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Abstract—Shrimp is one of the most widely
consumed seafood items globally, yet consumers
frequently encounter fraud, such as weight
manipulation through adulteration injections,
which poses significant health and economic
risks. This research presents a practical system for
detecting anomalies in shrimp weight. A cross-
platform mobile application has been developed
to classify shrimp as either normal or abnormal
in weight. The application integrates a shrimp
segmentation model, developed using Mask
R-CNN, and a weight prediction model based on
the random forest algorithm, utilizing features
such as area, perimeter, length, and width of
the shrimp image. The weight prediction model
achieves a value of 0.821 and a Mean Absolute
Error (MAE) of 1.786 grams, which is less than
10% of the average shrimp weight in the dataset.
Final classification is performed by comparing the
predicted weight with the actual weight, measured
using a 7-segment digit recognition module. The
developed mobile application represents a novel
integration of machine learning with mobile
technology to address both non-adulterated and
adulterated shrimp scenarios. It offers a reliable,
accessible tool for consumers to detect weight-based
adulteration, thereby helping to mitigate health
risks and economic losses in the seafood supply
chain.

Index Terms—Anomaly Detection, Weight
Prediction, Shrimp Fraud, Authentic Food, Food
Engineering, Random Forest

I. INTRODUCTION

Authentic food plays a vital role in human
well-being. Today, various efforts, both digital and
non-digital [1]-[3], are being employed to enhance
the seafood supply chain. These efforts encompass
improvements in farming [4]-[7], classification
[8]-[10], and most importantly, the elimination of

fraud utilizing both technology [11]-[14] and policy
[15]-[17]. There are nine recognized types of fraud,
commonly referred to as the ‘nine sins of seafood’.
Such fraudulent practices undermine food integrity,
pose risks to public health, and have adverse economic
impacts.

Undeclared product extension is a type of fraud that
involves using technology to increase the perceived
weight of seafood. For example, injecting gelatin-like
substances, derived from animal skins and bones,
into shrimp can increase their weight by 20-30% [ 18]
and also make them appear larger. This practice
poses a serious threat to international standards by
endangering consumer health through various side
effects.

Shrimp is the most-consumed seafood product
in the United States. U.S. citizens face the problem
of shrimp fraud, which led to the founding of the
Southern Shrimp Alliance, an organization that works
to protect millions of U.S. shrimp consumers from
such fraud. This problem is not limited to the U.S.
but also occurs in Japan and many other countries.
Since ASEAN is one of the biggest shrimp exporters,
its member nations have been experiencing incidents
of fraud and adulteration for the past 20 years [19]-
[21].

Detecting adulteration that increases shrimp
weight is challenging without scientific laboratory
tools. This issue could potentially be addressed
through shrimp weight prediction or estimation
research. In studies [22], [23], a specialized setup
was utilized to capture the shadow of the shrimp
area, with weight predictions made using power and
forced power equations. Another study [24] proposed
a method for predicting the weight of shelled shrimp
using machine vision. This approach involved
predicting weight through a polynomial equation
based on the shrimp’s area and perimeter pixel
features, which were extracted using image processing
methods. However, this system is not user-friendly due
to the prerequisite hardware and the software being
developed for personal computers. In study [25],
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a computer program was proposed for estimating
the weight of Vannamei shrimp. The program utilized
the number of pixels in conjunction with a non-linear
regression equation for weight estimation. However,
the system has limitations, as shrimp with the same
number of pixels can have significantly different
weights. While previous studies contribute valuable
techniques, they are often constrained by limited
accuracy in adulterated cases, reliance on specialized
equipment, and lack of real-time, mobile-ready
deployment. Most existing systems are designed for
desktop platforms, which limits their usability for
smartphone consumers. Currently, few solutions fully
provide an integrated, consumer-accessible system
capable of detecting shrimp weight anomalies in
practical environments.

To provide a solution tailored for real-life
conditions, it is essential to have convenient tools
for detecting anomalies in shrimp weight, especially
tools that are easy to use. The primary benefit of
such a system is its accessibility, as it eliminates the
need for specialized laboratory equipment, making it
suitable for both shrimp consumers and businesses.
By accurately detecting weight-based adulteration
in shrimp, the system mitigates the risks associated
with consuming products injected with gelatin-like
substances, thereby protecting public health.
Additionally, it promotes economic integrity by
preventing fraudulent practices in the seafood
supply chain, which can lead to financial losses for
consumers and businesses alike. The adoption of this
tool enhances consumer trust and promotes adherence
to international food safety standards, contributing to
a healthier and more transparent seafood industry.

Given these advantages, this research proposes
a real-time system for detecting shrimp weight
anomalies, thereby bridging the gap between
research innovations and practical consumer needs.
The developed system enables users to determine
whether a shrimp’s weight is normal or abnormal by
capturing an image of the shrimp placed on a digital
weighing scale, with the output simply indicating
either ‘Normal’ or ‘Abnormal’. The system consists
of a cross-platform mobile application that integrates
shrimp detection, morphological feature extraction,
7-segment digit recognition, and weight prediction.

II. OBIJECTIVE

This study aims to develop an intelligent and
practical mobile application for shrimp consumers
that can detect weight-based adulteration in shrimp.

III. MATERIALS AND METHODS

The proposed system consists of a cross-platform
mobile application, Shrimp, a digital weighing scale,

and an Application Programming Interface (API)
server. The process begins with the user capturing
a top-view photograph of a shrimp placed on the
digital weighing scale using the developed mobile
application. This image is then transmitted to the API
server over a wireless network. Upon receiving the
image, the API server processes it to classify the result
of shrimp weight anomaly detection, as illustrated
in Fig. 1.
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Cross-Platform
Mobile Application

Fig. 1. Proposed system overview

The system workflow starts with the user capturing
a photo of the shrimp placed on a digital weighing
scale using the mobile application. The system then
separates the shrimp image from the scale display
to recognize the digits on the 7-segment display.
Simultaneously, it generates a shrimp mask to extract
the necessary features. The shrimp weight is predicted
using a machine learning model. These two results—
the actual weight from the scale and the predicted
weight—are then compared to classify the shrimp
as either ‘normal’ or ‘abnormal’. Finally, all input
and output data are stored in a cloud database, and
relevant information is presented to the user via the
mobile application, as shown in Fig. 2. The proposed
system was developed across seven modules, which
are described in the following subsections.

Take photo of shrimp
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Shrimp images
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Fig. 2. The proposed system workflow
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1) Cross-Platform Mobile Application Develop-

ment

The mobile application was developed in two
parts: the frontend and the backend. Flutter was
chosen as the frontend framework due to its ability
to build mobile, web, and desktop applications
from a single codebase. In this research, which
aims to provide a practical approach for identifying
anomalies affecting shrimp weight, the mobile
application serves multiple functions: Capturing
images of shrimp on a digital weighing scale, detecting
the 7-segment display, and providing the user interface
for interacting with the instance segmentation and
weight prediction model.

As illustrated in Fig. 1, the proposed system
utilizes an API server to handle high-computation
tasks, a common approach in research within this field
[26]. FastAPI was chosen as the backend development
framework due to its high performance in API
management [27]. By employing this technique, the
system avoids the challenges of deploying machine
learning models directly on mobile devices [28].

Two API endpoints were implemented: the first
utilizes the HTTP POST method for preprocessing
and uploading shrimp images to cloud storage, along
with storing related data in a cloud database. The
second endpoint employs the HTTP GET method
to return shrimp weight predictions, incorporating
both feature extraction and the execution of a shrimp
weight prediction model.

The authentication system, including sign-in and
sign-up modules, seamlessly integrates with cloud-based
authentication services. Additionally, data such as
shrimp images, user locations, and prediction results
are securely stored in a NoSQL database, leveraging
appropriate cloud infrastructure.

2) 7-Segment Digit Recognition

Inthis research, digit recognition from 7-segment
displays was facilitated using a point-by-point color
comparison method. This technique analyzes the
color at seven key points of the 7-segment display,
converting this data into digital values, as shown
in Fig. 3. This method ensures accurate and rapid
digit recognition under varied lighting conditions,
outperforming traditional OCR methods, which
often struggle with segmented displays [29]. As
shown in Fig. 4 (a-c), this process involves converting
the original image to binary and setting the reading
points of the 7 segments.
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Fig. 3. The 7-Segment digit recognition workflow
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Fig. 4. The 7-Segment digit recognition process: (a) Original image
of numbers from a digital scale, (b) Image converted to binary, (c)
Setting the reading points of the 7 segments
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A notable limitation of this method is the need
to define a precise frame for capturing images, which
can be challenging and lead to errors if not done
correctly. Ensuring that the picture frame matches
the reference in the application can be difficult,
potentially affecting the accuracy of digit recognition.
To address this, integrating LiDAR technology in
smartphones was considered. LIDAR can dynamically
adjust the focus and framing based on distance,
facilitating optimal image capture. However, the
limited availability of LiDAR in high-end models
restricts widespread use, indicating a need for future
research on more accessible solutions [29].

3) Shrimp Dataset Collection

The shrimp dataset used in this research was
gathered using four different mobile devices. Each
captured image showed a shrimp placed on a digital
weighing scale. As shown in Fig. 5, the dataset
included variations in the digital weighing scale, the
shrimp’s pose, and the mobile device used for image
capture. The dataset contained a total of 1,286 images.

Fig. 5. Examples of images in the dataset

4) Instance Segmentation Model Development

A shrimp instance segmentation model
was developed using the Mask R-CNN, utilizing
MMDetection, a comprehensive toolbox for object
detection and instance segmentation. Built on
PyTorch and distributed under an open-source
license, MMDetection supports numerous well-known
models such as Mask R-CNN, YOLO, and Cascade
R-CNN. It has been benchmarked using standard

datasets, including COCO, PASCAL VOC, and
Cityscapes, and is optimized for both speed and
memory efficiency during training and inference.
Additionally, MMDetection’s modular architecture
allows developers to easily modify the toolbox to suit
specific requirements [31].

This process involved both dataset annotation
and model development. The VGG Image Annotator
was used to annotate the dataset and establish
ground truth. Model development focused on tuning
dataset-specific, model-specific, and training-specific
hyperparameters.

During annotation, each shrimp image was
marked with a polygon outlining the shrimp’s edges,
and the entire shrimp was labeled as ‘white shrimp’.
The annotated dataset was then formatted according
to the COCO standard.

The developed model was evaluated using the
CocoMetric class, which supports various standard
metrics, including Average Precision and Average
Recall at different Intersection over Union (IoU)
thresholds. These metrics assess both bounding
box and instance segmentation performance. Once
the desired metrics were achieved, the final model
produced a mask image as output. In this mask image,
black pixels represent the shrimp, and white pixels
represent the background.

5) Shrimp Features Extraction

Regression analysis is the primary method for
developing shrimp weight prediction models [32],
[33]. While various imagery techniques can extract
predictive features, including statistical, textural,
and color-based features [34], [35] morphological
features have shown the strongest correlation
with shrimp weight. This is because shrimp have
a distinctive morphology, with curved bodies
exhibiting a weight directly proportional to their size.
Four key morphological features are extracted from
shrimp images: Total area, perimeter, head-to-tail
length, and maximum width. These measurements are
expressed in pixels and derived using pixel counting,
contour analysis, skeletonization, and circular base
measurement, respectively [36].

This investigation employed a four-step feature
extraction process to derive these morphological traits
from shrimp images, which are crucial for accurate
weight prediction. Each step is detailed below.

First, the shrimp’s area was quantified. This
was achieved by counting the black pixels within the
mask image, with each pixel representing a part of
the shrimp to provide a total area. Fig. 6 (a) shows
the area inside the shrimp.

Second, the perimeter was calculated. The
shrimp’s contour was detected in the mask image, and
the number of pixels along the contour was counted.
Fig. 6 (b) shows the perimeter of the shrimp.
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Third, the shrimp’s length was determined. The
mask image was skeletonized, as depicted in Fig. 7 (a),
and endpoints were identified on the resulting structure,
as shown in Fig. 7 (b). Distances between all pairs
of endpoints were calculated. The endpoints with the
maximum distance were used to denote the shrimp’s
head-to-tail length, as illustrated in Fig. 7 (c).

(2) (®)
Fig. 6. The process of determining shrimp area and perimeter: (a)
The area of the shrimp, (b) The perimeter of the shrimp

(a) (b) (©)
Fig. 7. The process of determining shrimp length: (a) Skeleton
from the mask image, (b) Endpoints on the skeleton, (c) Calculated
length between endpoints

Finally, the shrimp’s width was measured.
This was achieved by iteratively placing increasingly
larger circles over the mask image until the shrimp
region was fully encompassed. The diameter of the
encompassing circle represents the shrimp’s width.
To enhance efficiency, the Multiscale Approximation
(MSA) technique was employed, downscaling the
image to quickly identify the optimal placement for
this circle. Fig. 8 shows the width determination
results, which were verified using 16 points by checking
the number of white pixels within the circle.

The extracted features and their corresponding
weights in grams were compiled into a structured
dataset. This dataset was used for the development
of the weight prediction model, facilitating further
analysis and model training.

6) Weight Prediction Model Development

The weight prediction model developed in this
research is a supervised learning model, implemented
using both linear and non-linear regression algorithms.
Fornon-linear regression, the Random Forest algorithm,
which leverages the bagging ensemble learning
method, was designed and utilized. A Random Forest
consists of multiple base learners, denoted as

decision trees, each trained using a sample from
feature randomness. Once each learner has produced
a continuous value, all values are averaged to produce
the final output, as shown in Fig. 9.

By using the bagging ensemble algorithm,
Random Forests address the high variance of decision
tree models without increasing bias. Moreover,
bagging requires less computation time than most
machine learning algorithms when training on large
datasets [37], and it has been utilized across several
research domains [38], [39].

Fig. 8. The shrimp’s width is measured by iteratively placing a
16-point circle entirely encompassing the shrimp region
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Fig. 9. Bagging ensemble algorithm in random forest regression.

The developed model utilizes features extracted
from the shrimp feature extraction process. Specifically,
the features denoted as area, perimeter, length, and
width are considered as independent variables, while
the weight is treated as the dependent variable. Before
model development, the entire dataset was visualized
to identify and eliminate outliers. The dataset was
then randomly split into training and testing sets. All
features in the dataset were standardized as in (1),
where z represents the standardized samples, is the
original sample, X is the mean of the sample, ¢t and is
the standard deviation of the training samples.

x—p
N

Z =

@)

The model and dataset-specific hyperparameters
were tuned during the development of the random
forest model. This included the number of trees in the
forest, the maximum depth of the trees, the minimum
number of samples required at a leaf node and to
split an internal node, and the number of features to
consider when determining the best split.
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To evaluate the model’s performance and
robustness, the coefficient of determination (R?) and
the Mean Absolute Error (MAE) were used. A higher
indicates a better fit between the model and the data,
while a lower MAE indicates a smaller difference
between the predicted and actual values. Additionally,
the model evaluation was repeated 30 times, and the
average and MAE were recorded as the results.

7) Determining the Final Classification

The proposed system produces two possible
classifications: ‘Normal’ and ‘Abnormal’. ‘Normal’
indicates that the shrimp is not subject to weight-
increasing fraud, while ‘Abnormal’ signals the
detection of an anomaly in the shrimp’s weight.

To determine the final classification, the system
integrates recognized digits from the 7-segment
digit recognition module with the predicted shrimp
weight generated by the weight prediction model.
If the variation between these two numbers does not

T o S

v U
JdJ O r

(a)

exceed 10% of the average weight in the dataset
(1.816 grams), the system classifies the shrimp as
‘Normal’. Conversely, if the variation exceeds 10%,
the shrimp is classified as ‘Abnormal’.

IV. EXPERIMENT SETUP

Three experiments were set up to align with the
proposed method described in the previous section.
These experiments are detailed in the following
subsections.

1) Generate a Shrimp Mask Image

The shrimp mask images, as illustrated in
Fig. 10 (a), were generated using the instance
segmentation model proposed in subsection 2. 4. The
corresponding shrimp dataset, depicted in Fig. 10 (b),
was then divided into training, validation, and testing
sets with a ratio of 70:20:10. To further enhance the
diversity of the training set, data augmentation was
applied using the random flip technique.

8

(b)

Fig. 10. The comparison of: (a) shrimp mask images obtained from the instance segmentation model, (b) shrimp images captured from

a mobile application

A pre-trained ResNet-50 model was utilized
as the backbone for development. The model was
trained for 12 epochs using the SGD optimizer, with
a learning rate of 0.0025, a momentum of 0.9, and
a weight decay factor of 0.0001. The evaluation
results, reported using CocoMetric, include
a segmentation mean Average Precision (mAP) of
0.601 at IoU thresholds ranging from 0.5 to 0.95 in
increments of 0.05, and a segmentation mean Average
Recall (mAR) of 0.648 at the same IoU thresholds.

2) Feature Analysis And Visualization

The extracted features from the proposed

method were analyzed using descriptive statistics,

as shown in Table I, to summarize the dataset. This
analysis provides insights into the central tendency
and variability of each variable. Due to differences
in units between the dependent variable (weight),
measured in grams, and the independent variables,
measured in pixels, a log scale transformation was
applied to all variables. The results were visualized
using a box-and-whisker plot, as shown in Fig. 11,
to better illustrate variability. The plot reveals
that “Weight” exhibits high variance, with “Area”
displaying the highest variance among the independent
variables. Additionally, the other independent
variables also demonstrate significant variability.
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TABLE I
DESCRIPTIVE STATISTICS OF THE COLLECTED DATASET

Variable (Unit) (m‘féf‘,%‘in) Mean S.D.

Area (pixels) 2220 1864.872  426.384
Perimeter (pixels) 177 287.461 33.311
Length (pixels) 72 115.739 13.323
Width (pixels) 24 19.076 3.122
Weight (grams) 25.5 18.160 5.357

This analysis suggests that the selected variables
are well-suited for regression model development,
as high variance in both independent and dependent
variables improves the model’s ability to effectively
capture diverse patterns and relationships within the
data [40], [41].
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Fig. 11. Log-scaled box-and-whisker plot of variables in the dataset

Additionally, the scatterplot matrix and
correlation coefficients, as illustrated in Fig. 12 and
Fig. 13, were visualized to understand the strength of
the relationships between the independent variables
and the dependent variable. This analysis aids in the
model and feature selection process by identifying
which variables are most relevant for predicting the
target outcome.
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Fig. 12. Scatterplot matrix of variables in the shrimp dataset
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Fig. 13. Correlation coefficient heat map of the extracted shrimp
features

3) Weight Prediction Model Training

This experiment focuses on the model and
feature selection process. Both linear and non-linear
algorithms were explored based on the patterns
observed between the independent and dependent
variables. Initially, a linear regression algorithm
was employed to develop a weight prediction model
using shrimp area, as this feature exhibited the highest
correlation coefficient with the dependent variable.
The dataset was divided into training and testing
sets, with 80% used for training and 20% for testing,
to evaluate model performance. The experimental
results showed that shrimp weight can be predicted
using (2), where y denotes the predicted weight and
area represents the number of black pixels in the
shrimp mask image. The model evaluation yielded
a R? value of 0.777 and an MAE of 2.021.

y=-1.9634+0.0108 X area 2)

As the performance of the initial linear model
was unsatisfactory, a multiple linear regression
model was developed. To avoid multicollinearity, the
correlation coefficients in Fig. 13 were used for feature
selection, with a correlation threshold set at 0.8 [42].
This process led to the selection of shrimp area and
shrimp width as features. The resulting model is
presented in (3), where y represents the predicted
weight, area refers to the number of black pixels
in the shrimp mask image, and width denotes the
diameter of the largest circle that fits within the
shrimp mask. The model evaluation yielded an R?
value of 0.779 and an MAE of 2.01.

y=-24994 + (0.0105 X area) (3)
+(0.0569 X width)

The two linear models developed earlier were
still unsatisfactory. Therefore, an ensemble model,
specifically a Random Forest, was employed. This
model was developed using GridSearchCV to
perform an exhaustive search through a specified
hyperparameter grid, as shown in Table II.
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Additionally, 10-fold cross-validation was
applied during this process to improve the model’s
generalization.

TABLE II
SPECIFIED HYPERPARAMETERS
Hyperparameter Value Purpose
n_estimators 300 To specify the number of trees

in the forest, which can improve
model accuracy.

max_depth 5 To specify the maximum depth
of each tree, which can prevent

model overfitting.

min_samples_leaf 5 To specify the minimum number
of samples required to be at a
leaf node, which can improve

the model’s generalization.

min_samples_split 1% To specify the minimum fraction
of samples required to split an
internal node, which can prevent
model overfitting.

max_features Square To specify the number of
Root  features considered at each
split as the square root of
the total number of features,
which can help reduce model
variance.

V. RESULTS

1) Weight Prediction Model

The proposed model in this study was developed
using Random Forest Regression and trained on the
collected shrimp dataset, with 80% of the data used for
training and 20% reserved for model evaluation. The
training phase included hyperparameter tuning and
10-fold cross-validation to improve generalization.
To enhance the reliability of the results, the evaluation
process was repeated 30 times, and the average
performance metrics were recorded. The evaluation
results for the weight prediction model are presented
in Table III.

The results indicate that the weight prediction
model developed using random forest best fits the
observed data, as reflected by the value. Additionally,
the average magnitude of the errors, represented
by the MAE, is the lowest among the compared
algorithms.

TABLE III
WEIGHT PREDICTION MODELS PERFORMANCE
Regression Model Feature R? MAE
Linear Area 0.777 2.021
Multiple Linear Area & Width 0.779 2.010

Random Forest All Features 0.821 1.786

2) Mobile Application

Upon opening the developed application, users
can create their accounts or log in using third-party
authentication. On the home page, users can view

summarized information, including recommendations
on places to buy shrimp and a pie chart illustrating the
proportion of normal and abnormal shrimp weights
they have predicted. To predict shrimp weight, users
can select the Camera menu from the drawer menu
in the top left corner of the screen. The application
will then display images of various digital weighing
scales, allowing users to select the one that matches
their own. Subsequently, the mobile camera is
activated, and a small green square appears to
manually specify the location of the 7-segment
display. The mentioned features of the application are
illustrated in Fig. 14 (a)-(c).
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Fig. 14. The developed mobile application: (a) Home page, (b)
Camera page, and (c) Green square on 7-segment display

To detect anomalies in shrimp weight, the user
must place the suspicious shrimp on a digital weighing
scale while simultaneously capturing an image. Then,
they press the prediction button to send the entire
image to the API server. If the predicted weight does
not differ from the weight displayed on the 7-segment
display by more than two grams, the system classifies
the shrimp as ‘Normal’, and the result shown in
Fig. 15 (a) will be displayed to the user. Otherwise,
Fig. 15 (b) will be shown, indicating an ‘Abnormal’
classification. Moreover, a prediction history is
provided within the developed application, as shown
in Fig. 15 (c), to help users identify which stores are
safe for purchasing shrimp.

B vare mae war-
Result = Result

Wi

= Shoph_14:03:19

my

9

Vieight (MLY: 12,0
Vieight (Digital Scale): 13.0

Shop:Shops_14:43:19
Hormsl

Date: 15/84/2624

Address: Thung Sukhla
e Sriracha Chonburi
Thailand

g

(@ (b) (©)

Fig. 15. The developed system: (a) Normal shrimp weight result,
(b) Abnormal shrimp weight result, (c) Shrimp weight prediction
history
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To verify the developed application, both a non-
adulterated shrimp detection scenario and an adulterated
shrimp detection scenario were tested. In the first
scenario, a non-adulterated shrimp, with an actual
weight of 24.2 grams, was placed on a digital weighing
scale. The developed mobile application captured an
image of the shrimp, which was then sent to the API
server. The server generated a shrimp mask, extracted
all morphological features, predicted the weight
from the obtained features, and determined the final
classification. The feedback from the API server was
‘Normal’, indicating that the developed system
successfully passed this test.

In the second scenario, an adulterant weighing
3.3 grams was injected into the same shrimp used in
the first scenario, resulting in a total weight of 27.5
grams. The testing process was identical to the first
scenario. However, the result from the API server was
‘Abnormal’, indicating that the developed system also
successfully passed this test.

VI. DISCUSSION

The experimental results show that the Random
Forest Regression algorithm, utilizing all extracted
features, significantly outperformed both linear and
multiple linear regression models within the scope of
this experiment’s dataset. This superior performance
comes from the ensemble approach of Random
Forests, where the predicted weight is an aggregation
of numerous decision trees. Each tree is constructed
using feature randomness and the bagging ensemble
learning technique, which enhances the model’s
robustness. Additionally, the diverse conditions under
which the individual trees are created contribute to
the model’s ability to generalize effectively. The final
prediction, being an average of all tree outputs, resultsina
more reliable and generalized weight prediction model.
It’s worth noting that the success of the Random
Forest model is due not only to the algorithm itself
but also to the careful selection of relevant features,
which played a crucial role in optimizing model
performance.

The mobile application for detecting anomalies
in shrimp weight was developed using the Dart
programming language. It interfaces with image
processing and weight prediction components through
APIs implemented in Python. Python was chosen for
image processing because it’s more efficient than Dart
for those tasks. While machine learning models could
be deployed directly on mobile devices, APIs were
used for the weight prediction component to ensure
consistent performance. This server-side approach
guarantees uniform model accuracy, regardless of
users’ varying hardware capabilities, making the
system more reliable and scalable. Furthermore, the
application’s features are specifically designed to

detect undeclared product modifications that increase
the perceived weight of shrimp. This information is
valuable for consumers, helping them avoid buying
from sources previously associated with adulterated
shrimp.

VII. CONCLUSION AND FUTURE WORK

This research aimed to develop a practical
approach for individuals seeking to avoid shrimp
weight fraud. The proposed method focuses on daily
usability and feasibility. Recognizing the pervasive
use of mobile devices and their synergy with Al,
a mobile application was developed as the user
interface for the anomaly detection module.
This module ingeniously combines an instance
segmentation model with a weight prediction model.

The system identifies weight anomalies through
sophisticated image analysis. It starts by accurately
segmenting shrimp from their background using
Mask R-CNN, chosen for its excellent object
segmentation capabilities. This method proved highly
precise and efficient, yielding clear shrimp outlines
crucial for the developed application.

After segmentation, vital morphological features,
including area, perimeter, length, and width, were
extracted. While area and perimeter were simple to
calculate, determining length and width demanded
more complex, computationally intensive methods.
To address this, a shortest path algorithm and a circle-
fitting method with reduced point frequency were
implemented, allowing for efficient extraction of the
necessary numerical data.

These extracted features are then fed into the
shrimp weight prediction model. Experimental
results show that the model, built with the Random
Forest algorithm and leveraging all four features
(area, perimeter, length, and width), significantly
outperformed other models. It achieved an value of
0.821 and a Mean Absolute Error (MAE) of 1.786
grams, successfully meeting the proposed system’s
criteria.

However, this research could be further improved
by developing an automated 7-segment screen
detector. This improvement would allow the system
to adapt to a wider variety of weighing scales, greatly
increasing its flexibility and real-life applicability.
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