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Abstract—The vehicle routing problem with
time windows is important in optimizing logistics
distribution. For VRPTW optimization, a strategy
is used to classify and optimize routes using artificial
intelligence methods. Therefore, an improved
two-phase algorithm is required to find a solution.
Namely, a customer group can be divided into several
regions using the K-means algorithmin thefirstphase,
and each region can be decomposed into smaller
subgroups according to certain constraints. In the
second phase, local search from OR-tools solves the
routing problem. In this experiment, two different
methods of determining the number of clusters,
namely, the elbow method and the truck utilization
method, are compared by experimenting with a
total of 26 standard instances. The results show
that the truck utilization ratio outperforms the
elbow method for the K-means algorithm in terms
of overall results. The results from this experiment
can be highly beneficial for routing, particularly
when handling huge amounts of data that need to
be subdivided ahead.

Index Terms—Clustering, K-means, Routing
Problem, Time Windows

I. INTRODUCTION

Nowadays, people are using the internet to purchase
items more and more because of these factors. The
primary issue for the businesses in this situation is
to offer more demanding clients a more effective
distribution service. A number of large online
merchants have begun searching for more creative
and efficient ways to expedite last-mile and
same-day delivery.

The rapid economic growth at both national and
global levels has intensified business competition. To
remain competitive, companies must enhance their
logistical and transportation systems, as these are
crucial components of efficient business operations.

In supply chain management, one of the fundamental
challenges is optimizing vehicle selection and routing
to minimize shipping costs. This problem aligns
with the Vehicle Routing Problem (VRP), which
addresses transportation system issues such as route
optimization, vehicle capacity management,
transportation time windows, and accommodating
diverse customer requirements [1].

The emergence of the Internet of Things (IoT)
and big data analytics has significantly improved
logistics operations. These technologies enable
precise and effective monitoring of transportation
processes through cloud computing, enhancing
logistics efficiency and reducing operational costs [2].
However, many companies still rely on outdated
logistics management systems that require significant
manual effort. As businesses handle increasing order
volumes, the need for a robust and efficient decision-
support system for logistics distribution becomes
critical.

A widely adopted approach in solving vehicle
routing problems is the Cluster-First Route-Second
(CFRS) strategy. This method consists of two main
stages: first, decomposing shipping points into smaller
clusters, followed by optimizing routes within each
cluster [3]. Clustering plays a vital role in managing
transportation route problems, as it helps break
down complex logistics challenges into manageable
subgroups.

Several clustering techniques have been applied
in logistics, with K-means being one of the most
prominent methods. K-means effectively clusters
groups of delivery points based on proximity and
shared transportation constraints, forming distinct
clusters before applying route optimization
algorithms [4]. Transportation route optimization
can be approached by grouping delivery points into
clusters based on factors such as distance or time
windows, allowing each cluster to be assigned
a specific vehicle for efficient deliveries [5].
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The CFRS strategy is particularly useful in
solving the Vehicle Routing Problem with Time
Windows (VRPTW), where deliveries must adhere
to strict time constraints. By first clustering delivery
points and then optimizing routes within each cluster,
computational time is reduced, and solution quality
is improved, particularly in large-scale logistics
operations [6]. Therefore, clustering should be
effectively executed to maximize its impact on logistics
efficiency and overall supply chain performance.

While the Cluster-First, Route-Second (CFRS)
strategy has demonstrated effectiveness in addressing
the Vehicle Routing Problem with Time Windows
(VRPTW), a significant research gap persists in the
optimal determination of the number of clusters.
Existing literature predominantly employs the elbow
method to determine the appropriate number of clusters
in K-means clustering. However, this technique does
not sufficiently account for operational constraints
such as vehicle capacity utilization, which is critical
for practical logistics applications.

The research question explored in this study is:
How does the elbow method for cluster determination
compare with optimization based on truck utilization
ratio in terms of overall logistics efficiency and
cost-effectiveness? This comparison is particularly
significant because while the elbow method aims
to minimize within-cluster variance as a statistical
measure of clustering quality, it may not align with
the practical objective of maximizing vehicle capacity
utilization, which directly impacts operational
expenses and resource efficiency. Current
literature predominantly employs the elbow method
for determining optimal cluster numbers in vehicle
routing problems with time windows without
a systematic evaluation of its operational
effectiveness. This creates a research gap where
statistically optimal clustering is assumed to translate
into operationally efficient routing without empirical
validation.

This study addresses this gap by making several
key contributions to logistics optimization. First,
this work develops the first systematic comparison
framework between statistical clustering validation
and operational optimization approaches for vehicle
routing problems with time windows. Second, it
provides empirical validation demonstrating the
conditions under which each clustering approach
delivers superior performance in terms of cost
reduction and resource utilization. These
contributions advance both theoretical understanding
of clustering effectiveness in transportation
systems and provide practical guidance for logistics
optimization in real-world applications.

II. LITERATURE REVIEW

The Vehicle Routing Problem (VRP) is a critical
issue frequently addressed by managers in logistics
and transportation. A VRP involves the distribution
of goods from an origin as a single depot or multiple
depots to multiple destinations [7]. Solving VRPs
provides significant benefits to businesses, including
optimized routes and travel times, reduced vehicle
requirements, and improved vehicle utilization. These
efficiencies lead to lower overall logistics costs and
increased profitability for organizations [7].

An extension of the VRP is the Vehicle Routing
Problem with Time Windows (VRPTW), which not
only focuses on minimizing route costs but also
incorporates time constraints to ensure that customers
are serviced within predefined time windows,
bounded by the earliest and latest permissible times
(81, [9].

In the VRPTW framework, the optimization
model must account for specific time-based service
requirements designated by each customer within the
distribution network. These temporal constraints are
formally defined through a dual-parameter system:
(e,) represents the earliest permissible service
initiation time, while (/) denotes the latest allowable
service completion time for each customer.
This temporal framework introduces an additional
dimension of complexity to the traditional spatial
routing optimization problem.

Anotable characteristic of VRPTW implementations
is the concept of soft time windows, which introduces
operational flexibility while maintaining service quality
standards. Under this constraint structure, delivery
vehicles are permitted to arrive at customer locations
before the designated earliest start time (s,). However,
in such instances, service commencement must be
delayed until the customer’s specified time window
officially begins. This waiting time, while not
subject to direct penalties, must be incorporated
into the overall route optimization calculations as it
impacts operational efficiency and resource utilization.
Fig. 1 shows an example of a VRPTW problem where
each customer has their specific service time window.
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Fig. 1. Eight customers and one depot network
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This study employs a “one-to-all” routing model,
where each vehicle departs from and returns to
a designated depot. The warehouse serves as the
storage site and the departure point for vehicles.
Vehicle routes are visually depicted with directional
arrows, and polygons in various colors represent
customer groups assigned to distinct routes. Products
are loaded onto vehicles at the depot and delivered to
their respective customers.

The model also considers vehicle storage
constraints, ensuring that each vehicle’s capacity
accommodates the weight and quantity of transported
goods. Two key assumptions underpin this model: (1)
the total number of available vehicles is sufficient to
meet the daily demand of all customers, and (2) each
customer’s daily order does not exceed the capacity of
a single vehicle. Under these conditions, each vehicle
is assigned a route to serve multiple customers and
deliver various goods. While a single vehicle can
cater to multiple customers along its route, only one
vehicle is allocated to serve a particular customer at
any given time.

The Vehicle Routing Problem with Time Windows
(VRPTW) represents a complex combinatorial
optimization problem that seeks to determine optimal
routes for a vehicle fleet serving customers within
specified time windows while satisfying capacity
constraints. A prominent solution methodology for
VRPTW is the two-phase Cluster-First Route-Second
(CFRS) approach, which decomposes the problem
into computationally tractable subproblems. The
clustering phase partitions customers into
geographically coherent groups using algorithms
such as K-means, ensuring that vehicle capacity
and temporal constraints are maintained within each
cluster through appropriate parameter adjustments.
Subsequently, the routing phase applies heuristic
algorithm improvements to optimize vehicle routes
within individual clusters while minimizing travel
distance and satisfying time window constraints.
This decomposition strategy reduces computational
complexity from exponential to polynomial time for
large-scale instances, enabling near-optimal solutions
for practical applications. The CFRS methodology
has demonstrated effectiveness in various logistics
domains, including perishable goods distribution and
urban delivery systems, where it successfully balances
solution quality with computational efficiency.
The approach’s scalability and adaptability make it
particularly suitable for large-scale VRPTW instances
where exact methods become computationally
prohibitive, thereby providing a practical framework
for real-world logistics optimization applications.

While various clustering methodologies exist
for addressing VRPTW applications, including
hierarchical clustering, heuristic-based clustering
approaches, and spectral clustering, K-means clustering

has emerged as the most widely adopted approach in
various domains due to its computational efficiency
and scalability. Although K-means has not yet
gained widespread adoption specifically in logistics
optimization, its proven effectiveness in partitioning
data points into coherent groups and its ability
to handle large datasets efficiently make it
a promising candidate for vehicle routing applications.
Consequently, this research employs K-means
clustering as the primary clustering methodology to
investigate the comparative effectiveness of different
cluster determination approaches in vehicle routing
optimization.

A. K-means Clustering Algorithm

One well-known clustering technique is K-means
clustering, which divides n observations into &
clusters, where £ is prioritized. The client’s cluster
is determined by the K-means clustering; a second
clustering is then applied to each of the K-means
clusters. As far as possible, the method aims to
segregate each compact class and minimize the
goal function. According to Khan and Ahmad [10],
K-means clustering can be explained as follows.

First, the K-means algorithm selects & objects at
random, each of which represents a mass of grouping
relationships. Based on each grouping’s mass to
object distance, each object is then assigned to
the most similar clustering. Next, figure out
each clustering’s new mass. Continue doing the
aforementioned till the guideline function is put
together. In general, the square error guideline function
[11] is the adopted guideline function.

Assume that X = {x,x,..x } is a set of
observations, with d being the dimension of each
real vector. ¢, is the formula for a set of K centers:
K={1,2,..K}. With sj = {d | d is a member of the
cluster &}, the set of samples that belong to the &
the cluster is displayed. Euclidean distance is the
distance between a point and the cluster center c,,
as given in (1).

idist(d,.,ck) )

Step 1: Random sampling was used to generate a
setof c,.

Step 2: Decide each cluster’s members according
to the requirements for the minimum distance from
the cluster center.

Step 3: Equation (2) will be used to calculate c,.
IS Represents the number of data elements in the
k™ cluster.

2. d,
d; €S,
¢ =" @
* Skl
Step 4: Until the objective is optimal, steps 2 and
3 could be repeated. When evaluating the K-means
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clustering procedure, the Sum of Squares Error (SSE)
criterion is most frequently utilized. The greatest
results are obtained from the clustering result with the
lowest SSE value. Equation (3) computes the sum of
the squares of the object distances from the cluster
center points [12].

K
SSE =" dist*(m,, x) 3)
i=1 xe¢;
B. Determine the Optimal Number of K-Means
Clusters

From the relevant research literature, multiple
methodologies for determining the optimal number of
clusters (k) in vehicle routing applications have been
identified, each with distinct theoretical foundations
and practical implications. Among the prominent
approaches, Comert et al. [ 13] proposed a mathematical
formulation for calculating the number of clusters
based on operational constraints, specifically
incorporating truck capacity and customer demand
parameters. Their methodology determines cluster
numbers by optimizing the truck utilization ratio,
thereby directly linking clustering decisions to vehicle
capacity management and operational efficiency. This
approach represents a paradigm shift from traditional
statistical clustering validation methods by prioritizing
operational feasibility over purely geometric or
statistical cluster quality measures. Additionally, the
elbow method constitutes another widely recognized
technique for cluster number determination, which
employs a different theoretical framework based on
the analysis of the within-cluster sum of squares, with
details presented as follows:

1) Therefore, to solve a capacitated VRP problem
using K-means clustering, Comert et al. [ 14] provided
an equation for calculating the number of clusters.
Employing (4) as the calculation formula, the
number of clusters is determined by truck capacity
and demand, or the truck utilization ratio.

total demand

number of clusters= ———— 4)
truck capacity

2) The elbow approach uses the K-means
clustering algorithm to plot the explained variations
against the number of clusters. The elbow curve
is then used to determine the number of clusters.
The quality of aggregation within a cluster and the
separation between clusters are represented by
summing the squared errors of all data points within
the cluster. Thorndike came up with the elbow method
[14], which uses the variation graph (data dispersion)
as a function of the number of clusters to compute the
ideal number of clusters to utilize. The elbow curve is
the result of this method. Bertagnolli [15] states that
the Elbow approach can be expressed mathematically
(5), (6) as follows:

=

ko1
= Zn_,.D’ ()

r=

n.—1 n

r r

D:

»

|~ (©)
i=1 j=1 2

Where W, is the average internal sum of squares,
and D are the sum of the distances between each
point in a cluster, £ is the number of the cluster, and
n_is the number of points in the cluster.

For different values of & (number of clusters),
calculate the Sum of Squared Distances (SSE)
between each data point and its nearest centroid. Plot
the number of clusters (k) versus the SSE values.
Then, locate the point on the graph where the SSE
decline begins to level out and take the shape of an
elbow. This is the ideal number of clusters.

III. METHODOLOGY

This research presents an experimental study
focused on VRPTW applications, specifically
investigating the comparative effectiveness of two
fundamentally different approaches for determining
the optimal number of clusters (k) in K-means
clustering algorithms. This work conducts experimental
investigations on VRPTW instances to evaluate two
distinct methodologies for determining the optimal
number of clusters (k) in K-means clustering:
The truck utilization ratio approach and the elbow
method. The objective of this study is to assess the
comparative performance and effectiveness of these
two clustering determination techniques in optimizing
logistics operations and overall system efficiency
within vehicle routing optimization scenarios.

The CFRS approach represents a systematic
two-phase methodology for solving VRPTW by
decomposing the complex optimization problem
into computationally manageable subproblems. This
methodology leverages K-means clustering in the
first phase to partition customers into geographically
coherent groups, followed by route optimization
within each cluster in the second phase, as shown
in Fig. 2.

Dataset

e LELELAE PHASE2:
) demand, - K-means i Route optimizati
time windows, and o B'Illﬁtglflltlmmg within clusters
vehiele capacity) s
o oyl St pmenmn e mnneny
Method 1: Method 2: !
Truck Utilization Ratio Elbow Method E Final Routes
P

k = Demand/Capacity
K-determination Method

Fig. 2. CFRS methodology with different K-determination methods

In this study, standard VRPTW instances were
employed, selected randomly to ensure unbiased
representation. The analysis focused on comparing
different subgroup initialization strategies for the
K-means clustering method in the first phase of the
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solution process. In the subsequent routing phase,
vehicle capacity and time window constraints were
imposed to reflect realistic operational conditions.
The performance of the designed algorithm is
compared to models from the existing literature in
this section through computational studies. Using
Solomon’s instances [16], six different types of
problems that impact the behavior of algorithms for
VRPTW are identified. They are divided into three
categories: Random (R), Clustered (C), and Random-
Clustered (RC). Of these, there are two types: Type 1,
which has a short scheduling horizon (R1, C1, RC1),
and type 2, which has a long scheduling horizon
(R2, C2,RC2). The variables, which are drawn from
Solomon [17], include the number of customers,
geographic location, demand level, time windows
(ready and due times), service time, and vehicle
capacity. These benchmarks enable thorough testing
of VRPTW algorithms in various scenarios.
VRPTW algorithms are still evaluated using the
Solomon benchmark problems. These instances are
divided into six groups according to operational
characteristics, time window restrictions, and
customer spatial distribution, with each problem’s
details presented as shown in Figs. 3 to Fig. 8.

Clo01
w2 QP
80 U5 3# B oo
.‘Iﬁﬂa .98 @ Locations
o
¢
M TNE
250 [ |
T <364
g 40| eBlei2 &3
= &Pl Fhl4 pele vyl
30 FAL2 ris et
S0
20
wd>
10 ot
P3
0 20 40 60 80

X coordinate
Fig. 3. Distribution of instance C101

C201
w2 Q37
80 o o9 o
Jﬁ313 o &8 ’
14 J
7 26 &3 &3 iUWS
S8
Eeo 20 .30218'93 b
o
5| ovpe » 8191 &5
8 40 Bl M8 @Pp3 g6 J8
- $¥1 3 W04 SV
30 SN2 J VI
é#6 $5 &0
20 #ho_ #°
“Gps
10 P4
A3
0 20 40 60 80
X coordinate
Fig. 4. Distribution of instance C201
R102
0 @ g4 &5
@ Losations 3 5 ﬁ6
70
&9 P $3g08 20 J1 a8
60 36 7 Q.lg ﬁz 010 Jt—'m 51 .91
o] g 25 # Ay

Y coordinate
Noow IS
o o o

=
(=]

&5
Jd7

&8

&2 .69'1 &0
é o2 6’?.7 29

S5 ®3 26 .54
ﬁ%ﬁ?% 43 #840
&6 9° & o ¥

J8
50 & we n#

Ha e
RS

Aj 2%5.56 -~ i

3 b

0

20 40 60
X coordinate

Fig. 5. Distribution of instance R102

80

70

Y coordinate
N W = u D
o (=] [=] (=] o

=
(=]

R201
Mo H4 &5
@ Lostions 3 5 ﬁﬁ
&9 5 39w 5 J1 -
&6 4 49 5 40 630 519

..ﬁl

8, 8831

&2 & S50
é 2 aﬁJ 29

&/
%% & g .12£8 24

47 F4p o3 26 ,54
Fal 5.13 o840
o I, F
é e #2 &7 2‘175,56 39
38 PR LIL L S
0 20 40 60

X coordinate

Fig. 6. Distribution of instance R201.

Indexed in the Thai-Journal Citation Index (TCI 1)



INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND TECHNOLOGY, Vol. 9 No. 2 July-December 2025 23

RC101
w A i -
762 il paii
J9 J90 o n
J3 0 5 $H8 piod
) 60| &30 g ;31'96 7
5 EES] | $
S |amar oy 808
§40 hE5ebl0 . 5 6.9@ 5ﬁ7
S FE L G- G X -y
o2 3§ g SRé9
$7 $6 o7 8 3
201 o o4 51%3
P
S g7 AR $9
0
0 20 40 60 80
X coordinate
Fig. 7. Distribution of instance RC101
RC201
w| AR i me
762 1 -
79 o o »
o3 0 5 $8 o4
) 601 ¥3. So% ,31.% 7
© s»¢ l ¢
S |awar T g 0T
§40 hB5ebl0 ¢ &5 5‘9§5ﬁ7
S ¥ & o 50
o2 3 Ha g SR&6
S7 F6 &7 8 83
201 o9 o4 o1%3
PR
V5 gy B 89
0

0 20 40 60 80
X coordinate

Fig. 8. Distribution of instance RC201

The strategy in this approach involves utilizing
the K-means algorithm. Determining the appropriate
number of clusters for a given dataset is a crucial
step in this algorithm. The elbow method identifies
the optimal number of clusters by examining the
curve representing the within-cluster sum of squares
plotted against the number of clusters. The elbow
point on this curve indicates where adding additional
clusters yields diminishing returns in variance
reduction. Thus, the optimal number of clusters
identified through the elbow method is then utilized
in the K-means algorithm to perform clustering.

In this research, the experiment is conducted on
the Solomon benchmark problem, which involves
26 problems: 5 problems of C1, 5 problems of C2,
5 problems of R1, 5 problems of R2, 3 problems of
RCl1, and 3 problems of RC2. The experiment was
designed to compare the efficiency of routing with
different K-means clustering methods, with each
cluster being routed using OR-Tools’ local search

method. Employing local search to address vehicle
routing problems is a pragmatic decision owing to its
capacity to effectively traverse complex, large-scale
solution spaces efficiently. Local search heuristics
iteratively refine a candidate solution by exploring
its nearby “neighborhood” of solutions, making
small, incremental adjustments that often yield quick
improvements in route cost or feasibility. This method
is particularly valuable for VRP, which is NP-hard
and difficult to solve optimally within a reasonable
time, especially as the number of customers grows.

IV. RESULTS

Based on Solomon’s problem classification, the
six problem types, R1, R2, C1, C2, RC1, and RC2,
are distinguished by customer distribution and vehicle
constraints. For R1 problems, which involve narrow
time windows and low vehicle capacity, the elbow
method produces a shorter total distance than the
clustering approach proposed by Comert et al. [13],
as measured by the truck utilization ratio. However,
for R2 problems, which feature wider time windows
and higher vehicle capacity, the clustering method
by Comert et al. [13] achieves better performance in
terms of total distance.

According to the findings of 26 experiments,
the clustering by using the truck utilization ratio
outperforms the elbow approaches for all 14 of the
26 instances, as shown in Table I and Fig. 9. The
following are examples of the experimental findings
from applying the CFRS approach in routing utilizing
K-means with various techniques for determining the
number of groups (k), namely the elbow method and
truck utilization ratio: C101, and C203.

TABLE I
FESIBLE SOLUTION
Elbow Method Truck Utilization Ratio
Instance
Distance Car & Distance  Car k
C101 1880.82 20 5 1976.79 66 10
C102 1441.24 16 5 1422.62 41 10
C105 1277.93 15 5 1291.30 40 10
C108 892.50 11 5 879.05 21 10
C109 723.78 11 5 742.66 16 10
C201 629.94 8 5 648.81 4 3
C203 634.33 8 5 568.05 4 3
C205 623.53 7 5 567.24 4 3
C206 1449.01 11 5 1350.08 5 3
C207 840.62 8 5 567.84 4 3
R102 1039.85 12 4 1103.9 15 8
R103 905.37 11 4 930.43 12 8
R105 1031.43 12 4 972.16 15 8
R109 838.95 10 4 947.31 12 8
RI112 756.22 9 4 750.25 9 8
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TABLE I
FESIBLE SOLUTION (CON.)

Elbow Method Truck Utilization Ratio

Instance

Distance Car k£  Distance  Car k
R201 1438.99 9 4 1373.70 6 2
R202 1302.69 8 4 1203.58 6 2
R203 1069.22 9 4 1054.87 4 2
R208 740.19 6 4 710.58 3 2
R210 979.25 7 4 985.45 5 2
RC101 1126.71 12 4 1176.68 17 9
RC103 981.57 10 4 1003.06 13 9
RC104 857.34 10 4 916.37 12 9
RC201 1584.65 10 4 1507.91 8 2
RC206 1149.22 4 1175.81 4 2
RC208 687.92 4 4 671.76 4 2

2500

2000

1500

1000

a
=}
o 3
C10] Sem———
C105 eooooorosoonoooocooss:
108 Se—

C109
Cc201

P
=]
o
o

B Elbow & Truck utilization ratio

RC201 Fovcoomrrmeeoorormree oo

R103 IEonosascsoosnnes:
R105 [oncesaessnoonneesr
R109

ROQD T—
R21(Q S——
RC101 roccossooamooosoonoooa
RC103 Foccoomoooocoonoon
RC104 e—
RC206 Focrormreeoroommees

o o
S B
o a1
o o

C203
C205
C206
Cc207
R203
R208
RC208

Fig. 9. Comparison results of methods for determining the number
of groups

TABLE II
PAIRED T-TEST RESULTS
Dependent Mean t-statistic p-value
Variable

Group 1 Group 2
(Elbow (Truck
Method) Utilization

Ratio)
Distance 1033.97 1019.16 991 331
Car 10.08 13.46 -1.47 152

The results from the t-test indicate that there is
no statistically significant difference between the two
methods for either variable. The paired sample t-test
showed no significant difference between the Elbow
Method and the Truck Utilization Ratio for both
distance (Elbow Method: Mean = 1033.97, Truck
Utilization Ratio: Mean=1019.16;t=0.991,p=0.331)
and the number of trucks (Elbow Method: Mean =
10.08, Truck Utilization Ratio: Mean = 13.46; t =
-1.47, p = 0.152). These findings indicate that both
methods yield statistically comparable outcomes,
suggesting that either approach can be applied
without compromising routing efficiency or fleet
utilization, as shown in Table II.

Establish the answer by the elbow method. For
the example instance of C101 and C203. Start by
dividing the data to determine the number of groups,

which shows the results as shown in Figs. 10 and 11.
After that, considering the characteristics of the points
that form the elbow angle, which indicates that there
should be how many groups (k) from the result, a total
of five groups are divided based on the characteristics
of the data in this problem. Next, divide the groups,
which shows the results as shown in Figs. 12 and 13.
Finally, work on finding the route sequence for each
group using the OR tool by the local search method,
which displays the results as shown in Tables III and
Iv.
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Fig.10. The result of determining £, for instance, C101, by the
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Fig. 11. The result of determining £, for instance, C203, by the
elbow method
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1 0-90-98-96-87-86- 160 187.41 k=3 5 0-26-23-18-19-16- 300 116.34
95-83-94-92-82-0 14-12-15-17-13-25-
=1 9-11-10-8-0
2 0-84-93-85-97-100- 200 188.73 k=4 6 0-90-0 10 20.62
-89-99-91-
88-89-99-91-0 7 0-93-5-75-2-1-99- 370 106.55
100-97-92-94-95-
3 0-61-64-59-68-51- 70 102.39 08-7-3-4-89-9]-88-
50-66-0 84-86-0
4 0-69-0 10 15.81 k=5 8 0-67-63-62-74-72- 530  136.89
5 0-67-43-42-57-55- 100 76.17 61-64-66-69-68-65-
65-0 49-55-54-53-56-58-
k=2 -59-57-40-44-
6 0-49-47-0 20 2121 22_22_‘5‘;_12_3‘2‘_
7 0-41-40-62-44-56- 190 191.35 41-48-0
72-46-58-60-45-
48-0 . e .
When applying the by-truck utilization ratio
0-63-54-33-74-0 160 81.90 technique to solve sample instances C101 and C103,
9 2'122'2‘3"35'933'28' 200 16647 the number of groups ( k ) is determined by dividing
i3 “27-35-29-3T- the problem’s overall demand by the total number
- 10 (3)_632_33§;12§_232_226_ 180 251.06 of vehicles available. Fig. 14, which is the solution
oo to instance C101, then shows how members of each
1 090730 20 o152 group are ff)un(.i using clusterlgg. Instance C203 has
b 096710 20 720 an answer in Fig.15. Then, using OR Tools and the
T : local search method, the routes are determined. Tables
k=4 13 0-80-0 10 >1.48 IV and V, respectively, display the results.
14 0-77-79-0 20 53.00
15 0-81-78-0 50 50.43
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Cl01
Number of . .
— cowm Clusters Route Sequencing Order Demand Distance
80 % %
o 2 k=3 13 0-30-0 10 20.62
70 o $n, 14 0-29-0 10 20.00
60 ) 15 0-27-0 10 17.12
@ L ] I.‘ ...
£ 5o .:& - 16 0-28-26-0 30 19.72
g . oo 17 0-24-25-0 50 17.00
g 407 eo¥ee - 18 0-23-0 10 13.00
> o e -3: odbe oee o
301 ot  seee oo 19 0-22-21-0 40 14.17
L ]
201 20 0-20-0 10 10.00
Centroid of k=4 21 0-83-82-0 30 35.39
101 ® each cluster
W Depot 22 0-84-85-0 50 33.88
0 20 40 60 80 23 0-87-86-0 30 26.50
. . Meoainate , 26 0-90-0 10 2062
Fig. 14. Clustering by truck utilization ratio result for instance
clo1 k=5 27 0-58-60-0 50 48.04
28 0-56-0 30 45.00
€203 29 0-54-53-0 60 45.44
*ee
80 .o 30 0-59-0 10 3506
s e ] 31 0-57-55-0 50 37.00
L O Nl W k=6 32 0930 40 4301
60 * x e, 33 0-94-92-0 30 44.22
o . s @ x
5 o W 34 0-97-100-0 50 4531
B * 00 35 0-95-0 30 37.20
L]
g 40| = - > me 36 0-99-0 10 33.54
> e e [ T ) ssee
30 S e® o oo 37 0-98-96-0 30 36.20
. X k=7 38 0-38-0 30 41.23
20 LI .
e ) 39 0-39-0 20 4031
¢ Centroid of
10 oe each cluster 40 0-37-0 20 39.29
ses o [ | Depot
41 0-35-0 10 38.08
0 20 40 60 80
X coordinate 42 0-36-0 10 35.36
Fig. 15. Clustering by truck utilization ratio result for instance 43 0-31-0 20 33.54
203 44 0-34-0 20 32.39
45 0-32-33-0 70 33.62
TABLE V
FESIBLE SOLUTION OF C101 BY TRUCK UTILIZATION k=8 46 0-72-61-0 20 26.85
RATIO 47 0-64-0 10 21.54
N(l;;n bter of Route Sequencing Order Demand Distance 48 0-68-0 10 20.62
usters 49 0-74-0 50 19.85
k=1 1 0-42-43-0 30 2231 50 0-62-0 20 18.03
2 0-49-47-0 20 21.21 51 0-66-0 10 16.55
3 0-50-52-0 20 25.96 59 0-69-0 10 15.81
4 0-48-51-0 20 26.32 53 0-63-0 50 14.14
3 0-46-45-0 40 2259 54 0-67-65-0 20 1321
6 0-41-40-0 200 2068 k=9 55 0-16-0 40 4031
70440 10 2154 56 0-14-12-0 30 4236
k=2 8  0-70-73-0 40 61.52 57 0-15-0 40 36.06
9 0-76-71-0 30 57.20 58 0-18-19-0 30 4036
10 0-80-0 10 5148 59 0-13-17-0 S0 3481
11 0-77-79-0 20 53.00
12 0-81-78-0 50 50.43
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TABLE V
FESIBLE SOLUTION OF C101 BY TRUCK UTILIZATION
RATIO (CON.)

Number of Route Sequencing Order Demand Distance
Clusters
k=10 60  0-2-0 30 20.62
61  0-11-9-0 20 22.81
62 0-6-4-0 30 21.24
63 0-10-0 10 16.76
64 0-7-8-0 40 18.83
65  0-1-75-0 30 21.68
66  0-5-3-0 20 16.13
TABLE VI
FESIBLE SOLUTION OF C203 BY TRUCK UTILIZATION
RATIO
Number of Route Sequencing Order Demand Distance
Clusters
k=1 1 0-93-75-2-5-0 100 26.70
2 0-20-22-24-27-30- 630 183.64
29-6-32-33-31-35-
37-38-39-36-34-28-
26-23-18-19-16-14-
12-15-17-13-25-9-
11-10-8-21-0
k=2 3 0-67-63-62-74-72- 560 146.91
61-64-66-69-68-65-
49-55-54-53-56-58-
60-59-57-40-44-46-
45-51-50-52-47-42-
41-43-48-0
k=3 4 0-1-99-100-97-92- 520 210.80

94-95-98-7-3-4-89-
91-88-86-84-83-82-
85-76-71-70-73-80-
79-81-78-77-96-
87-90-0

The C1 and C2 categories include customers
clustered in groups, where C1 has narrow time
windows and low vehicle capacity. Results from
Cl-type problems are arranged using the elbow
method at a smaller distance. Regarding C2, wide
time windows and large vehicle capacity, along with
the vehicle routing by truck utilization ratio [1],
provide better results.

The RC1 and RC2 categories blend randomly
distributed and clustered customers, with RC1
having narrow time windows and low vehicle capacity.
Although RC1 has low vehicle capacity and short
windows, it performs better when implemented with
the elbow method. RC2 has broad time frames and
a high vehicle capacity. The truck utilization ratio
[13] was used to improve the results.

The sensitivity analysis was carried out by
comparing the distance outputs obtained from the
Elbow Method and the Truck Utilization Ratio across

multiple vehicle routing instances. For each instance,
the absolute difference was calculated as the absolute
deviation between the two methods, while the
percentage difference was derived by normalizing
the deviation against the Elbow Method baseline.
These measures allowed for both direct and relative
comparisons of the two approaches. Subsequently,
summary statistics, including mean deviations
and the identification of maximum and minimum
discrepancies, were computed to assess overall
trends. To further illustrate the findings, bar charts
and scatter plots were employed, with the percentage
differences specifically presented in Fig. 16,
providing visual insights into the degree of sensitivity
across all instances.

Sensitivity Analysis of Distance

_l.-l'-----‘

) I
o...l,_J.._,mmll I

(Truck relative to Elbow)
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O 0707407 07 A0Y 407 07 07 0" L0007 07 O 07 AR 407 O Q%0707 07 A0
FFFFFPFFFPEFI ISP F PP FF L

Fig. 16. Percentage differences between the Elbow Method and
the Truck Utilization Ratio across all instances

The experimental results demonstrate comparative
performance between the Elbow Method and the Truck
Utilization Ratio across 26 benchmark instances.
In terms of routing distance, the Elbow Method
produced shorter routes in approximately 60%
of the cases, whereas the Truck Utilization Ratio
outperformed in the remaining 40% of the instances.
The average sensitivity, defined as the relative
percentage change in total distance, was +1.2%,
suggesting a slight overall advantage for the Elbow
Method. However, the variability was substantial,
ranging from —33% (favoring Truck Utilization Ratio)
to +13% (favoring Elbow Method).

The graphical comparison (Fig. 9) shows that
while most instances present only minor differences,
certain cases reveal significant improvements
when applying the Truck Utilization Ratio. Fig. 16
highlights these differences by illustrating sensitivity
values for each instance, clearly indicating which
method yields shorter routes. These findings
highlight that the reliability of either method is not
uniform across all instances. The sensitivity appears
to be influenced by spatial and demand heterogeneity
within the dataset. Consequently, practitioners should
interpret results with caution, particularly when
applying these methods to diverse or irregular
problem instances.
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V. CONCLUSION

The location of the logistics center is a significant
strategic consideration for logistics system optimization.
The purpose of this work was to implement a method
for data analysis that optimizes the vehicle routing
process by applying ensemble approaches and
a two-phase algorithm. Two different approaches
were set up to accomplish this goal, each of which
used a clustering model to organize delivery points
(customers) into clusters. Effective customer grouping
was made possible using the elbow method and
truck utilization ratio for clustering, which supplied
essential information for the development of routing
techniques. The adaptability of the suggested
methodology was shown by the application of two
different methods, each focused on a particular
clustering model.

In summary, while both approaches can be applied
effectively to vehicle routing problems, the Elbow
Method provides a more stable baseline, whereas
the Truck Utilization Ratio represents a practical
alternative that should be validated against specific
dataset characteristics. Further investigation into the
underlying factors contributing to high-sensitivity
cases is recommended to enhance methodological
reliability and improve decision-making accuracy in
logistics planning.

According to the results of the experiments, the
K-means and truck utilization ratio are used in the
strategies. The truck utilization ratio outperforms
the elbow method for the K-means algorithm in
terms of overall results, and the strategy performs
satisfactorily in the total distance driven by trucks
while maintaining a balanced distribution of the
distance traveled. This study addresses existing
issues and suggests future research areas by offering
useful information on fleet routing through heuristic
approaches in routing and data analysis in clustering.
This effort will make a significant impact on the area
of logistics and transportation operations.
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