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Abstract. Due to outstanding properties such as 

enhanced surface roughness, fatigue strength, hardness 

and specific heat, the IS 2062 E250 plate has retained its 

competitive choice as a boring material in the automobile 

and aerospace industries. Unfortunately, sparse literature 

exists to distinguish the several boring process parameters 

with potential varying importance. Consequently, two 

novel methods are presented based on the Taguchi-Pareto-

Box Behnken design (TP-BBD) and Taguchi-ABC-Box 

Behnken design (TABC-BBD) methods to optimize and 

select the process parameters. The signal to noise (SN) 

ratios for experimental trials was rearranged in 

descending order and cumulative SN ratios were computed 

to allow the application of the Pareto principle and the 

ABC methods. These outputs are fed into the Box Behnken 

design approach with analysis of variance conducted to 

reveal the linearity and significance of the parameters. 

Based on the process parameters considered, the response 

optimisation of the SN ratios for the TP-BBD method 

shows that the optimal setting for speed, feed, depth of cut 

and nose radius are 1090.91 rpm, 0.06 mm/rev, 1.2 mm, 

0.606061 mm. However, for the TABC-BBD method, the 

response optimisation results are 800 rpm, 0.06 mm/rev, 1 

mm and 0.606061 mm for speed, feed, depth of cut and 

nose radius, respectively. For both methods, the contour 

and surface plots of the SN ratios from the analysis show 

the range at which various parameters in the boring 

operation would be significant for the model.  
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1. Introduction 
 

Every day, several tonnages of materials are bored for 

major sub-assemblies but wastes are generated, which 

could be reduced by deploying optimisation and 

parametric selection methods [1], [2], [3], [4], [5], [6], [7], 

[8]. However, in the current industrial practice, the bored 

hole should conventionally be of high dimensional 

accuracy and great surface finish [6], [9], [10]. But, the 

problem of surface roughness often emerges when the 

cutting parameters are not properly selected in bored holes 

and can lead to defects in components [11]. Besides, when 

the cutting parameters in a boring operation are not 

optimally selected, the surface roughness and production 

time are usually high leading to low quality and low 

productivity. For example, if the speed parameter is 

optimized, the rate of production would be very high 

leading to increased productivity [12]. This problem 

warrants a solution of economic importance and 

sustainability dimensions. Unfortunately, as of today, a 

dearth of literature exists on the optimisation of process 

parameters of the IS 2062 E250 steel plates and the further 

classification of the parameters according to their 

importance.  

Further, most of the reports are focused on the optimal 

parametric determination alone while the significant 

interactions among the parameters are less studied. In the 

present article, the Taguchi-Pareto-Box Behnken design 

approach and the Taguchi-ABC-Box Behnken design 

method are introduced as novel approaches to optimize the 

cutting parameters in the boring operation on a CNC 

machine using the IS 2062 E250 steel plates. The proposed 

approaches are extensions of the Taguchi method [13], 

which give additional information on the prioritization of 

parameters and their interactions. These additional 

provisions aid high-quality surface roughness in the boring 

operation and with this, quality and productivity are 

increased. Thus, by introducing the Taguchi-Pareto-Box 

Behnken design approach and the Taguchi-ABC-Box 

Behnken method, this paper seeks to optimize the cutting 

parameters in the boring operation to reduce surface 

roughness, improving quality and performance.  

Besides, to bridge the gap analysed earlier, this 

investigation examines the attributes of boring operation of 

the IS 2062 E250 steel plate, integrates them into two 

mathematical methods of Taguchi-Pareto Box Behnken 

design and Taguchi-ABC Box Behnken design, and 

develops two optimisation cum selection methods for the 

parametric optimisation of boring operations for the IS 
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2062 E250 steel plates. The principal novelties and 

contributions of this article are as follows. First, two 

efficient methodical developments are established for the 

boring operation of the IS 2062 E250 steel plates. Second, 

two main optimisation methods are introduced in search 

for the optimal solution and definition of ranks cum 

selection of the best parameter in the boring process. This 

is achieved through the two different mechanisms. In the 

first mechanism, the Pareto principle is introduced to the 

Taguchi method where the 80-20 rule is established for the 

experimental trials to rapidly acquire the preferred 

experimental runs upon which reliable boring activities 

may be planned and implemented. It then employs the 

Box-Behnken design to further optimize and establish 

interactions through plots and interpretations. The second 

mechanism substitutes the ABC classification scheme for 

the Pareto principle based on 0-69%, 70-79% and 80-

100% cut off rules and employs the Box-Behnken design 

to study the interactions of the parameters. However, the 

next novelty and contribution of the article are that the IS 

2062 E250 steel plates are used as a case investigation to 

verify the supremacy and effective attributes of the two 

proposed methods. 

2. Literature review  

The current study aims to present a novel approach 

used in predicting the most significant parameter and the 

most optimal parameter to achieve optimal surface 

roughness in a boring operation on a CNC machine tool, 

the novel approach is a combination of various methods 

that would include Taguchi method, design of experiment 

response surface methodology (Box Behnken design) 

approach, the Pareto principle, and the ABC principle. 

While they have been much research on determining the 

most significant and optimal parameter values to achieve 

optimum surface roughness in a boring operation, using 

various methods, very few researchers have employed the 

Pareto principle and also ABC principle in this regard. 

Boring operations are the backbones and the most 

delicate finishing activity in component development; 

boring process could jeopardize all the efforts put into the 

component development in commercial activities (i.e. 

grinding, drilling and turning the workpiece material). This 

makes the need for optimisation of process parameters and 

response in the boring operation compelling. This research 

aims to analyse the characteristics of the optimisation of 

process parameters in the boring operation by using the 

combined Taguchi Pareto and Box Behnken design 

response surface methodology on one side and Taguchi 

ABC with Box Behnken design response surface 

methodology on the other side because of the increasing 

importance of optimisation in this domain of 

manufacturing. This section details the ideas regarding 

material types, machines tools, boring process input 

parameters and the quantitative data in boring research. To 

obtain results, the present authors have utilized journals 

papers and a research gap has been identified. Below are 

the various aspects that the literature on the boring 

operations has been segmented. 

2.1 Material Types used in Boring 

In the literature, many researchers have worked on 

various materials ranging from various types and grades of 

steel to types and grades of aluminium in determining the 

optimal and the most significant parameter in their boring 

operation on various machine tools for example, Abiola 

and Oke [7]; Patel and Deshpande [14], Vohra [1], Singh 

and Prakash [4], Nugroho et al. [15] all worked on various 

types and grades of steel on the subject matter. Abiola and 

Oke [7] claimed that the depth of cut is the most 

significant parameter in the boring process of IS 2062 

E250 steel plate having the largest weight of 1 while the 

speed is the least important parameter with a weight of 0 

by the novel entropy-decision tree-VIKOR approach to 

support their claim. Patel and Deshpande [14] declared 

that the speed, nose radius and feed are the most 

significant parameter in boring operation, with percentage 

contributions of 74.92, 11.09 and 11.12, respectively, and 

the optimized parameters are speed of 1400 rpm, feed of 

0.6 mm/rev, depth of cut of 1.4 mm and nose radius of 0.8 

mm. The IS: 2062 steel was used and the Taguchi method 

and ANOVA procedure were applied.  

The model developed predicted the surface roughness 

of IS 2062 steel. Vohra et al. [1] asserted that increase in 

the depth of cut influences the material removal rate but 

increases surface roughness. They also stated that if there 

is an increase in cutting speed the material removal rate is 

increased and the surface roughness is decreased 

simultaneously when the work piece material is steel pipe. 

Their argument was backed up by employing the Taguchi 

method and ANOVA. All the parameter were conflicting, 

hence optimization of the parameter for better output was 

achieved. Singh and Prakash [4] stated that all cutting 

parameter is somehow related to one another and are 

conflicting. Hence, the need to optimize the parameters for 

increased performance. Their declaration was supported by 

using gray relational analysis and Taguchi method to 

optimize cutting parameters for optimal material removal 

rate and surface roughness of steel pipe (SS-304) in a 

boring operation. In the two approaches used, the feed rate 

and the depth of cut were in complete agreement.  

Nugroho et al. [15] declared that the most significant 

factor that contributes to surface roughness is the insert 

radius, followed by the feed rate and depth of cut while 

damper position is the least significant factor in the turning 

process of medium carbon steel AISI 1050 on a CNC 

machine. The assertion was supported by using full 

factorial and ANOVA method for the parameter 

optimization. The regression model developed shows that 

there is a relationship between the surface roughness and 

the cutting parameter in considered.  

Also, Nayak and Sodhi [16], Sukhdeve and Ganguly 

[17], Kumar et al. [5], and Abdulrazaq et al. [18] worked 

on various types and grades of aluminium and its alloys on 
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the subject matter. Nayak and Sodhi [16] maintained that 

when the optimal parameter are set as speed 2004.54 rpm, 

feed rate of 95.10 mm/min and depth of cut to be 0.67mm, 

then there is 100% possibility that there would be a 

material removal rate (MRR) of 62.98 mm
3
/sec and a 

surface roughness (Ra) of 0.2882 for Al6061 using the 

analysis of regression and response surface methodology. 

The optimal selected parameters produce optimal surface 

finish for the Al6061 material. Sukhdeve and Ganguly [17] 

asserted that the optimum parametric settings from the 

gray relational analysis were validated using genetic 

algorithm. This validates the mathematical regression 

model from experimental data from Taguchi analysis when 

the material used is AISI 1040 on a jig boring machine. 

The mathematical model from the Taguchi method can be 

validated using the presented method. Kumar et al. [5] 

maintained that using the gray relational analysis, support 

vector machine, response surface methodology the gray 

relational grade could be predicted and machining 

parameters could be optimized when AISI 4340 material is 

considered in a boring operation. These can be verified by 

confirmation experiment.  

Abdulrazaq et al. [18] argued that high feed rate 

produces high material removal rate and good surface 

roughness while high spindle speed gives good surface 

roughness. They declared that there was little effect on 

material removal rate for 7024 Al-alloy material in a 

turning operation on a CNC machine using Taguchi 

method. Of all, only a few researchers worked on E250 B0 

steel material [7], [14]. Hence, the choice of material in the 

current study was guided by the sparse information and 

potentials for development in the area. Furthermore, 

knowledge of material types during the boring operation 

could be effectively used to evaluate the relative degrees 

of optimized values obtained by each material group and 

aid the understanding of the optimal process parameters of 

the boring process when machining the IS 2062 E250 steel 

plates. 

2.2 Machine Tools used in Boring 

The machine tool used widely in the literature is 

various models of CNC machines. For example, in the 

works of Abiola and Oke [7], Nayak & Sodhi [16], Kumar 

et al. [19], Patel & Deshpande [14], Abdullah et al. [20] 

and Vohra et al. [1], various models of CNC machine was 

employed in collating experimental data. Other researchers 

like Sukhdeve & Ganguly [17] as well as Vivek and 

Ramesh [21] used jig boring machines and conventional 

lathe machines in collating experimental data respectively. 

Vivek and Ramesh [21] declared that the optimum 

parameters for the boring of E31 steel material on a lathe 

machine are 517.45 rpm for speed, 0.06 mm/rev for feed 

rate, and 0.87 mm for depth of cut using the response 

surface methodology to support their claim. When 

parameters are properly selected in a boring process, 

optimal surface finish is achieved. Going by the trend in 

the literature the machine tool employed in the current 

studies is the E Batilbio CNC Sprint 20TC. Hence, 

information on machine tools utilized during boring could 

be extremely useful to make boring operations attainable at 

optimal values to achieve optimality for boring IS 2062 

E250 plates. 

2.3 Responses in the Boring Process 

Throughout the literature, the output parameters taken 

into account in determining the optimal parameters in a 

boring operation are surface roughness, material removal 

rate, tool wear, workpiece vibration, the vibration 

amplitude of boring bar, roughness maximum, 

concentricity, coaxiality, cutting force, tangential force, 

bore diameter and vertical reaction force. Surface 

roughness was considered as the only output in Abiola and 

Oke [7], Suresh & Diwakar [22], Nayak & Sodhi [16], 

Balamurugamohanraj et al. [23] and Munawar et al. [24] 

while multiple outputs were considered in Vivek and 

Ramesh [21], Sukhdeve & Ganguly [17], Satish et al. [25], 

Rao & Murthy [26]. However, for in-depth studies and 

analysis, surface roughness was the only output parameter 

considered in the current study. It could be concluded that 

the grouping of boring operation characteristics according 

to responses obtained is achieved according to the 

demands for optimal operations performance during boring 

that promotes sustainability in machining operations. 

2.4 Boring Process Input Parameters 

Most authors in the literature are in almost complete 

agreement as to the input parameter considered in the 

boring operation to determine the optimal surface 

roughness and other output response. Abiola and Oke [7], 

Patel and Deshpande [14], considered spindle speed, feed 

rate, depth of cut and nose radius as the input parameter 

considered in the boring operation for optimum surface 

roughness. Other authors such as Yuvaraju and Nanda 

[10], Patil and Jadhav [27], Ramu et al. [28], Sonar et al. 

[29] and Panchal [6] considered only speed, feed and depth 

of cut as the input parameters in their work. However, 

Thomas et al. [30] and Munawar et al. [24] employed input 

parameters like rake angle, tool length, workpiece length, 

type of boring bar, in addition to the basic speed, feed, 

depth of cut and nose radius.  

In Patil and Jadhav [27], the authors asserted that PTFE 

gives better results compares to other viscoelastic material 

such as PVC and rubber. The experiment was conducted 

on an EN8 workpiece material. Furthermore, the surface 

roughness value is seen to decreases when a PTFE damper 

is installed on the boring tool and when Taguchi method is 

used to optimize the parameters. Ramu et al. [28] argued 

that depth of cut is the most important parameter to be 

considered in relation to surface roughness and material 

removal rate, using gray relational grade. However, the 

asserted that speed and feed ranked second and third, 

respectively, when stainless steel 316 is used in the turning 

operation in the experiment. Sonar et al. [29] declared that 

the generated equation generated through the regression 

analysis can be used to predict surface roughness and 
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material removal rate. However, the Taguchi method was 

used to obtain the optimal solution for the turning process 

of Al6061 T6 on a CNC machine. Using the generated 

model the best decision on optimal parameter was reached. 

Panchal [6] maintained that the most significant parameter 

when the material is not hardened is the feed and depth of 

cut. While when the material is hardened, the feed is the 

most significant. However, the least significant is the 

speed and depth of cut on surface roughness. The work 

piece used is EN-36 on a CNC machine and this claim was 

supported by application of BBD (RSM) in obtaining the 

optimal parameters in both instances. The author claimed 

that this procedure helps in reducing the machining time, 

cost and tool wear rate. In the case of Thomas et al. [30], 

the authors claimed that analysis of variance revealed the 

best surface roughness condition achieved at a low feed 

rate. They asserted that depth of cut has no significant 

effect on surface roughness, The analysis of variance that 

they reported revealed that the best surface roughness 

condition is achieved at a low feed rate (less than 0.35 

mnt/rev), a large tool nose radius (1.59 mm) and a high 

cutting speed (265 m/min and above). Their results also 

show that the depth of cut has not a significant effect on 

surface roughness. Munawar et al. [24] stated that high 

feed rate and low cutting speed would produce the lowest 

surface roughness in the boring process of AISI 1018 steel 

on CNC machine when Taguchi and ANOVA is adopted. 

Thus, being motivated by the literature, in the current 

study, the input parameters considered are speed, feed, 

depth of cut, and nose radius due to the impact they have 

on the chosen output parameter. Furthermore, Vivek and 

Ramesh [21], Nayak and Sodhi [16], Patel and Deshpande 

[14], Satish et al. [25], Rao and Murthy [26] and Kumar et 

al. [3] gave specific values of each input parameter as the 

optimal values to achieve the optimum various output like 

the surface roughness. In a boring process, when the input 

parameters are properly selected by the various methods, 

better surface roughness is achievable [16], [19], [21]. 

Also, Vohra et al. [1] and Singh and Prakash [4] argued 

that the cutting parameter is somewhat related to one 

another and that they are clashing or incompatible, which 

results in the need for optimization for better output. Most 

manufacturing organization aims to produce high-quality 

products at minimum costs, which can be achieved only 

when machining parameters are optimized [16], [31]. It 

could be concluded from the finding that responses are one 

of the aspects of boring operations parametric analysis and 

optimisation that promotes an excellent performance of the 

boring operation when properly defined. 

2.5 Quantitative Data in Boring Research 

In boring operations, quantitative data may refer to a 

form of research whose intent is to quantify the gathering 

and examination of experimental or numerical data from a 

theoretical perspective. Quantitative data has been linked 

to a deductive method based on theoretical tests. Often, the 

purpose of navigating through the quantitative lens is to 

establish the frequency at which some defined 

characteristics exist. Parameters are easily conceptualized 

that is the key representatives of the input of the system 

and they are routes to observing the larger data set from 

the population of data from which a few experiments are 

extracted. Data in the literature are generally quantitative 

and various authors have employed different approaches in 

analyzing these data. For example, authors like Suresh and 

Diwakar [22], Patel and Deshpande [14], Kumar et al. 

[19], Dave et al. [32] and Abdulrazaq et al. [18] are a few 

of the authors that employed ANOVA in determining the 

most significant parameter in a boring operation for 

optimum surface roughness. For example, Kumar et al. 

[19] argued that when the optimized cutting condition 

obtained from DOE full factorial and ANOVA analysis 

and the non optimized cutting conditions were compared 

based on their effect on surface roughness, the optimized 

parameter reduced surface roughness by 49.83%. Using 

this method, with increased cutting speed and feed the 

surface rough is decrease drastically.  

Dave et al. [32] asserted that the material removal rate 

is mostly influenced by the depth of cut while the insert 

influenced the surface roughness more, when the material 

are grade EN material in a turning operation using Taguchi 

method. When this method is employed increase in 

machine utilization and decrease in production cost is 

achieved. However, Abiola and Oke [7] used the entropy-

decision tree-VIKOR approach in determining the ranking 

of parameters in the boring operation for optimum surface 

roughness. Suresh and Diwakar [22], Vivek and Ramesh 

[21], Nayak and Sodhi [16], Patel & Deshpande [14], 

Kumar et al. [19] and Rao & Murthy [26] are just but few 

of the authors that used Taguchi method and DOE's 

response surface methodology in determining the optimal 

parameters values in boring operation for high-quality 

surface roughness. Sukhdeve & Ganguly [17], Kumar et 

al. [5], Batwara & Verma [31], Saini & Pradhan [33], 

Ramu et al. [28], Yang et al. [34] and Rao & Murthy [26] 

employed other methods like support vector machine 

method, full factorial design, grey relational analysis, 

artificial neural network, and genetic algorithm. However, 

of all the methods used by various authors, none used the 

Pareto principle, the ABC principle and other evolutionary 

optimization approach apart from the genetic algorithm, 

which was used by Sukhdeve & Ganguly [17] only. The 

present work introduces a combination of the Taguchi 

method, ABC principle, Pareto principle, DOE’s response 

surface methodology (Box Behnken design approach) to 

the optimization of boring parameters of IS 2062 E250 

steel plates which makes it unique from those used in the 

literature under review. Hence, the quantitative data may 

be an effective avenue to monitoring the performance of 

boring operations in the boring of the IS 2062 E250 plates. 

2.6 Research Finding Pointers 

The findings made by various analyses of various 

authors suggest a particular machining parameter to be the 

most significant in the boring operation others say 

otherwise for example in the works of Abiola and Oke [7] 
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and Ramu et al. [28]  agree that the most significant 

parameter in the boring operation on a CNC machine tool 

is the depth of cut, while in the works of Patel & 

Deshpande [14], Nugroho et al. [15] and Saini & Pradhan 

[33], depth of cut is not the most significant factor in the 

boring operation, probably owing to the difference in 

materials used by various authors in their various works. 

Hence, research finding pointers may be effective 

indicators of the progress made by the boring operation in 

achieving the performance goals of the process of boring 

IS 2062 E250 plates. 

To further explore the literature, a summary of 

important studies are provided in Table 1. 

 

Author(s) 

Working 

material 

used 

Machining 

operation 

/machine tool 

Choice output 
Choice input 

parameters 
Method(s) used Findings Conclusion 

Abiola and 

Oke [7] 

E250 B0 

steel 

material 

Boring/ CNC 

machine 

Surface 

roughness 

Speed, feed, nose 

radius, depth of cut 

Entropy- 

decision tree-

VIKOR 

approach 

Depth of cut exceeds others in 

performance while all other 

parameters exceed speed in 

performance to enhance 

surface roughness 

The analysis is useful for 

the preparation of the 

annual budget for boring 

operation in a factory 

Suresh & 

Diwakar [22] 

Twinning 

induced 

plasticity 

steels 

Turning/CNC 

machine 

Surface 

roughness 

Rate of material 

removal, feed, speed, 

depth of cut 

Taguchi, 

ANOVA, and 

response surface 

methodology 

The optimal condition of each 

input and output parameters 

were established 

The optimization of 

process parameters is 

tedious and should be done 

with utmost attention 

Vivek & 

Ramesh [21] 

EN 31 Boring/Lathe 

machine 

Surface 

roughness 

Speed, feed, depth of 

cut 

 

Response 

surface 

methodology 

The optimum parameter was 

obtained and confirmation 

experiments were carried out 

to validate the optimum 

settings 

Proper selection of 

parameters produces a 

better surface finish 

Nayak & 

Sodhi [16] 

Al 6061 Boring/CNC 

machine 

Surface 

roughness 

Depth of cut, feed 

rate, cutting speed 

and surface 

Regression 

analysis, 

response surface 

methodology 

The optimum parameter was 

established 

Optimum selection of 

parameters produces a 

good surface finish 

Sukhdeve & 

Ganguly [17] 

AISI 1040 Jig boring 

machine 

Vertical 

reaction force, 

surface 

roughness, 

material 

removal rate 

Speed, depth of cut, 

cutting speed 

Taguchi, grey 

relational 

analysis, genetic 

algorithm 

The optimum parametric 

settings from the grey 

relational analysis were 

validated using a genetic 

algorithm, which validates  the 

regression model from 

experimental data from 

Taguchi analysis 

 

Patel & 

Deshpande 

[14] 

IS: 2062 

steel 

Turning/CNC 

machine 

 Speed, depth of cut, 

nose radius. Feed 

Taguchi and 

ANOVA 

Speed, nose radius and feed 

are the largely considerable 

parameters in the boring 

process 

The developed model 

could be used to predict 

surface roughness 

Kumar et al. 

[9] 

Engine 

crankcase 

tappet bore 

Boring/CNC 

machine 

bore diameter Cutting speed, feed 

rate, cutting 

allowance 

DOE, RSM 

AND ANOVA 

When cutting speed and feed 

increased, bore deviation 

decreased 

40% decrease in bore 

deviation was recorded 

with an increase in cutting 

speed and feed 

Kumar et al. 

[5] · 

AISI 4340 Boring Surface 

roughness, tool 

wear, cutting 

force, 

tangential 

force, tool 

vibration 

Cutting speed, depth 

of cut, feed rate 

Gray relational 

analysis, support 

vector machine, 

response surface 

methodology 

Grey relational grades were 

predicted and machining 

parameters were optimized 

A confirmation experiment 

was conducted to validate 

the predicted GRG and 

optimized parameter 

Abdullah et 

al. [20] 

Aluminium 

alloy 6061, 

mild steel 

and carbon 

steel. 

Boring/CNC 

machine 

Concentricity 

and coaxiality 

Cutting speed, feed 

rate and depth of cut 

Taguchi In concentricity, the type of 

material had the highest 

percentage contribution value 

(51.469%), followed by the 

feed rate (41.812%), depth of 

cut and cutting speed were not 

that significant with 4.841% 

and 1.879%, respectively. In 

coaxiality, material type is the 

largely considerable factor that 

influences coaxiality with 

76.899% influence. Other 

factors are almost 

insignificant, cutting speed 

contributes 12.443%, feed rate 

contributes 9.862% and depth 

of cut contributes 0.796%. 

The optimum condition for 

concentricity was by using 

the carbon steel, depth of 

cut of 0.2 mm, feed rate of 

0.4 mm/rev and cutting 

speed of 560 mm/min. The 

optimum condition for 

coaxiality was by using 

aluminium Alloy, depth of 

cut of 0.2 mm, feed rate of 

0.1 mm/rev and cutting 

speed of 750 mm/min. 

 

Table 1 Summary of literature review for the boring operation of steel plates 
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Abdulrazaq 

et al. [18] 

7024 Al-

alloy 

Turning/CNC 

milling 

machine 

Surface 

roughness, the 

material 

removal rate 

feed rate, spindle 

speed 

Taguchi and 

ANOVA 

High feed rate produces high 

material removal rate and good 

surface roughness and high 

spindle speed also give good 

surface roughness with little 

effect on material removal rate 

High spindle speed give 

better surface roughness 

Dave et al. 

[32] 

grades of 

EN 

materials 

Turning/CNC material 

removal rate, 

surface 

roughness 

depth of cut Taguchi method The material removal rate is 

mostly influenced by the depth 

of cut while the insert 

influenced the surface 

roughness more 

An increase in machine 

utilization and decrease in 

production cost is achieved 

Kumar et al. 

[9] 

Engine 

crankcase 

tappet bore 

Boring/CNC 

machine 

surface 

roughness 

Cutting speed, feed 

rate, cutting 

allowance 

DOE Full 

factorial and 

ANOVA 

analysis 

With increased cutting speed 

and feed the surface roughness 

decreased drastically 

Optimized parameters 

reduced the surface 

roughness by 49.83% 

Vohra et al. 

[1] 

Steel pipes Boring/CNC 

machine 

Material 

removal rate 

and surface 

roughness 

speed, feed and depth 

of cut 

Taguchi method 

and Anova 

The optimum value of each 

parameter was established 

An increase in the depth of 

cut influences the material 

removal rate but increases 

surface roughness. With 

cutting speed growth, the 

material removal rate 

increased and the surface 

rough decreased 

correspondingly. 

Batwara & 

Verma [31] 

 Turning/CNC 

Machine 

Material 

removal rate, 

surface 

roughness 

Depth of cut, feed 

rate, speed 

Artificial neural 

network and 

response surface 

methodology 

To obtain the accuracy of 

components, optimizing the 

machining parameters is very 

valuable. It also has a great 

influence on cost-

effectiveness, material removal 

rate and surface roughness 

Model equations for 

predicting material 

removal rate and surface 

roughness were 

formulated. It has an 

accuracy of 90% in 

predicting the responses 

Singh & 

Prakash [4] 

 

Steel pipe 

(SS-304) 

Boring/CNC 

machine 

Surface 

roughness, 

material 

removal rate 

Feed, speed, depth of 

cut and 

Taguchi method The SN ratio was used to 

optimize the cutting 

combination of the parameters. 

All cutting parameters are 

related to one another and are 

conflicting. 

The optimum cutting 

parameter in reducing the 

surface roughness was 

determined, 

Nugroho et 

al. [15] 

 

Medium 

carbon steel 

(AISI 1050) 

Turning /CNC 

machine 

Surface 

roughness 

Damper position, 

feed rate, depth of 

cut, insert nose radius 

DOE Full 

factorial and 

ANOVA 

analysis 

The largely considerable factor 

to surface roughness is the 

insert radius, then feed rate and 

depth of cut, while damper 

position was the slightest 

considerable factor. 

The result from this study 

validates previous 

researches that the factors 

considered influence the 

surface roughness of 

components 

Kumar et al. 

[3] 

 

410 

stainless 

steel 

Boring/Lathe 

machine 

material 

removal rate, 

surface 

roughness 

Speed, depth of cut Taguchi and 

ANOVA 

To increase quality and reduce 

cost, the material removal rate 

should be optimized, the 

optimum process parameter for 

the effective and efficient 

operation was determined 

The optimum combination 

of process parameters 

improves the performance 

of machining processed 

Saini & 

Pradhan [33] 

 

Aluminium 

alloy 8011 

Turning/CNC 

machine 

material 

removal rate 

and surface 

roughness 

Cutting speed, feed, 

depth of cut 

Taguchi-Fuzzy The largely considerable factor 

on the surface roughness and 

the material removal rate, 

followed by the depth of cut 

and the cutting speed 

In this study, the feed was 

established as the largely 

considerable parameter that 

influences surface 

roughness 

Panchal [6] 

 

EN-36 

(with 

hardening 

and without 

hardening) 

material 

CNC machine surface 

roughness 

Speed, feed, depth of 

cut 

BBD(RSM) The largely considerable 

parameter of the material 

without hardening is the feed 

and depth of cut while for the 

hardened material the feed is 

the largely considerable but the 

slightest considerable is the 

speed and depth of cut on 

surface roughness 

This analysis helps in 

reducing machining time, 

cost and tool wear rate 

Sonar et al. 

[29] 

 

Aluminium 

Alloy(Al60

61 T6) 

Turning/CNC 

machine 

material 

removal rate 

depth of cut, feed 

rate, speed 

Taguchi Optimum machining 

parameters were determined. 

The generated polynomial 

regression model could the 

used to predict surface 

roughness and material 

removal rate 

With support from the 

regression model, the best 

decision on parameters 

could be reached 

Ramu et al. 

[28] 

 

stainless 

steel (316) 

Turning/CNC material 

removal rate, 

surface 

roughness 

feed, speed, depth of 

cut 

Taguchi- 

ANOVA-Gray 

relational 

analysis, grey 

relational grade 

The best optimal combination 

of parameters from ANOVA 

shows that feed is the most 

important parameter affecting 

surface roughness, followed by 

speed and depth of cut. 

 

Depth of cut is the most 

considerable parameter 

regarding surface 

roughness and material 

removal rate with the grey 

relational grade, while 

speed and feed ranked 

second and third 

Table 1 Summary of literature review for the boring operation of steel plates (Cont’d) 
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Yang et al. 

[34] 

aluminium 

alloy 

6061T6 

Boring/CNC 

machine 

Roughness 

average, 

roughness 

maximum, 

roundness 

Feed rate, cutting 

speed 

Gray relational 

analysis, 

ANOVA 

Feed rate mostly influences  

roughness average and 

roughness maximum, while the 

cutting speed is the most 

important factor in roundness 

The feed rate is the largely 

considerable factor in a 

CNC boring operation 

Muhammad 

et al. [35] 

AISI 1018 

steel 

Boring/CNC 

machine 

Surface 

roughness 

Rake angle, depth of 

cut, speed, nose 

radius, feed rate 

Taguchi, 

ANOVA 

ANOVA was used to identify 

the largely considerable factors 

affecting surface roughness, 

S/N ratio was used to find the 

optimal cutting combination of 

the parameters 

Tools with a positive rake 

angle and small nose radius 

produce a lower surface 

nose radius in the boring 

operation. Also, high feed 

rate and low cutting speed 

produced the lowest 

surface roughness 

Patil & 

Jadhav [27] 

EN8 

material 

workpiece 

with 

and without 

viscoelastic 

material 

damper 

Boring/CNC 

machine 

surface 

roughness 

Spindle speed, feed 

rate and depth of cut 

Taguchi PTFE gives the better result as 

compared to other viscoelastic 

material PVC and Rubber 

The surface roughness 

value decreases due to 

installation of PTFE 

damper on the boring tool. 

Thomas et al. 

[30] 

Mild 

carbon steel 

Boring Surface 

roughness 

Cutting speed, feed 

rate, depth of cut, 

tool nose radius, 

tool length and type 

of boring bar 

ANOVA The variance analysis showed 

the superior surface roughness 

situation at a low feed rate of 

less than 0.35 mm/rev, a huge 

tool nose radius of 1.59 mm 

and an elevated cutting speed 

of 265 m/min and over. Depth 

of cut has no considerable 

influence on surface 

roughness. 

Influence of developed 

edge structure on surface 

roughness can be reduced 

by enhancing the depth of 

cut and intensifying the 

tool vibration 

Yuvaraju & 

Nanda [10] 

Glass fibre 

reinforced 

epoxy and 

glass fibre 

reinforced 

polyester 

Boring Vibration 

amplitude of 

boring bar and 

surface 

roughness of 

the workpiece 

Speed, feed and 

depth of cut 

Response 

surface 

methodology, 

ANOVA, Box 

Behnken 

There is a reduction 

in surface roughness as well as 

vibration amplitude with an 

increase in the number of 

composites 

plates placed under the tool 

Surface roughness is 

reduced, as well as the 

vibration amplitude 

 

Table 1 Summary of literature review for the boring operation of steel plates (Cont’d)
 

 

2.7 Research Gap 

The review performed above targeted the existing 

literature on boring process optimisation and has provided 

an understanding of the idea regarding the process 

industry. The review provided an effective route to 

examine an aspect of optimisation of boring operations and 

parametric prioritization has been ignored in a majority of 

studies. Moreover, the Taguchi Pareto and Taguchi ABC 

perspectives in combination with Box Behnken design for 

interaction analysis for the specific application of 

automobile panel and an illustration using the AA1100 

sheets are absent in the literature but introducing this idea 

could introduce a high-performance threshold and 

improved planning in the boring industry. Consequently, 

the absence of such a study could jeopardize the 

profitability of the process despite having sufficient boring 

operations resource to prosecute all the available boring 

jobs. From the literature, it was established that researchers 

adopt optimisation methods to enhance the performance of 

the boring system. However, prioritization of the 

parameters while optimizing them was not considered. 

Also, the interactions of the parameters in a concurrent 

optimisation cum prioritization process were not 

recommended. Furthermore, no methods were adopted to 

prove that interaction prevails while processing automotive 

panels, particularly using the AA1100 sheets 

 

3. Methods  

3.1 Materials and Experimentation  

To choose the IS 2062 E250 plate used in 

experimentation by Patel and Deshpande [14], the 

attraction includes its chemical and mechanical 

compositions, which make the material for wide-ranging 

applications in the industry. First, the standard information 

on the chemical and mechanical properties of the IS 2062 

E250 plate was obtained from the website of Ashtapad 

Overseas, a prominent plate supplier in India. While the IS 

2062 E250 Br is taken as a broad steel plate group, the 

obtained information emphasizes three different grades 

with changes in nomenclature as A, B and C, descended by 

the E250 ginned description as E250- Gr A, E250-Gr C. 

Although any of these could be suitable for the 

experimentation, perhaps Patel and Deshpande [14] were 

guided by cost and/or availability of the product for 

supplies at the period of requests for experimentation thus, 

the E250-GrB, fully described as IS 2062 E2050 Gr B 

plates were chosen by the authors. The plate consists of the 

element carbon, magnesium, sulphur, phosphorus, silicon 

and the C.E values while the element Nb+V+Ti is 

completely missing in it but is available in other categories 

of steel plates such as the E-300 (0.25max), E-350 (0.25 

max) and E-450 Gr – E (0.25 max), among others. 
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By compositions, a maximum of 0.045% of sulphur 

and phosphorus are present in the chosen IS2062 E250 Gr 

B plates for experimentation. This chosen sample also 

contains a maximum value of 0.40% silicon. Other values 

of elements contain a maximum of 0.22% of carbon while 

a maximum of 1.50% is reported for magnesium. Also, the 

guide of plates chosen has a C.E. value of 0.41% as the 

maximum threshold. For the chosen IS2062 E250 Gr-B 

plates, six principal mechanical properties are of interest to 

the user and these include the bend test (min), yield stress 

(<20mm), (>40mm), yield stress (20-40mm), tensile 

strength (MIN, MPA), % derogation at gauge length 5.65 

(square root of so). The yield stress at (<20mm), (20-40 

mm) and (>40mm) are given as 250,240 and 230 units, 

respectively. However, the elongation in percentage at the 

gauge length 5.65 multiplied by a square root is obtained 

for the IS 2062 E250 Gr-B plates as 23 minutes. The bend 

test result is 3t, where t is the thickness of the plate. 

Beyond these mechanical tests, the density of the plates is 

7.85 g/cm
3
. Additional information includes the gauge 

width and length, width per sheet and weight per profit. 

The gauge width and length is mage ranging, for example, 

7(0.1874) x 48 x 120mm represents the gauge width and 

length whose weight per square feet is 7.871. 

Apart from the materials utilized in the boring 

operation, which includes the IS 2062 E250 Gr-B plates, 

which are classified as pre and experimental aids, other 

types of materials such as the software used aided in 

analyzing the results after the experiments. In the present 

study, the two software materials used are the Minitab 18 

version 2020 and Microsoft Office Excel 2007. The 

Minitab 18 version 2020 aided in running the Box 

Behnken design model. Thus was actualized by creating 

the box Behnken design and introducing the response. 

Then the analysis was run after which the parameters were 

optimized. The authors plotted the contour plots and 

surface plots using the Minitab 18 also. The second 

software used is Microsoft Office Excel 2007, which was 

used in generating the signal to noise responses through 

the Taguchi method. Initially, in Minitab 18 version 2020, 

the Taguchi orthogonal array design was generated and 

this was introduced to Microsoft Excel to obtain the signal 

to noise ratios that were used in the Minitab 18 version 

2020 software. Then the process of interpretation in 

obtaining the response commenced. 

Furthermore, the Batliboi make CNC turning centre 

(Sprint 20 TC) was used for experimentation by Patel and 

Deshpande [14] whose data is used to validate the methods 

proposed in this work. Moreover, the chemical vapour 

deposition (CVD) of Ti (C, N) + Al2O3 coated cemented 

carbide inserts of 0.8 and 1.2 mm as nose radius were 

engaged in the experiments. Besides, the cutting inserts are 

the CNMG 12 04 08 PF & CNMG 12 04 12 PF (Sandvik, 

made), while the tool material is of the CVD coated 

cemented carbide and the tool holder is specified as 

MCLNL 25 25 M 12 [14]. Next, the cutting parameters in 

the boring operation are explained regarding speed, feed 

and depth of cut. These essential boring parameters are 

hugely involved in the experiment analysed in the present 

study and they determine the surface integrity of the 

material being machined. These cutting parameters 

concurrently proceed in three motions, stimulating the 

spread of the cutting tool to the IS 2062 E250 Gr-B plates 

down the planned path, leading to a completed surface 

with specified tolerance, size and shape. The cutting sped 

is the comparative velocity between the workpiece’s 

surface and the tool, measured in surface metres per 

minute (m/min). But the feed rate is the distance travelled 

by the tool in a revolution of the workpiece, measured in 

millimeters per revolution. However, the depth of cut is 

the sum of the metal quantity subtracted from the IS 2062 

E250 Gr-B plates in each pass that the cutting tool makes 

on the material. This may be computed as the product of 

the diameter and a coefficient. 

3.2 Taguchi-Pareto-Box Behnken Design and 

Taguchi-Pareto-Box Behnken Design Method 

This method is a combination of two methods, namely 

Taguchi Pareto and Box Behnken method represented in 

Fig. 1. Also, the Taguchi-ABC Box Behnken method is 

represented in Fig. 1. 

 

Fig. 1 Taguchi-Pareto-Box/Taguchi-ABC- Behnken Design Flow chart 

 

3.3 Procedure for Implementing TP-BBD 

Method 

Step 1: Generate the signal to noise rations as, 

responses to the input parameters using one of 

the critical of nominal the best, larger better, 

and smaller the better. 

Step 2: Apply the Pareto principle of 80-20 rule 

whereby 80% of the SN ratios by value are cut 

off from the 100% total value. This may be part 

of all the experimental trials number. Note that 

the SNRs will be revised according to their 

value from each experimental trial. In this case, 
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the SNR having the higher value attached to 

the certain experimental trial are positioned 

first, for instance assuming there are 27 

experimental trials with, the corresponding 

SNRs which could be over depending on 

experimental data, suppose out of the 27 

experimental trials, experiment trials 17, 5, 12, 

having corresponding values of 50, 48, 46, dB 

as their SNR signal to noise ratios. Besides, let 

us assume that the signal to noise ratio of all 

other experimental trials are less than 46, 

accordingly, as a re-arrangement is sort, the 

new profile of the experimental trial and the 

corresponding signal to noise ratio would be as 

follows; experimental trials 17 with a 

corresponding signal to noise ratio of 50 dB 

will be positioned first, experimental trial 5, 

have a corresponding signal to noise ratio of 48 

dB will be next second. Furthermore, 

experimental trials 12, having an SNR of 46 dB 

will be positioned third following these are the 

other signal to noise ratios that would be 

arranged according to the strength of the value. 

In other words, we will have a rearranged 27 

entries of the experimental trial, starting with 

experimental trial 17 and discarding other 

experimental trial that is considered to have the 

least SNR. Then, the analysis of the 80-20 rule 

of Pareto on the data will entail having the re-

arranged SNR. Described in cumulative form 

and a cut off of 80% set at 80 % Cumulative 

column is 50 dB. This is relevant to experiment 

trial 17 by moving to the next experimental 

trial 5, cumulative is obtained as 98dB. Next, if 

we consider the cumulative base on 

experimental trial 12. The cumulative will be 

144dB. The procedure will follow until the last 

item of the experimental trial with the 

appropriate SNR is added. Now looking at the 

column of the cumulative value of SNR a cut 

of 8% is sort on a near value. 

Step 3: Establish the new set of responses and their 

corresponding experimental trials while 

discarding the old one. In this case, only those 

values that are by the computed 80% value of 

paid to would be shown. 

Step 4: The responses that are retailed will be 

introduced into the Box Behnken design there 

is a need to event a new design based on the 

number of factors that are for the present 

problem. This will entail using the Minitab 

version 18 and year 2000. Here the Stat menu 

is clicked, while the DOE submenu is pointed 

to. Then the choice of response surface is 

made, furthermore, the "Create response 

surface design" is made the next phase within 

this step is to choose the two designs, which is 

the Box Behnken option. At the same time, 

there is a need to select the "number of 

contention factors" while the "numbers of 

categorical factors" remain fixed as zero. On 

the same dialogue box, there is a need to click 

on "Display available design" this option leads 

to the choice of the available response surface 

designs of which Box Behnken (Unblocked) is 

chosen. Arrange the columns there are 

opportunities to choose the numbers to 

experiment to use based on the numbers of 

factors. For example, if the choice of four 

factors is made there are opportunities to pick 

up only 27 experiments. This is clicked on and 

the ok button is activated. Next, the design 

button is clicked on without adjusting any of 

the items under the "designs", the ok button is 

clicked on. Next, the factor button is clicked on 

here, the actual names of the factors are 

inserted and lowest and highest bounds are 

described then, the ok button is clicked on the 

next phase is to go to the options button notice 

that "Randomize run" and "store design in 

sheet" have been ticked by default. In 

particular, "randomize runs" may have to be 

unticked, then ok is clicked on. Next, the result 

button is clicked on. What is to be done is to 

select the "summary and design table" and 

click on Ok. The next phase is to click on Ok. 

The outcome is a display of the summary and 

design table. 

Step 5: Introduce the retained Pareto responses into the 

generated Box Behnken design. 

Step 6: Analyze response surface design: This is 

obtained after having introduced the retained 

SNR's. the activation of the "Analyses response 

surface design" menu Stat by revisiting the 

Stat, DOE, response surface path to obtain it 

after clicking on the "Analyze response 

surface", menu, the response shown is selected 

by clicking on select then, click on the term 

and maintain the default setting and click on ok 

then click on the options button and maintain 

the default then click on ok. Click on the 

stepwise button and maintain the default and 

click on ok. Then click on the graph button, 

under graph click on "four in one" then click on 

ok, then click on result button and maintain the 

default. Then click ok then go to the storage 

button and click on the main ok button. This 

plot the various graphs of the Pareto chart of 

standardized effect as well as the residual plots 

for the SNR. 

Step 7: Analyze and interprete the result 

Step 8: Create the contain plots and surface plots. This 

is obtained by clicking on Stat, DOE, response 

surface and contour plots. Then click on 

contain plots. By following the same process 

surface plots are obtained as you click on the 

surface plot. 
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Step 9: Introduce the response optimize: the procedure 

involves clicking on Stat, DOE, response 

surface, the response optimizer and finally 

clicking on it. 

Step 10: Report on results and discuss the results 

3.4 Procedure for Implementing TABC-BBD 

Method 

Step 1: Apply step 1 of the procedure for implementing 

the TP-BBD method of the current study 

Step 2: Application of the ABC principle, in which the 

signal to noise ratio values is segmented into 

three regions namely A, B, and C based on their 

percentage cumulative values. This is done by 

first rearranging the signal to noise ratio in 

descending order i.e. from the highest to the 

lowest. Note that the rearrangement is done such 

that the experimental trials and their 

corresponding orthogonal arrays are also 

rearranged simultaneously together with the 

signal to noise ratios. That is to further say that, 

the various experimental trials positions and the 

corresponding orthogonal arrays would change 

position accordingly to the rearrangement. After 

this rearrangement, it would be observed that the 

largest signal to noise ratio gains the first 

position in the list, while the smallest signal to 

noise ratio would maintain the last position in 

the rearrangement. For an instant, assuming 

there are 16 experimental trials in the design, out 

of which we have experimental trials 4, 8, and 

15 with a corresponding signal to noise ratio of 

48dB, 120dB, and 94dB respectively and 

assuming 94dB is the largest signal to noise 

ratio in the experiment. Rearranging would give 

8, 15, 4 experimental trials, corresponding to 

120dB, 94dB, 48dB signal to noise ratios in the 

rearranged form giving a new data profile. 

Therefore, we would have a rearranged 16 

experimental trials with experimental trials 8 

having the highest signal to noise ratio taking 

the first position and some other experimental 

trial numbers with the least signal to noise ratio 

taking the last position. Applying the ABC 

principle would require the computation of 

cumulative signal to noise ratio and percentage 

cumulative signal to noise ratio. For example, 

the first rearranged signal to noise ratio would 

represent the first cumulative signal to noise 

ratio i.e. experimental trial 8 with a 

corresponding signal to noise ratio of 120dB is 

the first cumulative signal to noise ratio, the 

second cumulative signal to noise ratio is 

obtained by adding the first cumulative signal to 

noise ratio to the second prearranged signal to 

noise ratio i.e. 120dB is added to 94dB of 

experimental trial 15 giving 214 dB as the 

second cumulative signal to noise ratio. The 

third cumulative signal to noise ratio is also 

computed by adding the second cumulative 

signal to noise ratio to the third rearranged 

signal to noise ratio i.e. 214dB is added to 48 dB 

of experimental trial 4 giving 262 dB as the third 

cumulative signal to noise ratio. This procedure 

would be followed till the cumulative signal to 

noise ratio of the last experimental trial 

corresponding to the last signal to noise ratio is 

computed. This is then followed by the 

computation of the percentage signal to noise 

ratio. To compute the percentage signal to noise 

ratio the rearranged signal to noise ratio for all 

experimental trials is summed to obtain a total 

rearranged signal to noise ratio, then each 

cumulative signal to noise ratio is divided by the 

total rearranged signal to noise ratio, multiplied 

by 100. In other words, assuming the total 

rearranged signal to noise ratio is 2000 dB, the 

first percentage cumulative signal to noise ratio 

is computed as 120 dB divided 2000 dB giving 

0.06 multiplied by 100 gives 6%, this represents 

the first percentage cumulative signal to noise 

ratio. This procedure is followed till the last 

percentage cumulative signal to noise ratio is 

computed. Now observing the percentage 

cumulative signal to noise ratio, we classify it 

into A, B, and C classes using 0 to 65% for class 

A, 66% to 79% for class B and 80% to 100% for 

class C, as applicable to the ABC principle. 

Step 3: Execute step 4 to step 9 of the procedure for 

implementing the TP-BBD method of the 

current study for each of the ABC classifications 

i.e. A class or region, B class or region and C 

class or region. 

 

4. Results and Discussion  
 

The IS 2062 E250 steel plates experience substantial 

usage due to their associated outstanding attributes. Some 

applications such as automobiles and aerospace are the top 

subscribers of the IS 2062 E250 steel plates, particularly 

where toughness is a prerequisite for the long lifespan of 

the application. Moreover, boring is a manufacturing 

operation that may be used to hold various plates rigidly. 

Unfortunately, as the boring operation is initiated on the IS 

2062 E250 steel plates, some damages that are detrimental 

to the surface roughness of the steel plates are induced on 

the joined plates. But these damages ought to be 

minimized to enhance the surface roughness of the bored 

IS 2062 E250 steel plates. Consequently, a comprehensive 

treatment of the boring operation involving the IS 2062 

E250 steel plates may be the best research pursuit to 

achieve the goal of enhanced surface roughness stated 

earlier. Thus, in the present investigation, the boring 

process parameters in the operation of the IS 2062 E250 

are analyzed to understand the effect of the damage on the 

bored holes in joints of steel plates such that an adequate 

choice of these parameters are made in a manner to 

minimize the damage encountered while drilling.  
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Furthermore, in this article, the IS 2062 E250 steel 

plates are bored and the experimental data reported in an 

earlier study, referred to by Abiola and Oke [7] was 

utilized for the evaluation of two novel methods of 

Taguchi-Pareto-Box Behnken design and Taguchi-ABC-

Box Behnken design. The authors’ credit for the 

experiment (from the literature) [14], conducted the 

experiments on the computerized numeric controlled 

machine while establishing diverse levels for the factors, 

namely speed, feed, depth of cut and nose radius. In this 

section, the results are presented and discussed under two 

broad leadings according to the methods applied in this 

study and are as follows.  
 

4.1 Taguchi-Pareto Box Behnken Design  

To obtain Taguchi-Pareto Box Behnken design, the 

starting, point is the establishment of the Taguchi method 

on the use of the experimental data. Then the Taguchi 

approach was further analyzed using the Pareto principle 

and subsequently followed by the Box-Behnken design 

approach to complete the method as the Taguchi-Pareto-

Box Behnken design method. In this method, the response 

of the Box Behnken response surface design approach was 

obtained from the response of the Pareto approach. 

Besides, to apply the Pareto principle, the signal-to-noise 

ratio for the sixteen experimental trials was re-arranged 

from the highest signal-noise ratio to the lowest signal-

noise ratio to the lowest signal-noise ratio. The 

rearrangement also applies to the orthogonal arrays 

simultaneously of each experimental trial. Consider Table 

1 whereupon re-arrangement the cumulative of the signal-

noise ratio was computed. For instance, in the 

experimental trial 1, the signal-noise ratio i.e. -52.0-

4121098 is taken as the first cumulative of the signal-noise 

ratio but the second cumulative of the signal-to-noise ratio 

is computed by adding the first commutative of the signal-

to-noise ratio to the second re-arranged experimental trial 

of the signal-noise ratio. For instance, -52.041212098 is, 

the first cumulative of the signal-noise ratio and the second 

re-arranged signal-noise ratio is -52.04121319. These two 

items are added as -5204121098 + (-52.04121319) to 

obtain -104.08.24242 to give the second re-arranged 

experimental trial signal-noise ratio. The third cumulative 

signal-noise ratio is also computed by adding the second 

cumulative signal-noise ratio to the third re-arranged 

signal-noise ratio to obtain -156.1236394. Besides, the 

same procedure is then applied to the 4
th

 to 

16
th

experimental trials signal-noise ratio to compute the 

cumulative values respectively (Table 2). 

Next, the computation of the percentage cumulative 

signal-noise ratio is actualized, which is computed by 

dividing all the cumulative signal-noise ratios by the total 

re-arranged signal-noise ratios previously calculated as -

873.9424883. The value is then multiplied by 100. In the 

case of the first experimental trial, a result of 6% is 

obtained from -52.04121098 ÷ (-873.9424883) x 100. This 

gives the first percentages cumulative signal-noise ratio.  

Furthermore, by applying the Pareto principle and keeping 

in mind that a higher signal-noise ratio is desirable in the 

study; the experimental trials of percentage cumulative 

signal-noise ratio of 80%-100% are the cutoff of the 

experiment by Pareto principles because they possess a 

lower signal-to-noise ratio, which is not desirable by the 

study. The procedure involves retaining experimental trials 

with a percentage cumulative signal-noise ratio of 1%-

79%, Table 2. 

 

 Orthogonal array Factors (interpreted) SN ratio processing 

Expt. 

trials 
S F DC NR S F DoC NR 

Re-arranged SN 

ratio 

Cumulative of re-

arranged SN ratio 

Percentage 

cumulative (%) 

1 1 1 1 1 800 0.06 1.00 0.80 -52.04121098 -52.04121098 6 

3 1 3 3 3 800 0.10 1.40 0 -52.04121319 -104.0824242 12 

4 1 4 4 4 800 0.12 1.50 0 -52.04121519 -52.04121519 18 

2 1 2 2 2 800 0.08 1.25 1.20 -52.04122024 -52.04122024 24 

6 2 2 1 4 1000 0.08 1.00 0 -53.97940446 -53.97940446 30 

5 2 1 2 3 1000 0.06 1.25 0 -53.97940689 -53.97940689 36 

7 2 3 4 1 1000 0.10 1.50 0.80 -53.97941268 -53.97941268 42 

8 2 4 3 2 1000 0.12 1.40 1.20 -53.97941492 -53.97941492 49 

9 3 1 3 4 1200 0.06 1.40 0 -55.56303093 -55.56303093 55 

12 3 4 2 1 1200 0.12 1.25 0.80 -55.56303169 -55.56303169 61 

10 3 2 4 3 1200 0.08 1.50 0 -55.56303181 -55.56303181 68 

11 3 3 1 2 1200 0.10 1.00 1.20 -55.5630324 -55.5630324 74 

16 4 4 1 3 1400 0.12 1.00 0 -56.90196305 -56.90196305 80 

15 4 3 2 4 1400 0.10 1.25 0 -56.90196428 -56.90196428 87 

14 4 2 3 1 1400 0.08 1.40 0.80 -56.90196658 -56.90196658 93 

13 4 1 4 2 1400 0.06 1.50 1.20 -56.90196898 -56.90196898 100 

Note: Key: S – speed, F – feed, DoC – depth of cut, NR – nose radius, SN ratio – signal-to-noise ratio; experimental trial numbers 1, 3, 4, 2, 6, 5, 7, 8, 9, 

12, 10 and 11 are retained while 16,15,14 and 13 are cut-out 

 
Table 2 Re-arranged S/N ratio and computations of % cumulative 
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From now onwards, the Box Behnken design method is 

then introduced as the next phase of computation in the 

validation of the Taguchi-Pareto-Box Behnken design 

method. To actualize this goal, the Minitab 18 software 

was used. This software aided in generating the response 

surface from the Box Behnken design using four factors 

and default of 3-level design. The design summary from 

the Minitab 18 software entails 1 replicate, 27 base runs, 

27 total runs, 1 base block and 1 total block for 4 factors. 

From the design, it was observed that the total number of 

runs is 27. However, introducing the eleven retained 

signal-noise ratios from the Pareto approach into the Box 

Behnken design in the Minitab 18 software to analyse 

the response surface design was not directly feasible 

since the number of runs needs to be equal to the number 

of responses. Thus by following previous works the 

method used was adopted to overcome this limitation. 

The adopted approach was to repeat the responses of 

the experimental trials 1 to 4 for experimental trials 13 to 

16 since they share the same attributes and are from the 

same data set. Furthermore, experimental trials 5-8 was 

taken as the experimental trial 17-20 based on the 

justification given in the preceding sentences. Besides, 

the same approach was adopted for experimental trials 

21-24, which repeats the experimental trials 13-15 was 

also repeated for experimental trials 25-27. However, 

upon the completion of the responses, the analysis was 

conducted and the outputs of the analysis are given in 

Tables 3 to 6. 

 
Source Df AdjSS AdjMS F-value p-value 

Modal  14 50.6253 3.6161 3.14 0.027 

Linear  4 0.2179 0.0545 0.05 0.995 

Speed 1 0.0363 0.0363 0.03 0.862 

Feed 1 0.0363 0.0363 0.03 0.862 

Depth of cut  1 0.0000 0.0000 0.00 1.000 

Nose radius  1 0.1453 0.1453 0.13 0.729 

Square  4 50.1895 12.5474 10.89 0.001 

Speed x Speed 1 4.6876 4.6876 4.07 0.067 

Feed x Feed  1 0.0053 0.0053 0.00 0.947 

Depth of cut x  Depth of cut  1 0.0213 0.0213 0.02 0.894 

Nose radius x Nose radius  1 41.2457 41.2457 35.81 0.000 

2-way Interaction  6 0.2179 0.2179 0.03 1.000 

Speed x Feed 1 0.0000 0.0000 0.00 1.000 

Speed x Depth of Cut  1 0.0000 0.0000 0.00 1.000 

Speed x Nose radius  1 0.1089 0.1089 0.09 0.764 

Feed x depth of cut   1 0.0000 0.0000 0.00 1.000 

Feed x Nose radius   0.1089 0.1089 0.09 0.764 

Depth of Cut x Nose radius  1 0.0000 0.0000 0.00 1.000 

Error 12 13.8227 1.1519   

Lack of Fit  10 13.8227 1.3823 3.11693E 0.000 

Pure Error 2 0.0000 0.0000   

Total  26 64.4479    
 

Table 3 Box Behnken Analysis 

 

Response Goal Lower Target Upper Weight Important 

S/N Ratio Maximum -56.2231 -52.0412  1 1 
 

Table 4 Analysis of variances 

 

Solution   Speed  Feed Depth of cut  Nose radius  S/N ratio fit  Composite desirability  

1 1090.91 0.06 1.2 0.606061 -51.9335 1 
 

Table 5 Response optimization - S/N ratio Parameter 

 

Variable Setting 

Speed 1096.97 

Feed 0.06 

Depth of cut 1.2 

Nose radius 0.606061 

 

Table 6 Multiple response prediction 

 
Interestingly, the analysis of variance shows that 

when the model is linear all the factors in the boring 

operation were insignificant to the model due to their 

high p-values. Besides, when the model is squared, only 

the nose radius was significant to the model with a p-

value of 0.000. But when the model is a 2-way 

interaction, all the factors were also not significant to the 

model due to their high p-values, Table 5. Besides, the 

model summary shows R-square and adjusted R-square 

values of 78.55% and 63.53%, respectively, S is 1.0736 

while the predicted R squared is 0.00%. 

Notwithstanding, the adjusted R-square value, signifies 

that the model is not significant to our aim, Table 5. 

Now, the response optimisation of the signal-noise ratio 
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shows that the optimum setting for the speed, feed, depth 

of cut and nose radius are 1090.91, 0.06, 1.2 and 

0.606061. But the regression equation in uncoded units 

reveals that  

 

S/N ratio = -70.00 + 0.0233 speed -3 feed +3.8 depth of 

cut +10.92 nose radius -0.000010 speed × 

speed + 35 feed × feed -1.6 depth of cut × 

depth of cut -7.72 nose radius × nose radius 

0.0000 speed × feed -0.00092 speed × nose 

radius -9.2 feed × nose radius  (1) 

 

Furthermore, the contour plot of the signal-noise ratio 

from the analysis shows the range at which various 

factors in the boring operation would be okay. For 

instance, from the nose radius versus speed, contour 

plots, the nose radius would be okay in the boring 

operation within the range 0.50-0.72. Finally, the surface 

plots of the S/N ratios also show areas at which the 

variance parameter would be significant to the model. 

The optimization plot (Fig. 2) shows that the optimal 

parameters to achieve the best signal to noise ratio of (-

51.9535) dB are 1090.9091 rpm for speed, 0.06 mm/rev 

for feed, 1.250 mm for depth of cut, and 0.6061 mm for 

nose radius. 

 

 
Note: the units of the cutting parameters: Speed, metres per second; feed, mm per revolution; depth of cut, mm; nose radius, mm. 

 

Fig. 2 Optimization plot of Box Behnken approach  

 

 
Note: the units of the cutting parameters: Speed, metres per second; feed, mm per revolution; depth of cut, mm; nose radius, mm. 

 
Fig. 3 Pareto chart for standard effect 
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The Pareto chart (Fig. 3) shows that all factors under 

consideration falls under 20% vital few of the Pareto 

principles, that is to say that all factors are important in 

achieving optimal signal to noise ratio. And that they are 

equally significant in achieving optimal surface 

roughness according to the Pareto chart. 
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Note: the units of the cutting parameters: Speed, metres per second; feed, mm per revolution; depth of cut, mm; nose radius, mm. 

 

Fig. 4 Surface Plots of Signal to noise ratio 

  
The contour plots (Fig. 4) show that to achieve the 

optimal signal to noise ratio greater than -52 dB the 

combinations of depth of cut and speed, nose radius and 

speed, nose radius and depth of cut are not feasible or 

significant in that regards. But a combination of feed and 

speed in the range of 0.06 to 0.075 mm/rpm for feed and 

950 to 1150 rpm for speed are feasible to achieve the 

optimal signal to noise ratio value greater than -52 dB. 

Also, a combination of depth of cut and feed, and that of 

nose radius and feed are also feasible to achieve signal to 

noise ratio value greater than -52 dB. 
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Note: the units of the cutting parameters: Speed, metres per second; feed, mm per revolution; depth of cut, mm; nose radius, mm. 

 

Fig. 5 Surface plots of signal to noise ratio (“A” region of Taguchi–ABC–Box Behnken approach) 
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The surface plots (Fig. 5) of various combination pair 

of parameters with the signal to noise ratio shows that 

when the speed parameter is increased there is a 

corresponding increase in signal to noise ratio to an 

optimal point. With further increase in the speed at this 

optimal point, the signal to noise ratio begins to decrease 

to a minimum value. The feed parameter is behaves such 

that with constant increase in the feed parameter. The 

signal to noise ratio tends be in constant decline, the 

depth of cut parameter increases the signal to noise ratio 

to its optimal value. But with further increment in depth 

of cut parameter, the signal to noise ratio decreases 

steadily. Lastly, the nose radius parameter behaves in 

similar manner with the depth of cut parameter with 

reference to the signal to noise ratio. Thus, an average 

speed, depth of cut, and nose radius promotes high signal 

to noise ratio while a low feed promotes high signal to 

noise ratio. 
 

4.2 Taguchi-ABC-Box Behnken Design  

To implement the Taguchi-ABC-Box Behnken 

design (TABC-BBD) method, the Taguchi method was 

analyzed using the ABC classification approach adopted 

from inventory analysis. Compared to the Pareto 

principle, which was used to analyse the Taguchi method 

based on the 80-20 rule where the 80% of the 

experimental trials by the cumulative values of the 

signal-noise ratio, the ABC analysis cuts off the signal-

noise ratios at 0-6%, 70-80% and 81-100% for the A, B 

and C elements of the ABC classification schemes 

imposed on the Taguchi scheme. Thus, the ABC 

principle in the responses for the Taguchi approach was 

analyzed using the ABC principle and the resulting 

segmentation of the responses of segments A, B and C of 

the ABC scheme were individually introduced into the 

Box-Behnken design response surface.  

However, in applying the ABC principle, the signal-

noise ratios of the sixteen experimental trials were 

rearranged from the highest signal-noise ratio to the 

lowest signal-noise ratio. Notwithstanding, the re-

arrangement also applies to the orthogonal arrays 

simultaneously of each experimental trial. Upon re-

arrangement, the cumulative of the signal-noise ratios 

were computed. However, an instance of experimental 

trial 1 is given here. For this trial, the signal-noise ratio is 

-52.04121098 is regarded as the first cumulative signal-

noise ratio while the second cumulative signal-noise 

ratio while the second cumulative signal-noise ratio is 

computed by adding the first cumulative signal-noise 

ratio to the second re-arranged experimental trial signal-

noise ratio. For instance, -52.04121098 is the first 

cumulative signal-noise ratio is -52.04121319 which is 

obtained by adding -52.04121098 and -52.04121319 to 

give -104.0824242 to be known as the second re-

arranged experimental trial signal-noise ratio.  

Furthermore, the third cumulative signal-noise ratio is 

also computed by adding the second cumulative signal-

noise ratio to the third re-arranged signal-noise ratio it 

gives -156.1236394. Besides, this same procedure is then 

applied to the 4
th

 to the 16
th

 experimental trials signal-

noise ratio to compute their cumulative values, 

respectively (Table 7). 

 

  

Experimental 

Trial 
Speed Feed 

Depth of 

Cut 

Nose 

radius 
Speed Feed 

Depth of 

Cut 

Nose 

Radius 

Re-arranged 

S/N ratio 

% 

Cumulative 

SN ratios 

1 1 1 1 1 800 0.06 1.00 0.80 -52.04121098 6% 

3 1 3 3 3 800 0.10 1.40 0 -52.04121319 12% 

4 1 4 4 4 800 0.12 1.50 0 -52.04121319 18% 

2 1 2 2 2 800 0.08 1.25 1.20 -52.04122024 24% 

6 2 2 1 4 1000 0.08 1.00 0 -53.97940446 30% 

5 2 1 2 3 1000 0.06 1.25 0 -53.97940689 36% 

7 2 3 4 1 1000 0.10 1.50 0.80 -53.97941268 42% 

8 2 4 3 2 1000 0.12 1.40 1.20 -53.97941492 49% 

9 3 1 3 4 1200 0.06 1.40 0 -55.56303093 55% 

12 3 4 2 1 1200 0.12 1.25 0.80 -55.56303169 61% 

10 3 2 4 3 1200 0.08 1.50 0 -55.56303181 68% 

11 3 3 1 2 1200 0.10 1.50 1.20 -55.5630324 74% 

16 4 4 1 3 1400 0.12 1.00 0 -56.90196305 80% 

15 4 3 2 4 1400 0.10 1.25 0 -56.90196428 87% 

14 4 2 3 1 1400 0.08 1.40 0.80 -56.90916658 93% 

13 4 1 4 2 1400 0.06 1.50 1.20 -56.90196898 100% 

 
Table 7 Optimum settings 

 
Next is the computation of the percentage cumulative 

signal-noise ratio, which is computed by dividing all the 

cumulative signal-noise ratios by the total of the re-

arranged signal-noise ratio, which was computed as -

873.9424883 and multiplying them by 100. For instance, 

for the first experimental trial, the value of 6% is 

obtained as -52.04121098 is divided by -873.9424883 

and multiplied by 100. This gives the first percentage 

cumulative signal-noise ratio. The computation of the 

percentage cumulative signal-noise ratio is followed by 

applying the ABC principle. In doing this, the percentage 

cumulative signal-noise ratio of 0-67% is labelled as 

region C, 68-79% is labelled as region B while 80–100% 

is labelled as region A. With this, the re-arranged signal-
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noise ratio has been successfully segmented into three 

categories A, B and C (Table 7). These now lead to the 

introduction of the Box-Behnken design approach where 

the parametric selection and optimisation for the boring 

of IS 2062 E250 plates using the Taguchi method are 

achieved. Here, each of the regions segmented S/N ratio 

is then introduced into the Box Behnken design i.e. 

regions A, B and C’s S/N ratios are individually 

introduced into the Box Behnken design approach. The 

Minitab 18 (2020) is used to generate response surface, 

Box Behnken design using four factors and default of 

three-level design. 
  

    Region A 

SO RO PT B S F DoC NR SNR 

1 1 2 1 800 0.06 1.25 0.6 -56.9020 

2 2 2 1 1400 0.06 1.25 0.6 -56.9020 

3 3 2 1 800 0.12 1.25 0.6 -56.9020 

4 4 2 1 1400 0.12 1.25 0.6 -56.9020 

5 5 2 1 1100 0.09 1.00 0.0 -56.9020 

6 6 2 1 1100 0.09 1.50 0.0 -56.9020 

7 7 2 1 1100 0.09 1.00 1.2 -56.9020 

8 8 2 1 1100 0.09 1.50 1.2 -56.9020 

9 9 2 1 800 0.09 1.25 0.0 -56.9020 

10 10 2 1 1400 0.09 1.25 0.0 -56.9020 

11 11 2 1 800 0.09 1.25 1.2 -56.9020 

12 12 2 1 1400 0.09 1.25 1.2 -56.9020 

13 13 2 1 1100 0.09 1.00 0.6 -56.9020 

14 14 2 1 1100 0.06 1.00 0.6 -56.9020 

15 15 2 1 1100 0.12 1.50 0.6 -56.9020 

16 16 2 1 1100 0.06 1.50 0.6 -56.9020 

17 17 2 1 800 0.12 1.00 0.6 -56.9020 

18 18 2 1 1400 0.09 1.00 0.6 -56.9020 

19 19 2 1 800 0.09 1.50 0.6 -56.9020 

20 20 2 1 1400 0.09 1.50 0.6 -56.9020 

21 21 2 1 1100 0.06 1.25 0.0 -56.9020 

22 22 2 1 1100 0.12 1.25 0.0 -56.9020 

23 23 2 1 1100 0.06 1.25 1.2 -56.9020 

24 24 2 1 1100 0.12 1.25 1.2 -56.9020 

25 25 0 1 1100 0.09 1.25 0.6 -56.9020 

26 26 0 1 1100 0.09 1.25 0.6 -56.9020 

27 27 0 1 1100 0.09 1.25 0.6 -56.9020 

Note: Key: SO - Std Order, RO - Run Order, PT - Pt Type, B – Blocks, S – Speed,  F – Feed, 

DoC - Depth of Cut, NR – Nose Radius, SNR - S/N ratios 

 

Table 8 Re-arranged S/N ratio & computation of % cumulative 

 
Considering the Design summary for Region A, 1 is 

assigned to the Factors 4 Replicates, 27 is attached to the 

Base runs 27 Total runs, 1 to the Base blocks 1 Total 

blocks and there are three centre points. Again, from the 

design, it was observed that the total number of the run is 

27, introducing the A region signal-noise ratio which 

was of four experimental trials, giving four signal-noise 

ratios of the ABC principle into the Box Behnken design 

in the Minitab 18 software. Analyzing the response 

surface design was not possible as the number of runs 

has to equal to the number of responses. In this work, to 

make the numbers or runs equal to the numbers of 

responses, the responses of the experimental trials 16, 

15, 14, 13 were repeated for all other experimental trials 

as the experimental trial responses for 16, 15, 14 and 13 

are all rounded up to be the same as a correctional 

strategy in the computations. In the Minitab 18 software, 

see Table 10 for regions A, B and C, respectively.  

Upon completion of the responses, the analysis is 

carried out and the outputs of the analysis are given in 

Tables 9 to 12. 
  

 

  Region A 

Source DF Adj SS Adj MS F-value p-value 

Modal  14 0.000000 0.000000 7.60 0.01 

Linear  4 0.000000 0.000000 25.45 0.000 

Speed 1 0.000000 0.000000 8.80 0.012 

Feed 1 0.000000 0.000000 17.81 0.001 

Depth of Cut  1 0.000000 0.000000 29.95 0.000 

Nose Radius  1 0.000000 0.000000 45.24 0.000 

Square  4 0.000000 0.000000 0.70 0.607 

Speed x Speed 1 0.000000 0.000000 1.40 0.260 

Feed x Feed  1 0.000000 0.000000 1.40 0.260 

Depth of cut x Depth of cut 1 0.000000 0.000000 1.0 0.260 

Nose radius x Nose radius  1 0.000000 0.000000 1.40 0.260 

Table 9 Analysis of Variance for the boring process parameters for Regions A, B and C 
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  Region A    

Source DF Adj SS Adj MS F-value p-value  

2-way Interaction  6 0.000000 0.000000 0.30 0.923 

Speed x Feed 1 0.000000 0.000000 0.30 0.591 

Speed x Depth of Cut  1 0.000000 0.000000 0.30 0.591 

Speed x Nose radius  1 0.000000 0.000000 0.30 0.591 

Feed x Nose Radius  1 0.000000 0.000000 0.30 0.591 

Depth of cut x nose radius  1 0.000000 0.000000 0.30 0.591 

Error 12 0.000000 0.000000 0.30 0.591 

Lack of fit  10 0.000000 0.000000 0.30 0.591 

Pure Error 2 0.000000 0.000000 0.30 0.591 

Total  26 0.000000 0.000000 0.22 0.591 

 

Table 9 Analysis of Variance for the boring process parameters for Regions A, B and C (Cont’d) 

 
In the response surface regression for signal-noise 

ratio, versus, speed, feed, depth of cut and nose radius, 

the analysis of variance shows that when the modal is 

linear, all the factors in the boring operation is 

significant, with a p-value of 0.012, 0.01, 0.000 and 

0.000, for speed, feed, depth of cut, and nose radius 

respectively, but when the modal is square all the factors 

in the boring operation are not significant to the modal, 

and when the modal is a 2-way interaction all the factors 

in the boring operation are still not significant to the 

modal, due to their high p-value which happens to be 

greater than 0.05, making the factors insignificant. The 

modal summary shows an R-square and adjusted R-

square value greater than 65%, which make it important 

to the boring operation. 

The response optimisation of the signal-noise ratio 

shows that the optimum setting for the speed feed, depth 

of cut and nose radius are 1050.61, 0.0715152, 1 and 0 

respectively. The contour plot of the signal-noise ratio 

from the analysis also shows the range at which variance 

parameter would be ok in the boring operation. 

Similarly, the surface plots of the S/N ratio also show 

areas at which the various parameters would be 

significant to the modal (see contour plot and surface 

plot). Finally, from the Box-Behnken design, analysis of 

the optimum setting of the parameters in the boring 

operation is 1060.61 for speed, 0.0715152 for feed, 1 for 

depth of cut and 0 for nose radius. 

The modal summary for the Analysis of variance 

(Region A) reveals an S of 0.0000011, R-Sq of 89.87%, 

R-Sq (adj) of 78.05% and R-sq (pred) of 58.59%. 

However, the Regression Equation in uncoded Units is 

given as  

 

S/N radius = -56.9020 + 0.000160 Feed  

+ 0.000024Depth of cut  

+ 0.000004 Nose radius – 0.000603 feed  

× feed 0.000009 Depth of cut  

× Depth of Cut – 0.000002 Nose radius  

× Nose Radius – 0.00039 feed  

× Depth of cut – 0.000016 Feed  

× Nose radius – 0.000002 Depth of cut  

× Nose radius     (2) 

 

Besides, Fig. 7-11 show the plots for region A of the 

ABC classification scheme. 

 
 

Region Response  Goal  Lower  Target  Upper  Weight  Importance  

A S/N ratio Maximum -56.9020 -56.9020  1 1 

B S/N Ratio Maximum -56.2231 -55.5630  1 1 

C S/N Ratio Maximum -55.5630 -52.0412  1 1 

Table 10 Parameter solution 

 

Region   Solution   Speed  Feed Depth of cut  Nose radius  S/N ratio Fit Composite desirability  

A 1 1060.61 0.0715152 1 0 -56.9020 1 

B 1 800 0.06 1 0.606061 -55.2880 1 

C 1 1096.97 0.06 1.13131 1.2 -51.1826 1 

Table 11 Solution to optimization 

 

  Region A  Region B Region C 

Variable  Setting  Setting  Setting  

Speed 1060.61 800 1096.97 

Feed 0.0715152 0.06 0.06 

Depth of Cut 1 1 1.13131 

Nose radius  0 0.606061 1.2 

Table 12 The optimum setting for regions A, B and C 
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Note: the units of the cutting parameters: Speed, metres per second; feed, mm per revolution; depth of cut, mm; nose radius, mm. 

 

Fig. 6 Optimization Plot for Box Behnken Approach (“A” region of Taguchi – ABC – Box Behnken Approach) 
 

 

The  surface plots (Fig. 6) of various combination 

pair of parameters with the signal to noise ratio shows 

that when the speed parameter is increased there is a 

corresponding steady(constant) signal to noise ratio, The 

feed parameter behaves such that with constant increase 

in the feed parameter, the signal to noise ratio tends 

decline to a minimum value such with further increase in 

the feed rate the signal to noise ratio begins to increase to 

the maximum signal to noise ratio, the depth of cut 

parameter increment increases the signal to noise ratio to 

it optimal value but with further increment in depth of 

cut parameter the signal to noise ratio decreases steadily, 

and lastly with increase in nose radius parameter, the 

signal to noise ratio increases steadily. Thus, if the speed 

parameter is maintained within it bounds of 800 to 1400 

rpm, then this would promote an optimal signal to noise 

ratio, and that an average feed does not promote an 

optimal signal to noise ratio. Furthermore, an average 

depth of cut value promotes optimal signal to noise ratio, 

and lastly, the high nose radius promotes optimal signal 

to noise ratio. The optimization plot (Fig. 7) shows that 

optimal parameters to achieve optimal signal to noise 

ratio of -56.9020 are 1096.9697 rpm for speed, 0.06 for 

feed rate, 1.1313 for depth of cut and 1.2 for nose radius.  

 
 

 
Note: the units of the cutting parameters: Speed, metres per second; feed, mm per revolution; depth of cut, mm; nose radius, mm. 

 
Fig. 7 Contour Plots of Signal to Noise Ratio (“A” region of Taguchi – ABC – Box Behnken Approach) 
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Note: the units of the cutting parameters: Speed, metres per second; feed, mm per revolution; depth of cut, mm; nose radius, mm. 

 

Fig. 8 Residual Plots for Signal to Noise Ratio (“A” region of Taguchi – ABC – Box Behnken Approach) 

 

  

The contour plots (Fig. 8) show that to achieve the 

optimal signal to noise ratio greater than -52, the 

combinations of depth of cut and speed, nose radius and 

speed, depth of cut and feed are not feasible or 

significant in that regards, but a combination of feed and 

speed, nose radius and feed, and nose radius and depth of 

cut are feasible to achieve the optimal signal to noise 

ratio value greater than -52. 

From the Design Summary for Region B, the factors 

considered are 4 Replicates, 1 while the base runs are 

twenty-seven total runs and the base block is 1. By 

introducing the B region signal-noise ratio, which was of 

only 2 experimental trials, giving 2 signal-noise ratios of 

the ABC principle into the Box Behnken design in the 

Minitab 18 software was obvious. Analyzing the 

response surface design was not possible, as the number 

of the run has to equal the number of responses. To make 

the numbers of runs equal to the numbers of responses, 

the responses of the experimental trial 10 and 11 were 

repeated in an orderly for all experimental trials to 

complete the 27 runs, Table 12. 

Upon completion of the responses, the analysis is 

carried out and the output of the analysis is given in 

Table 18, 19, 20 and 21. The modal summary is S as 

0.269488, R-Sq as 70.33%, R-Sq (adj) as 35.71% and R-

Sq (pred) as 35.71%. The Regression equation in 

uncoded units is given as 

 

S/N ratio = -56.03 + 0.0024 speed + 3.7 feed + 1.76 

Depth of cut + 0.18 Nose radius -0.000001 

speed x speed -61 feed × feed -0.88 depth 

of cut × depth of cut -0.153 Nose radius × 

Nose radius                                          (3) 

 

In the response surface regression for signal-nose 

ratio, versus speed, feed, depth of cut, and nose radius, 

the analysis of variance shows that the speed and the 

feed are the only two factors significant to the modal 

when the modal is linear. When the modal is square all 

the parameters in the boring operation are not significant 

to the modal, and when the modal is a 2-way interaction 

all factors are also not significant to the modal due to 

their high p-value, Table 18. The modal summary shows 

an R-sq and adjusted R-square value of 70.33% and 

35.71%, respectively. The adjusted R-sq falls below the 

accepted value of 65%, making it becomes insignificant. 

The response optimisation of the signal-noise ratio 

shows that the optimum setting for the speed feed, depth 

of cut, and nose radius are 800,0.06 1 and 0.606061 

respectively. Finally, the contour plot of the signal-noise 

ratio from the analysis also shows the range at which 

various parameters would be ok in the boring operation 

see contour plot for the B region, similarly, the surface 

plot of the S/N ratio also shows areas at which the 

various parameter would be significant to the modal. In 

the following paragraphs, plots, pareto charts and 

residual plots were made but not reported in this work 

for conciseness. Thus, regions B and C have not been 

explain in fiures as they follow the same pattern as for 

region A of the ABC analysis. However, quantitative 

descriptions are given. The optimization plot (not 

reported) shows that optimal parameters to achieve 

optimal signal to noise ratio of -55.2880 are 800 rpm for 

speed, 0.06 for feed rate, 1.0 for depth of cut and 0.6061 

for nose radius. The surface plots (not reported) of 

various combination pair of parameters with the signal to 

noise ratio shows that the feed, depth of cut and the nose 

radius all results to an optimal signal to noise ratio value 

at their average values. While the speed parameter 
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increment results to a decrease in the signal to noise ratio 

value, this is to say that an average feed, depth of cut and 

nose radius promotes optimal signal to noise ratio and a 

high speed decreases the signal to noise ratio value. The 

contour plots (not reported) show that to achieve the 

optimal signal to noise ratio greater than -55.4, almost all 

the combination of parameter will not lead to the optimal 

signal to noise ratio of -55.4 in this regards, the only 

combination that leads to the optimal signal to noise ratio 

is the feed and speed combination with a range of 0.06 to 

0.07 for feed and 800 to 850 for speed. The Pareto chart 

(not reported) shows that all factors under consideration 

falls under 20% vital few of the Pareto principles, that is 

to say that all factors are important in achieving optimal 

signal to noise ratio. They are equally significant in 

achieving optimal surface roughness according to the 

Pareto chart. Furthermore, it is observed that not all part 

of the speed parameter and the feed is within the 20% 

vital few. Furthermore, the Design Summary for Region 

C reveals factors of 4 Replicates, 1, base runs of 27, base 

blocks of 1 total block. Introducing the C region signal-

noise ratio, which was of 10 experimental trials, giving 

10 signal-noise ratios of the ABC Principle, into the Box 

Behnken design in the Minitab 18 software analyzing the 

response surface design was not possible, as the numbers 

of the run have to equal the numbers of responses. To 

make the numbers of runs equal to the numbers of 

responses, the response of the experimental trial 1-4 is 

repeated for the experimental trial 11-14, the responses 

for the experimental trial 5-8 is repeated for the 

experimental trial 15-18, and the experimental trials 9-10 

is repeated for the experimental trial 19-20, again 

experimental trial 1-4 is again repeated for 21-24, and 

finally, experimental trials 5-7 are repeated for 25-27 

experimental trials. The analysis is carried out and the 

output of the analysis is given as Tables 22, 23, 24 and 

25. The modal summary reveals S as 0.967593, R-sq as 

74.75%, R-Sq (adj) as 45.30% and R-sq (pred) as 0.00%. 

The Regression Equation in Uncoded Units is given as 

 

S/N ratio = -518 + 0.0011 speed -344 feed + 22.3 depth 

of cut -0.20 Nose radius + 1908 feed × feed -

9.86 Depth of Cut × depth of cut + 0.98 

Nose radius × Nose radius                (4) 

 

The response surface regression for signal-noise ratio, 

versus speed, feed, depth of cut and nose radius, the 

analysis of variance show that the speed, feed, depth of 

cut and the nose radius are all not significant to the 

modal when the modal is linear. When the modal is 

square, the feed parameter is the only significant factor 

with a P-value of 0.001 and when the modal is a 2-way 

interaction, all parameters in the being operation are not 

significant to the modal. 

The modal summary shows an R-sq and adj R-sq of 

74.75% and 45.30% respectively. The adjusted R-sq falls 

below the acceptable value of 65% making it 

insignificant. The response optimisation of the signal-

noise ratio of the region shows that the optimum setting 

for the speed, feed, depth of cut and nose radius are 

1096.97, 0.06, 1.13131 and 1.2 respectively. Finally, the 

contour plots of signal-noise ratio for the C region from 

the analysis also show the range at which various 

parameters would be ok in the boring operation, see 

contour plots for Region C. Similarly, the surface plots 

of the S/N ratio of the C region also show areas at which 

the various parameters would be significant to the modal, 

plots. The surface plots (not reported) show that with all 

parameters at their various average values, the optimal 

signal to noise ratio is obtainable. 

The Pareto chart (not reported) shows that all factors 

under consideration falls under 20% vital few of the 

Pareto principles, that is to say that all factors are 

important in achieving optimal signal to noise ratio. And 

that they are equally significant in achieving optimal 

surface roughness according to the Pareto chart, it is 

observed that not all part of all the factors are is within 

the 20% vital few. The contour plots (not reported) show 

that to achieve the optimal signal to noise ratio greater 

than -56.9020, only two combinations would achieve the 

aim of a maximum signal to noise ratio greater than -

56.9020, they are the nose radius and feed, and the nose 

radius and depth of cut, all other combination would not 

achieve this aim. The optimization plot (not reported) 

shows that optimal parameters to achieve optimal signal 

to noise ratio of -56.9020 are 1060.6061 rpm for speed, 

0.0715 for feed rate, 1.0 for depth of cut and 0.0 for nose 

radius. 
 

4.3 Comparison of Results of TP-BBD and 

TABC–BBD Methods  

The TP-BBD and TABC-BBD methods were 

instituted using the Box Behnken design method to unite 

each of them. From the results, it was noted that the TP-

BBD method captures higher values of experimental 

trials (i.e. 69%). The number of experimental trials is 

also higher in the TP-BBD method than in the TABC-

BBD method. From the results, it may be observed that 

the optimum parametric values in the context of 

prioritization depend on the values of the captured 

signal-to-noise ratios corresponding to the experimental 

trials. The optimum parametric values cum prioritized 

states for the TP-BBD method was at roughly 80% cut 

off while for the TABC-BBD method, it was roughly at 

69% cut off point. 
 

4.4 Advantages of the Proposed Methods  

The proposed TP-BBD and TABC-BBD methods 

exhibit multiple benefits, including: 

(1) The two methods require a fewer number of runs 

in tackling the concern of where experimental 

boundaries ought to be and specifically to evade 

extreme treatment combinations. 

(2) It considers analysis in a Pareto or an ABC scale 

thereby establishing priorities for the parameters 

where the most important parameters are separated 

from the less important. 
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(3) It provides both quantitative and qualitative data 

from limited information. 

(4) By extracting information from the statistically 

significant data, the two methods could explore 

the benefits of the Taguchi method by evading the 

offspring population and subsequently avoiding 

the substantial computational cost. 

 

5. Conclusions 

This study optimized the boring process parameters 

of IS 2062 E250 plate on the computerized numeric 

controlled (CNC) machine through two methods, namely 

the Taguchi-Pareto-Box Behnken Design (TP-BBD) and 

Taguchi-ABC-Box Behnken design (TABC-BBD) 

methods. For the TP-BBD method and using the analysis 

of variance (ANOVA), only the nose radius among other 

parameters of speed, feed and depth of cut was 

significant to the model when the model is squared. 

However, the insignificance of all the parameters was 

observed for the linear and 2-way interactions. But for 

the TABC-BBD method, the ANOVA showed that when 

the model is linear, all the factors in the boring operation 

are significant with p-values ranging from 0 to 0.012. 

Furthermore, when the model is squared and also 

considered along with a 2-way interaction, all the factors 

are insignificant. The results of the TP-BBD method 

reveal that only the nose radius is the most important 

factor whereas, for the TABC-BBD method, all the 

parameters, namely speed, feed, depth of cut and nose 

radius are important in the optimisation of the surface 

roughness response for the boring operation of IS 2062 

E250 plate.  

For the TP-BBD method, the results showed a good 

agreement between the experimental and predicted 

values for R
2 

(0.7855), and adjusted R
2
(0.5353). For the 

TABC-BBD method, the results also revealed a good 

agreement between the experimental and predicted 

values for R
2 

(0.7475) and adjusted R
2
 (0.4530). Besides, 

the response optimisation of the signal-to-noise ratios for 

the TP-BBD method shows that the optimal parametric 

setting for enhanced surface roughness of the IS 2062 

E250 plate was identified as 1090.91 rpm, 0.06mm/rev, 

1.2 mm and 0.61mm for speed, feed, depth of cut and 

nose radius, respectively. However, for the TABC-BBD 

method, three different results for the percentage 

cumulative of C (6-61%), B (68-74%) and A (80-100%) 

were obtained and reported in the results and discussion 

part of this work. But group A (80-100%) is reported 

here as the most important result. For group A (80-

100%) the TABC-BBD method reveals the response 

optimisation of the signal-to-noise ratios with the 

optimal parametric setting for enhanced surface 

roughness of the IS2062 E250 plate given as 

1060.61rpm, 0.07mm/rev, 1mm and nil for speed feed, 

depth of cut, and nose radius, respectively. From the 

predictions, it can be concluded that the most important 

parameter in the boring operation of IS 2062 E250 plate 

on CNC machine is speed while the least important 

parameter is feed as indicated by the predicted signal-to-

noise response. Besides, in this article, the optimised 

parameters for the TP-BBD and TABC-BBD were not 

the same; TP-BBD tends to exhibit higher parametric 

values than the TABC-BBD generally. But optimised 

parameters are tools employed by process engineers to 

set standards of performance for the boring process to be 

used by operators during the boring operation. The idea 

is that it is better to choose the method that yields higher 

parametric values than those of the lower category. This 

drives the operator towards more productivity and 

performance. On comparing the experimental delta 

values and the ranking with that of the predicted signal-

noise responses, the delta values were different but in 

similar proportions, as the ranking are in complete 

agreement and are the same in both scenarios. 

Also, in this article, the R-square value is very low in 

some instances possibly due to the omission of some 

important predictors in the work. However, this issue is 

beyond what the present authors could tackle in this 

work since experimental data already collected by Patel 

and Deshpande [14] was used. What this information 

suggests is that future studies must be extended beyond 

the scope of three predictors (speed, feed and depth of 

cut) for the outcome of the study so that a robust R-

square value may be obtained. 

Additionally, the present paper has revealed that the 

two methods of Taguchi-Pareto-Box Behnken design and 

Taguchi-ABC-Box Behnken design are economic 

approaches to determining the optimal parametric 

settings of the IS 2062 E250 plate in the boring process 

under the CNC machines. In the future, it may be 

beneficial to study the influence of more advanced 

methods on the optimal parametric settings by 

introducing the particle swarm optimisation (PSO) and 

the genetic algorithm (GA) differently and jointly into 

the two methods form advanced methods containing the 

Taguchi-Pareto, Taguchi ABC, Box Behnken design 

[36], PSO and GA. Furthermore, the introduction of a 

quality control tool that will indicate when the 

parameters are within and outside control bounds with 

and without the introduction of the PSO and GA into the 

Taguchi-Pareto-Box Behnken design and Taguchi-ABC-

Box Behnken design frameworks may be beneficial to 

the boring operations literature.  
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WSM:Weighted Sum Method  

TP-BBD:Taguchi-ABC-Box Behnken design  

WPM:Weighted Product Method 

VIKOR: VlseKriterijuska Optimizacija  Komoromisno 

Resenje  

WASPAS: Weighted Aggregated Sum Product 

Assessment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 


