select the Camera menu from the drawer menu 
in the top left corner of the screen. The application 
will then display images of various digital weighing 
scales, allowing users to select the one that matches  
their own. Subsequently, the mobile camera is  
activated, and a small green square appears to  
manually specify the location of the 7-segment  
display. The mentioned features of the application are 
illustrated in Fig. 14 (a)-(c). 

(a) (b) (c)

Fig. 14. The developed mobile application: (a) Home page, (b) 
Camera page, and (c) Green square on 7-segment display

	 To detect anomalies in shrimp weight, the user 
must place the suspicious shrimp on a digital weighing  
scale while simultaneously capturing an image. Then, 
they press the prediction button to send the entire 
image to the API server. If the predicted weight does 
not differ from the weight displayed on the 7-segment 
display by more than two grams, the system classifies  
the shrimp as ‘Normal’, and the result shown in  
Fig. 15 (a) will be displayed to the user. Otherwise, 
Fig. 15 (b) will be shown, indicating an ‘Abnormal’  
classification. Moreover, a prediction history is  
provided within the developed application, as shown 
in Fig. 15 (c), to help users identify which stores are 
safe for purchasing shrimp.

(a) (b) (c)

Fig. 15. The developed system: (a) Normal shrimp weight result, 
(b) Abnormal shrimp weight result, (c) Shrimp weight prediction 
history
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	 To verify the developed application, both a non- 
adulterated shrimp detection scenario and an adulterated  
shrimp detection scenario were tested. In the first  
scenario, a non-adulterated shrimp, with an actual 
weight of 24.2 grams, was placed on a digital weighing  
scale. The developed mobile application captured an 
image of the shrimp, which was then sent to the API 
server. The server generated a shrimp mask, extracted  
all morphological features, predicted the weight 
from the obtained features, and determined the final 
classification. The feedback from the API server was  
‘Normal’, indicating that the developed system  
successfully passed this test.
	 In the second scenario, an adulterant weighing 
3.3 grams was injected into the same shrimp used in 
the first scenario, resulting in a total weight of 27.5 
grams. The testing process was identical to the first 
scenario. However, the result from the API server was 
‘Abnormal’, indicating that the developed system also 
successfully passed this test.

VI. DISCUSSION

	 The experimental results show that the Random 
Forest Regression algorithm, utilizing all extracted 
features, significantly outperformed both linear and 
multiple linear regression models within the scope of 
this experiment’s dataset. This superior performance  
comes from the ensemble approach of Random  
Forests, where the predicted weight is an aggregation 
of numerous decision trees. Each tree is constructed 
using feature randomness and the bagging ensemble  
learning technique, which enhances the model’s  
robustness. Additionally, the diverse conditions under 
which the individual trees are created contribute to 
the model’s ability to generalize effectively. The final  
prediction, being an average of all tree outputs, results in a 
more reliable and generalized weight prediction model.  
It’s worth noting that the success of the Random  
Forest model is due not only to the algorithm itself 
but also to the careful selection of relevant features, 
which played a crucial role in optimizing model  
performance.
	 The mobile application for detecting anomalies  
in shrimp weight was developed using the Dart  
programming language. It interfaces with image  
processing and weight prediction components through 
APIs implemented in Python. Python was chosen for 
image processing because it’s more efficient than Dart 
for those tasks. While machine learning models could 
be deployed directly on mobile devices, APIs were 
used for the weight prediction component to ensure 
consistent performance. This server-side approach 
guarantees uniform model accuracy, regardless of 
users’ varying hardware capabilities, making the 
system more reliable and scalable. Furthermore, the 
application’s features are specifically designed to  

detect undeclared product modifications that increase 
the perceived weight of shrimp. This information is 
valuable for consumers, helping them avoid buying 
from sources previously associated with adulterated 
shrimp.

VII. CONCLUSION AND FUTURE WORK

	 This research aimed to develop a practical  
approach for individuals seeking to avoid shrimp 
weight fraud. The proposed method focuses on daily 
usability and feasibility. Recognizing the pervasive 
use of mobile devices and their synergy with AI,  
a mobile application was developed as the user  
interface for the anomaly detection module.  
This module ingeniously combines an instance  
segmentation model with a weight prediction model.
	 The system identifies weight anomalies through 
sophisticated image analysis. It starts by accurately  
segmenting shrimp from their background using  
Mask R-CNN, chosen for its excellent object  
segmentation capabilities. This method proved highly 
precise and efficient, yielding clear shrimp outlines 
crucial for the developed application.
	 After segmentation, vital morphological features, 
including area, perimeter, length, and width, were 
extracted. While area and perimeter were simple to 
calculate, determining length and width demanded 
more complex, computationally intensive methods. 
To address this, a shortest path algorithm and a circle- 
fitting method with reduced point frequency were 
implemented, allowing for efficient extraction of the 
necessary numerical data.
	 These extracted features are then fed into the 
shrimp weight prediction model. Experimental  
results show that the model, built with the Random 
Forest algorithm and leveraging all four features 
(area, perimeter, length, and width), significantly  
outperformed other models. It achieved an value of 
0.821 and a Mean Absolute Error (MAE) of 1.786 
grams, successfully meeting the proposed system’s 
criteria.
	 However, this research could be further improved 
by developing an automated 7-segment screen  
detector. This improvement would allow the system 
to adapt to a wider variety of weighing scales, greatly 
increasing its flexibility and real-life applicability.
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