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Abstract. In this article, three robust parametric
optimization schemes for the electrical discharge
machining of AZ91 magnesium alloy are proposed using
a hybrid analytic hierarchy process, Taguchi schemes and
a genetic algorithm. The three methods are the AHP-T-
GA (analytical hierarchy process-Taguchi method-
genetic algorithm approach), AHP-TP-GA and AHP-
TAPC-GA, where TP and TABC are Taguchi-Pareto and
Taguchi-ABC methods, respectively. The methods were
used as the cornerstone approaches to evaluate the
parameters and classify them according to their
importance. The parameters are namely the pulse on time,
pulse off time, pulse current, gap voltage, wire feed and
wire tension. The coupled models of AHP-T, AHP-TP and
AHP-TABC already exist in the literature. However, the
genetic algorithm is coupled with each of these methods
to moderate the adverse economic and decision outcomes.
Although the coupling of the Taguchi, Taguchi-Pareto
and Taguchi-ABC method to AHP reduces errors, the
provision of less information in a large-scale decision
variable problem may lead to wrong decision making.
However, introducing a mechanism capable of producing
a large set of solution space, and multiple optimal and
global solutions may moderate the tendency to make
wrong decisions. The introduction of a genetic algorithm
having these preceding features differentiates the three
methods proposed in this article from previous research.
Results suggest that the proposed robust methods have
helped to improve the parametric performance of the wire
EDM process and yielded higher values in a maximization
scheme pursued in this article. However, the pulse current
exhibited the highest value in the analysis. The results
adequately represented the parametric scores obtained
from ranks of parameters using data from the literature.
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1. Introduction

In the machining research domain, integrated
methods of optimization and prioritization techniques are
one of the most promising and recent areas for achieving
machining resource distribution effectiveness and
improved machining performance [1]. This research area
combines one or more optimization approaches with at
least one prioritization method to evaluate the parameters
and responses of the machining process so that an ordered
list of parameters is achieved for resource distribution
policy development and implementation [2], [3].
Instances of reports to support this argument include
multi-objective optimization integrated with the TOPSIS
method [4], a combined non-dominated sorting genetic
algorithm with the TOPSIS approach, incorporating the
analytic hierarchy process [2], Taguchi's orthogonal array
joined to the TOPSIS method [5], combined distance-
based Pareto genetic algorithm approach, Taguchi method
and analysis of variance [6]. In the (wire) electrical
discharge machining, several important combinations
have been made [7]. Rajesh and Anand [8] deployed the
response surface optimization approach coupled with the
genetic algorithms to establish the optimal machining
parameters for the electrical discharge machining by
focusing on oil pressure, working current, pulse off time,
pulse on time, spark gap surface finish and material
removal rate was taken as the responses. Ubaid et al. [9]
engaged in the optimization of the electro-discharge
machining using stainless steel 304 (ASTEMA 240) as the
work material and the combined signal-to-noise ratios and
fuzzy logic inference system as a tool. Rao et al. [10] used
combined artificial neural networks and a genetic
algorithm in an electric discharge machining system to
optimize the surface roughness outcome while processing
the Ti6Al4V, M-250, 15CDV6 and HE15. In Moghaddam
and Koalhan [11], the electrical discharge machining of
AISI12312 hot worked steel was conducted and the results
were analyzed by combining  signal-to-noise
ratios/regression model/analysis of variance with a
genetic algorithm. The concurrent optimization of surface
roughness outcome and the parameters of gap voltage,
pulse off time discharge current, pulse on time and duty
factor were considered.
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The idea of merging the Taguchi method as an
optimization method with the Pareto method and ABC
classification scheme has been interesting and growing
since its introduction in 2019. It started with the first level
integration where the Taguchi method is integrated with
either the Pareto in the following reports. Francis et al.
[12] deployed the methods in friction stir welding while
choosing the AA6062-T6 alloy as the material to process.
Adegoke et al. [13] work on the same methods with
application to turning operations while the Inconel X750
alloy was the processed material. Okanminiwei and Oke
[14] deployed the three methods of Taguchi, Taguchi-
Pareto and Taguchi-ABC to solve the maintenance
downtime minimization problem in a container terminal.
Soon afterwards, research developed to the second level
integration where the Taguchi-Pareto and Taguchi-ABC
methods at the first level integration are further enhanced
by the addition of another method. Studies that have
reported such include Taiwo and Oke [15] that analyzed
the drilling process and deplored a second-level
combination method of the Taguchi-Pareto-Particle
swarm optimization method. Within the domain of wind
turbine ducting systems, Abayomi and Oke [16]
combined Taguchi, Pareto and DEMATEL methods as a
method to determine the process parameters of the system.
Abdullahi and Oke [17] presented two methods. In one,
the Taguchi, Pareto and Box Behnken design methods
were amalgamated while in the second, the fusion of
Taguchi, ABC and Box Behnken was done. But the
application was made in a boring process. In Nwafor et al.
[18], the two-level integration of methods was to fuse the
factor analysis, approach, Taguchi approach and Pareto
method. The authors applied the method to optimize the
parameters of the casting of lightweight wheel rim cover
application. Okponyia and Oke [3] combined the EDAS,
Taguchi and Pareto methods to select parameters of the
wire EDM process while using nitinol as the material.

However, more interesting and relevant to the
present research is the integration of the analytical
hierarchy process (AHP) method with each of the
Taguchi, Taguchi-Pareto and Taguchi-ABC methods.
Furthermore, in a study, Ikedue and Oke [19] introduced
the idea of integrating the AHP with the Taguchi,
Taguchi-Pareto and Taguchi-ABC methods to improve
the parametric performance of the wire EDM process
while deploying the experimental data obtained from
Muniappan et al. [20] in which the AZ91 magnesium alloy
is processed. These three methods proposed for the
concurrent optimization and prioritization of parameters
have their ground set on Saaty’s scale of importance and
the prioritization mechanisms are taken into account in the
Taguchi-Pareto and Taguchi-ABC components of the
methods have the potential for establishing the root causes
of the problem and obtaining superior approaches to
eliminating wastes. These advantages are frequently used
by process engineers in the wire electrical discharge
machining industry since they help in improving decisions
on the resource distribution scheme while deciding on
what resource to allocate to specific parameters for the

process effectiveness and the actualization of machining
goals.

However, these methods cannot claim robustness in
attaining global optimization. In a large-scale parametric
system (multiple parameters) with sparse information
available, a large set of solution space and multiple
optimal points to warrant choice cannot be proved to be
achieved. But these features aid the safe computations in
achieving reliable and rich decision-making in the wire
electrical discharge machining process. Thus, incorrect
decisions may be avoided by introducing the mechanisms
of global optimization, the creation of large solution space
and multiple optimal points as may be found in genetic
algorithms. Therefore, the integrated methods of AHP-
Pareto, AHP-Taguchi-Pareto and AHP-Taguchi-ABC
may be treated to incorporate genetic algorithms as
enhanced decisions making models for solving wire
electrical discharge machining problems using the AZ91
magnesium alloy as the material for processing.

To the best of the authors' knowledge, previous
studies have been deficient in addressing the ideal optimal
problem that may exist in diverse wire electrical discharge
machining optimization analysis. Also, the creation of a
large solution space for choices in the context of the
paucity of information from experimental sources has not
been addressed in the literature. But the attainment of
global optimality is a key concern in establishing unbiased
parametric weights and the availability of a large solution
space assures that despite the presence of paucity of
experimental data, the research could choose the optimal
points that best suit the system's goals. For instance, a
situation may arise in which shortages of funds exist and
enough resources for the wire EDM process could not be
purchased at once. However, with the limited resources
bought one may not be able to decide on the impacts of
the purchased resources on the system performance. The
large solution space provides this opportunity for a
sensitivity analysis, which cannot be done with previous
literature knowledge and past contributions. By tackling
this problem using the genetic algorithm a fertile ground
for applying the integrated AHP-T-GA, AHP-TP-GA and
AHP-TABC-GA methods is created and may be a rich
source of information for the process engineers in the wire
electrical discharge machining industry.

By examining the various contributions mentioned
previously, it seems clear that the Taguchi-Pareto and
Taguchi-ABC methods have been successfully utilized in
several processes, including friction stir welding, turning
operations, boring operations and container terminals.
This success may be because of the multiple benefits that
the methods deliver in practice. For instance, the Taguchi
method component of the hybrid method saves
experimental costs with fewer experimental requirements
and cost savings is a key pursuit of managers in the
industry [1]. Besides, the Taguchi-Pareto method assists
in establishing the causal factors for the problem thereby
directing effects to yield dramatic changes in performance
instead of miniature changes. Moreover, the Taguchi-
ABC method permits effective confrontations of the
process parameters, giving insights on superior
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approaches to allocating the process resources and
avoiding waste of resources. Furthermore, much
quantitative information is often associated with
processes and the Taguchi methods provide a rich source
of transforming this quantitative information into process-
able advantages towards achieving the targeted
optimization goal of the process. Nonetheless, if only the
Taguchi-Pareto or Taguchi-ABC methods are used the
importance of the criteria could be defined in a limited
manner and the substantial experience of the experts is
ignored and the contributions towards defining robust
importance in order with inputs from experts may be lost
and several criteria may not be considered.

To overcome this limitation of the Taguchi-Pareto
and Taguchi-ABC methods, Ikedue and Oke [19]
combined the analytic hierarchy process (AHP) method
with each of the Taguchi-Pareto and Taguchi-ABC
methods to form AHP-Taguchi-Pareto and AHP-Taguchi-
ABC methods. While conducting wire electric discharge
machining on the AZ91 magnesium alloy for the
optimization of parameters, feasible results were
achieved. However, while using the AHP-Taguchi-Pareto
and AHP-Taguchi-ABC methods, it is difficult to claim
global optimization and large solution spaces may not be
created in the presence of paucity of data. The genetic
algorithm is well known as an optimization method that
enables global optimization and large solution spaces
even in the absence of extensive data. The genetic
algorithm has already recorded outstanding success in the
machining domain among other areas. Nonetheless, until
now, no application or method to incorporate the genetic
algorithm into the existing AHP-Taguchi-Pareto and
AHP-Taguchi-ABC methods exist. But such integration is
required to overcome the previously mentioned
challenges. In this article, we use the genetic algorithm
and not another search heuristic because as distinct from
the traditional search method. Firstly, it searches for
parallelism within a group of points. This makes it
sensitive to the avoidance of locally optimal solutions but
the traditional search methods are incapable of this ability.

To establish a research gap in which a fruitful
pursuit to bridge the gap may be pursued, the relevant
literature on electrical discharge machining (EDM) was
analyzed. Interestingly, the whole literature examination
reveals that the performance assessment of the EDM
process during the fabrication of magnesium AZ91 alloy
117 omplicated issue: The difficulty arises due to the
paucity of published data regarding the magnesium AZ91
alloy. If published data existed in a sufficient quantity,
process engineers would form data charts and manuals,
which makes the processing low cost as further
experiments may not always be needed for decision
making. To compound the difficulty, the exact mechanism
through which the EDM process operates is not yet fully
established. This explains why wide-ranging, extensive
time demanding and costly experimental approaches are
always required to establish appropriate parameters for
the EDM process. Moreover, the EDM process often
produces reproduce-able sharp corners on workpieces
with a significant effect on electrode wear that is difficult

to monitor. Thus, without a robust mechanism to monitor
performance coupled with an inadequately planned
performance management scheme, poor performance,
which affects the quality of the fabricated magnesium
AZ91 alloy may result. While confronted with the
mentioned issue, the concerns of how the performance
measurement for the EDM process could progress with
limited information, restricted solution space available
and limited number of optimal solutions are also critical
for any progress to be achieved in the fabrication of
magnesium AZ91 alloy. Consequently, to stimulate and
maintain the good quality performance of the fabricated
magnesium AZ91 alloy and avoid sub-optimal results, an
extensive study should be conducted to evaluate the EDM
process performance by combining methods capable of
prioritizing parameters according to their importance and
at the same tune optimizing these parameters. But to
ensure optimal performance, a decision-making
hierarchical model, coupled with the Taguchi method
might be used.

2. Applying a Genetic Algorithm to the
Wire EDM Problem

In previous work, three methods, namely the
AHP-Taguchi, AHP-Taguchi-Pareto and AHP-Taguchi-
ABC methods were proposed and tested in lkedue and
Oke [19]. In the work, the optimization of wire EDM
process parameters was pursued the AZ91 magnesium
alloy based on the experimental data proposed by
Muniappan et al. [20], a successful prioritization and
optimization of the parameters was reported. However,
additional work to optimize the process parameters is
reported in this article by starting with the output of the
previous works on the method and then applying the
genetic algorithm. Thus, the application of the genetic
algorithm to the results obtained previously is the main
advancement of this article. Consequently, the discussions
and analysis presented here are based on the traditional
approach to the genetic algorithm in any system.
Furthermore, in trying to analyses the factors under
consideration, the work deploys the use of three
operations as applicable in genetic operation. These
operators are the selection operator, mutation operation
and crossover operator. Brief detail about these operators
is given.

2.1 Selection

If starting with the selection operation for the wire EDM
process parametric optimization problem, the question of
how do we select the candidate solution of chromosomes
to the AZ91 magnesium alloy material-oriented wire
EDM process from the population and used them to
crossover? In this discussion, simply mentioning selection
refers to parent selection. This is the procedure undertaken
to choose parents that will mate with each other to produce
(recombine) offspring representing the next generation of
parents that will also mate to yield the next generation and
this offspring creation continues until termination.
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Choosing good parents is a critical issue as it leads to
convergence rate behavior it is known that better and fitter
solutions are produced with good parents instead of bad
parents. In this article, the main challenge is how to select
the parents from the parametric data given on the AZ91
magnesium alloy. Recall that a genetic algorithm mimics
the natural evolution of genes according to Charles
Darwin's theory regarding natural evolution. It is known
that due to the conditions impacting on gene’s survival,
strings may survive and others could be killed. Then to
promote a good and healthy future population, the best
chromosomes are expected to survive and these
chromosomes should demonstrate an ability to create new
offspring.

In  applying the selection operation to
chromosomes, probability describes how likely a
chromosome is chosen to be used. This probability is
specified according to the fitness of the chromosomes.
This is commonly called proportional selection. It is
expected that the offspring replace the chromosomes and
this idea continues until convergence is reached. In the
selection process, the roulette wheel method of choosing
the best chromosome is deployed while future research
entails the use of the rank selection method and its
variants. However, the principle used in the genetic
algorithm application is the survival of the fittest.

2.2 Crossover

The crossover, sometimes mentioned as recombination, is
the reproduction stage where the genetic information of
the chromosomes is combined as two strings are randomly
chosen from the mating pool to create better offspring that
represent the chromosomes as the next generation. Recall
that during the selection stage various results are
obtainable due to the varied methods applied such as the
roulette wheel selection and the ranks selection method,
among others. Similarly, different results could be
obtained if different point cut-off methods are chosen such
as the single-point cut-off and double-point cut-off
methods. For large strings, points of methods beyond two
may be considered. However, this is sparsely reported in
the literature and could be a subject of future
investigation. Also, the two-point cut-off method may be
considered and the results obtained compared with the
single-point cut-off and multiple-point cut-off methods.
Moreover, the principal importance of the crossover stage
in the genetic algorithm is to ascertain the interchange of
genetic materials between two chromosomes and then
produce offspring that promise to live better than the
parents. This is a common phenomenon in societies. It is
found that natural parents (humans) who through financial
limitations are unable to have good former education and
hence limited in their income and achievement in life, will
likely put all efforts into ensuring that their children are
more educated and thrive better as offspring than them.
Furthermore, the crossover operation is based on two
chromosomes. At the crossover stage, the production of
offspring could result in one or two offspring and this
depends on the cut-off points during the crossover stage,
which could be one or two points.

2.3 Mutation

Similar to biological mutation, a mutation in the genetic
algorithm is a miniature random modification in the parent
(chromosome) to obtain a new solution, aimed at
obtaining different genetics as there is a life
transformation of the chromosomes from one generation
of the population of AZ91 magnesium alloy material-
based wire EDM process parameters to the next one. The
purpose of mutation operation is to carefully modify the
chromosomes such that local minima during the
convergence-seeking efforts avoid a situation where the
population of chromosomes is alike. Usually, as the
chromosome is to be mutated, the strings carrying a value
of 1 are changed to 0 such that as the fitness function is
evaluated for a minimization problem, it is reduced
considerably. Otherwise, changes are made from 0 to 1 for
a maximization problem such that the value of the fitness
function is increasing upon reevaluation. The assumption
is that each bit has the same probability of mutating.

2.4 Pre-selection

Preparation Process

The data of factor-level for the experimental data
extracted from Muniappan et al. [20] cannot be used
directly as an input to the selection process but needs to
be modified as discussed in this section. Thus, the
following procedures are essential and representative of
the pre-selection operation stage of the genetic algorithm
for case consideration.

Operation’s Data

Step 1. Generate the problem statement, which

could be f (x) = x?
This could be derived by combining the
values obtained from the table of the work
done on AHP-Taguchi/Taguchi-
Pareto/Taguchi-ABC methods.

Step 2:  Sum up the delta values. Delta values are the
differences between the highest and lowest
along the column for each parameter across
levels.

Step 3:  Multiply the outcome of step 2 by x2.

Step 4:  Consider the number of levels for each
parameter specified in the factor-level table
and average the values as level average with
which further computations are to be made.
For instance, in the case study considered by
Muniappan et al. [20], three levels were
defined for each factor/parameter. These
three levels are summed up for each
parameter and the outcome is averaged. This
result is the x value that will be used in the
case study discussed here.

Step 5:  Specify the intervals for the x. the range
considered in this work is 0 to 200.

2.5 Selection Operation’s Procedure
The following are the steps that are
representative of the selection process.
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Step 1:  Convert the x values to binary numbers. this
first step involves conversion to binary
numbers to ease certain computations and
obtain the fitness of each chromosome
(parameter).

Step 2:  Multiply each of the x values generated by
the coefficient of x% This helps the
researcher to come up with a table of average
level values in a column and in the other
column there are the x? values. The next
column shows the results of the
multiplication of the coefficient of x and x?

Step 3:  Find the probability of strings that a
particular parameter will be selected from
the pool of the population, Equation (1). This
is defined as:

f.

R==

2

i=1
P; is the probability that a string will be
selected n is the population or the number of
parameters that are being considered.
fi is the fitness for the strings in the
population, expressed as f(x)
For the selection operator, the researchers
brought out a table with columns showing
symbols. Another column shows the string
values while another column shows x values.
There is another column showing the
factor/parameter problem. There is another
column showing the probability and the last
column showing the expected count. Then
the spaces in the table are filled with the
required values.

Step 4:  From the expected count, the column locates
a figure with the maximum expected count.
This shows that the particular parameter
shows the highest probability i.e. the highest
chance of being selected.

)

2.6 Crossover Operator’s Procedure

As the researcher progresses from the selection stage, it
reaches the crossover operator’s stage. The following
steps are applicable at this stage.

Step 1: Identify the parameter with the least
chance of being selected and replace it
with the parameter with the highest chance
of being selected.

Step 2: Performance a crossover operation on the
values obtained i.e. on the bits.

Step 3: Observe the improvement in the values of
the table generated.

Step 4: Evolve a crossover table, which shows a
further improvement on the earlier results.

Step 5: Compare the average results and the total,

i.e. maximum value for the table of the
selection operator and crossover operator.
This is to show if the total value generated
from the crossover operation’s stage

exceeds that generated during the selection
operation’s stage according to the purpose
of optimization. However, if the
minimization of the objective function is
pursued, the total needs to reduce. By
attaining this goal, the researcher could
declare attain the aim of improving the
process.

2.7 Mutation Operator’s Procedure

To improve on the crossover stage's result, the
mutation operation on the results obtained from the
crossover stage is considered. The mutation is applied
individually to the parameters after the crossover
operation has been performed. To achieve this, the
researchers randomly changed the bits, which are the
constituents of the chromosomes that are binary numbers
made up of 0 and 1. The changes of bits are either from 0
and 1 or from 1 to 0. However, it needs to improve the
process. The following steps are applicable:

Step1: Select at random the parameters to be
improved upon.

Step 2:  Alter the bits in the offspring after crossover.

Step 3:  Observe the improvement in the parameter
after step 2 is used.

Step 4. Express the outcome in the form of the
problem statement.

Step5: Compute the total, average value and
maximum value for the mutation operation.

Step 6: Conclude if you can achieve the aim of
further improving the fitness values after
using the mutation operation on the previous
results.

3. Results and discussion

3.1 Pre-selection Operation’s Data Analysis

To commence analysis, the problem statement is
first developed and the principal issue here is to define an
objective function to be optimized. The developed
problem statement is

f(x) = 1.27574%2 )

which was derived by combining the values
obtained from the response table of the work done on the
AHP-Taguchi method. The delta values were summed up,
which yielded 1.27574. However, it is assumed that the
function that best describes the machining process for the
AZ91 magnesium alloy is f(x) = x2. Thus, the point of
connection of the objective function and the data obtained
is the multiplication of these summed upped delta values,
1.27574, with x? to yield f(x) = 1.27574x2.

Next, from the factor-level table, the parameters
considered are pulse on time, pulse off time, pulse current,
gap voltage, wire feed and wire tension. There are three
levels for each of these parameters. These levels have to
be consolidated to one point. To achieve this, the three
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levels for each parameter are averaged. This level average
is then used as the x values in the computational process.
This means each of these x values represents the behavior
of the parameter in the method used in the present work,
which introduces the genetic algorithm as an additional
procedure for use. The interval for the x is considered
between 0 and 200. Thus, the values considered fall
between 0 and 200. As mentioned, the initial random
population for this work has the seed of the average of the
three levels for each parameter.

3.2 The AHP-Taguchi-GA method

3.2.1 Analysis of The Selection Process

The first step in the selection process is to convert these x
values into binary numbers to obtain fitness. Then each of
these values (i.e. x values) is multiplied by the coefficient
of x2, which is 1.27574. Afterwards, a table showing the
average level values is then developed in a column, Table
1.

*Average
Initial Level (x Fitness, f(x) = Expected
String no population Symbol Process parameter values) 1.27574x? Pi count
1 01110100 A Pulse on time 116 17166.3574 0.3410 2.0462
2 00110010 B Pulse off time 50 3189.3500 0.0634 0.3802
3 10010110 C Pulse current 150 28704.1500 0.5703 3.4215
4 00011110 D Gap Voltage 30 1148.1660 0.0228 0.1369
5 00000110 E Wire feed 6 45.9266 0.0009 0.0055
6 00001000 F Wire tension 8 81.6474 0.0016 0.0097
Total 1 6
Average 0.1667 1
Max 0.5703 3.4215

Table 1 Factor and levels showing the averages for levels (*based on data from Muniappan et al. [20] and selection process - AHP-Taguchi-
GA method

In Table 1, the column showing x, Pi and the
expected count is shown. The P;, which is the probability
that a string selected is the same as f;i divided by the
summation of f; where the counter starts from 1 to n. The
term n is the number of parameters to be considered, fi is
the fitness of the string i in the population, which is
expressed as f(x), Equation (1). From this formula, P;i in
Table 1 was derived. There is a column in the table
showing symbols, and another column showing the string
values. Another column is showing x values from which
the parameter problem is computed. There is another
column showing the probability and another column
showing the expected count. From the expected count, we
were able to determine a parameter which had the
maximum expected count. This shows that the particular
parameter has the highest probability (chance) of being
selected. That parameter happens to be the pulse current
from the analysis. The pulse current from the selection
stage has the highest probability of being selected.

3.2.2 Analysis of The Crossover Process

Then we proceeded to the crossover operation’s stage.
Here, the parameter that has the least chance of being
selected was replaced with the parameter that has the
highest chance of being selected. From Table 1, the wire
feed has the least chance of being selected, which was
replaced with the value of pulse current and a crossover
operation is performed on it. Consequently, we were able
to improve on the table being generated and a crossover
table emerged. The table allows us to improve further on
what we had. Initially, we had a total of 50,335.5974. But
after we had the function, we computed a value of
74,094.9792. Having done this, we can confidently say
that we have improved on what we have generated and we
proceeded. Notice that the crossover aims to improve the
outcome we got while performing the selection operation.
From the table that we generated at the crossover
operation stage (Table 2) and comparing the two results
(i.e. Tables 1 and 2), we found out that the average, i.e.
the maximum value from the table generated during the
crossover operation stage exceeds that of the one obtained
from the selection operation’s stage, which is one of our
aims.
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Mating pool Cross-over | Offspring
Initial point after cross- Fitness, f(x) =
String no population Symbol over x values 1.27574x>
1 01110100 A 0111/0100 4 01110010 114 16579.5170
2 00110010 B 0011|0010 4 00110100 52 3449.6010
3 10010110 C 10010110 0 10010110 150 28704.1500
4 00011110 D 00011110 0 00011110 30 1148.1660
5 00000110 E 100/10110 3 10001000 136 23596.0870
6 00001000 F 000]01000 3 00010110 22 617.4582
Total 504 74094.9792
Average 84 12349.1632
Max 150 28704.1500

Table 2 The crossover process - AHP-Taguchi-GA method

Now having achieved this, the aim of improving the
machining process for the AZ91 magnesium alloy is
achieved.

3.2.3 Analysis of The Mutation Process

So, we want to further improve on that process and we
move a step further to the mutation operation's stage. The
mutation is applied individually to each parameter
because a crossover operation has been done. To achieve

this, we randomly change the bits. Bits could be
understood by noting that binary numbers are made up of
bits, which are expressed as 0 and 1. We decided to change
random bits of different parameters. We had the option of
changing from 0 to 1 or from 1 to 0. But the determinant
of what to change from another member is the
understanding that the changes must improve the process.
In this work, we decided to select at random. We selected
from B (Table 3).

Offspring after Offspring
Initial Crossover after Fitness, f(x) =
String no population Symbol mutation x values 1.27574x?
1 01110100 A 01110010 01110010 114 16579.5170
2 00110010 B 00110100 01110100 116 17166.3574
3 10010110 C 10010110 10010110 150 28704.1500
4 00011110 D 00011110 01011110 94 11272.4386
3 00000110 E 10001000 10001000 136 23596.0870
6 00001000 F 00010110 01010110 86 9435.3730
Total 696 106753.9232
Average 116 17792.3205
Max 150 28704.1500

Table 3 The mutation process - AHP-Taguchi-GA method

We considered B to be improved upon. We also
191 dered D to be improved upon. B is the pulse off time
anu D is the gap voltage. We also considered F to be the
wire tension. Having considered these three parameters,
we changed the bits in these offspring after crossover. We
changed them from 0 to 1 for D which is gap voltage, the
second number was changed from 0 to 1. Once this is
done, the x value changed from 52 to 116. For D, we
changed the second number from 0 to 1, which brought an
improvement to the process. Initially, it was 30 for the
offspring at crossover and after mutation, it became 94.
For F, being the wire tension, we changed the second
number from the left from 0 to 1, which improved the
parameter from 22 to 86. Having done this, the authors
expressed this in the form of our problem statement which
is 1.2758x%. Then, we came up with another set of total
average values and then the maximum value. For this, we
could say that our aim is achieved because the result was
greater than what was obtained at the crossover stage. By
comparing the two results for the total at crossover, we
have 74.094.9792 whereas, after mutation, we have
106,753.9232. Then for the maximum value, the
maximum value at the two stages did not change but
remained constant. However, the average value moved
from 12,349.6163 to 17,792.3205. Thus, we can now say

that we have achieved our target result at the three stages,
which are selection, crossover and mutation levels.

3.3 The AHP-Taguchi-Pareto-GA method

This section deals with the AHP-Taguchi-Pareto-GA
method based on the previous work by Ikedue and Oke
[19] on the application of the AHP-Taguchi-Pareto
method in the optimization of the EDM process
parameters while machining the AZ91 magnesium alloy.
In this article, the work is modified by using the genetic
algorithm procedure. In trying to analyses the parameters
under consideration, three operations, which apply to the
genetic algorithm are used, namely the selection operator,
and crossover operator. First, the problem statement was
generated. It was found out operators. First, the problem
statement was generated by summing up the delta values
obtainable from the AHP-Taguchi-Pareto response table
as evaluated in Ikedue and Oke [19]. These summed up
delta values, the function used to be x? while the problem
statement formed f(x), is 1.518591 x2. Then the factors
obtained were converted at the three levels into binary
numbers. Furthermore, Equation (1) is used to calculate
Pi, a procedure similar to the one followed in the previous
computations on the AHP-Taguchi-GA method. At the
selection stage, we have the string numbers 1, 2, 3, 4, 5
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and 6, while the x values corresponding to these strings
are 116, 50, 150, 30, 6 and 8, respectively, Table 4.

Initial x? value Fitness, f(x) = Expected
String no | population x value 1.518691x? Pi value

1 01110100 116 13456 17166.3574 0.3410 2.0462
2 00110010 50 2500 3189.3500 0.0634 0.3802
3 10010110 150 22500 28704.1500 0.5703 3.4215
4 00011110 30 900 1148.1660 0.0228 0.1369
5 00000110 6 36 45.9266 0.0009 0.0055
6 00001000 8 64 81.6474 0.0016 0.0097

Table 4 The selection process - AHP-Taguchi-Pareto-GA method

The x? values range from 36 for the symbol E to
22500 for symbol C. However, to illustrate the
computational procedure, consider the x? value for symbol
A, which yields 13456. The problem statement formed for
parameter A is 1.518691x2. The P; has been computed
from Equation (1) as 0.341038. Since the expected count
is the product of the problem statement and P;, the
problem statement is evaluated from the product of the
average level value (i.e. x value), which is 116 for
parameter A and 1345, which is x?, to yield 17166.3574.
This later value when multiplied by 0.34104 yields 2.0462
as the expected count. Now, the total values for the
computed problem statements for all the parameters
considered for each row are 1 and 6, respectively. The
averages of the problem statements, Pis and expects
counts are 9986.9147, 0.1667 and 1, respectively and the

maximum values for the problem statements, Pis and
expected counts are 34170.5567, 0.5703, and 3.4222
respectively. These averages, totals and maximum values
are benchmarks to evaluate the performance of the AHP-
Taguchi-Pareto-GA method and determine if there is an
improvement as the evaluations progress from the
selection to the crossover and the mutations stages. From
the evaluation, it was noted that the expected count has a
maximum value of 3.4215, which has the highest chance
of being selected. Then the table is rearranged to obtain a
new table where the initial population is shown in binary
numbers.

Now, we proceed to the crossover stage where a
particular string with the lowest chance of being selected
(Table 5).

String Mating pool Cross-over Offspring after x value Fitness F(x)
Symbols number point cross-over =1.518691 x?

A 1 0111]0100 4 01110010 114 19736.9135
B 2 00110010 4 00110100 52 4106.5416
C 3 10010110 0 10010110 150 34170.5567
D 4 00011110 0 00011110 30 1366.8223
E 3 100]10110 3 10001000 136 28089.7163
F 6 000]01000 3 00010110 22 735.0466

Total 504 88205.5970

Average Value 84 14700.9328

Max. Value 150 34170.5567

Table 5 The crossover process - AHP-Taguchi-Pareto-GA method

This number will be upgraded to come up with a
reasonable value so that if it is further optimized using a
genetic algorithm for the second time it can also stand the
chance of being selected. Thus the wire feed has the
lowest chance with 6. This number was replaced with the
number that has the highest chance of being selected. This
was done and translated into binary numbers and
conducted mating on them. Then the researcher decided
to choose a crossover point where these factors are paired.
These are the first two factors, then the next two factors
also. For the first two parameters, the researcher chose the
crossover point after the 4™ binary digit. For the next one,
which is the second factor it was left without conducting
any mating on them because if it is done, what will happen
is that it either decreases the smaller value (i.e. 30) or
increases the higher value (i.e. 150). However, our
primary aim is to increase the lower number. However,
any change that is done on the 30 and 150 will not achieve
our objective. So it is left without being changed. For the

third factor, the researcher specified the crossover point
after the third binary digit. Then the result is an offspring
after the crossover as 114, 52, 150, 30, 136 and 22,
respectively. Then we decided to check the fitness such
that the problem statement is expressed for each of these
strings. It means squaring the values and multiplying them
by the coefficient of x2. We obtained 19, 736.9135 for A,
4,106.5460 for B, 34,170.5567 for C, 1366.8223 for D,
28,089.7166 for E and 735.01641 for F. Then we summed
up these values as 88205.597 as against 59921.4882 at the
selection stage. It can be said that the operations at the
crossover stage have enhanced over the results obtained at
the selection stage. However, the maximum value
remained the same, while the average values also
increased. We proceeded to the mutation operations stage,
Table 6.
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String Offspring after | Offspring x value Fitness F(x)
number crossover after =1.27574 x?
Symbols mutation

A 1 01110010 01110010 114 19736.9082
B 2 00110100 01110100 116 20435.5061
C 3 10010110 10010110 150 34170.5475
D 4 00011110 01011110 94 13419.1537
E 3 10001000 10001000 136 28089.7087
F 6 00010110 01010110 86 11232.2386
Total 696 127084.0629
Avg value 116 21180.6772
Max. Value 150 34170.5475

Table 6 The mutation process -

The mutation operation is applied individually to
each parameter after the crossover operation to achieve
further optimization of the parametric values obtained at
the crossover stage. At the mutation stage, we randomly
selected values that the researcher felt had very minimal
chances of being selected. We will now look at how to
upgrade them to a level that they will have a chance of
being selected at a point in time. We considered the
second, fourth and sixth for this operation. To achieve
this, we randomly selected string values and changed
binary bits from 0 and 1 or vice-versa increasing the
overall values.

This was done for pulse off time, gap voltage and
wire tension. Then pulse off time moved from 52 to 116,
gap voltage moved from 30 to 94 and wire tension moved
from 22 to 86. The total was obtained after conducting the
fitness operation as 127, 084.0629 and the average value
rose to 21,180.67715. But the maximum value remained
the same, which is the pulse current. It could then be stated
123 /e have achieved the aim for this activity, which is to
upgrade the values of individual strings to a position
where they could be chosen, it can be said that the aim of
this article for the section has been achieved. We have the
string with the maximum chance of being selected is pulse
current followed by wire feed, then pulse off time, then
pulse on time, followed by gap voltage and finally by wire
tension. Also for the total value at the end of each
operation, the total value at the selection stage rose from
59,921.4882 with an average value of 9,9886.9147 to
88,205.5970 for the total at the crossover stage with an
average value of 14,700.9328. This value rose to
127084.0629 as the total at the mutation stage and
21,180.6772 for the average value at the mutation stage.
An observation that was noted is that the Pi done for AHP-
Taguchi-GA and AHP-Taguchi-Pareto-GA methods
remains constant.

3.4 The AHP-Taguchi-ABC-GA method

The work to be presented in the section is on the results of
applying to AHP-Taguchi-ABC-GA method to the
electro-discharge machining of AZ91 magnesium alloy.
The AHP-Taguchi-ABC aspect has been reported in
Ikedue and Oke [19] but the genetic algorithm has been
appended to the method used previously for further
optimization efforts. Having the work of Ikedue and Oke
[19] as a foundation; the present authors used the genetic
algorithm to further optimize the results previously
reported. In the previous work, the parameters of the wire

AHP-Taguchi-Pareto-GA method

EDM were optimized while processing the AZ91
magnesium alloy. The authors at first generated the
problem statement by adding all the delta values for the
Part A of the ABC is 1.18922. This is now multiplied by
x? such that it is made the coefficient of x2. We also
generated the x values by finding the average of the three
levels 1, 2 and 3 as submitted by Muniappan et al. [20].
This average was computed for the rest of the parameters.
For the first parameter, we had 116, i.e. A, which is the
pulse on time. For pulse off time, pulse current, gap
voltage, wire feed and wire tension, the averages of the
levels were 50, 150, 30, 6 and 8, respectively. We first
converted the x values into a binary form and evaluated
the fitness as previously done. By solving the f(x) = X2,
problem statement, we had 116 and squaring it, we have
13456. This process of squaring was conducted for the rest
parameters and the values obtained are 2500, 22500, 900,
36 and 64, for B, C, D, E and F parameters, respectively.
Furthermore, to compute f(x), 1.18922 was multiplied
with the square of 116, which is for parameter A to yield
16002.1586. Subsequently, the f(x) values for the other
parameters were computed.

We now tried to evaluate the formula in Equation
(1) using the roulette wheel selection method given in
terms of P;, which is the probability of a string is selected.
To obtain the expected count, we multiply the number in
the population by the probability of a strung being
selected, P;. This leads us to a table have columns for
symbols, strung numbers, x, x>values, problem statements
and the probability of a string being selected. Lastly is the
column for the expected count. On the computing, we
obtained the expected count value of 2.0462 for parameter
A, 0.3802, while 3.4215, 0.1369, 0.0055 and 0.0097 for
B, C, D, E and F, respectively. By summing the problem
statement up, there is a total of 46921.90609 obtained. The
average value on that point is 7820.317682 and the
maximum value is 26757.4738. After this, the authors
came up with a table showing the positioning at the
selection of how the expected counts rank. In this case,
pulse current ranks first, pulse on time as second, pulse off
time as third, gap voltage as fourth, wire tension as fifth
and wire feed as sixth then we move over to crossover
operation. Here, we have brought over the symbols and
string numbers. However, during the selection operation,
it was found that according to the ranking, a particular
parameter has the highest chance of being selected, which
is pulse current. Then the parameter with the least
probability of being selected, which ranks sixth, is wire
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feed. So we alternated them by copying the one with the
first position is replaced the strings of the one with the
sixth position. We copied them in their binary forms and
did a crossover operation on them. For the first two
strings, we kept the strings in pairs, the first two being the
first pair and the third and fourth strings being the second
pair. For the first two, we conducted a crossover operation
at the first point. For the second one, we did not do any
crossover operation but were left there because
performing the crossover operation in the item will either
increase the higher one or reduce the lower one. However,
we wanted to increase or leave it as it is. For the third one,
we did a crossover operation at the third figure. Then the
new x value became 114, 52, 150, 30 135 and 22,
respectively. So, solving for the fitness at the crossover
point, we had 15,455.1169, 3.215.6537, 26757.4738,
1070.2990, 21995.8327 and 575.5830 for parameters A to
F, respectively. So the total at this point was 69069.9590.
Then the average value became 11.511.6599 and the
maximum value at the stage remained pulse current with
2675.4738. We were able to achieve our aim for crossover
operation, which is to further optimize the value. Here, the
total value changed from the value at the section stage
which is 46921.9061 to 69069.5509. This is evidence of
further optimization at the crossover point. Then we

moved over to the mutation operation to further optimize
the parameters that could not be optimized at the
crossover stage. Then we selected the strings that needed
to be increased and these are the gap voltage, pulse off
time and wire tension. To achieve this aim, we need to
alternate the bit values at selected locations we will
change the values from D to 1. For the pulse-off time, we
change the bit value of the second from the left from 0 to
1. For that gap voltage, we changed the second value from
the left from 0 to 1. For wire tension, we change the
second value from the left from 0 to 1. We were able to
improve the values of the parameters (offspring after
mutation) to 114, 116, 150, 94, 136, and 86, respectively.
By conducting the fitness test on them, we arrived at
15,455.1169, 16002.1586, 26757.4738, 10507.9573,
21995.8327 and 8795.47905 for parameters A to F,
respectively. The total value increased from what was
achieved at the crossover average value become
15,585.6697. This led us to declare that we have achieved
our aim, which is to further improve the values that
require improvement from the crossover stage. The above
activities relate to the Part A of the AHP-Taguchi-ABC-
GA method. The details of the final stage, the mutation
process, for the AHP-Taguchi-ABC-GA method (Part A)
are given in Table 7.

String Offspring after | Offspring x value Fitness F(x)
number crossover after =1.18922 x?
Symbols mutation

A 1 01110010 01110010 114 15455.1169
B 2 00110100 01110100 116 16002.1586
C 3 10010110 10010110 150 26757.4738
D 4 00011110 01011110 94 10507.9573
E 3 10001000 10001000 136 21995.8327
F 6 00010110 01010110 86 8795.4790
Total 696 99514.0182
Avg Value 116 16585.6697
Max. Value 150 26757.4738

Table 7 The mutation process - AHP-Taguchi-ABC-GA method (Part A)

Moving on to Part B, every step as explained in Part
A applies to Part B. but the changes here are delta values.
The reason is that in Part A, the total delta value is 1.1892
but here in Part B, the total of the delta values is 1.0491.
The final results from the selection stage using the
expected count as the criterion are 2.0462, 0.3802, 3.4215,
0.1369, 0.0055 and 0.0097 for parameters A to F
respectively. The total, average value and maximum
values are 41393.8086, 6898.9681 and 23605.0460,
respectively. These values relate to the section stage.
However, we were able to expand the figures at the
crossover stage with a total, average value and maximum
value of 60932.4920, 10155.4153 and 23605.0460,

respectively. The total value of 60932.49196 is higher
than what was obtained at the selection stage 4139.8086,
implying an improvement in value the mutation operation
aims to further optimize the obtained value as the
crossover stage. This is to enhance their chances of being
selected in subsequent evaluations (operation). Here, the
total after solving for the fitness became 87789.5200. The
average value became 14631.5875 while the maximum
value was 23604.9750. This is the summary of the results
of Part B. The details of the final stage, the mutation
process, for the AHP-Taguchi-ABC-GA method (Part A)
are given in Table 8.
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String Offspring after | Offspring x value Fitness F(x)
number crossover after =1.04911 x?
Symbols mutation

A 1 01110010 01110010 114 13634.2336
B 2 00110100 01110100 116 14116.8242
C 3 10010110 10010110 150 23604.9750
D 4 00011110 01011110 94 9269.9360
E 3 10001000 10001000 136 19404.3386
F 6 00010110 01010110 86 7759.2176
Total 696 87789.5248
Avg Value 116 14631.5875
Max. Value 150 23604.9750

Table 8 The mutation process - AHP-Taguchi-ABC-GA method (Part B)

Now moving to Part C. similar computations of Part
B applies to Part C. the only changes are the delta value to
0.5971. Solving for the selection stage yields a total of
23557.8261 while the average and maximum marks ate
3926.3044 and 13433.9793, respectively. The ranking
happens to be the same for the first one too. Moving over
to the crossover operation stage, we were able to improve
the values at the selection stage to 34677.578. the average
value and maximum value are 5779.5943 and
13433.9793, respectively. We move over to the mutation
stage. Here, we have further improved our x value. After

solving for the fitness, we were able to obtain 49962.4617,
8327.0770 and 13433.9793 as the total, average values
and maximum values, respectively. This result for Part C
ends the computation of the results. These results show
how a genetic algorithm could be combined with AHP-
Taguchi, AHP-Taguchi-Pareto and AHP-Taguchi-ABC
methods to optimize the wire EDM parameters using the
AZ91 magnesium alloy as the material being machined.
The details of the final stage, the mutation process, for the
AHP-Taguchi-ABC-GA method (Part A) are given in
Table 9.

String Offspring after | Offspring X value Fitness F(x)
number crossover after =0.597066 x*
Symbols mutation

A 1 01110010 01110010 114 7759.4665
B 2 00110100 01110100 116 8034.1167
C 3 10010110 10010110 150 13433.9793
D 4 00011110 01011110 94 5275.6729
E 3 10001000 10001000 136 11043.3281
F 6 00010110 01010110 86 4415.8983
Total 696 49962.4617
Avg Value 116 8327.0770
Max. Value 150 13433.9793

Table 9 The mutation process - AHP-Taguchi-ABC-GA method (Part C)

4. Conclusions

The present study aimed at improving the individual
members of the population for the wire EDM process
while processing the AZ91 magnesium alloy material. By
using the roulette wheel selection method of the genetic
algorithm method, the data obtained from Muniappan et
al. [20] was analyzed and tested with the newly proposed
models of the AHP-Taguchi-Genetic algorithm, AHP-
Taguchi-Pareto-Genetic algorithm and AHP-Taguchi-
ABC-genetic algorithm methods. The parameters
optimized by the genetic algorithm are the pulse on time,
pulse off time, pulse current, gap voltage, wire feed and
wire tension. In conclusion, the integration of the genetic
algorithm with the AHP-Taguchi, AHP-Taguchi-Pareto
and AHP-Taguchi-ABC has helped to improve the
mentioned parameters and come up with high values for
each parameter. The following conclusions concern the
analysis using the experimental data of Muniappan et al.
[20] using the AHP-Taguchi-GA approach during the
wire EDM process for the AZ91 magnesium alloy.
Having achieved results, it could be stated that the factor
values have been improved upon at both the crossover and
mutation stages of the AHP-Taguchi-GA method. The

only value, which remained constant in all, is the pulse
current being the highest value maintained its position as
the parameter with the highest outcome throughout the
operations. Using the AHP-Taguchi-Pareto-GA method
the key results are the continuous improvement in the
maximized parametric values of the process of electro
discharge machining of AZ91 magnesium alloy from
59921.4882 at the selection stage to 88205.5970 at the
crossover stage and finally to 127084.0629 at the mutation
stage of the combined AHP-Taguchi-Pareto-GA method.
The results in Parts A, B and C of the article show that the
genetic algorithm could be successfully combined with
AHP-Taguchi, AHP-Taguchi-Pareto and AHP-Taguchi-
ABC methods to optimize the wire EDM parameters using
the AZ91 magnesium alloy as the material being
machined.
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