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Abstract. Floods have resulted in the reduction of 

agricultural production in Thailand. Flood hazard 

mapping in the lower part of Lam Pao River Basin is a 

challenging task because its upper part is controlled by the 

Lam Pao Reservoir. The present study aims at developing 

flood hazard maps using an integrated approach based on 

the SWAT hydrological model and satellite data. The 

SWAT model was used to transform observed daily 

meteorological data between 2008 and 2017 into runoff 

hydrographs. The results indicated that the SWAT model 

had capability to reproduce extreme flood hydrographs 

according to Nash-Sutcliffe Efficiency, R
2
 and percent 

error in peak. The simulated discharges were found to be 

satisfactorily fitted to the Gumbel distribution based on the 

Chi-square test. The flood peaks with return periods of 5, 

10 and 20 years at each sub-catchment were classified into 

four levels of flood hazards, namely low, medium, high and 

very high flood hazards based on the frequency of flood 

occurrences acquired from the satellite data. It was found 

that six sub-catchments along the main river had very high 

degrees of flood hazard. The results of the sub-catchments 

S15 and S16 located downstream were verified by the 

satellite data. There were three flood events occurred in the 

two sub-catchments during the study period. Moreover, 

some sub-catchments of tributary streams were found to 

have high degrees of flood hazard. We conclude that 

flooding spatial information of satellite data can help to 

improve hydrological prediction and to prioritise flood 

protection areas in ungauged sites. 
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1. Introduction 

     Floods are the most widespread of all natural disasters 

that can happen in many parts of the world. They have not 

only a negative impact to the environment itself, but can 

also lead to impacts on society and economic prosperity of 

countries [1]. A classical solution for flood control and 

mitigation has been based on structural measures such as 

dams, weirs and other river structures. However, this 

classical solution may not suitable for the present 

circumstance since land demand for food production and 

habitat has increased and environmental concern has been 

increasing. Consequently, several solutions on the basis of 

non-structural measures have been widely developed and 

applied for flood control and mitigation. For example, [2] 

applied statistical procedures in Analytic Hierarchy Process 

for producing flood hazard, exposure, vulnerability and risk 

maps, which can be decision support tools for flood 

management. Such maps can be useful information for 

maintaining flood awareness and preparedness in local 

communities. 

     Over the past few decades, hydrological models have 

been involved in disaster management. One of widely used 

hydrological models is the Soil and Water Assessment Tool 

(SWAT) model. This model is a semi-distributed basin-

scale model that creates hydrological response units 

(HRUs) based on the combination of homogeneous 

topographical, land use and soil characteristics [3]. It has 

been designed to monitor temporal changes of surface 

runoff in response to land use changes [4]. In addition, the 

model can be used to assess changes in hydrological 

extremes in response to climate change. Therefore, 

outcomes (e.g. peak flood discharge) computed by the 

hydrological models can be useful information for 

evaluating the exceedance probabilities for extreme 

hydrological events [5, 6]. 

     Flood hazard mapping is a necessary component in 

flood mitigation and management. Degrees of flood hazard 

in a map can be presented by using a simple classification 

such as indicating very high, high, moderate and low hazard 

[7]. Flood hazard mapping usually requires data of flood 

inundation areas, which can be obtained using remote 

sensing techniques or generated using combined 

hydrological and hydraulic modelling approaches [8, 9]. 

     The lower areas of the Lam Pao River Basin have been 

flooded for weeks during the rainy season [10]. The floods 

mainly cause damage to agricultural production. These 

floods are highly unpredictable because they can happen as 

consequent upon heavy releases from the dam and intense 
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rainfall in the areas. Thus, the assessment of flood hazard is 

necessary in order to establish and implement appropriate 

flood mitigation measures in the river basin. 

     The main objective of this study is to assess the flood 

hazard in the lower areas of Lam Pao River Basin by 

integrating outcomes of the hydrological SWAT model and 

remotely sensed data of flood events. Results of flood 

hazard assessment are interpreted through catchment-scale 

maps. These maps can be used to identify areas having 

been affected by floods and high levels of flood hazard. 

Therefore, the flood hazard maps may be useful 

information in prioritising the areas for flood mitigation 

plan.   

2. Materials and Methods   

2.1 Study Area and Data  

     The setting for this study was a part of the Lower Lam 

Pao River Basin located downstream of Lam Pao Dam 

covering Kalasin and Maha Sarakham Provinces. One of 

the main objectives of the dam is flood prevention. 

However, floods frequently occur in the lower part of the 

basin and cause damage to many sectors, especially 

agriculture. Specifically, the areas of approximately 1,180 

km
2
 from Lam Pao Dam downstream to the E.87 stream 

gauging station was considered as the study catchment (Fig. 

1). The elevation of this catchment ranges from 131 to 233 

m a.s.l. (average 157 m). 

     According to 11-year data (2007-2017) recorded in the 

five rainfall stations of the Thai Meteorological Department 

(Fig. 1), average annual rainfall is 1,343 mm, with maxima 

in rainy season (from May to October). In addition to the 

rainfall data, other meteorological data, namely maximum 

and minimum air temperature, wind speed, relative 

humidity and solar radiation, were collected at the 

Kamalasai meteorological station. The inflow to the 

catchment is controlled by Lam Pao Dam and monitored at 

the E.75 stream gauging station. Therefore, runoff data 

used in this study were collected at the E.75 and E.87 

stations from Royal Irrigation Department. 

     Spatial data used in this study consisted of digital 

elevation model (DEM) with 30 m resolution, while land 

use and land cover (LULC) and soil type data were 

obtained from Land Development Department. The LULC 

and soil type data were available at a scale of 1:50,000. 

According to the historical LULC data in 2015, the 

predominant LULC was rice paddy (Fig. 2a). The study 

catchment was mainly formed by sandy loam and loam on 

the basis of the soil type data observed in 2015 (Fig. 2b). 

 

Fig. 1 Location of rainfall and stream gauging stations used in this study
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Fig. 2 Spatial data of study area: a) land use and land cover map and b) 

soil type map 

2.2 Estimation of Peak Runoff Rates  

     Owing to lack of runoff information available at sub-

catchment scales, a hydrological modelling-based approach 

was introduced to transform from rainfall and 

meteorological data into runoff.  In this approach, the semi-

distributed hydrological SWAT model was applied to 

estimate peak runoff rates at a sub-catchment level in the 

lower areas of Lam Pao River Basin because this model has 

been successful in simulating runoff in various 

environmental watersheds [11]. Sub-catchments of the 

basin were delineated from the DEM by using QSWAT 1.9 

tools. In addition, physical characteristics of the sub-

catchments were computed based on the DEM, LULC and 

soil datasets. Three of the physical characteristics, which 

were slopes, LULC types and soils, were used to form 

hydrological response units (HRUs) in the sub-catchments. 

Each HRU has a unique composition of those three 

characteristics [1]. On the basis of the datasets, the study 

area was divided into 17 sub-catchments and 260 HRUs. 

Since the study area is not a headwater watershed, its 

upper boundary condition was controlled by runoff from 

Lam Pao Dam. The runoff released from the dam has been 

recorded at the E.75 station. Therefore, these runoff data 

were assigned as inflow to sub-catchment S12 of the 

SWAT model, which was located at the top of the study 

catchment. Moreover, the meteorological data, namely 

daily rainfall, air temperature, wind speed, relative 

humidity and solar radiation from 2007 to 2017 were input 

into the model. 

     In this study, there were three modelling periods. The 

period of 2007 was firstly considered as a model warm-up 

period. As a result, initial hydrological conditions of the 

study catchment were generated by the SWAT model. The 

periods of 2008-2012 and 2013-2017 were model 

calibration and validation, respectively. After the warm-up 

period, the SWAT model was used to transform the daily 

meteorological data to daily runoff data. These data were 

then compared with observed runoff data at the E.87 station 

at the same periods. The calibration and validation 

processes were accomplished when reasonable results of 

model simulation based on statistical indices such as the 

Nash-Sutcliffe Efficiency coefficient (NSE), coefficient of 

determination (R
2
) and percent error in peak (PEP) were 

obtained. 

2.3 Evaluation of Model Performance 

     As aforementioned, during the calibration and validation 

processes, the model performance was achieved based on 

NSE, R
2 

and PEP. NSE provides a normalised statistic 

indicating how well the simulated outcomes match the 

observed data. NSE ranges between – ∞ and 1, with a value 

equal to 1 being the optimal value. The coefficient of 

determination (R
2
), which ranges between 0 and 1, 

describes the degree of collinearity between simulated and 

observed data. Typically, the model performance is 

considered acceptable when values of NSE and R
2
 are 

greater than 0.5 for a daily time step simulation [12]. PEP 

is an important statistical index in flood studies. It measures 

the relative error of peak value comparing to the observed 

peak value. The model is considered satisfactory when the 

absolute value of PEP less than 20% [Yu]. The statistical 

indices are defined in the following equations: 

 

      ,    (1) 

 

      ,  (2) 

 

     ,   (3) 

where NSE is the Nash-Sutcliffe Efficiency coefficient, R
2
 

is the coefficient of determination, PEP is the percent error 

in peak, n is the total number of observations, Qs(i) is the i
th

 

simulated runoff (m
3
s

-1
), Qo(i) is the i

th
 observed runoff 

(m
3
s

-1
), Qs and Qo are the average values of the simulated 

and observed runoff (m
3
s

1
), respectively, and Qs,peak and 

Qo,peak are the peak values of the simulated and observed 

runoff (m
3
s

-1
), respectively. 
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2.4 Determination of Peak Flood Frequency 

     In the present study, Gumbel distribution was applied to 

analyse the series of annual maximum daily (AMD) 

discharges for the 10-year observations since it is 

considered applicable for areas with short-term records of 

discharges [14]. However, the Gumbel distribution was 

examined whether it was suitable for the AMD discharges 

of the 17 sub-catchments simulated by the SWAT model. 

There were two main procedures: 1) estimation of 

maximum discharges in different return periods and 2) 

assessment of the goodness of fit of the Gumbel 

distribution.     

     The estimation of maximum discharges was based on 

the method of moments [15]. The moments of the data 

series such as its mean and standard deviation were 

computed. Afterwards, the maximum discharge 

corresponding to a return period (Tr) can be estimated as in 

Eq. (4).  

     ,     (4) 

 

where QTr is the maximum discharge corresponding to a 

return period (Tr), Qmean is the mean of the data series (i.e. 

maximum discharge), SQ is the standard deviation of the 

data series and K is the frequency factor. 

     According to [16], the frequency factor of the Gumbel 

distribution can be computed as follows: 

     ,     (5) 

 

where K is the frequency factor of the Gumbel distribution 

and Tr is the return period. 

     To assess the goodness of fit between the series of AMD 

discharges and predicted discharges based on the Gumbel 

distribution, the Chi-square test was applied. The Chi-

square statistic (2
) is expressed in Eq. (6) as: 

 

     ,     (6) 

 

where n is the number of intervals, Oi is the number of 

observed discharges (simulated values) in the class interval 

i and Ei is the number of the corresponding expected values 

in the class interval i. According to the Chi-square test, the 

null hypothesis that the series of AMD discharges were 

distributed as Gumbel distribution at 5% significance level 

can be accepted for flood frequency and hazard assessment. 

2.5 Classification of Flood Hazards  

     Classification of flood hazards at sub-catchment levels 

was based on the hydrological modelling approach 

combined with the satellite remote sensing data, which was 

the annual flood occurrences analysed by the Geo-

Informatics and Space Technology Development Agency 

(GISTDA) in Thailand. 

     Maximum daily discharges of the 17 sub-catchments 

corresponding to a return period such as the 5-, 10- and 20-

year return periods were classified into four flood hazard 

levels (low, medium, high and very high). For flood hazard 

classification, the range of daily discharge values was 

obtained by comparing the flood hazard level of each sub-

catchment with the number of annual flood occurrences 

between 2008 and 2017 in the sub-catchment obtained from 

remote sensing techniques. Based on the comparison 

between the peak discharges and the number of flood 

occurrences, the peak discharges (Qpeak) ranged from 0 to 

270 m
3
s

-1
 were equally divided into three intervals. Flood 

hazards were classified as low (Qpeak < 90 m
3
s

-1
), medium 

(90 m
3
s

-1
 ≤ Qpeak < 180 m

3
s

-1
) and high (180 m

3
s

-1
 ≤ Qpeak < 

270 m
3
s

-1
). If the peak discharges were equal to or greater 

than 270 m
3
s

-1
, flood hazard of sub-catchments was 

classified as very high in the present study. 

3. Results and Discussion 

     In this section, the results of the hydrological modelling 

approach are presented in brief. Subsequently, the results of 

flood hazard mapping are presented in more detail since the 

main attention of this study was to develop flood hazard 

maps in areas located downstream of the dam. 

3.1 Model Calibration and Validation for 

Daily Flow Simulation 

Model parameters chosen for calibration were based on 

the sensitivity analysis using the SWAT-CUP program. In 

the present study, a model parameter with a p-value less 

than 0.03 was considered to be significantly sensitive to the 

simulation results. According to 500 simulations of the 

SWAT-CUP, five parameters, which were initial SCS 

runoff curve number for moisture condition II (CN2), Soil 

evaporation compensation factor (ESCO), Manning's n 

value for the main channel (CH_N2), Groundwater delay 

(GW_DELAY) and average slope steepness (HRU_SLP), 

were found to be sensitive because their p-values were 

smaller than 0.03. Therefore, values of these five 

parameters were adjusted in the calibration procedure and 

then were validated by comparing with observed daily 

discharge series.  

     Fig. 3 shows the comparisons of simulated and observed 

hydrographs at the E.87 station for both calibration (2008-

2012) and validation (2013-2017) periods. In addition to 

the visual comparisons, the performance indicators for both 

periods were considered satisfactory because the values of 

NSE and R
2
 were greater than 0.71 and the absolute values 

of PEP were less than 20% [12, 13]. The results pointed out 

that the SWAT model has the ability to reproduce historical 

flood hydrographs at the E.87 station. Therefore, the 

SWAT model can be used to simulate daily discharges for 

the 17 sub-catchments of the drainage area of the E.87 

station. 
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3.2 Flood Hazard Mapping 

     The AMD discharges of the 17 sub-catchments 

simulated using the SWAT model were individually 

frequency analysed. The series of the AMD discharges 

were found to be satisfactorily fitted to the Gumbel 

distribution on the basis of the Chi-square test. In this 

study, the degree of freedom was considered as one for the 

Gumbel distribution. Therefore, its theoretical value of the 

Chi-square statistic is 3.84 at 5% significance level. From 

Table 1, it may be noted that the computed Chi-square 

values for all sub-catchments are lesser than the theoretical 

value. This indicated that the Gumbel distribution can be 

considered acceptable for the flood frequency analysis in 

the sub-catchments. Thus, this Gumbel distribution can be 

used to estimate flood magnitude for various return periods, 

namely 5-, 10- and 20-year return periods.  

     In addition, Table 1 displays the maximum daily flood 

discharges estimated using the Gumbel distribution. The 

maximum daily discharges were increased corresponding to 

larger return periods. In the present study, the maximum 

possible flood discharges for return periods up to 20 years 

were estimated since the annual maximum discharge data 

were taken from the 10-year observations and satellite-

based flood information of about 10 years was available. If 

the estimation of the maximum daily discharges was 

extended further, results may be considered undesirable for 

the statistical analysis of annual maximum discharges [17]. 

 

 

Fig. 3 Calibration and validation 

 

 

Table 1 Values of Chi-square test and maximum daily discharges for several return periods (Tr) using Gumbel distribution
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     It can be seen from the data in Table 1 that the sub-

catchment S17 had the highest maximum flood discharges 

of 400.2, 485.6 and 567.6 m
3
s

-1
 for the return periods of 5, 

10 and 20 years, respectively. 

     Fig. 4a shows the number of years between 2008 and 

2017 where floods occurred in the 17 sub-catchments 

according to satellite remote sensing observations from the 

GISTDA. For example, there were three years where flood 

occurrences were observed in the sub-catchment S15 and 

S16. Moreover, there were two years during the 10-year 

observations where flood occurrences were reported in the 

sub-catchment S11 and S17. 

     To create flood hazard maps, the estimated maximum 

flood discharges of the 17 sub-catchments were classified 

into four different hazard levels (very high, high, medium 

and low) and compared with the annual flood occurrences 

observed by the GISTDA. Figure 4b presents the flood 

hazard map of 5-year return period. It was found that the 

estimated daily maximum flood discharges in the sub-

catchment S12, S13, S14, S15, S16 and S17 were greater 

than 270 m3s-1. As a result, the very high level of flood 

hazard was assigned to these sub-catchments for the return 

period of 5 years. The highest maximum flood discharge 

found in the sub-catchment S17 was relatively greater than 

the average annual peak flow by about 36%. Moreover, the 

sub-catchment S9, S10 and S11 fall into the medium level 

of flood hazard because their estimated daily maximum 

flood discharges ranged from 90 to 180 m
3
s

-1
. 

     Fig. 4c and 4d illustrate flood hazard maps of 10-year 

and 20-year return periods, respectively. For the both return 

periods, the results indicated that the sub-catchments with 

the very high level of flood hazards were the sub-

catchments S12, S13, S14, S15, S16 and S17. The results 

of the sub-catchments S15 and S16 were confirmed by the 

annual maximum flood maps reported by GISTDA (see 

Fig. 4a). There were three flood events, which occurred in 

the two sub-catchments. The sub-catchment S11 can be 

categorised as a high level of flood hazard because its 

estimated daily maximum flood discharges for the 20-year 

return period were between 180 and 270 m
3
s

-1
. According 

to the remote sensing observations of flood occurrences,  

 

              
 

Fig. 4 Maps of flood occurrences and hazard for the lower sub-catchments of the Lam Pao Dam: a) the number of flood occurrences, b) 5-year c) 10-year, 

and d) 20-year flood hazard sub-catchments
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two flood events were observed in the sub-catchment S11 

during the 10-year observations (2008-2017). The 

estimated daily maximum flood discharges of the sub-

catchment S10 ranged from 90 to 180 m
3
s

-1
 and from 180 

to 270 m
3
s

-1
 for the return periods of 10 and 20 years, 

respectively. Therefore, flood hazard levels of this sub-

catchment were classified as medium and high for the flood 

hazard maps of 10-year and 20-year return periods, 

respectively. 

     In this paper, a methodology to assess flood hazard on 

ungauged catchments is presented. A semi-distributed 

hydrological model was used to simulate the runoff 

hydrographs of interesting sites. This approach has been 

found useful for transferring hydrological information from 

gauged basins to ungauged sites, where runoff information 

is insufficient for flood modelling and analysis [8, 18]. 

However, it is important to note that the hydrological model 

usually does not take into account the capability of river 

channel. As a consequence, the hydrological model cannot 

give causes of flooding from overbank flows.  

     The use of satellite remote sensing observations of 

flooded areas as an additional data source to support flood 

hazard assessment was proposed in this study. Remote 

sensing provides spatial information on flooding areas and 

its products are cost-effective options for monitoring 

changes on the Earth surface. Some limitations of the 

remote sensing observations include inability to detect 

flood discharges and a coarse temporal resolution of a few 

days or a few weeks. However, the use of remote sensing 

observations integrated with outcomes from the 

hydrological model has potential to improve the assessment 

of flood hazard, even in ungauged sites. In addition, the 

present integrated approach could be useful in contributing 

to similar circumstances, which prioritise areas for flood 

hazard mitigation. 

4. Conclusion and Suggestions 

     The present study applied hydrological modelling, flood 

frequency and remote sensing approaches to produce flood 

hazard maps in order to prioritise sub-catchments located 

downstream of Lam Pao Dam for flood risk management. 

The calibration and validation results of the SWAT model 

showed good agreement between the observed and 

simulated discharge data on the basis of the Nash-Sutcliffe 

Efficiency coefficient, coefficient of determination and 

percent error in peak. Thus, the SWAT model is considered 

reasonable for the estimation of discharge at a sub-

catchment scale. According to the Chi-square test, annual 

maximum daily discharges of the sub-catchments were 

satisfactorily fitted to the Gumbel distribution. Therefore, 

flood frequency analysis based on the Gumbel distribution 

was performed in order to determine the exceedance 

probabilities for floods of any given discharge of the sub-

catchments.  

     In addition, integrating outcomes of the hydrological 

modelling and flood frequency approaches with the use of 

remote sensing data has potential to improve the reliability 

of flood hazard analyses because the spatial extent of floods 

can be derived from the remote sensing data. In this study, 

the number of flood occurrences was obtained from remote 

sensing data. These data were used for assessing the degree 

of flood hazards. The resultant flood hazard maps for 5-, 

10- and 20-year return periods using the hydrological 

approach revealed that two sub-catchments (i.e., S15 and 

S16) along the main river and near the outlet of the study 

area had very high degrees of flood hazard. On the basis of 

the remote sensing data, three flood events occurred in the 

sub-catchments between 2008 and 2017.  

     All in all, an attempt has been made to integrate the 

particular results of hydrological modelling and remote 

sensing. Flood probabilities estimated from a hydrological 

model can be linked to the number of flood occurrences 

derived by using remote sensing images. One of the main 

problems of a hydrological modelling-based approach is 

that simulated runoff amounts accumulate from upstream to 

downstream areas. As a result, higher levels of flood hazard 

were found in sub-catchments along the main river. 

Moreover, the storage capacity of a watercourse is not 

normally taken into consideration in hydrological 

modelling. To improve the accuracy and reliability of flood 

estimates using the hydrological modelling-based approach, 

information of bankfull discharge at sites of interest should 

be considered. Some inconsistency in results between 

hydrological modelling and remote sensing was found. 

However, the information of flood occurrences obtained 

from satellite remote sensing observations is considered to 

be useful for verifying some flood hazard areas determined 

by the hydrological model. Our suggestion for further 

improvements of flood hazard mapping is to apply a 

hydraulic model, which can take account of physical 

characteristics of river channels. The combination of the 

hydrological and hydraulic models could be used to 

generate flood extents and produce a more detailed flood 

hazard map. 
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