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Abstract. Due to outstanding properties such as
enhanced surface roughness, fatigue strength, hardness
and specific heat, the 1S 2062 E250 plate has retained its
competitive choice as a boring material in the automobile
and aerospace industries. Unfortunately, sparse literature
exists to distinguish the several boring process parameters
with potential varying importance. Consequently, two
novel methods are presented based on the Taguchi-Pareto-
Box Behnken design (TP-BBD) and Taguchi-ABC-Box
Behnken design (TABC-BBD) methods to optimize and
select the process parameters. The signal to noise (SN)
ratios for experimental trials was rearranged in
descending order and cumulative SN ratios were computed
to allow the application of the Pareto principle and the
ABC methods. These outputs are fed into the Box Behnken
design approach with analysis of variance conducted to
reveal the linearity and significance of the parameters.
Based on the process parameters considered, the response
optimisation of the SN ratios for the TP-BBD method
shows that the optimal setting for speed, feed, depth of cut
and nose radius are 1090.91 rpm, 0.06 mm/rev, 1.2 mm,
0.606061 mm. However, for the TABC-BBD method, the
response optimisation results are 800 rpm, 0.06 mm/rev, 1
mm and 0.606061 mm for speed, feed, depth of cut and
nose radius, respectively. For both methods, the contour
and surface plots of the SN ratios from the analysis show
the range at which various parameters in the boring
operation would be significant for the model.
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1. Introduction

Every day, several tonnages of materials are bored for
major sub-assemblies but wastes are generated, which
could be reduced by deploying optimisation and
parametric selection methods [1], [2], [3], [4], [5], [6]. [7].

[8]. However, in the current industrial practice, the bored
hole should conventionally be of high dimensional
accuracy and great surface finish [6], [9], [10]. But, the
problem of surface roughness often emerges when the
cutting parameters are not properly selected in bored holes
and can lead to defects in components [11]. Besides, when
the cutting parameters in a boring operation are not
optimally selected, the surface roughness and production
time are usually high leading to low quality and low
productivity. For example, if the speed parameter is
optimized, the rate of production would be very high
leading to increased productivity [12]. This problem
warrants a solution of economic importance and
sustainability dimensions. Unfortunately, as of today, a
dearth of literature exists on the optimisation of process
parameters of the IS 2062 E250 steel plates and the further
classification of the parameters according to their
importance.

Further, most of the reports are focused on the optimal
parametric determination alone while the significant
interactions among the parameters are less studied. In the
present article, the Taguchi-Pareto-Box Behnken design
approach and the Taguchi-ABC-Box Behnken design
method are introduced as novel approaches to optimize the
cutting parameters in the boring operation on a CNC
machine using the 1S 2062 E250 steel plates. The proposed
approaches are extensions of the Taguchi method [13],
which give additional information on the prioritization of
parameters and their interactions. These additional
provisions aid high-quality surface roughness in the boring
operation and with this, quality and productivity are
increased. Thus, by introducing the Taguchi-Pareto-Box
Behnken design approach and the Taguchi-ABC-Box
Behnken method, this paper seeks to optimize the cutting
parameters in the boring operation to reduce surface
roughness, improving quality and performance.

Besides, to bridge the gap analysed earlier, this
investigation examines the attributes of boring operation of
the 1S 2062 E250 steel plate, integrates them into two
mathematical methods of Taguchi-Pareto Box Behnken
design and Taguchi-ABC Box Behnken design, and
develops two optimisation cum selection methods for the
parametric optimisation of boring operations for the IS
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2062 E250 steel plates. The principal novelties and
contributions of this article are as follows. First, two
efficient methodical developments are established for the
boring operation of the IS 2062 E250 steel plates. Second,
two main optimisation methods are introduced in search
for the optimal solution and definition of ranks cum
selection of the best parameter in the boring process. This
is achieved through the two different mechanisms. In the
first mechanism, the Pareto principle is introduced to the
Taguchi method where the 80-20 rule is established for the
experimental trials to rapidly acquire the preferred
experimental runs upon which reliable boring activities
may be planned and implemented. It then employs the
Box-Behnken design to further optimize and establish
interactions through plots and interpretations. The second
mechanism substitutes the ABC classification scheme for
the Pareto principle based on 0-69%, 70-79% and 80-
100% cut off rules and employs the Box-Behnken design
to study the interactions of the parameters. However, the
next novelty and contribution of the article are that the IS
2062 E250 steel plates are used as a case investigation to
verify the supremacy and effective attributes of the two
proposed methods.

2. Literature review

The current study aims to present a novel approach
used in predicting the most significant parameter and the
most optimal parameter to achieve optimal surface
roughness in a boring operation on a CNC machine tool,
the novel approach is a combination of various methods
that would include Taguchi method, design of experiment
response surface methodology (Box Behnken design)
approach, the Pareto principle, and the ABC principle.
While they have been much research on determining the
most significant and optimal parameter values to achieve
optimum surface roughness in a boring operation, using
various methods, very few researchers have employed the
Pareto principle and also ABC principle in this regard.

Boring operations are the backbones and the most
delicate finishing activity in component development;
boring process could jeopardize all the efforts put into the
component development in commercial activities (i.e.
grinding, drilling and turning the workpiece material). This
makes the need for optimisation of process parameters and
response in the boring operation compelling. This research
aims to analyse the characteristics of the optimisation of
process parameters in the boring operation by using the
combined Taguchi Pareto and Box Behnken design
response surface methodology on one side and Taguchi
ABC with Box Behnken design response surface
methodology on the other side because of the increasing
importance of optimisation in this domain of
manufacturing. This section details the ideas regarding
material types, machines tools, boring process input
parameters and the quantitative data in boring research. To
obtain results, the present authors have utilized journals
papers and a research gap has been identified. Below are

the various aspects that the literature on the boring
operations has been segmented.

2.1 Material Types used in Boring

In the literature, many researchers have worked on
various materials ranging from various types and grades of
steel to types and grades of aluminium in determining the
optimal and the most significant parameter in their boring
operation on various machine tools for example, Abiola
and Oke [7]; Patel and Deshpande [14], Vohra [1], Singh
and Prakash [4], Nugroho et al. [15] all worked on various
types and grades of steel on the subject matter. Abiola and
Oke [7] claimed that the depth of cut is the most
significant parameter in the boring process of IS 2062
E250 steel plate having the largest weight of 1 while the
speed is the least important parameter with a weight of 0
by the novel entropy-decision tree-VIKOR approach to
support their claim. Patel and Deshpande [14] declared
that the speed, nose radius and feed are the most
significant parameter in boring operation, with percentage
contributions of 74.92, 11.09 and 11.12, respectively, and
the optimized parameters are speed of 1400 rpm, feed of
0.6 mm/rev, depth of cut of 1.4 mm and nose radius of 0.8
mm. The IS: 2062 steel was used and the Taguchi method
and ANOVA procedure were applied.

The model developed predicted the surface roughness
of 1S 2062 steel. Vohra et al. [1] asserted that increase in
the depth of cut influences the material removal rate but
increases surface roughness. They also stated that if there
is an increase in cutting speed the material removal rate is
increased and the surface roughness is decreased
simultaneously when the work piece material is steel pipe.
Their argument was backed up by employing the Taguchi
method and ANOVA. All the parameter were conflicting,
hence optimization of the parameter for better output was
achieved. Singh and Prakash [4] stated that all cutting
parameter is somehow related to one another and are
conflicting. Hence, the need to optimize the parameters for
increased performance. Their declaration was supported by
using gray relational analysis and Taguchi method to
optimize cutting parameters for optimal material removal
rate and surface roughness of steel pipe (SS-304) in a
boring operation. In the two approaches used, the feed rate
and the depth of cut were in complete agreement.

Nugroho et al. [15] declared that the most significant
factor that contributes to surface roughness is the insert
radius, followed by the feed rate and depth of cut while
damper position is the least significant factor in the turning
process of medium carbon steel AISI 1050 on a CNC
machine. The assertion was supported by using full
factorial and ANOVA method for the parameter
optimization. The regression model developed shows that
there is a relationship between the surface roughness and
the cutting parameter in considered.

Also, Nayak and Sodhi [16], Sukhdeve and Ganguly
[17], Kumar et al. [5], and Abdulrazaq et al. [18] worked
on various types and grades of aluminium and its alloys on
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the subject matter. Nayak and Sodhi [16] maintained that
when the optimal parameter are set as speed 2004.54 rpm,
feed rate of 95.10 mm/min and depth of cut to be 0.67mm,
then there is 100% possibility that there would be a
material removal rate (MRR) of 62.98 mm®sec and a
surface roughness (Ra) of 0.2882 for AI6061 using the
analysis of regression and response surface methodology.
The optimal selected parameters produce optimal surface
finish for the Al6061 material. Sukhdeve and Ganguly [17]
asserted that the optimum parametric settings from the
gray relational analysis were validated using genetic
algorithm. This validates the mathematical regression
model from experimental data from Taguchi analysis when
the material used is AISI 1040 on a jig boring machine.
The mathematical model from the Taguchi method can be
validated using the presented method. Kumar et al. [5]
maintained that using the gray relational analysis, support
vector machine, response surface methodology the gray
relational grade could be predicted and machining
parameters could be optimized when AISI 4340 material is
considered in a boring operation. These can be verified by
confirmation experiment.

Abdulrazag et al. [18] argued that high feed rate
produces high material removal rate and good surface
roughness while high spindle speed gives good surface
roughness. They declared that there was little effect on
material removal rate for 7024 Al-alloy material in a
turning operation on a CNC machine using Taguchi
method. Of all, only a few researchers worked on E250 BO
steel material [7], [14]. Hence, the choice of material in the
current study was guided by the sparse information and
potentials for development in the area. Furthermore,
knowledge of material types during the boring operation
could be effectively used to evaluate the relative degrees
of optimized values obtained by each material group and
aid the understanding of the optimal process parameters of
the boring process when machining the IS 2062 E250 steel
plates.

2.2 Machine Tools used in Boring

The machine tool used widely in the literature is
various models of CNC machines. For example, in the
works of Abiola and Oke [7], Nayak & Sodhi [16], Kumar
et al. [19], Patel & Deshpande [14], Abdullah et al. [20]
and Vohra et al. [1], various models of CNC machine was
employed in collating experimental data. Other researchers
like Sukhdeve & Ganguly [17] as well as Vivek and
Ramesh [21] used jig boring machines and conventional
lathe machines in collating experimental data respectively.
Vivek and Ramesh [21] declared that the optimum
parameters for the boring of E31 steel material on a lathe
machine are 517.45 rpm for speed, 0.06 mm/rev for feed
rate, and 0.87 mm for depth of cut using the response
surface methodology to support their claim. When
parameters are properly selected in a boring process,
optimal surface finish is achieved. Going by the trend in
the literature the machine tool employed in the current
studies is the E Batilbio CNC Sprint 20TC. Hence,

information on machine tools utilized during boring could
be extremely useful to make boring operations attainable at
optimal values to achieve optimality for boring IS 2062
E250 plates.

2.3 Responses in the Boring Process

Throughout the literature, the output parameters taken
into account in determining the optimal parameters in a
boring operation are surface roughness, material removal
rate, tool wear, workpiece vibration, the vibration
amplitude of boring bar, roughness maximum,
concentricity, coaxiality, cutting force, tangential force,
bore diameter and wvertical reaction force. Surface
roughness was considered as the only output in Abiola and
Oke [7], Suresh & Diwakar [22], Nayak & Sodhi [16],
Balamurugamohanraj et al. [23] and Munawar et al. [24]
while multiple outputs were considered in Vivek and
Ramesh [21], Sukhdeve & Ganguly [17], Satish et al. [25],
Rao & Murthy [26]. However, for in-depth studies and
analysis, surface roughness was the only output parameter
considered in the current study. It could be concluded that
the grouping of boring operation characteristics according
to responses obtained is achieved according to the
demands for optimal operations performance during boring
that promotes sustainability in machining operations.

2.4 Boring Process Input Parameters

Most authors in the literature are in almost complete
agreement as to the input parameter considered in the
boring operation to determine the optimal surface
roughness and other output response. Abiola and Oke [7],
Patel and Deshpande [14], considered spindle speed, feed
rate, depth of cut and nose radius as the input parameter
considered in the boring operation for optimum surface
roughness. Other authors such as Yuvaraju and Nanda
[10], Patil and Jadhav [27], Ramu et al. [28], Sonar et al.
[29] and Panchal [6] considered only speed, feed and depth
of cut as the input parameters in their work. However,
Thomas et al. [30] and Munawar et al. [24] employed input
parameters like rake angle, tool length, workpiece length,
type of boring bar, in addition to the basic speed, feed,
depth of cut and nose radius.

In Patil and Jadhav [27], the authors asserted that PTFE
gives better results compares to other viscoelastic material
such as PVC and rubber. The experiment was conducted
on an EN8 workpiece material. Furthermore, the surface
roughness value is seen to decreases when a PTFE damper
is installed on the boring tool and when Taguchi method is
used to optimize the parameters. Ramu et al. [28] argued
that depth of cut is the most important parameter to be
considered in relation to surface roughness and material
removal rate, using gray relational grade. However, the
asserted that speed and feed ranked second and third,
respectively, when stainless steel 316 is used in the turning
operation in the experiment. Sonar et al. [29] declared that
the generated equation generated through the regression
analysis can be used to predict surface roughness and
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material removal rate. However, the Taguchi method was
used to obtain the optimal solution for the turning process
of AlI6061 T6 on a CNC machine. Using the generated
model the best decision on optimal parameter was reached.
Panchal [6] maintained that the most significant parameter
when the material is not hardened is the feed and depth of
cut. While when the material is hardened, the feed is the
most significant. However, the least significant is the
speed and depth of cut on surface roughness. The work
piece used is EN-36 on a CNC machine and this claim was
supported by application of BBD (RSM) in obtaining the
optimal parameters in both instances. The author claimed
that this procedure helps in reducing the machining time,
cost and tool wear rate. In the case of Thomas et al. [30],
the authors claimed that analysis of variance revealed the
best surface roughness condition achieved at a low feed
rate. They asserted that depth of cut has no significant
effect on surface roughness, The analysis of variance that
they reported revealed that the best surface roughness
condition is achieved at a low feed rate (less than 0.35
mnt/rev), a large tool nose radius (1.59 mm) and a high
cutting speed (265 m/min and above). Their results also
show that the depth of cut has not a significant effect on
surface roughness. Munawar et al. [24] stated that high
feed rate and low cutting speed would produce the lowest
surface roughness in the boring process of AISI 1018 steel
on CNC machine when Taguchi and ANOVA is adopted.

Thus, being motivated by the literature, in the current
study, the input parameters considered are speed, feed,
depth of cut, and nose radius due to the impact they have
on the chosen output parameter. Furthermore, Vivek and
Ramesh [21], Nayak and Sodhi [16], Patel and Deshpande
[14], Satish et al. [25], Rao and Murthy [26] and Kumar et
al. [3] gave specific values of each input parameter as the
optimal values to achieve the optimum various output like
the surface roughness. In a boring process, when the input
parameters are properly selected by the various methods,
better surface roughness is achievable [16], [19], [21].
Also, Vohra et al. [1] and Singh and Prakash [4] argued
that the cutting parameter is somewhat related to one
another and that they are clashing or incompatible, which
results in the need for optimization for better output. Most
manufacturing organization aims to produce high-quality
products at minimum costs, which can be achieved only
when machining parameters are optimized [16], [31]. It
could be concluded from the finding that responses are one
of the aspects of boring operations parametric analysis and
optimisation that promotes an excellent performance of the
boring operation when properly defined.

2.5 Quantitative Data in Boring Research

In boring operations, quantitative data may refer to a
form of research whose intent is to quantify the gathering
and examination of experimental or numerical data from a
theoretical perspective. Quantitative data has been linked
to a deductive method based on theoretical tests. Often, the
purpose of navigating through the quantitative lens is to
establish the frequency at which some defined

characteristics exist. Parameters are easily conceptualized
that is the key representatives of the input of the system
and they are routes to observing the larger data set from
the population of data from which a few experiments are
extracted. Data in the literature are generally quantitative
and various authors have employed different approaches in
analyzing these data. For example, authors like Suresh and
Diwakar [22], Patel and Deshpande [14], Kumar et al.
[19], Dave et al. [32] and Abdulrazaq et al. [18] are a few
of the authors that employed ANOVA in determining the
most significant parameter in a boring operation for
optimum surface roughness. For example, Kumar et al.
[19] argued that when the optimized cutting condition
obtained from DOE full factorial and ANOVA analysis
and the non optimized cutting conditions were compared
based on their effect on surface roughness, the optimized
parameter reduced surface roughness by 49.83%. Using
this method, with increased cutting speed and feed the
surface rough is decrease drastically.

Dave et al. [32] asserted that the material removal rate
is mostly influenced by the depth of cut while the insert
influenced the surface roughness more, when the material
are grade EN material in a turning operation using Taguchi
method. When this method is employed increase in
machine utilization and decrease in production cost is
achieved. However, Abiola and Oke [7] used the entropy-
decision tree-VIKOR approach in determining the ranking
of parameters in the boring operation for optimum surface
roughness. Suresh and Diwakar [22], Vivek and Ramesh
[21], Nayak and Sodhi [16], Patel & Deshpande [14],
Kumar et al. [19] and Rao & Murthy [26] are just but few
of the authors that used Taguchi method and DOE's
response surface methodology in determining the optimal
parameters values in boring operation for high-quality
surface roughness. Sukhdeve & Ganguly [17], Kumar et
al. [5], Batwara & Verma [31], Saini & Pradhan [33],
Ramu et al. [28], Yang et al. [34] and Rao & Murthy [26]
employed other methods like support vector machine
method, full factorial design, grey relational analysis,
artificial neural network, and genetic algorithm. However,
of all the methods used by various authors, none used the
Pareto principle, the ABC principle and other evolutionary
optimization approach apart from the genetic algorithm,
which was used by Sukhdeve & Ganguly [17] only. The
present work introduces a combination of the Taguchi
method, ABC principle, Pareto principle, DOE’s response
surface methodology (Box Behnken design approach) to
the optimization of boring parameters of IS 2062 E250
steel plates which makes it unique from those used in the
literature under review. Hence, the quantitative data may
be an effective avenue to monitoring the performance of
boring operations in the boring of the 1S 2062 E250 plates.

2.6 Research Finding Pointers

The findings made by various analyses of various
authors suggest a particular machining parameter to be the
most significant in the boring operation others say
otherwise for example in the works of Abiola and Oke [7]
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and Ramu et al. [28]

agree that the most significant
parameter in the boring operation on a CNC machine tool
is the depth of cut, while in the works of Patel &
Deshpande [14], Nugroho et al. [15] and Saini & Pradhan
[33], depth of cut is not the most significant factor in the
boring operation, probably owing to the difference in
materials used by various authors in their various works.

Hence,

research finding pointers may be effective

indicators of the progress made by the boring operation in
achieving the performance goals of the process of boring
IS 2062 E250 plates.

To further explore the literature, a summary of
important studies are provided in Table 1.

Working Machining Choice input
Author(s) material operation Choice output Method(s) used Findings Conclusion
used /machine tool Panamelers
Abiola and E250 BO Boring/ CNC Surface Speed, feed, nose Entropy- Depth of cut exceeds others in The analysis is useful for
Oke [7] steel machine roughness radius, depth of cut decision tree- performance while all other the preparation of the
material VIKOR parameters exceed speed in annual budget for boring
approach performance to enhance operation in a factory
surface roughness
Suresh & Twinning Turning/CNC Surface Rate of material Taguchi, The optimal condition of each The optimization of
Diwakar [22] induced machine roughness removal, feed, speed, | ANOVA, and input and output parameters process parameters is
plasticity depth of cut response surface | were established tedious and should be done
steels methodology with utmost attention
Vivek & EN 31 Boring/Lathe Surface Speed, feed, depth of Response The optimum parameter was Proper selection of
Ramesh [21] machine roughness cut surface obtained and confirmation parameters produces a
methodology experiments were carried out better surface finish
to validate the optimum
settings
Nayak & Al 6061 Boring/CNC Surface Depth of cut, feed Regression The optimum parameter was Optimum selection of
Sodhi [16] machine roughness rate, cutting speed analysis, established parameters produces a
and surface response surface good surface finish
methodology
Sukhdeve & AISI 1040 Jig boring Vertical Speed, depth of cut, Taguchi, grey The optimum parametric
Ganguly [17] machine reaction force, cutting speed relational settings from the grey
surface analysis, genetic | relational analysis were
roughness, algorithm validated using a genetic
material algorithm, which validates the
removal rate regression model from
experimental data from
Taguchi analysis
Patel & 1S: 2062 Turning/CNC Speed, depth of cut, Taguchi and Speed, nose radius and feed The developed model
Deshpande steel machine nose radius. Feed ANOVA are the largely considerable could be used to predict
[14] parameters in the boring surface roughness
process
Kumar et al. Engine Boring/CNC bore diameter Cutting speed, feed DOE, RSM When cutting speed and feed 40% decrease in bore
[9] crankcase machine rate, cutting AND ANOVA increased, bore deviation deviation was recorded
tappet bore allowance decreased with an increase in cutting
speed and feed
Kumar et al. AISI 4340 Boring Surface Cutting speed, depth Gray relational Grey relational grades were A confirmation experiment
[5] - roughness, tool | of cut, feed rate analysis, support | predicted and machining was conducted to validate
wear, cutting vector machine, parameters were optimized the predicted GRG and
force, response surface optimized parameter
tangential methodology
force, tool
vibration
Abdullah et Aluminium Boring/CNC Concentricity Cutting speed, feed Taguchi In concentricity, the type of The optimum condition for
al. [20] alloy 6061, machine and coaxiality rate and depth of cut material had the highest concentricity was by using
mild steel percentage contribution value the carbon steel, depth of
and carbon (51.469%), followed by the cut of 0.2 mm, feed rate of
steel. feed rate (41.812%), depth of 0.4 mm/rev and cutting

cut and cutting speed were not
that significant with 4.841%
and 1.879%, respectively. In
coaxiality, material type is the
largely considerable factor that
influences coaxiality with
76.899% influence. Other
factors are almost
insignificant, cutting speed
contributes 12.443%, feed rate
contributes 9.862% and depth
of cut contributes 0.796%.

speed of 560 mm/min. The
optimum condition for
coaxiality was by using
aluminium Alloy, depth of
cut of 0.2 mm, feed rate of
0.1 mm/rev and cutting
speed of 750 mm/min.

Table 1 Summary of literature review for the boring operation of steel plates
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Abdulrazaq 7024 Al- Turning/CNC Surface feed rate, spindle Taguchi and High feed rate produces high High spindle speed give
etal. [18] alloy milling roughness, the | speed ANOVA material removal rate and good | better surface roughness
machine material surface roughness and high
removal rate spindle speed also give good
surface roughness with little
effect on material removal rate
Dave et al. grades of Turning/CNC material depth of cut Taguchi method The material removal rate is An increase in machine
[32] EN removal rate, mostly influenced by the depth | utilization and decrease in
materials surface of cut while the insert production cost is achieved
roughness influenced the surface
roughness more
Kumar et al. Engine Boring/CNC surface Cutting speed, feed DOE Full With increased cutting speed Optimized parameters
[9] crankcase machine roughness rate, cutting factorial and and feed the surface roughness reduced the surface
tappet bore allowance ANOVA decreased drastically roughness by 49.83%
analysis
Vohra et al. Steel pipes Boring/CNC Material speed, feed and depth | Taguchi method The optimum value of each An increase in the depth of
[1] machine removal rate of cut and Anova parameter was established cut influences the material
and surface removal rate but increases
roughness surface roughness. With
cutting speed growth, the
material removal rate
increased and the surface
rough decreased
correspondingly.
Batwara & Turning/CNC Material Depth of cut, feed Artificial neural To obtain the accuracy of Model equations for
Verma [31] Machine removal rate, rate, speed network and components, optimizing the predicting material
surface response surface machining parameters is very removal rate and surface
roughness methodology valuable. It also has a great roughness were
influence on cost- formulated. It has an
effectiveness, material removal | accuracy of 90% in
rate and surface roughness predicting the responses
Singh & Steel pipe Boring/CNC Surface Feed, speed, depth of | Taguchi method The SN ratio was used to The optimum cutting
Prakash [4] (SS-304) machine roughness, cut and optimize the cutting parameter in reducing the
material combination of the parameters. | surface roughness was
removal rate All cutting parameters are determined,
related to one another and are
conflicting.
Nugroho et Medium Turning /CNC Surface Damper position, DOE Full The largely considerable factor | The result from this study
al. [15] carbon steel machine roughness feed rate, depth of factorial and to surface roughness is the validates previous
(AISI 1050) cut, insert nose radius | ANOVA insert radius, then feed rate and | researches that the factors
analysis depth of cut, while damper considered influence the
position was the slightest surface roughness of
considerable factor. components
Kumar et al. 410 Boring/Lathe material Speed, depth of cut Taguchi and To increase quality and reduce The optimum combination
[3] stainless machine removal rate, ANOVA cost, the material removal rate of process parameters
steel surface should be optimized, the improves the performance
roughness optimum process parameter for | of machining processed
the effective and efficient
operation was determined
Saini & Aluminium Turning/CNC material Cutting speed, feed, Taguchi-Fuzzy The largely considerable factor | In this study, the feed was
Pradhan [33] alloy 8011 machine removal rate depth of cut on the surface roughness and established as the largely
and surface the material removal rate, considerable parameter that
roughness followed by the depth of cut influences surface
and the cutting speed roughness
Panchal [6] EN-36 CNC machine surface Speed, feed, depth of BBD(RSM) The largely considerable This analysis helps in
(with roughness cut parameter of the material reducing machining time,
hardening without hardening is the feed cost and tool wear rate
and without and depth of cut while for the
hardening) hardened material the feed is
material the largely considerable but the
slightest considerable is the
speed and depth of cut on
surface roughness
Sonar et al. Aluminium Turning/CNC material depth of cut, feed Taguchi Optimum machining With support from the
[29] Alloy(Al60 machine removal rate rate, speed parameters were determined. regression model, the best
61 T6) The generated polynomial decision on parameters
regression model could the could be reached
used to predict surface
roughness and material
removal rate
Ramu et al. stainless Turning/CNC material feed, speed, depth of Taguchi- The best optimal combination Depth of cut is the most
[28] steel (316) removal rate, cut ANOVA-Gray of parameters from ANOVA considerable parameter
surface relational shows that feed is the most regarding surface
roughness analysis, grey important parameter affecting roughness and material

relational grade

surface roughness, followed by
speed and depth of cut.

removal rate with the grey
relational grade, while
speed and feed ranked
second and third

Table 1 Summary of literature review for the boring operation of steel plates (Cont’d)
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Yang et al. aluminium Boring/CNC Roughness Feed rate, cutting Gray relational Feed rate mostly influences The feed rate is the largely
[34] alloy machine average, speed analysis, roughness average and considerable factor in a
6061T6 roughness ANOVA roughness maximum, while the | CNC boring operation
maximum, cutting speed is the most
roundness important factor in roundness
Muhammad AISI 1018 Boring/CNC Surface Rake angle, depth of Taguchi, ANOVA was used to identify Tools with a positive rake
et al. [35] steel machine roughness cut, speed, nose ANOVA the largely considerable factors | angle and small nose radius
radius, feed rate affecting surface roughness, produce a lower surface
S/N ratio was used to find the nose radius in the boring
optimal cutting combination of | operation. Also, high feed
the parameters rate and low cutting speed
produced the lowest
surface roughness
Patil & EN8 Boring/CNC surface Spindle speed, feed Taguchi PTFE gives the better result as The surface roughness
Jadhav [27] material machine roughness rate and depth of cut compared to other viscoelastic value decreases due to
workpiece material PVC and Rubber installation of PTFE
with damper on the boring tool.
and without
viscoelastic
material
damper
Thomas et al. Mild Boring Surface Cutting speed, feed ANOVA The variance analysis showed Influence of developed
[30] carbon steel roughness rate, depth of cut, the superior surface roughness edge structure on surface
tool nose radius, situation at a low feed rate of roughness can be reduced
tool length and type less than 0.35 mm/rev, a huge by enhancing the depth of
of boring bar tool nose radius of 1.59 mm cut and intensifying the
and an elevated cutting speed tool vibration
of 265 m/min and over. Depth
of cut has no considerable
influence on surface
roughness.
Yuvaraju & Glass fibre Boring Vibration Speed, feed and Response There is a reduction Surface roughness is
Nanda [10] reinforced amplitude of depth of cut surface in surface roughness as well as | reduced, as well as the
epoxy and boring bar and methodology, vibration amplitude with an vibration amplitude
glass fibre surface ANOVA, Box increase in the number of
reinforced roughness of Behnken composites
polyester the workpiece plates placed under the tool

Table 1 Summary of literature review for the boring operation of steel plates (Cont’d)

2.7 Research Gap

The review performed above targeted the existing
literature on boring process optimisation and has provided
an understanding of the idea regarding the process
industry. The review provided an effective route to
examine an aspect of optimisation of boring operations and
parametric prioritization has been ignored in a majority of
studies. Moreover, the Taguchi Pareto and Taguchi ABC
perspectives in combination with Box Behnken design for
interaction analysis for the specific application of
automobile panel and an illustration using the AA1100
sheets are absent in the literature but introducing this idea
could introduce a high-performance threshold and
improved planning in the boring industry. Consequently,
the absence of such a study could jeopardize the
profitability of the process despite having sufficient boring
operations resource to prosecute all the available boring
jobs. From the literature, it was established that researchers
adopt optimisation methods to enhance the performance of
the boring system. However, prioritization of the
parameters while optimizing them was not considered.
Also, the interactions of the parameters in a concurrent
optimisation cum prioritization process were not
recommended. Furthermore, no methods were adopted to
prove that interaction prevails while processing automotive
panels, particularly using the AA1100 sheets

3. Methods

3.1 Materials and Experimentation

To choose the IS 2062 E250 plate used in
experimentation by Patel and Deshpande [14], the
attraction includes its chemical and mechanical
compositions, which make the material for wide-ranging
applications in the industry. First, the standard information
on the chemical and mechanical properties of the IS 2062
E250 plate was obtained from the website of Ashtapad
Overseas, a prominent plate supplier in India. While the IS
2062 E250 Br is taken as a broad steel plate group, the
obtained information emphasizes three different grades
with changes in nomenclature as A, B and C, descended by
the E250 ginned description as E250- Gr A, E250-Gr C.
Although any of these could be suitable for the
experimentation, perhaps Patel and Deshpande [14] were
guided by cost and/or availability of the product for
supplies at the period of requests for experimentation thus,
the E250-GrB, fully described as IS 2062 E2050 Gr B
plates were chosen by the authors. The plate consists of the
element carbon, magnesium, sulphur, phosphorus, silicon
and the C.E values while the element Nb+V+Ti is
completely missing in it but is available in other categories
of steel plates such as the E-300 (0.25max), E-350 (0.25
max) and E-450 Gr — E (0.25 max), among others.
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By compositions, a maximum of 0.045% of sulphur
and phosphorus are present in the chosen 1S2062 E250 Gr
B plates for experimentation. This chosen sample also
contains a maximum value of 0.40% silicon. Other values
of elements contain a maximum of 0.22% of carbon while
a maximum of 1.50% is reported for magnesium. Also, the
guide of plates chosen has a C.E. value of 0.41% as the
maximum threshold. For the chosen 1S2062 E250 Gr-B
plates, six principal mechanical properties are of interest to
the user and these include the bend test (min), yield stress
(<20mm), (>40mm), vyield stress (20-40mm), tensile
strength (MIN, MPA), % derogation at gauge length 5.65
(square root of so). The yield stress at (<20mm), (20-40
mm) and (>40mm) are given as 250,240 and 230 units,
respectively. However, the elongation in percentage at the
gauge length 5.65 multiplied by a square root is obtained
for the 1S 2062 E250 Gr-B plates as 23 minutes. The bend
test result is 3t, where t is the thickness of the plate.
Beyond these mechanical tests, the density of the plates is
7.85 g/lcm®. Additional information includes the gauge
width and length, width per sheet and weight per profit.
The gauge width and length is mage ranging, for example,
7(0.1874) x 48 x 120mm represents the gauge width and
length whose weight per square feet is 7.871.

Apart from the materials utilized in the boring
operation, which includes the IS 2062 E250 Gr-B plates,
which are classified as pre and experimental aids, other
types of materials such as the software used aided in
analyzing the results after the experiments. In the present
study, the two software materials used are the Minitab 18
version 2020 and Microsoft Office Excel 2007. The
Minitab 18 wversion 2020 aided in running the Box
Behnken design model. Thus was actualized by creating
the box Behnken design and introducing the response.
Then the analysis was run after which the parameters were
optimized. The authors plotted the contour plots and
surface plots using the Minitab 18 also. The second
software used is Microsoft Office Excel 2007, which was
used in generating the signal to noise responses through
the Taguchi method. Initially, in Minitab 18 version 2020,
the Taguchi orthogonal array design was generated and
this was introduced to Microsoft Excel to obtain the signal
to noise ratios that were used in the Minitab 18 version
2020 software. Then the process of interpretation in
obtaining the response commenced.

Furthermore, the Batliboi make CNC turning centre
(Sprint 20 TC) was used for experimentation by Patel and
Deshpande [14] whose data is used to validate the methods
proposed in this work. Moreover, the chemical vapour
deposition (CVD) of Ti (C, N) + Al,O3 coated cemented
carbide inserts of 0.8 and 1.2 mm as nose radius were
engaged in the experiments. Besides, the cutting inserts are
the CNMG 12 04 08 PF & CNMG 12 04 12 PF (Sandvik,
made), while the tool material is of the CVD coated
cemented carbide and the tool holder is specified as
MCLNL 25 25 M 12 [14]. Next, the cutting parameters in
the boring operation are explained regarding speed, feed
and depth of cut. These essential boring parameters are
hugely involved in the experiment analysed in the present

study and they determine the surface integrity of the
material being machined. These cutting parameters
concurrently proceed in three motions, stimulating the
spread of the cutting tool to the IS 2062 E250 Gr-B plates
down the planned path, leading to a completed surface
with specified tolerance, size and shape. The cutting sped
is the comparative velocity between the workpiece’s
surface and the tool, measured in surface metres per
minute (m/min). But the feed rate is the distance travelled
by the tool in a revolution of the workpiece, measured in
millimeters per revolution. However, the depth of cut is
the sum of the metal quantity subtracted from the IS 2062
E250 Gr-B plates in each pass that the cutting tool makes
on the material. This may be computed as the product of
the diameter and a coefficient.

3.2 Taguchi-Pareto-Box Behnken Design and
Taguchi-Pareto-Box Behnken Design Method

This method is a combination of two methods, namely
Taguchi Pareto and Box Behnken method represented in
Fig. 1. Also, the Taguchi-ABC Box Behnken method is
represented in Fig. 1.

Generation of the signal to noise ratios as responses to the input parameters using a criterion of
nominal the best. larger the better and smaller the best of the Taguchi method

Rearranging the signal to noise ratio responses, for the experimental trials in descending order i.c.
from highest to the lowest signal to noise response values

‘ Computation of the cumulative signal to noise ratios ‘

| Computation of the percentage cumulative signal to noisc ratios |

‘ Application of Pareto/ABC principle to the computed percentage cumulative signal to noise ‘
‘ Create a Box Behnken design for the numbers of input parameters available ‘
Introduction of the relevant or the retained signal to noisc ratio responscs into the Box
Behnken design in the Minitab software version 18 (2020)
‘ Conduct the response surface Box Behnken design analysis ‘

‘ Analyze and interprete of results and plots ‘

Fig. 1 Taguchi-Pareto-Box/Taguchi-ABC- Behnken Design Flow chart

3.3 Procedure for Implementing TP-BBD
Method

Step 1: Generate the signal to noise rations as,
responses to the input parameters using one of
the critical of nominal the best, larger better,
and smaller the better.

Step2:  Apply the Pareto principle of 80-20 rule
whereby 80% of the SN ratios by value are cut
off from the 100% total value. This may be part
of all the experimental trials number. Note that
the SNRs will be revised according to their
value from each experimental trial. In this case,
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Step 3:

Step 4.

the SNR having the higher value attached to
the certain experimental trial are positioned
first, for instance assuming there are 27
experimental trials with, the corresponding
SNRs which could be over depending on
experimental data, suppose out of the 27
experimental trials, experiment trials 17, 5, 12,
having corresponding values of 50, 48, 46, dB
as their SNR signal to noise ratios. Besides, let
us assume that the signal to noise ratio of all
other experimental trials are less than 46,
accordingly, as a re-arrangement is sort, the
new profile of the experimental trial and the
corresponding signal to noise ratio would be as
follows; experimental trials 17 with a
corresponding signal to noise ratio of 50 dB
will be positioned first, experimental trial 5,
have a corresponding signal to noise ratio of 48
dB will be next second. Furthermore,
experimental trials 12, having an SNR of 46 dB
will be positioned third following these are the
other signal to noise ratios that would be
arranged according to the strength of the value.
In other words, we will have a rearranged 27
entries of the experimental trial, starting with
experimental trial 17 and discarding other
experimental trial that is considered to have the
least SNR. Then, the analysis of the 80-20 rule
of Pareto on the data will entail having the re-
arranged SNR. Described in cumulative form
and a cut off of 80% set at 80 % Cumulative
column is 50 dB. This is relevant to experiment
trial 17 by moving to the next experimental
trial 5, cumulative is obtained as 98dB. Next, if
we consider the cumulative base on
experimental trial 12. The cumulative will be
144dB. The procedure will follow until the last
item of the experimental trial with the
appropriate SNR is added. Now looking at the
column of the cumulative value of SNR a cut
of 8% is sort on a near value.

Establish the new set of responses and their
corresponding  experimental  trials  while
discarding the old one. In this case, only those
values that are by the computed 80% value of
paid to would be shown.

The responses that are retailed will be
introduced into the Box Behnken design there
is a need to event a new design based on the
number of factors that are for the present
problem. This will entail using the Minitab
version 18 and year 2000. Here the Stat menu
is clicked, while the DOE submenu is pointed
to. Then the choice of response surface is
made, furthermore, the "Create response
surface design" is made the next phase within
this step is to choose the two designs, which is
the Box Behnken option. At the same time,
there is a need to select the "number of

Step 5:

Step 6:

Step 7:
Step 8:

contention factors" while the "numbers of
categorical factors” remain fixed as zero. On
the same dialogue box, there is a need to click
on "Display available design" this option leads
to the choice of the available response surface
designs of which Box Behnken (Unblocked) is
chosen. Arrange the columns there are
opportunities to choose the numbers to
experiment to use based on the numbers of
factors. For example, if the choice of four
factors is made there are opportunities to pick
up only 27 experiments. This is clicked on and
the ok button is activated. Next, the design
button is clicked on without adjusting any of
the items under the "designs"”, the ok button is
clicked on. Next, the factor button is clicked on
here, the actual names of the factors are
inserted and lowest and highest bounds are
described then, the ok button is clicked on the
next phase is to go to the options button notice
that "Randomize run" and "store design in
sheet” have been ticked by default. In
particular, "randomize runs" may have to be
unticked, then ok is clicked on. Next, the result
button is clicked on. What is to be done is to
select the "summary and design table” and
click on Ok. The next phase is to click on Ok.
The outcome is a display of the summary and
design table.

Introduce the retained Pareto responses into the
generated Box Behnken design.

Analyze response surface design: This is
obtained after having introduced the retained
SNR's. the activation of the "Analyses response
surface design” menu Stat by revisiting the
Stat, DOE, response surface path to obtain it
after clicking on the "Analyze response
surface™, menu, the response shown is selected
by clicking on select then, click on the term
and maintain the default setting and click on ok
then click on the options button and maintain
the default then click on ok. Click on the
stepwise button and maintain the default and
click on ok. Then click on the graph button,
under graph click on "four in one" then click on
ok, then click on result button and maintain the
default. Then click ok then go to the storage
button and click on the main ok button. This
plot the various graphs of the Pareto chart of
standardized effect as well as the residual plots
for the SNR.

Analyze and interprete the result

Create the contain plots and surface plots. This
is obtained by clicking on Stat, DOE, response
surface and contour plots. Then click on
contain plots. By following the same process
surface plots are obtained as you click on the
surface plot.
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Step 9: Introduce the response optimize: the procedure
involves clicking on Stat, DOE, response
surface, the response optimizer and finally
clicking on it.

Step 10:  Report on results and discuss the results

3.4 Procedure for Implementing TABC-BBD
Method

Step 1:  Apply step 1 of the procedure for implementing
the TP-BBD method of the current study

Step 2:  Application of the ABC principle, in which the
signal to noise ratio values is segmented into
three regions namely A, B, and C based on their
percentage cumulative values. This is done by
first rearranging the signal to noise ratio in
descending order i.e. from the highest to the
lowest. Note that the rearrangement is done such
that the experimental trials and their
corresponding orthogonal arrays are also
rearranged simultaneously together with the
signal to noise ratios. That is to further say that,
the various experimental trials positions and the
corresponding orthogonal arrays would change
position accordingly to the rearrangement. After
this rearrangement, it would be observed that the
largest signal to noise ratio gains the first
position in the list, while the smallest signal to
noise ratio would maintain the last position in
the rearrangement. For an instant, assuming
there are 16 experimental trials in the design, out
of which we have experimental trials 4, 8, and
15 with a corresponding signal to noise ratio of
48dB, 120dB, and 94dB respectively and
assuming 94dB is the largest signal to noise
ratio in the experiment. Rearranging would give
8, 15, 4 experimental trials, corresponding to
120dB, 94dB, 48dB signal to noise ratios in the
rearranged form giving a new data profile.
Therefore, we would have a rearranged 16
experimental trials with experimental trials 8
having the highest signal to noise ratio taking
the first position and some other experimental
trial numbers with the least signal to noise ratio
taking the last position. Applying the ABC
principle would require the computation of
cumulative signal to noise ratio and percentage
cumulative signal to noise ratio. For example,
the first rearranged signal to noise ratio would
represent the first cumulative signal to noise
ratio i.e. experimental trial 8 with a
corresponding signal to noise ratio of 120dB is
the first cumulative signal to noise ratio, the
second cumulative signal to noise ratio is
obtained by adding the first cumulative signal to
noise ratio to the second prearranged signal to
noise ratio i.e. 120dB is added to 94dB of
experimental trial 15 giving 214 dB as the
second cumulative signal to noise ratio. The

third cumulative signal to noise ratio is also
computed by adding the second cumulative
signal to noise ratio to the third rearranged
signal to noise ratio i.e. 214dB is added to 48 dB
of experimental trial 4 giving 262 dB as the third
cumulative signal to noise ratio. This procedure
would be followed till the cumulative signal to
noise ratio of the last experimental trial
corresponding to the last signal to noise ratio is
computed. This is then followed by the
computation of the percentage signal to noise
ratio. To compute the percentage signal to noise
ratio the rearranged signal to noise ratio for all
experimental trials is summed to obtain a total
rearranged signal to noise ratio, then each
cumulative signal to noise ratio is divided by the
total rearranged signal to noise ratio, multiplied
by 100. In other words, assuming the total
rearranged signal to noise ratio is 2000 dB, the
first percentage cumulative signal to noise ratio
is computed as 120 dB divided 2000 dB giving
0.06 multiplied by 100 gives 6%, this represents
the first percentage cumulative signal to noise
ratio. This procedure is followed till the last
percentage cumulative signal to noise ratio is
computed. Now observing the percentage
cumulative signal to noise ratio, we classify it
into A, B, and C classes using 0 to 65% for class
A, 66% to 79% for class B and 80% to 100% for
class C, as applicable to the ABC principle.

Step 3:  Execute step 4 to step 9 of the procedure for
implementing the TP-BBD method of the
current study for each of the ABC classifications
i.e. A class or region, B class or region and C
class or region.

4. Results and Discussion

The IS 2062 E250 steel plates experience substantial
usage due to their associated outstanding attributes. Some
applications such as automobiles and aerospace are the top
subscribers of the IS 2062 E250 steel plates, particularly
where toughness is a prerequisite for the long lifespan of
the application. Moreover, boring is a manufacturing
operation that may be used to hold various plates rigidly.
Unfortunately, as the boring operation is initiated on the IS
2062 E250 steel plates, some damages that are detrimental
to the surface roughness of the steel plates are induced on
the joined plates. But these damages ought to be
minimized to enhance the surface roughness of the bored
IS 2062 E250 steel plates. Consequently, a comprehensive
treatment of the boring operation involving the IS 2062
E250 steel plates may be the best research pursuit to
achieve the goal of enhanced surface roughness stated
earlier. Thus, in the present investigation, the boring
process parameters in the operation of the IS 2062 E250
are analyzed to understand the effect of the damage on the
bored holes in joints of steel plates such that an adequate
choice of these parameters are made in a manner to
minimize the damage encountered while drilling.
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Furthermore, in this article, the IS 2062 E250 steel
plates are bored and the experimental data reported in an
earlier study, referred to by Abiola and Oke [7] was
utilized for the evaluation of two novel methods of
Taguchi-Pareto-Box Behnken design and Taguchi-ABC-
Box Behnken design. The authors’ credit for the
experiment (from the literature) [14], conducted the
experiments on the computerized numeric controlled
machine while establishing diverse levels for the factors,
namely speed, feed, depth of cut and nose radius. In this
section, the results are presented and discussed under two
broad leadings according to the methods applied in this
study and are as follows.

4.1 Taguchi-Pareto Box Behnken Design

To obtain Taguchi-Pareto Box Behnken design, the
starting, point is the establishment of the Taguchi method
on the use of the experimental data. Then the Taguchi
approach was further analyzed using the Pareto principle
and subsequently followed by the Box-Behnken design
approach to complete the method as the Taguchi-Pareto-
Box Behnken design method. In this method, the response
of the Box Behnken response surface design approach was
obtained from the response of the Pareto approach.
Besides, to apply the Pareto principle, the signal-to-noise
ratio for the sixteen experimental trials was re-arranged
from the highest signal-noise ratio to the lowest signal-
noise ratio to the lowest signal-noise ratio. The
rearrangement also applies to the orthogonal arrays
simultaneously of each experimental trial. Consider Table
1 whereupon re-arrangement the cumulative of the signal-
noise ratio was computed. For instance, in the
experimental trial 1, the signal-noise ratio i.e. -52.0-

4121098 is taken as the first cumulative of the signal-noise
ratio but the second cumulative of the signal-to-noise ratio
is computed by adding the first commutative of the signal-
to-noise ratio to the second re-arranged experimental trial
of the signal-noise ratio. For instance, -52.041212098 is,
the first cumulative of the signal-noise ratio and the second
re-arranged signal-noise ratio is -52.04121319. These two
items are added as -5204121098 + (-52.04121319) to
obtain -104.08.24242 to give the second re-arranged
experimental trial signal-noise ratio. The third cumulative
signal-noise ratio is also computed by adding the second
cumulative signal-noise ratio to the third re-arranged
signal-noise ratio to obtain -156.1236394. Besides, the
same procedure is then applied to the 4" to
16"experimental trials signal-noise ratio to compute the
cumulative values respectively (Table 2).

Next, the computation of the percentage cumulative
signal-noise ratio is actualized, which is computed by
dividing all the cumulative signal-noise ratios by the total
re-arranged signal-noise ratios previously calculated as -
873.9424883. The value is then multiplied by 100. In the
case of the first experimental trial, a result of 6% is
obtained from -52.04121098 + (-873.9424883) x 100. This
gives the first percentages cumulative signal-noise ratio.
Furthermore, by applying the Pareto principle and keeping
in mind that a higher signal-noise ratio is desirable in the
study; the experimental trials of percentage cumulative
signal-noise ratio of 80%-100% are the cutoff of the
experiment by Pareto principles because they possess a
lower signal-to-noise ratio, which is not desirable by the
study. The procedure involves retaining experimental trials
with a percentage cumulative signal-noise ratio of 1%-
79%, Table 2.

Orthogonal array Factors (interpreted) SN ratio processing

Expt. Re-arranged SN Cumulative of re- Percentage
trisls S| F|DC|NR S F DoC | NR rati?) arranged SN ratio cumulativeg(%)

1 111] 1 1 800 | 0.06 | 1.00 | 0.80 -52.04121098 -52.04121098 6

3 113] 3 3 800 | 0.10 | 1.40 0 -52.04121319 -104.0824242 12

4 1141 4 4 800 | 0.12 | 1.50 0 -52.04121519 -52.04121519 18

2 112 2 2 800 | 0.08 | 1.25 | 1.20 -52.04122024 -52.04122024 24

6 2121 4 | 1000 | 0.08 | 1.00 0 -53.97940446 -53.97940446 30

5 21| 2 3 | 1000 | 0.06 | 1.25 0 -53.97940689 -53.97940689 36

7 213]| 4 1 | 1000 | 0.10 | 1.50 | 0.80 -53.97941268 -53.97941268 42

8 24| 3 2 | 1000 | 0.12 | 1.40 | 1.20 -53.97941492 -53.97941492 49

9 311 3 4 | 1200 | 0.06 | 1.40 0 -55.56303093 -55.56303093 55

12 |34 2 1 | 1200 | 0.12 | 1.25 | 0.80 -55.56303169 -55.56303169 61

10 |32 4 3 | 1200 | 0.08 | 1.50 0 -55.56303181 -55.56303181 68

11 (33| 1 2 | 1200 | 0.10 | 1.00 | 1.20 -55.5630324 -55.5630324 74

16 |44 1 3 | 1400 | 0.12 | 1.00 0 -56.90196305 -56.90196305 80

15 [4(13] 2 4 | 1400 | 0.10 | 1.25 0 -56.90196428 -56.90196428 87

14 (412 3 1 | 1400 | 0.08 | 1.40 | 0.80 -56.90196658 -56.90196658 93

13 |41 4 2 | 1400 | 0.06 | 1.50 | 1.20 -56.90196898 -56.90196898 100

Note: Key: S — speed, F — feed, DoC — depth of cut, NR — nose radius, SN ratio — signal-to-noise ratio; experimental trial numbers 1, 3,4, 2, 6,5, 7,8, 9,

12, 10 and 11 are retained while 16,15,14 and 13 are cut-out

Table 2 Re-arranged S/N ratio and computations of % cumulative
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From now onwards, the Box Behnken design method is
then introduced as the next phase of computation in the
validation of the Taguchi-Pareto-Box Behnken design
method. To actualize this goal, the Minitab 18 software
was used. This software aided in generating the response
surface from the Box Behnken design using four factors
and default of 3-level design. The design summary from
the Minitab 18 software entails 1 replicate, 27 base runs,
27 total runs, 1 base block and 1 total block for 4 factors.
From the design, it was observed that the total number of
runs is 27. However, introducing the eleven retained
signal-noise ratios from the Pareto approach into the Box
Behnken design in the Minitab 18 software to analyse
the response surface design was not directly feasible
since the number of runs needs to be equal to the number

of responses. Thus by following previous works the
method used was adopted to overcome this limitation.

The adopted approach was to repeat the responses of
the experimental trials 1 to 4 for experimental trials 13 to
16 since they share the same attributes and are from the
same data set. Furthermore, experimental trials 5-8 was
taken as the experimental trial 17-20 based on the
justification given in the preceding sentences. Besides,
the same approach was adopted for experimental trials
21-24, which repeats the experimental trials 13-15 was
also repeated for experimental trials 25-27. However,
upon the completion of the responses, the analysis was
conducted and the outputs of the analysis are given in
Tables 3 to 6.

Source Df AdjSS AdjMS F-value p-value
Modal 14 50.6253 3.6161 3.14 0.027
Linear 4 0.2179 0.0545 0.05 0.995
Speed 1 0.0363 0.0363 0.03 0.862
Feed 1 0.0363 0.0363 0.03 0.862
Depth of cut 1 0.0000 0.0000 0.00 1.000
Nose radius 1 0.1453 0.1453 0.13 0.729
Square 4 50.1895 | 12.5474 10.89 0.001
Speed x Speed 1 4.6876 4.6876 4.07 0.067
Feed x Feed 1 0.0053 0.0053 0.00 0.947
Depth of cut x Depth of cut 1 0.0213 0.0213 0.02 0.894
Nose radius x Nose radius 1 41.2457 | 41.2457 35.81 0.000
2-way Interaction 6 0.2179 0.2179 0.03 1.000
Speed x Feed 1 0.0000 0.0000 0.00 1.000
Speed x Depth of Cut 1 0.0000 0.0000 0.00 1.000
Speed x Nose radius 1 0.1089 0.1089 0.09 0.764
Feed x depth of cut 1 0.0000 0.0000 0.00 1.000
Feed x Nose radius 0.1089 0.1089 0.09 0.764
Depth of Cut x Nose radius 1 0.0000 0.0000 0.00 1.000
Error 12 13.8227 1.1519
Lack of Fit 10 13.8227 1.3823 3.11693E 0.000
Pure Error 2 0.0000 0.0000
Total 26 64.4479
Table 3 Box Behnken Analysis
Response Goal Lower Target Upper Weight Important
S/N Ratio Maximum -56.2231 -52.0412 1 1
Table 4 Analysis of variances

Solution | Speed Feed Depth of cut Nose radius S/N ratio fit Composite desirability

1 1090.91 0.06 1.2 0.606061 -51.9335 1

Table 5 Response optimization - S/N ratio Parameter

Variable

Setting

Speed

1096.97

Feed

0.06

Depth of cut

1.2

Nose radius

0.606061

Table 6 Multiple response prediction

Interestingly, the analysis of variance shows that
when the model is linear all the factors in the boring
operation were insignificant to the model due to their
high p-values. Besides, when the model is squared, only
the nose radius was significant to the model with a p-
value of 0.000. But when the model is a 2-way
interaction, all the factors were also not significant to the

model due to their high p-values, Table 5. Besides, the
model summary shows R-square and adjusted R-square
values of 78.55% and 63.53%, respectively, S is 1.0736
while the predicted R squared is 0.00%.
Notwithstanding, the adjusted R-square value, signifies
that the model is not significant to our aim, Table 5.
Now, the response optimisation of the signal-noise ratio
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shows that the optimum setting for the speed, feed, depth
of cut and nose radius are 1090.91, 0.06, 1.2 and
0.606061. But the regression equation in uncoded units
reveals that

S/N ratio = -70.00 + 0.0233 speed -3 feed +3.8 depth of
cut +10.92 nose radius -0.000010 speed x
speed + 35 feed x feed -1.6 depth of cut x
depth of cut -7.72 nose radius x nose radius
0.0000 speed x feed -0.00092 speed x nose

radius -9.2 feed x nose radius 1)
Optimal Speed
D: 1000 High 1400.0 0.120
-1 cur [1080.9091] [0.060]
Predict  Low 800.0 0.060
S/N rati
Maximum
y = -51.9535
d = 1.0000

Furthermore, the contour plot of the signal-noise ratio
from the analysis shows the range at which various
factors in the boring operation would be okay. For
instance, from the nose radius versus speed, contour
plots, the nose radius would be okay in the boring
operation within the range 0.50-0.72. Finally, the surface
plots of the S/N ratios also show areas at which the
variance parameter would be significant to the model.

The optimization plot (Fig. 2) shows that the optimal
parameters to achieve the best signal to noise ratio of (-
51.9535) dB are 1090.9091 rpm for speed, 0.06 mm/rev
for feed, 1.250 mm for depth of cut, and 0.6061 mm for
nose radius.

Depth of Nose rad
1.50 1.20
[1.250] [0.6061]
1.0 0.0

Note: the units of the cutting parameters: Speed, metres per second; feed, mm per revolution; depth of cut, mm; nose radius, mm.

Fig. 2 Optimization plot of Box Behnken approach

Pareto Chart of the Standardized Effects
(response is S/N ratio, a = 0.05)

Term 2179
1
DD ‘ Factor Name
1 A Speed
L2 1 B Feed
D 1 C Depth of cut
AD : D Nose radius
BD :
1
B 1
1
A i
cC :
BB :
€ i
BC 1
AB i
AC i
1
cD 1
!
0 1 2 3 4 5] 6

Standardized Effect
Note: the units of the cutting parameters: Speed, metres per second; feed, mm per revolution; depth of cut, mm; nose radius, mm.

Fig. 3 Pareto chart for standard effect



232 ENGINEERING ACCESS, VOL. 8, NO. 2, JULY-DECEMBER 2022

The Pareto chart (Fig. 3) shows that all factors under achieving optimal signal to noise ratio. And that they are
consideration falls under 20% vital few of the Pareto equally significant in achieving optimal surface
principles, that is to say that all factors are important in roughness according to the Pareto chart.

Contour Plots of S/N ratio

0120 Feed*Speed Depth of cut*Speed Nose radius*Speed S/N ratio
4 169 < -56
0.105 g 56 — -55
0.75 M -55 - -54
0.090 - - -
12 05D M 54 53
MW 53 - -52
0.075 0.25 [ ] > -52
0.060 1.0 0.00 : Hold Values
800 1050 1300 800 1050 1300 800 1050 1300 Speed 1100
Depth of cut*Feed Nose radius*Feed Nose radius*Depth of cut Feed 0.09

Depth of cut 125
Nose radius 0.6

1.0 .
0.06 0.09 0.12 0.06 0.09 0.12 1.0 12 14

Note: the units of the cutting parameters: Speed, metres per second; feed, mm per revolution; depth of cut, mm; nose radius, mm.

Fig. 4 Surface Plots of Signal to noise ratio

The contour plots (Fig. 4) show that to achieve the 950 to 1150 rpm for speed are feasible to achieve the
optimal signal to noise ratio greater than -52 dB the optimal signal to noise ratio value greater than -52 dB.
combinations of depth of cut and speed, nose radius and Also, a combination of depth of cut and feed, and that of
speed, nose radius and depth of cut are not feasible or nose radius and feed are also feasible to achieve signal to
significant in that regards. But a combination of feed and noise ratio value greater than -52 dB.

speed in the range of 0.06 to 0.075 mm/rpm for feed and

Surface Plots of S/N ratio

Hold Values
Speed 1100
Feed 0.09

Depth of cut 1.25

Nose radius 0.6
520 520 -2
S/Nratio -52.4 5/Nratio 524 S/Nratio 5,
528 w2 528 14 10
532 009 Feed 532 | TDepth of cut 56 ONose radius
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009 1 y
012
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Note: the units of the cutting parameters: Speed, metres per second; feed, mm per revolution; depth of cut, mm; nose radius, mm.

Fig. 5 Surface plots of signal to noise ratio (“A” region of Taguchi~ABC—-Box Behnken approach)
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The surface plots (Fig. 5) of various combination pair
of parameters with the signal to noise ratio shows that
when the speed parameter is increased there is a
corresponding increase in signal to noise ratio to an
optimal point. With further increase in the speed at this
optimal point, the signal to noise ratio begins to decrease
to a minimum value. The feed parameter is behaves such
that with constant increase in the feed parameter. The
signal to noise ratio tends be in constant decline, the
depth of cut parameter increases the signal to noise ratio
to its optimal value. But with further increment in depth
of cut parameter, the signal to noise ratio decreases
steadily. Lastly, the nose radius parameter behaves in
similar manner with the depth of cut parameter with
reference to the signal to noise ratio. Thus, an average
speed, depth of cut, and nose radius promotes high signal
to noise ratio while a low feed promotes high signal to
noise ratio.

4.2 Taguchi-ABC-Box Behnken Design

To implement the Taguchi-ABC-Box Behnken
design (TABC-BBD) method, the Taguchi method was
analyzed using the ABC classification approach adopted
from inventory analysis. Compared to the Pareto
principle, which was used to analyse the Taguchi method
based on the 80-20 rule where the 80% of the
experimental trials by the cumulative values of the
signal-noise ratio, the ABC analysis cuts off the signal-
noise ratios at 0-6%, 70-80% and 81-100% for the A, B
and C elements of the ABC classification schemes
imposed on the Taguchi scheme. Thus, the ABC
principle in the responses for the Taguchi approach was

analyzed using the ABC principle and the resulting
segmentation of the responses of segments A, B and C of
the ABC scheme were individually introduced into the
Box-Behnken design response surface.

However, in applying the ABC principle, the signal-
noise ratios of the sixteen experimental trials were
rearranged from the highest signal-noise ratio to the
lowest signal-noise ratio. Notwithstanding, the re-
arrangement also applies to the orthogonal arrays
simultaneously of each experimental trial. Upon re-
arrangement, the cumulative of the signal-noise ratios
were computed. However, an instance of experimental
trial 1 is given here. For this trial, the signal-noise ratio is
-52.04121098 is regarded as the first cumulative signal-
noise ratio while the second cumulative signal-noise
ratio while the second cumulative signal-noise ratio is
computed by adding the first cumulative signal-noise
ratio to the second re-arranged experimental trial signal-
noise ratio. For instance, -52.04121098 is the first
cumulative signal-noise ratio is -52.04121319 which is
obtained by adding -52.04121098 and -52.04121319 to
give -104.0824242 to be known as the second re-
arranged experimental trial signal-noise ratio.

Furthermore, the third cumulative signal-noise ratio is
also computed by adding the second cumulative signal-
noise ratio to the third re-arranged signal-noise ratio it
gives -156.1236394. Besides, this same procedure is then
applied to the 4™ to the 16™ experimental trials signal-
noise ratio to compute their cumulative values,
respectively (Table 7).

%

Experimental Depth of Nose Depth of Nose Re-arranged .
pTriaI Seees | [Rezd gut radius Sjpeeal | [=Ea gut Radius SIN rat% Csul\rln :,J;%tc']\sle

1 1 1 1 1 800 0.06 1.00 0.80 -52.04121098 6%
3 1 3 3 3 800 0.10 1.40 0 -52.04121319 12%
4 1 4 4 4 800 0.12 1.50 0 -52.04121319 18%
2 1 2 2 2 800 0.08 1.25 1.20 -52.04122024 24%
6 2 2 1 4 1000 0.08 1.00 0 -53.97940446 30%
5 2 1 2 3 1000 0.06 1.25 0 -53.97940689 36%
7 2 3 4 1 1000 0.10 1.50 0.80 -53.97941268 42%
8 2 4 3 2 1000 0.12 1.40 1.20 -53.97941492 49%
9 3 1 3 4 1200 0.06 1.40 0 -55.56303093 55%
12 3 4 2 1 1200 0.12 1.25 0.80 -55.56303169 61%
10 3 2 4 3 1200 0.08 1.50 0 -55.56303181 68%
11 3 3 1 2 1200 0.10 1.50 1.20 -55.5630324 74%
16 4 4 1 3 1400 0.12 1.00 0 -56.90196305 80%
15 4 3 2 4 1400 0.10 1.25 0 -56.90196428 87%
14 4 2 3 1 1400 0.08 1.40 0.80 -56.90916658 93%
13 4 1 4 2 1400 0.06 1.50 1.20 -56.90196898 100%

Table 7 Optimum settings

Next is the computation of the percentage cumulative
signal-noise ratio, which is computed by dividing all the
cumulative signal-noise ratios by the total of the re-
arranged signal-noise ratio, which was computed as -
873.9424883 and multiplying them by 100. For instance,
for the first experimental trial, the value of 6% is
obtained as -52.04121098 is divided by -873.9424883

and multiplied by 100. This gives the first percentage
cumulative signal-noise ratio. The computation of the
percentage cumulative signal-noise ratio is followed by
applying the ABC principle. In doing this, the percentage
cumulative signal-noise ratio of 0-67% is labelled as
region C, 68-79% is labelled as region B while 80-100%
is labelled as region A. With this, the re-arranged signal-
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noise ratio has been successfully segmented into three
categories A, B and C (Table 7). These now lead to the
introduction of the Box-Behnken design approach where
the parametric selection and optimisation for the boring
of 1S 2062 E250 plates using the Taguchi method are
achieved. Here, each of the regions segmented S/N ratio

is then introduced into the Box Behnken design i.e.
regions A, B and C’s S/N ratios are individually
introduced into the Box Behnken design approach. The
Minitab 18 (2020) is used to generate response surface,
Box Behnken design using four factors and default of
three-level design.

Region A
SO | RO | PT B S F DoC NR SNR
1 1 2 1 800 0.06 1.25 0.6 -56.9020
2 2 2 1 1400 0.06 | 125 0.6 -56.9020
3 3 2 1 800 0.12 1.25 0.6 -56.9020
4 4 2 1 1400 012 | 125 0.6 -56.9020
5 5 2 1 1100 0.09 | 1.00 0.0 -56.9020
6 6 2 1 1100 0.09 1.50 0.0 -56.9020
7 7 2 1 1100 0.09 | 1.00 12 -56.9020
8 8 2 1 1100 0.09 1.50 1.2 -56.9020
9 9 2 1 800 0.09 | 125 0.0 -56.9020
10 10 2 1 1400 0.09 1.25 0.0 -56.9020
11 11 2 1 800 0.09 1.25 1.2 -56.9020
12 | 12 2 1 1400 0.09 | 125 12 -56.9020
13 | 13 2 1 1100 0.09 | 1.00 0.6 -56.9020
14 | 14 2 1 1100 0.06 | 1.00 0.6 -56.9020
15 15 2 1 1100 0.12 1.50 0.6 -56.9020
16 | 16 2 1 1100 0.06 | 150 0.6 -56.9020
17 | 17 2 1 800 012 | 1.00 0.6 -56.9020
18 | 18 2 1 1400 0.09 | 1.00 0.6 -56.9020
19 | 19 2 1 800 0.09 | 150 0.6 -56.9020
20 | 20 2 1 1400 0.09 | 150 0.6 -56.9020
21 | 21 2 1 1100 0.06 | 125 0.0 -56.9020
22 | 22 2 1 1100 012 | 125 0.0 -56.9020
23 23 2 1 1100 0.06 1.25 1.2 -56.9020
24 | 24 2 1 1100 012 | 125 12 -56.9020
25 | 25 0 1 1100 0.09 | 125 0.6 -56.9020
26 | 26 0 1 1100 0.09 | 125 0.6 -56.9020
27 27 0 1 1100 0.09 1.25 0.6 -56.9020

Note: Key: SO - Std Order, RO - Run Order, PT - Pt Type, B — Blocks, S — Speed, F — Feed,
DoC - Depth of Cut, NR — Nose Radius, SNR - S/N ratios

Table 8 Re-arranged S/N ratio & computation of % cumulative

Considering the Design summary for Region A, 1 is
assigned to the Factors 4 Replicates, 27 is attached to the
Base runs 27 Total runs, 1 to the Base blocks 1 Total
blocks and there are three centre points. Again, from the
design, it was observed that the total number of the run is
27, introducing the A region signal-noise ratio which
was of four experimental trials, giving four signal-noise
ratios of the ABC principle into the Box Behnken design
in the Minitab 18 software. Analyzing the response
surface design was not possible as the number of runs
has to equal to the number of responses. In this work, to

make the numbers or runs equal to the numbers of
responses, the responses of the experimental trials 16,
15, 14, 13 were repeated for all other experimental trials
as the experimental trial responses for 16, 15, 14 and 13
are all rounded up to be the same as a correctional
strategy in the computations. In the Minitab 18 software,
see Table 10 for regions A, B and C, respectively.

Upon completion of the responses, the analysis is
carried out and the outputs of the analysis are given in
Tables 9 to 12.

Region A
Source DF Adj SS Adj MS F-value p-value
Modal 14 0.000000 0.000000 7.60 0.01
Linear 4 0.000000 0.000000 25.45 0.000
Speed 1 0.000000 0.000000 8.80 0.012
Feed 1 0.000000 0.000000 17.81 0.001
Depth of Cut 1 0.000000 0.000000 29.95 0.000
Nose Radius 1 0.000000 0.000000 45.24 0.000
Square 4 0.000000 0.000000 0.70 0.607
Speed x Speed 1 0.000000 0.000000 1.40 0.260
Feed x Feed 1 0.000000 0.000000 1.40 0.260
Depth of cut x Depth of cut 1 0.000000 0.000000 1.0 0.260
Nose radius x Nose radius 1 0.000000 0.000000 1.40 0.260

Table 9 Analysis of Variance for the boring process parameters for Regions A, B and C
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Region A
Source DF Adj SS Adj MS F-value p-value
2-way Interaction 6 0.000000 0.000000 0.30 0.923
Speed x Feed 1 0.000000 0.000000 0.30 0.591
Speed x Depth of Cut 1 0.000000 0.000000 0.30 0.591
Speed x Nose radius 1 0.000000 0.000000 0.30 0.591
Feed x Nose Radius 1 0.000000 0.000000 0.30 0.591
Depth of cut x nose radius 1 0.000000 0.000000 0.30 0.591
Error 12 0.000000 0.000000 0.30 0.591
Lack of fit 10 0.000000 0.000000 0.30 0.591
Pure Error 2 0.000000 0.000000 0.30 0.591
Total 26 0.000000 0.000000 0.22 0.591

Table 9 Analysis of Variance for the boring process parameters for Regions A, B and C (Cont’d)

In the response surface regression for signal-noise
ratio, versus, speed, feed, depth of cut and nose radius,
the analysis of variance shows that when the modal is
linear, all the factors in the boring operation is
significant, with a p-value of 0.012, 0.01, 0.000 and
0.000, for speed, feed, depth of cut, and nose radius
respectively, but when the modal is square all the factors
in the boring operation are not significant to the modal,
and when the modal is a 2-way interaction all the factors
in the boring operation are still not significant to the
modal, due to their high p-value which happens to be
greater than 0.05, making the factors insignificant. The
modal summary shows an R-square and adjusted R-
square value greater than 65%, which make it important
to the boring operation.

The response optimisation of the signal-noise ratio
shows that the optimum setting for the speed feed, depth
of cut and nose radius are 1050.61, 0.0715152, 1 and O
respectively. The contour plot of the signal-noise ratio
from the analysis also shows the range at which variance
parameter would be ok in the boring operation.
Similarly, the surface plots of the S/N ratio also show
areas at which the wvarious parameters would be

significant to the modal (see contour plot and surface
plot). Finally, from the Box-Behnken design, analysis of
the optimum setting of the parameters in the boring
operation is 1060.61 for speed, 0.0715152 for feed, 1 for
depth of cut and 0 for nose radius.

The modal summary for the Analysis of variance
(Region A) reveals an S of 0.0000011, R-Sq of 89.87%,
R-Sq (adj) of 78.05% and R-sq (pred) of 58.59%.
However, the Regression Equation in uncoded Units is
given as

S/N radius = -56.9020 + 0.000160 Feed
+ 0.000024Depth of cut
+ 0.000004 Nose radius — 0.000603 feed
x feed 0.000009 Depth of cut
x Depth of Cut — 0.000002 Nose radius
x Nose Radius — 0.00039 feed
x Depth of cut — 0.000016 Feed
x Nose radius — 0.000002 Depth of cut
x Nose radius 2

Besides, Fig. 7-11 show the plots for region A of the
ABC classification scheme.

Table 12 The optimum setting for regions A, B and C

Region Response Goal Lower Target Upper Weight Importance
A S/N ratio Maximum -56.9020 -56.9020 1 1
B S/N Ratio Maximum | -56.2231 | -55.5630 1 1
C S/N Ratio Maximum -55.5630 -52.0412 1 1
Table 10 Parameter solution
Region Solution Speed Feed Depth of cut Nose radius S/N ratio Fit | Composite desirability
A 1 1060.61 0.0715152 1 0 -56.9020 1
B 1 800 0.06 1 0.606061 -55.2880 1
C 1 1096.97 0.06 1.13131 1.2 -51.1826 1
Table 11 Solution to optimization
Region A Region B Region C
Variable Setting Setting Setting
Speed 1060.61 800 1096.97
Feed 0.0715152 | 0.06 0.06
Depth of Cut 1 1 1.13131
Nose radius 0 0.606061 1.2
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Fig. 6 Optimization Plot for Box Behnken Approach (“A” region of Taguchi — ABC — Box Behnken Approach)

The surface plots (Fig. 6) of various combination
pair of parameters with the signal to noise ratio shows
that when the speed parameter is increased there is a
corresponding steady(constant) signal to noise ratio, The
feed parameter behaves such that with constant increase
in the feed parameter, the signal to noise ratio tends
decline to a minimum value such with further increase in
the feed rate the signal to noise ratio begins to increase to
the maximum signal to noise ratio, the depth of cut
parameter increment increases the signal to noise ratio to
it optimal value but with further increment in depth of
cut parameter the signal to noise ratio decreases steadily,

Optimal Speed Feed
i High 1400.0

e OCOR i [1400.0]

Predict Low 800.0

SNR
Maximum
y = -56.9020
d = 1.0000

0.120
[0.120]

0.060

and lastly with increase in nose radius parameter, the
signal to noise ratio increases steadily. Thus, if the speed
parameter is maintained within it bounds of 800 to 1400
rpm, then this would promote an optimal signal to noise
ratio, and that an average feed does not promote an
optimal signal to noise ratio. Furthermore, an average
depth of cut value promotes optimal signal to noise ratio,
and lastly, the high nose radius promotes optimal signal
to noise ratio. The optimization plot (Fig. 7) shows that
optimal parameters to achieve optimal signal to noise
ratio of -56.9020 are 1096.9697 rpm for speed, 0.06 for
feed rate, 1.1313 for depth of cut and 1.2 for nose radius.

Depth of Nose rad
1.50 1.20
.01 [0.0]
1.0 0.0

Note: the units of the cutting parameters: Speed, metres per second; feed, mm per revolution; depth of cut, mm; nose radius, mm.

Fig. 7 Contour Plots of Signal to Noise Ratio (“A” region of Taguchi — ABC — Box Behnken Approach)
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Fig. 8 Residual Plots for Signal to Noise Ratio (“A” region of Taguchi — ABC — Box Behnken Approach)

The contour plots (Fig. 8) show that to achieve the
optimal signal to noise ratio greater than -52, the
combinations of depth of cut and speed, nose radius and
speed, depth of cut and feed are not feasible or
significant in that regards, but a combination of feed and
speed, nose radius and feed, and nose radius and depth of
cut are feasible to achieve the optimal signal to noise
ratio value greater than -52.

From the Design Summary for Region B, the factors
considered are 4 Replicates, 1 while the base runs are
twenty-seven total runs and the base block is 1. By
introducing the B region signal-noise ratio, which was of
only 2 experimental trials, giving 2 signal-noise ratios of
the ABC principle into the Box Behnken design in the
Minitab 18 software was obvious. Analyzing the
response surface design was not possible, as the number
of the run has to equal the number of responses. To make
the numbers of runs equal to the numbers of responses,
the responses of the experimental trial 10 and 11 were
repeated in an orderly for all experimental trials to
complete the 27 runs, Table 12.

Upon completion of the responses, the analysis is
carried out and the output of the analysis is given in
Table 18, 19, 20 and 21. The modal summary is S as
0.269488, R-Sq as 70.33%, R-Sq (adj) as 35.71% and R-
Sq (pred) as 35.71%. The Regression equation in
uncoded units is given as

SIN ratio = -56.03 + 0.0024 speed + 3.7 feed + 1.76
Depth of cut + 0.18 Nose radius -0.000001
speed x speed -61 feed x feed -0.88 depth
of cut x depth of cut -0.153 Nose radius x
Nose radius 3)

In the response surface regression for signal-nose
ratio, versus speed, feed, depth of cut, and nose radius,
the analysis of variance shows that the speed and the
feed are the only two factors significant to the modal
when the modal is linear. When the modal is square all
the parameters in the boring operation are not significant
to the modal, and when the modal is a 2-way interaction
all factors are also not significant to the modal due to
their high p-value, Table 18. The modal summary shows
an R-sq and adjusted R-square value of 70.33% and
35.71%, respectively. The adjusted R-sq falls below the
accepted value of 65%, making it becomes insignificant.
The response optimisation of the signal-noise ratio
shows that the optimum setting for the speed feed, depth
of cut, and nose radius are 800,0.06 1 and 0.606061
respectively. Finally, the contour plot of the signal-noise
ratio from the analysis also shows the range at which
various parameters would be ok in the boring operation
see contour plot for the B region, similarly, the surface
plot of the S/N ratio also shows areas at which the
various parameter would be significant to the modal. In
the following paragraphs, plots, pareto charts and
residual plots were made but not reported in this work
for conciseness. Thus, regions B and C have not been
explain in fiures as they follow the same pattern as for
region A of the ABC analysis. However, quantitative
descriptions are given. The optimization plot (not
reported) shows that optimal parameters to achieve
optimal signal to noise ratio of -55.2880 are 800 rpm for
speed, 0.06 for feed rate, 1.0 for depth of cut and 0.6061
for nose radius. The surface plots (not reported) of
various combination pair of parameters with the signal to
noise ratio shows that the feed, depth of cut and the nose
radius all results to an optimal signal to noise ratio value
at their average values. While the speed parameter
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increment results to a decrease in the signal to noise ratio
value, this is to say that an average feed, depth of cut and
nose radius promotes optimal signal to noise ratio and a
high speed decreases the signal to noise ratio value. The
contour plots (not reported) show that to achieve the
optimal signal to noise ratio greater than -55.4, almost all
the combination of parameter will not lead to the optimal
signal to noise ratio of -55.4 in this regards, the only
combination that leads to the optimal signal to noise ratio
is the feed and speed combination with a range of 0.06 to
0.07 for feed and 800 to 850 for speed. The Pareto chart
(not reported) shows that all factors under consideration
falls under 20% vital few of the Pareto principles, that is
to say that all factors are important in achieving optimal
signal to noise ratio. They are equally significant in
achieving optimal surface roughness according to the
Pareto chart. Furthermore, it is observed that not all part
of the speed parameter and the feed is within the 20%
vital few. Furthermore, the Design Summary for Region
C reveals factors of 4 Replicates, 1, base runs of 27, base
blocks of 1 total block. Introducing the C region signal-
noise ratio, which was of 10 experimental trials, giving
10 signal-noise ratios of the ABC Principle, into the Box
Behnken design in the Minitab 18 software analyzing the
response surface design was not possible, as the numbers
of the run have to equal the numbers of responses. To
make the numbers of runs equal to the numbers of
responses, the response of the experimental trial 1-4 is
repeated for the experimental trial 11-14, the responses
for the experimental trial 5-8 is repeated for the
experimental trial 15-18, and the experimental trials 9-10
is repeated for the experimental trial 19-20, again
experimental trial 1-4 is again repeated for 21-24, and
finally, experimental trials 5-7 are repeated for 25-27
experimental trials. The analysis is carried out and the
output of the analysis is given as Tables 22, 23, 24 and
25. The modal summary reveals S as 0.967593, R-sq as
74.75%, R-Sq (adj) as 45.30% and R-sq (pred) as 0.00%.
The Regression Equation in Uncoded Units is given as

S/N ratio = -518 + 0.0011 speed -344 feed + 22.3 depth
of cut -0.20 Nose radius + 1908 feed x feed -
9.86 Depth of Cut x depth of cut + 0.98
Nose radius x Nose radius 4)

The response surface regression for signal-noise ratio,
versus speed, feed, depth of cut and nose radius, the
analysis of variance show that the speed, feed, depth of
cut and the nose radius are all not significant to the
modal when the modal is linear. When the modal is
square, the feed parameter is the only significant factor
with a P-value of 0.001 and when the modal is a 2-way
interaction, all parameters in the being operation are not
significant to the modal.

The modal summary shows an R-sq and adj R-sq of
74.75% and 45.30% respectively. The adjusted R-sq falls
below the acceptable value of 65% making it
insignificant. The response optimisation of the signal-
noise ratio of the region shows that the optimum setting
for the speed, feed, depth of cut and nose radius are

1096.97, 0.06, 1.13131 and 1.2 respectively. Finally, the
contour plots of signal-noise ratio for the C region from
the analysis also show the range at which various
parameters would be ok in the boring operation, see
contour plots for Region C. Similarly, the surface plots
of the S/N ratio of the C region also show areas at which
the various parameters would be significant to the modal,
plots. The surface plots (not reported) show that with all
parameters at their various average values, the optimal
signal to noise ratio is obtainable.

The Pareto chart (not reported) shows that all factors
under consideration falls under 20% vital few of the
Pareto principles, that is to say that all factors are
important in achieving optimal signal to noise ratio. And
that they are equally significant in achieving optimal
surface roughness according to the Pareto chart, it is
observed that not all part of all the factors are is within
the 20% vital few. The contour plots (not reported) show
that to achieve the optimal signal to noise ratio greater
than -56.9020, only two combinations would achieve the
aim of a maximum signal to noise ratio greater than -
56.9020, they are the nose radius and feed, and the nose
radius and depth of cut, all other combination would not
achieve this aim. The optimization plot (not reported)
shows that optimal parameters to achieve optimal signal
to noise ratio of -56.9020 are 1060.6061 rpm for speed,
0.0715 for feed rate, 1.0 for depth of cut and 0.0 for nose
radius.

4.3 Comparison of Results of TP-BBD and
TABC-BBD Methods

The TP-BBD and TABC-BBD methods were
instituted using the Box Behnken design method to unite
each of them. From the results, it was noted that the TP-
BBD method captures higher values of experimental
trials (i.e. 69%). The number of experimental trials is
also higher in the TP-BBD method than in the TABC-
BBD method. From the results, it may be observed that
the optimum parametric values in the context of
prioritization depend on the values of the captured
signal-to-noise ratios corresponding to the experimental
trials. The optimum parametric values cum prioritized
states for the TP-BBD method was at roughly 80% cut
off while for the TABC-BBD method, it was roughly at
69% cut off point.

4.4 Advantages of the Proposed Methods

The proposed TP-BBD and TABC-BBD methods
exhibit multiple benefits, including:

(1) The two methods require a fewer number of runs
in tackling the concern of where experimental
boundaries ought to be and specifically to evade
extreme treatment combinations.

(2) It considers analysis in a Pareto or an ABC scale
thereby establishing priorities for the parameters
where the most important parameters are separated
from the less important.
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(3) It provides both quantitative and qualitative data
from limited information.

(4) By extracting information from the statistically
significant data, the two methods could explore
the benefits of the Taguchi method by evading the
offspring population and subsequently avoiding
the substantial computational cost.

5. Conclusions

This study optimized the boring process parameters
of IS 2062 E250 plate on the computerized numeric
controlled (CNC) machine through two methods, namely
the Taguchi-Pareto-Box Behnken Design (TP-BBD) and
Taguchi-ABC-Box Behnken design (TABC-BBD)
methods. For the TP-BBD method and using the analysis
of variance (ANOVA), only the nose radius among other
parameters of speed, feed and depth of cut was
significant to the model when the model is squared.
However, the insignificance of all the parameters was
observed for the linear and 2-way interactions. But for
the TABC-BBD method, the ANOVA showed that when
the model is linear, all the factors in the boring operation
are significant with p-values ranging from 0 to 0.012.
Furthermore, when the model is squared and also
considered along with a 2-way interaction, all the factors
are insignificant. The results of the TP-BBD method
reveal that only the nose radius is the most important
factor whereas, for the TABC-BBD method, all the
parameters, namely speed, feed, depth of cut and nose
radius are important in the optimisation of the surface
roughness response for the boring operation of IS 2062
E250 plate.

For the TP-BBD method, the results showed a good
agreement between the experimental and predicted
values for R? (0.7855), and adjusted R?(0.5353). For the
TABC-BBD method, the results also revealed a good
agreement between the experimental and predicted
values for R?(0.7475) and adjusted R? (0.4530). Besides,
the response optimisation of the signal-to-noise ratios for
the TP-BBD method shows that the optimal parametric
setting for enhanced surface roughness of the IS 2062
E250 plate was identified as 1090.91 rpm, 0.06mm/rev,
1.2 mm and 0.61mm for speed, feed, depth of cut and
nose radius, respectively. However, for the TABC-BBD
method, three different results for the percentage
cumulative of C (6-61%), B (68-74%) and A (80-100%)
were obtained and reported in the results and discussion
part of this work. But group A (80-100%) is reported
here as the most important result. For group A (80-
100%) the TABC-BBD method reveals the response
optimisation of the signal-to-noise ratios with the
optimal parametric setting for enhanced surface
roughness of the 1S2062 E250 plate given as
1060.61rpm, 0.07mm/rev, 1mm and nil for speed feed,
depth of cut, and nose radius, respectively. From the
predictions, it can be concluded that the most important
parameter in the boring operation of IS 2062 E250 plate
on CNC machine is speed while the least important

parameter is feed as indicated by the predicted signal-to-
noise response. Besides, in this article, the optimised
parameters for the TP-BBD and TABC-BBD were not

the same; TP-BBD tends to exhibit higher parametric
values than the TABC-BBD generally. But optimised

parameters are tools employed by process engineers to

set standards of performance for the boring process to be

used by operators during the boring operation. The idea
is that it is better to choose the method that yields higher
parametric values than those of the lower category. This

drives the operator towards more productivity and

performance. On comparing the experimental delta

values and the ranking with that of the predicted signal-

noise responses, the delta values were different but in

similar proportions, as the ranking are in complete
agreement and are the same in both scenarios.

Also, in this article, the R-square value is very low in

some instances possibly due to the omission of some

important predictors in the work. However, this issue is
beyond what the present authors could tackle in this

work since experimental data already collected by Patel
and Deshpande [14] was used. What this information
suggests is that future studies must be extended beyond
the scope of three predictors (speed, feed and depth of
cut) for the outcome of the study so that a robust R-
square value may be obtained.

Additionally, the present paper has revealed that the

two methods of Taguchi-Pareto-Box Behnken design and
Taguchi-ABC-Box Behnken design are economic
approaches to determining the optimal parametric
settings of the IS 2062 E250 plate in the boring process

under the CNC machines. In the future, it may be
beneficial to study the influence of more advanced
methods on the optimal parametric settings by
introducing the particle swarm optimisation (PSO) and

the genetic algorithm (GA) differently and jointly into
the two methods form advanced methods containing the

Taguchi-Pareto, Taguchi ABC, Box Behnken design
[36], PSO and GA. Furthermore, the introduction of a
quality control tool that will indicate when the
parameters are within and outside control bounds with
and without the introduction of the PSO and GA into the
Taguchi-Pareto-Box Behnken design and Taguchi-ABC-
Box Behnken design frameworks may be beneficial to

the boring operations literature.

References

[1] G. Vohra, H.S. Sodhi & S.A. Bansal. “Prediction of optimised
parameters for CNC boring process using taguchi method for
steel”, International Journal of Mechanical Science and Civil
Engineering, pp. 30-36, 2013.

[2] M.P. Groover. Fundamentals of Modern Manufacturing:
Materials, Processes, and Systems (4th edition ed., pp. 519-
520). John Wiley & Sons, Inc., 2020.

[3] T.T. Kumar, M. Peeraiah, S.M. Sudhan, C. Reddy.
“Optimization of machining parameters of stainless steel 410
for boring operation in a lathe based on GRA”, Journal of
Emerging Technologies and Innovative Research, vol. 6, no. 5,
pp. 231-240, 2019b.
http://dx.doi.org/10.13140/RG.2.2.19949.84967

[4] D.P. Singh & S. Prakash. “Experimental study of taguchi vs



240

ENGINEERING ACCESS, VOL. 8, NO. 2, JULY-DECEMBER 2022

[5]

[6]

[71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

GRA parameters during CNC boring in steel plate (SS-304)”,
International Research Journal of Engineering and
Technology, vol. 6, no. 8, pp. 1310-1315, 2019.

K.A. Kumar, C. Ratnam, K.\V. Rao & B.S.N. Murthy.
“Experimental studies of machining parameters on surface
roughness, flank wear, cutting forces and work piece vibration
in boring of AISI 4340 steels: Modelling and optimization
approach”, SN Applied Sciences, vol. 1, no. 1, Article 26, 2019.
D. Panchal. “Optimization of surface roughness of EN-36 alloy
steel on CNC turning machine using Box Behnken method
under RSM”, International Journal for Research in Applied
Science and Engineering Technology, vol. 8, pp. 608-625,
2020.

ILT. Abiola, S.A. Oke. “Performance evaluation of surface
roughness in the boring operation of 1S 2062 E250 plate on
CNC machine using combined entropy-decision tree-VIKOR
approach”, Indonesian Journal of Industrial Engineering &
Management, wvol. 2, No. 1, pp. 1-15 2021.
http://dx.doi.org/10.22441/ijiem.v2i1.10190

LT. Abiola, S.A. Oke. “Fuzzy analytic hierarchy process and
Markov-chain-WSM/WPM/WASPAS approach to solving the
surface roughness problem in the boring of IS 2062 E250 steel
plates on CNC machines”, Indonesian Journal of Industrial
Engineering & Management, vol. 3, no. 1, pp. 47-71, 2022.
http://dx.doi.org/10.22441/ijiem.v3i1.13242

P. Kumar, J.S. Oberoi, C. Singh & H. Dhiman. “Analysis and
optimization of parameters affecting surface roughness in
boring process”, International Journal of Advanced
Mechanical Engineering , vol. 4, pp. 647-655, 2014b.

B.A. Yuvaraju & B.K. Nanda. “Prediction of vibration
amplitude and surface roughness in boring operation by
response  surface  methodology”,  Materials  Today:
Proceedings, vol. 5, pp. 6906-6915, 2018.

K.V. Rao, B.S. Murthy & N.M. Rao. “Cutting tool condition
monitoring by analyzing surface roughness, workpiece
vibration and volume of metal removed for AISI 1040 steel in
boring”, Measurement , vol. 46, pp. 4075-4084, 2013.

G. Schneider. “Cutting tool applications, Chapter 10: boring
operations and machines-American Machinist”, Modern
Machine Shop, http://www. americanmachinist. com, 2010.

K. Krishnaiah & P. Shahabudeen. Applied Design of
Experiments and Taguchi Methods. PHI Learning Pvt. Ltd.,
New Delhi, India, 2012.

M. Patel & V. Deshpande. “Application of taguchi approach
for optimization roughness for boring operation of E 250 B0
for standard IS: 2062 on CNC TC”, International Journal of
Engineering Development and Research, vol. 2, no. 2, pp.
2528-2537, 2014.

W. Nugroho, N.B. Baba & A. Saptari. “Optimization on
surface roughness of boring process by varying damper
position”, ARPN Journal of Engineering and Applied Sciences,
vol. 11, no. 20, pp. 11911-11918, 2006.

N.K. Nayak & H.S. Sodhi. “Optimization of CNC turning
parameters for Al-6061 using response surface methodology”,
International Journal of Mechanical and Production
Engineering Research and Development , vol. 7, pp. 127-138,
2017.

V.K. Sukhdeve & S.K. Ganguly “Comparison of process
parameter optimization of a jig boring process using taguchi
based grey analysis and genetic algorithm”, i-Manager's
Journal on Future Engineering and Technology, vol. 14,
Article 58, 2019.

M. M. Abdulrazaq, A.S. Jaber, A.S. Hammood & A.G.
Abdulameer. “Optimization of machining parameters for MRR
and surface roughness for 7024 Al-alloy in pocket milling
process”, Association of Arab Universities Journal of
Engineering Sciences, vol. 26, pp. 10-16, 2019.

P.A. Kumar, C.H. Singh & H.I. Dhiman. “Analysis and
optimization of parameters affecting bore deviation in boring
process”, International Journal of Innovative Technology and
Research, vol. 2, pp. 967-972, 2014a.

A. Abdullah, B.M. Khirulrizwan & A. Azman. “Cylindrical
concentricity and coaxiality optimization for boring process by
using taguchi method,” Journal of Computational and
Theoretical Nanoscience, vol. 17, pp. 707-714, 2000.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

D. Vivek & K. Ramesh. “Optimization of the cutting responses
in boring operation using response surface methodology”,
International Journal of Engineering Research, vol. 3, no. 5,
pp. 1739-1744, 2014.

A. Suresh & G. Diwakar. “Investigation of effects of working
parameters in turning of twip steel rods with eco-friendly
cutting fluids using response surface methodology on CNC
machines”, Gazi University Journal of Science, vol. 34, no. 3,
pp. 68-78, 2021.

G. Balamurugamohanraj, K. Vijaiyendiran, P. Mohanaraman
& V. Sugumaran. “Prediction of surface roughness based on
machining condition and tool condition in boring stainless
steel-304”, Indian Journal of Science and Technology, vol. 9,
pp. 1-6, 2016.

M. Munawar, J.C.-S. Chen, N.A. Mufti. “Investigation of
cutting parameters effect for minimization of sur face
roughness in internal turning”, International Journal of
Precision Engineering and Manufacturing, vol. 12, no. 1, pp.
121-127, 2011. http://dx.doi.org/10.1007/s12541-011-0015-x
G.J. Satish, H.K. Madhusudhana, B.H. Nishant & B.B.
Kotturshettar. “Optimising cutting parameters in boring
operation for C45 steel”, IOP Conference Series: Materials
Science and Engineering, vol. 872, p. 012080, 2020.

K.V. Rao & P.B. Murthy. “Modeling and optimization of tool
vibration and surface roughness in boring of steel using RSM,
ANN and SVM”, Journal of Intelligent Manufacturing, vol.
29, pp. 1533-1543, 2018.

R.S. Patil & S.M. Jadhav, “Boring parameters optimization for
minimum surface roughness using CNC boring machine with
passive damping material”, 2017 2nd International Conference
for Convergence in Technology (I12CT), pp. 300-303, 2017.

I. Ramu, P. Srinivas & K. Vekatesh. “Taguchi based grey
relational analysis for optimization of machining parameters of
CNC turning steel 316”, IOP Conference Series: Materials
Science and Engineering, vol. 377, p. 012078, 2018.

H. Sonar, V. Saxena, V. Kshirsagar & S.P. Deshpande.
“Process parameters optimization of CNC turning machine for
aluminium alloy using taguchi method”, International Journal
of Research in Engineering and Technology, vol. 5, pp. 36-39,
2016.

M. Thomas, Y. Beauchamp, A.Y. Youssef & J. Masounave.
“Effect of tool vibrations on surface roughness during lathe dry
turning process”, Computers & Industrial Engineering, vol.
31, pp. 637-644, 1996.

A. Batwara & P. Verma. “Influence of process parameters on
surface roughness and material removal rate during turning in
CNC lathe-an artificial neural network and surface response
methodology”, International Journal of Recent Advances in
Mechanical Engineering, vol. 5, no. 1, pp. 47-59, 2016.

H. Dave, L. Patel, , & H. Raval. “Effect of machining
conditions on MRR and surface roughness during CNC turning
of different materials using TiN coated cutting tools—A taguchi
approach”, International Journal of Industrial Engineering
Computations, vol. 3, pp. 925-930, 2012.

S.K. Saini & S.K. Pradhan. “Optimization of multi-objective
response during CNC turning using Taguchi-fuzzy
application”, Procedia Engineering , vol. 97, pp. 141-149,
2014.

Y.-K. Yang, S.-S. Lin & J.-L. Wen. “Optimization of 6061T6
CNC boring process using the taguchi method and grey
relational analysis”, The Open Industrial & Manufacturing
Engineering Journal, vol. 2, no. 1, pp. 14-20, 2009.
http://dx.doi.org/10.2174/1874152500902010014

M. Muhammad, J.C. Chen & N.A. Mufti. “Investigation of
rake angle effect for minimization of surface roughness in
internal turning”, International Journal of Precision
Engineering and Manufacturing, vol. 12, no. 1, pp. 121-127,
2011.

S.L.C. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos, J.M.
David, G.E. Brandao, E.G.P. da Silva, L.A. Portugal, P.S. dos
Reis, A.S. Souza, L.A. Portugal, P.S. dos Reis, A.S. Souza,
W.N.L. dos Santos, “Box Behnken design: An alternative for
the optimisation of analytical methods”, Analytica Chimica
Acta, wvol. 597, no. 2, opp. 179-186, 2007.
https://doi.org/10.1016/j.aca.2007.07.011.



ENGINEERING ACCESS, VOL. 8, NO. 2, JULY-DECEMBER 2022

241

Biographies

Yakubu Umar Abdullahi is currently an M.Sc. student
in the Department of Mechanical Engineering,
University of Lagos, Lagos, Nigeria. His research
interest includes manufacturing and optimization studies.

Sunday Ayoola Oke received his Ph.D. in Industrial
Engineering from the University of Ibadan, Nigeria. He
is currently lectures at the Department of Mechanical
Engineering, University of Lagos, Lagos, Nigeria. His
research  interest includes  manufacturing and
optimization studies.

Abbreviations

Adj MS: Adjusted Mean Square

Adj SS: Adjusted Sum of Squares

ANOVA: Analysis of variance

B: Blocks

CNC: Computer Numerical Control

dB: Decibel

DC: Depth of Cut

DF: Degree of Freedom

DoC: Depth of Cut

DOE:Design of Experiment

F: Feed

GA: Genetic Algorithm

NR: Nose Radius

pred: Predicted

PSO: Particle Swarm Optimization

PT:Pt Type

RO: Run Order

S: Speed

SN: Signal to Noise

SNR: Signal to Noise Ratio

SO: Standard Order

SQ: Square

TABC-BBD:Taguchi-ABC-Box Behnken design
WSM:Weighted Sum Method
TP-BBD:Taguchi-ABC-Box Behnken design
WPM:Weighted Product Method

VIKOR: VIiseKriterijuska Optimizacija Komoromisno
Resenje

WASPAS: Weighted Aggregated Sum  Product
Assessment



