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	 Abstract—The vehicle routing problem with 
time windows is important in optimizing logistics  
distribution. For VRPTW optimization, a strategy 
is used to classify and optimize routes using artificial  
intelligence methods. Therefore, an improved  
two-phase algorithm is required to find a solution. 
Namely, a customer group can be divided into several  
regions using the K-means algorithm in the first phase, 
and each region can be decomposed into smaller  
subgroups according to certain constraints. In the 
second phase, local search from OR-tools solves the 
routing problem. In this experiment, two different  
methods of determining the number of clusters, 
namely, the elbow method and the truck utilization 
method, are compared by experimenting with a 
total of 26 standard instances. The results show 
that the truck utilization ratio outperforms the 
elbow method for the K-means algorithm in terms 
of overall results. The results from this experiment 
can be highly beneficial for routing, particularly 
when handling huge amounts of data that need to 
be subdivided ahead.

	 Index Terms—Clustering, K-means, Routing 
Problem, Time Windows

I. INTRODUCTION

	 Nowadays, people are using the internet to purchase  
items more and more because of these factors. The 
primary issue for the businesses in this situation is 
to offer more demanding clients a more effective  
distribution service. A number of large online  
merchants have begun searching for more creative  
and efficient ways to expedite last-mile and  
same-day delivery.
	 The rapid economic growth at both national and 
global levels has intensified business competition. To 
remain competitive, companies must enhance their 
logistical and transportation systems, as these are 
crucial components of efficient business operations.  

In supply chain management, one of the fundamental 
challenges is optimizing vehicle selection and routing  
to minimize shipping costs. This problem aligns 
with the Vehicle Routing Problem (VRP), which  
addresses transportation system issues such as route  
optimization, vehicle capacity management,  
transportation time windows, and accommodating 
diverse customer requirements [1].
	 The emergence of the Internet of Things (IoT) 
and big data analytics has significantly improved  
logistics operations. These technologies enable  
precise and effective monitoring of transportation 
processes through cloud computing, enhancing  
logistics efficiency and reducing operational costs [2].  
However, many companies still rely on outdated  
logistics management systems that require significant  
manual effort. As businesses handle increasing order 
volumes, the need for a robust and efficient decision- 
support system for logistics distribution becomes 
critical.
	 A widely adopted approach in solving vehicle 
routing problems is the Cluster-First Route-Second 
(CFRS) strategy. This method consists of two main 
stages: first, decomposing shipping points into smaller  
clusters, followed by optimizing routes within each 
cluster [3]. Clustering plays a vital role in managing  
transportation route problems, as it helps break 
down complex logistics challenges into manageable  
subgroups.
	 Several clustering techniques have been applied 
in logistics, with K-means being one of the most  
prominent methods. K-means effectively clusters 
groups of delivery points based on proximity and 
shared transportation constraints, forming distinct  
clusters before applying route optimization  
algorithms [4]. Transportation route optimization 
can be approached by grouping delivery points into 
clusters based on factors such as distance or time  
windows, allowing each cluster to be assigned  
a specific vehicle for efficient deliveries [5].
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	 The CFRS strategy is particularly useful in  
solving the Vehicle Routing Problem with Time  
Windows (VRPTW), where deliveries must adhere 
to strict time constraints. By first clustering delivery 
points and then optimizing routes within each cluster, 
computational time is reduced, and solution quality  
is improved, particularly in large-scale logistics  
operations [6]. Therefore, clustering should be  
effectively executed to maximize its impact on logistics  
efficiency and overall supply chain performance. 
	 While the Cluster-First, Route-Second (CFRS) 
strategy has demonstrated effectiveness in addressing 
the Vehicle Routing Problem with Time Windows 
(VRPTW), a significant research gap persists in the 
optimal determination of the number of clusters.  
Existing literature predominantly employs the elbow  
method to determine the appropriate number of clusters  
in K-means clustering. However, this technique does 
not sufficiently account for operational constraints 
such as vehicle capacity utilization, which is critical 
for practical logistics applications.
	 The research question explored in this study is: 
How does the elbow method for cluster determination 
compare with optimization based on truck utilization  
ratio in terms of overall logistics efficiency and 
cost-effectiveness? This comparison is particularly 
significant because while the elbow method aims 
to minimize within-cluster variance as a statistical  
measure of clustering quality, it may not align with 
the practical objective of maximizing vehicle capacity  
utilization, which directly impacts operational  
expenses and resource efficiency. Current  
literature predominantly employs the elbow method 
for determining optimal cluster numbers in vehicle  
routing problems with time windows without  
a  systematic  evaluation  of  i ts  operational  
effectiveness. This creates a research gap where  
statistically optimal clustering is assumed to translate 
into operationally efficient routing without empirical 
validation.
	 This study addresses this gap by making several  
key contributions to logistics optimization. First, 
this work develops the first systematic comparison  
framework between statistical clustering validation 
and operational optimization approaches for vehicle  
routing problems with time windows. Second, it  
provides empirical validation demonstrating the  
conditions under which each clustering approach 
delivers superior performance in terms of cost  
reduct ion  and  resource  ut i l izat ion.  These  
contributions advance both theoretical understanding  
of clustering effectiveness in transportation  
systems and provide practical guidance for logistics  
optimization in real-world applications.

II. LITERATURE REVIEW

	 The Vehicle Routing Problem (VRP) is a critical 
issue frequently addressed by managers in logistics 
and transportation. A VRP involves the distribution 
of goods from an origin as a single depot or multiple 
depots to multiple destinations [7]. Solving VRPs 
provides significant benefits to businesses, including 
optimized routes and travel times, reduced vehicle 
requirements, and improved vehicle utilization. These 
efficiencies lead to lower overall logistics costs and 
increased profitability for organizations [7].
	 An extension of the VRP is the Vehicle Routing 
Problem with Time Windows (VRPTW), which not  
only focuses on minimizing route costs but also  
incorporates time constraints to ensure that customers  
are serviced within predefined time windows,  
bounded by the earliest and latest permissible times 
[8], [9].
	 In the VRPTW framework, the optimization 
model must account for specific time-based service 
requirements designated by each customer within the 
distribution network. These temporal constraints are 
formally defined through a dual-parameter system: 
(ei) represents the earliest permissible service  
initiation time, while (li) denotes the latest allowable  
service completion time for each customer.  
This temporal framework introduces an additional 
dimension of complexity to the traditional spatial 
routing optimization problem.
	 A notable characteristic of VRPTW implementations  
is the concept of soft time windows, which introduces 
operational flexibility while maintaining service quality  
standards. Under this constraint structure, delivery 
vehicles are permitted to arrive at customer locations 
before the designated earliest start time (si). However, 
in such instances, service commencement must be  
delayed until the customer’s specified time window  
officially begins. This waiting time, while not  
subject to direct penalties, must be incorporated 
into the overall route optimization calculations as it  
impacts operational efficiency and resource utilization.  
Fig. 1 shows an example of a VRPTW problem where 
each customer has their specific service time window.

Fig. 1. Eight customers and one depot network
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	 This study employs a “one-to-all” routing model,  
where each vehicle departs from and returns to  
a designated depot. The warehouse serves as the  
storage site and the departure point for vehicles.  
Vehicle routes are visually depicted with directional  
arrows, and polygons in various colors represent  
customer groups assigned to distinct routes. Products 
are loaded onto vehicles at the depot and delivered to 
their respective customers.
	 The model also considers vehicle storage  
constraints, ensuring that each vehicle’s capacity  
accommodates the weight and quantity of transported 
goods. Two key assumptions underpin this model: (1) 
the total number of available vehicles is sufficient to 
meet the daily demand of all customers, and (2) each 
customer’s daily order does not exceed the capacity of 
a single vehicle. Under these conditions, each vehicle 
is assigned a route to serve multiple customers and 
deliver various goods. While a single vehicle can 
cater to multiple customers along its route, only one 
vehicle is allocated to serve a particular customer at 
any given time.
	 The Vehicle Routing Problem with Time Windows  
(VRPTW) represents a complex combinatorial  
optimization problem that seeks to determine optimal 
routes for a vehicle fleet serving customers within 
specified time windows while satisfying capacity 
constraints. A prominent solution methodology for 
VRPTW is the two-phase Cluster-First Route-Second 
(CFRS) approach, which decomposes the problem 
into computationally tractable subproblems. The  
clustering phase partitions customers into  
geographically coherent groups using algorithms 
such as K-means, ensuring that vehicle capacity 
and temporal constraints are maintained within each 
cluster through appropriate parameter adjustments. 
Subsequently, the routing phase applies heuristic 
algorithm improvements to optimize vehicle routes 
within individual clusters while minimizing travel 
distance and satisfying time window constraints. 
This decomposition strategy reduces computational 
complexity from exponential to polynomial time for 
large-scale instances, enabling near-optimal solutions 
for practical applications. The CFRS methodology 
has demonstrated effectiveness in various logistics 
domains, including perishable goods distribution and  
urban delivery systems, where it successfully balances  
solution quality with computational efficiency. 
The approach’s scalability and adaptability make it  
particularly suitable for large-scale VRPTW instances  
where exact methods become computationally  
prohibitive, thereby providing a practical framework 
for real-world logistics optimization applications.
	 While various clustering methodologies exist  
for addressing VRPTW applications, including  
hierarchical clustering, heuristic-based clustering  
approaches, and spectral clustering, K-means clustering  

has emerged as the most widely adopted approach in 
various domains due to its computational efficiency  
and scalability. Although K-means has not yet 
gained widespread adoption specifically in logistics  
optimization, its proven effectiveness in partitioning  
data points into coherent groups and its ability  
to  handle large datasets  efficiently make it  
a promising candidate for vehicle routing applications.  
Consequently, this research employs K-means  
clustering as the primary clustering methodology to 
investigate the comparative effectiveness of different 
cluster determination approaches in vehicle routing 
optimization.

A.	 K-means Clustering Algorithm

	 One well-known clustering technique is K-means 
clustering, which divides n observations into k  
clusters, where k is prioritized. The client’s cluster 
is determined by the K-means clustering; a second 
clustering is then applied to each of the K-means  
clusters. As far as possible, the method aims to  
segregate each compact class and minimize the 
goal function. According to Khan and Ahmad [10], 
K-means clustering can be explained as follows.
	 First, the K-means algorithm selects k objects at 
random, each of which represents a mass of grouping  
relationships. Based on each grouping’s mass to  
object distance, each object is then assigned to  
the most similar clustering. Next, figure out 
each clustering’s new mass. Continue doing the  
aforementioned till the guideline function is put  
together. In general, the square error guideline function  
[11] is the adopted guideline function.
	 Assume that X = {x1,x2...,xn} is a set of  
observations, with d being the dimension of each 
real vector. ck is the formula for a set of K centers:  
K = {1,2,...,K}. With sj = {d | d is a member of the 
cluster k}, the set of samples that belong to the kth 
the cluster is displayed. Euclidean distance is the 
distance between a point and the cluster center ck, 
as given in (1).

	 				          (1)

	 Step 1: Random sampling was used to generate a 
set of ck.
	 Step 2: Decide each cluster’s members according 
to the requirements for the minimum distance from 
the cluster center.
	 Step 3: Equation (2) will be used to calculate ck. 
|Sk| Represents the number of data elements in the  
kth cluster.

	 				           (2)

	 Step 4: Until the objective is optimal, steps 2 and 
3 could be repeated. When evaluating the K-means 
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clustering procedure, the Sum of Squares Error (SSE) 
criterion is most frequently utilized. The greatest  
results are obtained from the clustering result with the 
lowest SSE value. Equation (3) computes the sum of 
the squares of the object distances from the cluster 
center points [12].

	 			         (3)

B.	 Determine the Optimal Number of K-Means  
Clusters

	 From the relevant research literature, multiple 
methodologies for determining the optimal number of 
clusters (k) in vehicle routing applications have been 
identified, each with distinct theoretical foundations 
and practical implications. Among the prominent  
approaches, Comert et al. [13] proposed a mathematical  
formulation for calculating the number of clusters  
based on operational constraints, specifically  
incorporating truck capacity and customer demand 
parameters. Their methodology determines cluster 
numbers by optimizing the truck utilization ratio, 
thereby directly linking clustering decisions to vehicle 
capacity management and operational efficiency. This 
approach represents a paradigm shift from traditional 
statistical clustering validation methods by prioritizing  
operational feasibility over purely geometric or  
statistical cluster quality measures. Additionally, the 
elbow method constitutes another widely recognized 
technique for cluster number determination, which 
employs a different theoretical framework based on 
the analysis of the within-cluster sum of squares, with 
details presented as follows:
	 1)	Therefore, to solve a capacitated VRP problem 
using K-means clustering, Comert et al. [14] provided 
an equation for calculating the number of clusters.  
Employing (4) as the calculation formula, the  
number of clusters is determined by truck capacity 
and demand, or the truck utilization ratio.

	 total demandnumber of clusters =
truck capacity

	        (4)

	 2)	The elbow approach uses the K-means  
clustering algorithm to plot the explained variations 
against the number of clusters. The elbow curve 
is then used to determine the number of clusters. 
The quality of aggregation within a cluster and the  
separation between clusters are represented by  
summing the squared errors of all data points within 
the cluster. Thorndike came up with the elbow method 
[14], which uses the variation graph (data dispersion) 
as a function of the number of clusters to compute the 
ideal number of clusters to utilize. The elbow curve is 
the result of this method. Bertagnolli [15] states that 
the Elbow approach can be expressed mathematically 
(5), (6) as follows:

	
1
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r r
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= ∑ 				           (5)
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= −∑∑ 			          (6)

	 Where Wk is the average internal sum of squares, 
and Dr are the sum of the distances between each 
point in a cluster, k is the number of the cluster, and 
nr is the number of points in the cluster. 
	 For different values of k (number of clusters), 
calculate the Sum of Squared Distances (SSE)  
between each data point and its nearest centroid. Plot 
the number of clusters (k) versus the SSE values. 
Then, locate the point on the graph where the SSE 
decline begins to level out and take the shape of an 
elbow. This is the ideal number of clusters.

III. METHODOLOGY

	 This research presents an experimental study  
focused on VRPTW applications, specifically  
investigating the comparative effectiveness of two 
fundamentally different approaches for determining  
the optimal number of clusters (k) in K-means  
clustering algorithms. This work conducts experimental  
investigations on VRPTW instances to evaluate two 
distinct methodologies for determining the optimal  
number of clusters (k) in K-means clustering:  
The truck utilization ratio approach and the elbow 
method. The objective of this study is to assess the 
comparative performance and effectiveness of these 
two clustering determination techniques in optimizing  
logistics operations and overall system efficiency 
within vehicle routing optimization scenarios. 
	 The CFRS approach represents a systematic 
two-phase methodology for solving VRPTW by  
decomposing the complex optimization problem 
into computationally manageable subproblems. This 
methodology leverages K-means clustering in the 
first phase to partition customers into geographically  
coherent groups, followed by route optimization  
within each cluster in the second phase, as shown 
in Fig. 2.

Fig. 2. CFRS methodology with different K-determination methods

	 In this study, standard VRPTW instances were 
employed, selected randomly to ensure unbiased 
representation. The analysis focused on comparing 
different subgroup initialization strategies for the 
K-means clustering method in the first phase of the 

vehiele capacity)
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solution process. In the subsequent routing phase, 
vehicle capacity and time window constraints were 
imposed to reflect realistic operational conditions.
	 The performance of the designed algorithm is 
compared to models from the existing literature in 
this section through computational studies. Using  
Solomon’s instances [16], six different types of 
problems that impact the behavior of algorithms for 
VRPTW are identified. They are divided into three 
categories: Random (R), Clustered (C), and Random- 
Clustered (RC). Of these, there are two types: Type 1, 
which has a short scheduling horizon (R1, C1, RC1),  
and type 2, which has a long scheduling horizon 
(R2, C2, RC2). The variables, which are drawn from 
Solomon [17], include the number of customers, 
geographic location, demand level, time windows 
(ready and due times), service time, and vehicle  
capacity. These benchmarks enable thorough testing 
of VRPTW algorithms in various scenarios.
	 VRPTW algorithms are still evaluated using the 
Solomon benchmark problems. These instances are 
divided into six groups according to operational  
characteristics, time window restrictions, and  
customer spatial distribution, with each problem’s 
details presented as shown in Figs. 3 to Fig. 8.

Fig. 3. Distribution of instance C101

Fig. 4. Distribution of instance C201

Fig. 5. Distribution of instance R102

Fig. 6. Distribution of instance R201.
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Fig. 7. Distribution of instance RC101

Fig. 8. Distribution of instance RC201

	 The strategy in this approach involves utilizing 
the K-means algorithm. Determining the appropriate 
number of clusters for a given dataset is a crucial 
step in this algorithm. The elbow method identifies 
the optimal number of clusters by examining the 
curve representing the within-cluster sum of squares 
plotted against the number of clusters. The elbow 
point on this curve indicates where adding additional  
clusters yields diminishing returns in variance  
reduction. Thus, the optimal number of clusters  
identified through the elbow method is then utilized 
in the K-means algorithm to perform clustering.
	 In this research, the experiment is conducted on 
the Solomon benchmark problem, which involves 
26 problems: 5 problems of C1, 5 problems of C2, 
5 problems of R1, 5 problems of R2, 3 problems of 
RC1, and 3 problems of RC2. The experiment was 
designed to compare the efficiency of routing with 
different K-means clustering methods, with each 
cluster being routed using OR-Tools’ local search 

method. Employing local search to address vehicle 
routing problems is a pragmatic decision owing to its 
capacity to effectively traverse complex, large-scale 
solution spaces efficiently. Local search heuristics 
iteratively refine a candidate solution by exploring 
its nearby “neighborhood” of solutions, making 
small, incremental adjustments that often yield quick  
improvements in route cost or feasibility. This method 
is particularly valuable for VRP, which is NP-hard 
and difficult to solve optimally within a reasonable 
time, especially as the number of customers grows.

IV. RESULTS

	 Based on Solomon’s problem classification, the 
six problem types, R1, R2, C1, C2, RC1, and RC2, 
are distinguished by customer distribution and vehicle 
constraints. For R1 problems, which involve narrow 
time windows and low vehicle capacity, the elbow 
method produces a shorter total distance than the 
clustering approach proposed by Comert et al. [13], 
as measured by the truck utilization ratio. However, 
for R2 problems, which feature wider time windows 
and higher vehicle capacity, the clustering method 
by Comert et al. [13] achieves better performance in 
terms of total distance.
	 According to the findings of 26 experiments, 
the clustering by using the truck utilization ratio  
outperforms the elbow approaches for all 14 of the 
26 instances, as shown in Table I and Fig. 9. The 
following are examples of the experimental findings 
from applying the CFRS approach in routing utilizing 
K-means with various techniques for determining the 
number of groups (k), namely the elbow method and 
truck utilization ratio: C101, and C203.

TABLE I
FESIBLE SOLUTION

Instance
Elbow Method Truck Utilization Ratio 

Distance Car k Distance Car k

C101 1880.82 20 5 1976.79 66 10

C102 1441.24 16 5 1422.62 41 10

C105 1277.93 15 5 1291.30 40 10

C108 892.50 11 5 879.05 21 10

C109 723.78 11 5  742.66 16 10

C201 629.94 8 5 648.81 4 3

C203 634.33 8 5 568.05 4 3

C205 623.53 7 5 567.24 4 3

C206 1449.01 11 5 1350.08 5 3

C207 840.62 8 5 567.84 4 3

R102 1039.85 12 4 1103.9 15 8

R103 905.37 11 4 930.43 12 8

R105 1031.43 12 4 972.16 15 8

R109 838.95 10 4 947.31 12 8

R112 756.22 9 4 750.25 9 8
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Instance
Elbow Method Truck Utilization Ratio 

Distance Car k Distance Car k

R201 1438.99 9 4 1373.70 6 2

R202 1302.69 8 4 1203.58 6 2

R203 1069.22 9 4 1054.87 4 2

R208 740.19 6 4 710.58 3 2

R210 979.25 7 4 985.45 5 2

RC101 1126.71 12 4 1176.68 17 9

RC103 981.57 10 4 1003.06 13 9

RC104 857.34 10 4 916.37 12 9

RC201 1584.65 10 4 1507.91 8 2

RC206 1149.22 8 4 1175.81 4 2

RC208 687.92 4 4 671.76 4 2

Fig. 9. Comparison results of methods for determining the number 
of groups

TABLE II
PAIRED T-TEST RESULTS

Dependent 
Variable

Mean t-statistic p-value

Group 1 
(Elbow 

Method)

Group 2 
(Truck 

Utilization 
Ratio)

Distance 1033.97 1019.16 .991 .331

Car 10.08 13.46 -1.471 .152

	 The results from the t-test indicate that there is 
no statistically significant difference between the two 
methods for either variable. The paired sample t-test 
showed no significant difference between the Elbow 
Method and the Truck Utilization Ratio for both  
distance (Elbow Method: Mean = 1033.97, Truck  
Utilization Ratio: Mean = 1019.16; t = 0.991, p = 0.331)  
and the number of trucks (Elbow Method: Mean = 
10.08, Truck Utilization Ratio: Mean = 13.46; t = 
-1.47, p = 0.152). These findings indicate that both 
methods yield statistically comparable outcomes, 
suggesting that either approach can be applied  
without compromising routing efficiency or fleet  
utilization, as shown in Table II.
	 Establish the answer by the elbow method. For 
the example instance of C101 and C203. Start by 
dividing the data to determine the number of groups, 

which shows the results as shown in Figs. 10 and 11. 
After that, considering the characteristics of the points 
that form the elbow angle, which indicates that there 
should be how many groups (k) from the result, a total 
of five groups are divided based on the characteristics 
of the data in this problem. Next, divide the groups, 
which shows the results as shown in Figs. 12 and 13. 
Finally, work on finding the route sequence for each 
group using the OR tool by the local search method, 
which displays the results as shown in Tables III and 
IV.

Fig.10. The result of determining k, for instance, C101, by the 
elbow method

Fig. 11. The result of determining k, for instance, C203, by the 
elbow method 

Fig. 12. Clustering by the elbow method result for instance C101

TABLE I
FESIBLE SOLUTION (CON.)
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Fig. 13. Clustering by the elbow method result for instance C203

TABLE III
FEASIBLE SOLUTION OF C101 BY THE ELBOW METHOD

Number of 
Clusters Route Sequencing Order Demand Distance

k = 1

1 0-90-98-96-87-86-
95-83-94-92-82-0

160 187.41

2 0-84-93-85-97-100-
88-89-99-91-0

200 188.73

k = 2

3 0-61-64-59-68-51-
50-66-0

70 102.39

4 0-69-0 10 15.81

5 0-67-43-42-57-55-
65-0

100 76.17

6 0-49-47-0 20 21.21

7 0-41-40-62-44-56-
72-46-58-60-45-
48-0

190 191.35

8 0-63-54-53-74-0 160 81.90

k = 3

9 0-20-24-32-33-25-
31-27-35-29-37-0

200 166.47

10 0-30-38-28-39-26-
36-23-34-22-52-
21-0

180 251.06

k = 4

11 0-70-73-0 40 61.52

12 0-76-71-0 30 57.20

13 0-80-0 10 51.48

14 0-77-79-0 20 53.00

15 0-81-78-0 50 50.43

Number of 
Clusters Route Sequencing Order Demand Distance

k = 5

16 0-18-19-8-0 50 66.30

17 0-5-3-13-17-7-0 90 65.83

18 0-2-0 30 20.62

19 0-10-15-11-16-9-
14-12-6-4-0

170 150.34

20 0-1-75-0 30 21.60

TABLE IV
FESIBLE SOLUTION OF C203 BY THE ELBOW METHOD

Number of 
clusters Route Sequencing order Demand Distance

k = 1 1 0-50-51-52-0 30 30.04

2 0-21-0 20 11.66

3 0-20-22-24-27-30-
29-6-32-33-31-35-
37-38-39-36-34-
28-0

310 87.76

k = 2 4 0-83-82-85-76-71-
70-73-80-79-81-78-
77-87-96-0

240 124.47

k = 3 5 0-26-23-18-19-16-
14-12-15-17-13-25-
9-11-10-8-0

300 116.34

k = 4 6 0-90-0 10 20.62

7 0-93-5-75-2-1-99-
100-97-92-94-95-
98-7-3-4-89-91-88-
84-86-0

370 106.55

k = 5 8 0-67-63-62-74-72-
61-64-66-69-68-65-
49-55-54-53-56-58-
60-59-57-40-44-
46-45-47-43-42-
41-48-0

530 136.89

	 When applying the by-truck utilization ratio  
technique to solve sample instances C101 and C103, 
the number of groups ( k ) is determined by dividing 
the problem’s overall demand by the total number 
of vehicles available. Fig. 14, which is the solution 
to instance C101, then shows how members of each 
group are found using clustering. Instance C203 has 
an answer in Fig.15. Then, using OR Tools and the 
local search method, the routes are determined. Tables 
IV and V, respectively, display the results.
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Fig. 14. Clustering by truck utilization ratio result for instance 
C101

Fig. 15. Clustering by truck utilization ratio result for instance 
C203

TABLE V
FESIBLE SOLUTION OF C101 BY TRUCK UTILIZATION 

RATIO

Number of 
Clusters Route Sequencing Order Demand Distance

k = 1 1 0-42-43-0 30 22.31

2 0-49-47-0 20 21.21

3 0-50-52-0 20 25.96

4 0-48-51-0 20 26.32

5 0-46-45-0 40 22.59

6 0-41-40-0 20 20.68

7 0-44-0 10 21.54

k = 2 8 0-70-73-0 40 61.52

9 0-76-71-0 30 57.20

10 0-80-0 10 51.48

11 0-77-79-0 20 53.00

12 0-81-78-0 50 50.43

Number of 
Clusters Route Sequencing Order Demand Distance

k = 3 13 0-30-0 10 20.62

14 0-29-0 10 20.00

15 0-27-0 10 17.12

16 0-28-26-0 30 19.72

17 0-24-25-0 50 17.00

18 0-23-0 10 13.00

19 0-22-21-0 40 14.17

20 0-20-0 10 10.00

k = 4 21 0-83-82-0 30 35.39

22 0-84-85-0 50 33.88

23 0-87-86-0 30 26.50

26 0-90-0 10 20.62

k = 5 27 0-58-60-0 50 48.04

28 0-56-0 30 45.00

29 0-54-53-0 60 45.44

30 0-59-0 10 35.06

31 0-57-55-0 50 37.00

k = 6 32 0-93-0 40 43.01

33 0-94-92-0 30 44.22

34 0-97-100-0 50 45.31

35 0-95-0 30 37.20

36 0-99-0 10 33.54

37 0-98-96-0 30 36.20

k = 7 38 0-38-0 30 41.23

39 0-39-0 20 40.31

40 0-37-0 20 39.29

41 0-35-0 10 38.08

42 0-36-0 10 35.36

43 0-31-0 20 33.54

44 0-34-0 20 32.39

45 0-32-33-0 70 33.62

k = 8 46 0-72-61-0 20 26.85

47 0-64-0 10 21.54

48 0-68-0 10 20.62

49 0-74-0 50 19.85

50 0-62-0 20 18.03

51 0-66-0 10 16.55

52 0-69-0 10 15.81

53 0-63-0 50 14.14

54 0-67-65-0 20 13.21

k = 9 55 0-16-0 40 40.31

56 0-14-12-0 30 42.36

57 0-15-0 40 36.06

58 0-18-19-0 30 40.36

59 0-13-17-0 50 34.81
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TABLE V
FESIBLE SOLUTION OF C101 BY TRUCK UTILIZATION 

RATIO  (CON.)

Number of 
Clusters Route Sequencing Order Demand Distance

k = 10 60 0-2-0 30 20.62

61 0-11-9-0 20 22.81

62 0-6-4-0 30 21.24

63 0-10-0 10 16.76

64 0-7-8-0 40 18.83

65 0-1-75-0 30 21.68

66 0-5-3-0 20 16.13

TABLE VI
FESIBLE SOLUTION OF C203 BY TRUCK UTILIZATION 

RATIO

Number of 
Clusters Route Sequencing Order Demand Distance

k = 1 1 0-93-75-2-5-0 100 26.70

2 0-20-22-24-27-30-
29-6-32-33-31-35-
37-38-39-36-34-28-
26-23-18-19-16-14-
12-15-17-13-25-9-
11-10-8-21-0

630 183.64

k = 2 3 0-67-63-62-74-72-
61-64-66-69-68-65-
49-55-54-53-56-58-
60-59-57-40-44-46-
45-51-50-52-47-42-
41-43-48-0

560 146.91

k = 3 4 0-1-99-100-97-92-
94-95-98-7-3-4-89-
91-88-86-84-83-82-
85-76-71-70-73-80-
79-81-78-77-96-
87-90-0

520 210.80

	 The C1 and C2 categories include customers  
clustered in groups, where C1 has narrow time  
windows and low vehicle capacity. Results from  
C1-type problems are arranged using the elbow  
method at a smaller distance. Regarding C2, wide 
time windows and large vehicle capacity, along with 
the vehicle routing by truck utilization ratio [1],  
provide better results.
	 The RC1 and RC2 categories blend randomly  
distributed and clustered customers, with RC1  
having narrow time windows and low vehicle capacity.  
Although RC1 has low vehicle capacity and short 
windows, it performs better when implemented with 
the elbow method. RC2 has broad time frames and  
a high vehicle capacity. The truck utilization ratio 
[13] was used to improve the results.
	 The sensitivity analysis was carried out by  
comparing the distance outputs obtained from the 
Elbow Method and the Truck Utilization Ratio across 

multiple vehicle routing instances. For each instance, 
the absolute difference was calculated as the absolute  
deviation between the two methods, while the  
percentage difference was derived by normalizing 
the deviation against the Elbow Method baseline. 
These measures allowed for both direct and relative 
comparisons of the two approaches. Subsequently,  
summary statistics, including mean deviations 
and the identification of maximum and minimum  
discrepancies, were computed to assess overall 
trends. To further illustrate the findings, bar charts 
and scatter plots were employed, with the percentage  
differences specifically presented in Fig. 16,  
providing visual insights into the degree of sensitivity 
across all instances.

Fig. 16. Percentage differences between the Elbow Method and 
the Truck Utilization Ratio across all instances

	 The experimental results demonstrate comparative  
performance between the Elbow Method and the Truck 
Utilization Ratio across 26 benchmark instances.  
In terms of routing distance, the Elbow Method  
produced shorter routes in approximately 60% 
of the cases, whereas the Truck Utilization Ratio  
outperformed in the remaining 40% of the instances.  
The average sensitivity, defined as the relative  
percentage change in total distance, was +1.2%, 
suggesting a slight overall advantage for the Elbow 
Method. However, the variability was substantial, 
ranging from –33% (favoring Truck Utilization Ratio) 
to +13% (favoring Elbow Method).
	 The graphical comparison (Fig. 9) shows that 
while most instances present only minor differences,  
certain cases reveal significant improvements 
when applying the Truck Utilization Ratio. Fig. 16  
highlights these differences by illustrating sensitivity  
values for each instance, clearly indicating which 
method yields shorter routes. These findings  
highlight that the reliability of either method is not 
uniform across all instances. The sensitivity appears 
to be influenced by spatial and demand heterogeneity 
within the dataset. Consequently, practitioners should 
interpret results with caution, particularly when  
applying these methods to diverse or irregular  
problem instances.
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V. CONCLUSION

	 The location of the logistics center is a significant  
strategic consideration for logistics system optimization.  
The purpose of this work was to implement a method  
for data analysis that optimizes the vehicle routing  
process by applying ensemble approaches and  
a two-phase algorithm. Two different approaches 
were set up to accomplish this goal, each of which 
used a clustering model to organize delivery points  
(customers) into clusters. Effective customer grouping  
was made possible using the elbow method and 
truck utilization ratio for clustering, which supplied  
essential information for the development of routing  
techniques. The adaptability of the suggested  
methodology was shown by the application of two 
different methods, each focused on a particular  
clustering model. 
	 In summary, while both approaches can be applied 
effectively to vehicle routing problems, the Elbow 
Method provides a more stable baseline, whereas  
the Truck Utilization Ratio represents a practical 
alternative that should be validated against specific 
dataset characteristics. Further investigation into the 
underlying factors contributing to high-sensitivity 
cases is recommended to enhance methodological 
reliability and improve decision-making accuracy in 
logistics planning.
	 According to the results of the experiments, the 
K-means and truck utilization ratio are used in the 
strategies. The truck utilization ratio outperforms 
the elbow method for the K-means algorithm in 
terms of overall results, and the strategy performs  
satisfactorily in the total distance driven by trucks 
while maintaining a balanced distribution of the  
distance traveled. This study addresses existing  
issues and suggests future research areas by offering 
useful information on fleet routing through heuristic 
approaches in routing and data analysis in clustering. 
This effort will make a significant impact on the area 
of logistics and transportation operations. 
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