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ABSTRACT

This study aimed to develop a predictive model for forecasting the likelihood of student
applications to private universities. The specific objectives were 1) to analyze behavioral factors
during open house events that are associated with application decisions; 2) to examine the
relationship between participation behavior and application decisions; and 3) to develop a
predictive model for application likelihood using behavioral data from open house participants.
The dataset consisted of 1,321 registered participants, of whom 564 actually attended the event,
625 did not attend, and 132 students both registered and submitted applications during the event.
The study employed Naive Bayes, Logistic Regression, Deep Learning, Decision Tree, and Random
Forest models.

The key findings were as follows 1) the most important factors influencing event
participation were the duration of attendance and the number of sub-activities visited; 2) actual
participation behavior at the event was significantly associated with the decision to apply. The
most influential factors in application decisions were duration of activity participation (Importance
Score = 0.38) and number of sub-activities attended (Importance Score = 0.25), both reflecting
levels of engagement and intention to apply; and 3) in developing a predictive model for
application likelihood to private universities, the Deep Learning model achieved the highest
performance (Accuracy = 0.94, AUC = 0.98), followed by the Random Forest model (Accuracy =
0.93, AUC = 0.96), which also demonstrated very high and comparable performance.

The results highlight the capability of the Deep Learning model, based on artificial neural
networks, to learn complex and non-linear behavioral patterns, such as the interaction between
time spent at the event and the number of sub-activities attended, thereby outperforming
traditional statistical models in predicting application decisions. Therefore, Deep Learning is
concluded to be the most appropriate and effective model for use as a strategic decision-support
tool in forecasting student admissions to private universities in this study.

The use of behavioral data processed for real-time visualization, in combination with
machine learning techniques, can substantially enhance predictive accuracy and effectively support

strategic planning for student recruitment in private higher education institutions.

Keywords : Trend Forecasting, Data Mining, Data Classification
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