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Abstract

The purposes of the research were 1) to develop intrusion detection model and 2) to
compare the effectiveness of intrusion detection model. The tools used in classification are
WEKA. using four classification techniques including Decision table, Naive Bayes, RIPPER and PART
decision list in data mining. In this thesis, the knowledge database “KDD Cup’99” is used. 10-fold
cross validation is employed to divided data into training and testing sets. The statistics used
were the percentage, Precision, Recall and F-Measure

The research findings showed that 1) RIPPER has highest precision which is up to 99.00%
Then, PART decision list has precision which is up to 98.20%. Follow by Decision Table has
highest precision which is up to 97.50%. The lowest precision is Naive Bayes 49.40%. 2) The
Comparative analysis of intrusion detection model showed that RIPPER model has highest

average significantly.
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