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Abstract. Optimizing process parameters in boring 

operation is extremely important as aids to maintain 

high resource conservation and efficiency and the free 

flow of boring data while optimally using boring 

resources. With optimal parameters, real-time 

information is offered to process engineers for the 

practical control the boring operation thus reducing 

the cost of boring operations. This article presents an 

investigation on the use of optimization and 

prioritization in the boring process of IS 2062 E250 

steel plates using coupled Taguchi-Pareto-Box 

Behnken Design-grey wolf optimization approach. 

The experimental data, drawn from the literature, was 

initially provided by Patel and Deshpande on CNC TC 

machine. The objective function, constraints, 

population size, number of iterations, and fitness 

function were determined. Then the solution for the 

grey wolf optimization is generated using the python 

programming language. Three representative 

parameters of speed, feed and depth of cut were 

foundations of the Taguchi’s experimental design used 

for solving the problem. The optimal parameters were 

determined from the experiments. For the first time, 

the coupled Taguchi-Pareto-Box Behnken Design-

grey wolf optimization method to make optimization 

decisions for the boring process. Using 50 iterations 

and 200 wolfs, the best fitness value of wolves at the 

end of the 50th iteration is 872728.53 when the 

objective function is generated from optimized Box 

Behnken Design parameters. It also has an optimal 

solution of speed, feed, depth of cut and nose radius as 

800rpm, 0.06,1 and 0, respectively. However, on the 

application of the regression equation from the Box 

Behnken Design to form an objective function, using 

the same 50 iteration and 200 wolves the best fitness 

value of wolves at the end of 50th iteration is -51.49 

while the optimal parameters are 1189.58, 0.089, 

1.22, 0.55 for the speed, feed, depth of cut and nose 

radius, respectively. Hence, the outcome of this study 

may be a route to reducing time and money associated 

with unnecessary usage of non-optimal boring data 

during operations planning decisions.  

Keywords: Grey wolf optimization, CNC machine, 

Taguchi-Pareto, fitness values, parameters 

1. Introduction
The attainment of substantially low surface

roughness has been the principal pursuit of process 

engineers in most machining activities [1], [2], [3], [4]. 

This challenge is even more compelling and requires 

an urgent attention because boring operation is widely 

recognized as a secondary procedure used to finish up 

a pre-existing hole or enlarge it [1], [5], [6]. Thus, 

many machine parts cannot be delivered to customers 

until boring actions are completed, holding on the 

profits in investments that should have been made by 

the company. Alongside, Trung [1] argued on the 

constraint of low productivity imposed on the 

machining process since the depth of cut is marginally 

chosen in such processes as grinding. By extension, 

boring process has the same limitations [7]. 

Furthermore, Trung [1] declared that while machining 

productivity greatly influence the principal cutting 
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parameters such as the speed, feed rate, depth of cut 

and nose radius used in the present study, the surface 

roughness outcome is also affected by these 

parameters. Besides, the surface roughness, which is 

the dominant response in the present study also 

associate with cooling parameters, experimental 

equipment situations, the dressing process and 

machining materials according to Trung [1]. The 

feasible approach is then to consider merely a few 

parameters from this pool of parameters and establish 

the thresholds of these parameters that produce the 

least possible surface roughness considered as the 

output of the IS 2062 E250 steel grade boring process. 

        For some time, researchers have recognized this 

approach and produced several experimental studies to 

actualize this goal [1], [8], [9], [10], [11], [12]. Also, 

by evaluating some of these reports, it is evident 

Taguchi technique has played a dominant role to the 

successful enhancement of machining performance. 

An explanation for this success story is the nature of 

the Taguchi method being an experimental design 

framework. This philosophy allows several 

researchers and practicing process engineers to obtain 

solutions to machining problems using lesser 

experiments and the opportunity of working with 

several inputs that could be scaled to various levels [1]. 

Trung [1] added that Taguchi methods success is 

based on the ability of the process engineer with fewer 

data to utilize qualitative data such as the kind of 

boring tool as in the present article’s case. Despite 

these merits, there is difficulty in applying Taguchi 

alone for the boring process problem formulated in 

this article. If Taguchi method alone is applied to the 

experimental matrix in Taguchi design, and the signal 

to noise quotients determined, the obtained parametric 

values for the boring process, for instance, can be 

evaluated for only a criterion at a time. It implies that 

if there exists more responses than the surface 

roughness discussed in the present article, the Taguchi 

method cannot obtain results at the same time. But the 

present article is laying a foundation to work with 

several responses and multiple input despite merely 

focusing on only one response, surface roughness used 

an example in the present study. Thus, the argument 

here is that Taguchi method is not capable for multiple 

response treatment at the same time. If a widely 

acceptable method is to be developed in this article as 

anticipated, this weakness of the Taguchi method 

should be overcome [1]. Fortunately, previous 

researchers have identified and proffered some 

solutions to the mentioned problem.  

        Nonetheless, unfortunately, it seems no research 

has applied the combination of Taguchi-Pareto 

method, Box Behnken Design method and grey wolf 

optimization method to analyses the optimization 

status in boring process. But it is known that the IS 

2062 E250 steel plates is extensively used in tanks and 

application entailing non-pressure parts in industries 

such as marine, seawater, gas process and chemical 

processes [13]. Thus, the IS 2062 E250 steel plates is 

a first choice in these industries. In these industries, as 

machining process are performed for elevated level of 

precision, the boring process, it is a surprise to be 

unable to identify at least one study that has applied 

the Taguchi-Pareto-Box Behnken Design grey wolf 

method to the boring operation of the IS 2062 E250 

steel plates. Given the scenario described in the 

preceding paragraphs, it is revealed that the several 

advantages of Taguchi method are important but 

coupling the Taguchi technique and three approaches 

in evaluation (Pareto, Box Behnken design and grey 

wolf optimization) is also absent in all studies so far 

reported on boring process. The closure of the gap is 

pursued in the present article. In particular, based on 

the experiments reported by Patel and Deshpande [14], 

which followed experimental design principle and 

focusing on IS 2062 E250 steel plates, the combined 

Taguchi-Pareto Box Behnken design–grey wolf 

optimization method will be applied in this article. 

        In this article, the authors employed the grey wolf 

optimization as an added optimization method to the 

Taguchi-Pareto-Box Behnken methodical 

combination and not another optimization method 

since, distinct from other optimization approaches, the 

process engineer (decision maker) can adjust the 

procedure as often as needed. Moreover, the grey wolf 

optimization approach demonstrate ability to search 

through self-adaptation to optimize solutions based on 

the wolves behavior in hunting, where the wolves 

divides themselves into groups and encircle their 

preys. Furthermore, the other benefits of the grey wolf 

optimization procedure are their fast-seeking speed, 

simplicity in principle, easily realizable method and 

high search precision. 

2. Literature review

Sustainable development challenges have made

energy and environmental issues relevant to all 

industries around the world. However, the ever-

increasing demand for quality from customers has 

resulted in a superior surface polish and, as a result, 

higher energy usage. Machine tools have usually low 

energy efficiency, especially during discrete item 

manufacture [15]. Table 1 is a summary of the 

literature. Several studies have applied the ANOVA 

method in their CNC turning machine operations [15], 

[16], [17], [18], [19], [20]. Others have used the 

following methods in their studies - Taguchi [17], 

grasshopper optimization algorithm [21], response 

surface methodology [20], [21], ANN and regression 

analysis [18], grey wolf optimization algorithm [16], 
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[19], [20], genetic algorithms [16], [20], Jaya 

optimization, whale optimization, particle swarm 

optimization, and simulated annealing algorithm [20] 

and principal component analysis [15].

Table 1 Summary of the literature 

Author(s) Material 

Machining 

operation/ 

machine 
tool 

Output  
parameters Input parameters Methodology  Conclusions 

Mary et al. [22] EN24 

Drilling/LV

-45, 
three-axis 

milling 
centre Tool wear 

Spindle speed, 
feed rate,  

acceleration, 
force signals  

Grey wolf and 
neural controller 

Tool life increased by 

varying the machining 

condition. Greywolf 
optimization achieved 

optimized speed and feed 
parameter. 

Chakraborty 
and Mitra [23] 

Abrasive 

water-jet 

machining 
(AWJM) 

Surface 

roughness 
Material 

removal rate, 

overcut,and  
taper  

Water pressure, 

nozzle diameter, 

jet velocity, 
abrasive 

concentration, 

nozzle tip distance 
e 

Grey wolf 
optimizer  

Algorithm avoids local 

optima. GWO improved in 
response values 

Kharwar and 

Verma [19] 

Polymer 
nanocomp

osites Milling 

Surface 

roughness 
(Ra), Cutting 

force (Fc), and 

Material 
removal rate 

(MRR) 

 MWCNT weight 

percent, spindle 
speed, depth of cut,  

and feed rate 

Grey wolf 

optimization 
algorithm, 

 ANOVA 

A 1.5wt% MWCNT, 1500 
rpm spindle speed, 50 

mm/min feed rate, and 3 

mm depth of cut are the best 
combinations to reduce 

surface roughness. 

Imani et al. [24] 

Inconel 

738 Milling 

Milling forces 

and surface 

roughness 

Cutting speed, feed 
rate, the axial 

depth of cutting, 

and coolant 

Artificial neural 

network, and  

Genetic algorithm 

The optimized artificial 

network can predict 
machining force and 

surface roughness of 

milling Also, when the 
cutting speed is increased, 

the machining forces are 

reduced. 

Sekulic et al. 
[16] 

Hardened 
steel 

Ball end 

milling/CN

C milling 
center 

Surface 
roughness 

Spindle speed, 

feed per tooth, 

axial depth and 
radial depth of cut 

ANOVA, GA and 
GWO 

The GWO model was the 

best solution in all the three 

models. - 

Kant and 

Sangwan [15] 

AISI 1045 

steel machining 

Power 

consumption 
and surface 

roughness 

Cutting speed,feed 
rate,and depth of 

cut 

Grey relational 

analysis, principle 
component 

analysis, 

 and response 
surface 

methodology 

Based on ANOVA results, 

the feed rate is the most 
important input parameter, 

followed by depth of cut, 

and finally cutting speed for 
reduced surface roughness 

and power usage. 

Kulkarni and 

Kulkarni [25] 

High 

carbon 
high 

chromium  

steel 

Wire 

Electrical 
Discharge 

Machining 

 (WEDM) 

Material 

removal rate 

Pulse off time 

(TOFF), upper 
flush (UF), lower 

flush (LF) and wire 

tension (WT).  

Taguchi and Gray 

wolf optimization 

It was found that the most 
influential component for 

MRR is determined to be 

TON. 

Burande et al. 
[17] EN8 steel 

CNC 

turning/ 
Turning  

Surface 
roughness 

cutting speed, 

depth of cut and  
feed rate 

ANOVA and 
Taguchi 

Feed rate is the most 

important parameter for 

obtaining an optimal 
surface roughness 

Kulkarni et al. 

[21] 

AISI 316 
austenitic 

stainless  

steel 

CNC 

lathe/Turni

ng 

Surface 

roughness 

Feed rate (fd), 
speed (vc), and 

depth of cut  

(DoC) 

 Grasshopper 

optimization 
algorithm, 

response surface 

methodology 

The grasshopper 

optimization algorithm was 

effective in finding the best 
surface roughness (Ra) 

values in dry, wet, and 

cryogenic environments. 

Ramalingam et 
al. [26] 

304L 

stainless 
steel 

Plasma arc 

cutting 
(PAC) 

Surface 

roughness and 
kerf width 

Arc current, torch 
stand-off, cutting 

speed  

and gas pressure 
play 

Grey Taguchi-

based response 

surface 
methodology (GT-

RSM), Taguchi, 

response surface 
methodology  

The GT-RSM method was 
shown to significantly 

improve the quality 

characteristics of 
components 
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Khalilpourazari 

and 
Khalilpourazary 

[27] 

multi-pass 

milling 

Total 
production 

time  

Convergence 

constant, 

population size of 
gray wolf, and 

number of iteration 

Robust Grey Wolf 

Optimizer  
(RGWO) and 

Taguchi method 

The best possible trade-off 

between the algorithm's 
exploration and 

exploitation abilities is 

guaranteed by the optimal 
settings of the GWO's main 

parameters and that the 

RGWO was able to get the 
best viable solution for 

various cutting strategies.  

Khalilpourazari 

and 
Khalilpourazary 

[28] 

milling and 
machining 

processes 

Surface 

quality, 

grinding cost 
and total 

process time 

maximum number 

of iteration and 
numbers of dragon 

fly 

multi-objective 

dragonfly 
algorithm and 

Taguchi method 

Multi-objective dragonfly 
algorithm with an efficient 

constraint handling 

technique is able to find 
non-dominated Pareto 

optimum solutions. 

Seçgin [29] 

 Ms58 

Brass 

Multi-axis 

CNC Lathe 

Surface 

roughness 

(Ra), cutting 

time (t) and 

dimensional 
deviation 

 (dev) 

Tool diameter, 
feedrate and 

rotation speed 

surface response 

method and  Grey 
relationship 

analysis · 

The most significant 

parameter on surface 

roughness and dimensional 

deviation is the tool 

diameter. Feed is the most 
beneficial parameter in 

reducing cutting time. 

Mangaraj et al. 

[20]  

stainless 

steel (AISI 

304) 

Portable 
plasma arc 

cutting 

system 

Material 

removal rate, 
chamfer, heat-

affected zone,  

surface 
roughness, 

kerf width, and 

dross 

Stand-off gap, gas 

pressure, cutting 
speed, 

 and cutting 

current. 

hybrid RSM-
nature inspired 

optimization 

technique, 
RSM(BBD), 

Genetic algorithm, 

Grey wolf 
optimization, Jaya 

optimization, 

Whale 
optimization, 

Particle Swarm 

optimization, and 
simulated 

annealing 

algorithm 

The most influential cutting 

parameters are cutting 

speed, square value of the 
current, and the interaction 

between speed and cutting 

current. 

Pradhan et al. 
[30]  

Dissimilar 

material 

(aluminum 

alloy and 
commerci

ally used 

copper 
alloy) 

Friction stir 
spot 

welding 

(FSSW) 
process 

Maximum 

force required 

to break 
workpiece, 

maximum 

stress 
developed and 

heat affected 

zone at the 
welding joint 

Rotational speed, 

pin length and 
 tool tilt angle 

Hybrid RSM-

WASPAS 

(weighted 
aggregated sum 

product 

assessment)-grey 
wolf 

Compared to other process 
factors, pin length has the 

biggest impact to 

controlling Max. Force, 
Max. Stress, and HAZ. 

Fountas et al. 

[31] 

CuZn39Pb

3 brass 

alloy. Turning 

Surface 

roughness , 

cutting force 
and  maximum 

height of the 

profile Rt 

(μm) 

Rotational speed n 
(rpm); feed rate f 

(mm/rev) and 

depth of cut a 

(mm). 

Multi-parameter 
analysis;Optimizat

ion,  

Grey Wolf 

algorithm. 

Low speeds and moderate 

feeds are used to reduce 

main cutting force, while 
high speeds and moderate 

feeds are used to reduce 

roughness parameters Ra 

and Rt 

Hanief et al. 
[18] 

Red brass 
(C23000) Turning Cutting forces 

speed, depth of cut 
and feed rate 

ANN , regression 

analysis and 
ANOVA 

Feed rate had the greatest 

influence on the resultant 
cutting force of the three 

cutting parameters, while 

the depth of cut had the 
least 
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3. Method

        In the objective statement, it was declared that the 

grey wolf algorithm will be deployed in solving the boring 

operation process optimization. This means that the 

parametric optimization when boring will be modelled 

and solved by using the social hierarchy (leadership 

structure) of the grey wolves and their hunting 

characteristics. While implementing the grey wolf 

algorithm, the social hierarchy of the grey wolves which 

identifies members of the park as having varied authorities 

and influences on the decision of the parle as a whole is 

adapted to solve the boring operation parametric 

optimization. This social hierarchy identifies the alpha 

wolves as the parle leaders with powers given to them to 

decide on major issues on the parle, including when the 

parle members should wake up and sleep and whether the 

prey that enters their territories should be encircled and 

killed or not. Beyond this mathematics, the algorithm that 

shows the implementation also reveals the behaviors 

during hunting. Often the alpha wolves, which consist of 

the male and female decide on whether to pursue prey or 

not through the facial signals sent to the members of the 

pack.  

        In the following steps, the procedure for 

implementing the grey wolf algorithm is explained here 

using illustrative data besides the experimental data 

obtained from the literature. It is thought that such an 

effort will permit an easy replication of the method since 

it is difficult to obtain intermediate data from the 

implemental experimental data used in the literature. It 

should be noted that as a result of implementing the 

procedure using the python programming code only the 

values at certain iterations are declared by the 

programmer. Now, the following are the steps to 

implement the grey wolf algorithm for the boring process 

in this work. 

Step 1: Determine the objective function of the problem, 

its constraints and the projected population size. However, 

the objective function is a mathematical model used to 

either maximize a benefit to the boring operation or 

minimize a disadvantage to the boring operation. Thus in 

the results section that comes afterwards, the data from the 

literature by Abdullahi and Oke [32] is used as the 

objective function of the present work but in this section 

on methods, an objective function for the first scenario 

that is similar to the actual one used in the results section 

suggests as  

F(x) = 5S + 0.005F + 0.08DC + 0.013NR  (1) 

This data comes with constraints that declare the limits to 

which the variables are feasible. These constraints for the 

first and second scenarios are as follows:   

1 ≤ S ≤ 4, 0.001 ≤ f ≤ 0.01, 0.07 ≤ dc ≤ 0.17, and 0.2 ≤ nr≤ 

0.005  

Next, the grey wolf expects the user to define the 

population size. Interestingly, population size is defined 

as the number of individuals contained in a population. 

The meaning is that several series of experiments may be 

run for the boring process. Here, the number of 

experiments defines the population size. In each 

experimental trial, several parameters may be captured in 

the experiment, which include speed, nose radius, depth 

of cut and feed. Now, in this illustration, the population of 

the grey wolves is limited to 4 for illustration ease but 

extended to 200 for the implementation of the 

experimental data from the boring operation. Next is the 

number of iterations, which could be defined as the 

repeated computation of the fitness function (objective 

function) whose output at each step gives information as 

to whether the desired output value has been produced or 

not. Thus, in the present study, as the fitness function is 

run, if convergence is reached then the iteration could be 

terminated. It means that values obtained at the next 

iteration are not substantially different from those at the 

earlier stages. From the above illustration, the objective 

function, which is the fitness function has been declared, 

it is also accompanied by constraint. The population of the 

grey wolves at this illustrative stage is 4 while the number 

of iterations is fixed at 3. Now, the objective function 

under the guiding principles of the social hierarchy and 

hunting behaviors of the grey wolves is run for the 

parameters of speed, feed, depth of cut and nose radius 

that characterize each boring operation task. Hence, a grey 

wolf in the population, a grey wolf may be computed to 

have [1, 0.004, 0.05, 0.01]. Here, each component of the 

matrix is a data item of speed, feed, nose radius and depth 

of cut, respectively. It implies that there should be four of 

these matrices because the population of wolves 

considered is four. By introducing each of these 

parameters into the objective function earlier stated, the 

fitness value of the population may be computed as 

5.0042, 2.5052, 6.0029 and 5.5015. 

Step 2: The sorting of the computed fitness value is made 

in ascending order to determine the three best fitness 

values with the lowest value being the best and the highest 

value being the worst. The objective criterion is 

minimization. By following up on step 1 and with four 

values given in the last statement of the step, 2.5052 is the 

lowest fitness value while its corresponding wolf has the 

characteristic matrix component of speed, feed, nose 

radius and depth of cut as [0.5 0.004, 0.06 0.03]. Since the 

pursued objective criterion is minimization, the lowest 

value is the best and it is chosen as the alpha wolf, 

designated as Xα. The second to the lowest fitness value is 

5.0042 and its corresponding wolf’s matrix is [10.004, 

0.05, 0.01], which is referred to as the beta wolf and 

represented as Xβ. Lastly, the third to the lowest fitness 

value and its corresponding wolf matrix are 5.5015 and 

[1.1 0.006 0.01 0.05] respectively while the variable 

representation for this wolf is X .  

Step3a: New solutions are generated using the grey wolf 

mathematical model. Here, the contributions of the 

wolves to the hunting task are considered in the evaluation 
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of the Xnew. It is known that the alpha wolf, Xα, 

represented by X1 leads the hunting and communicates the 

next task to the pack through facial expressions. In 

response, the beta wolves, Xβ, represented by X2, which 

are next in the social hierarchy, follow the alpha wolves 

closely. Next, the delta wolves, X also matches the 

alpha wolves, and follows the beta involves since the beta 

involves is higher in the hierarchy than the alpha wolves. 

This delta involves are represented as X3 in the evaluation 

of the Xnew (i.e. the new position of the pack members 

when pursuing the prey). However, the omega wolves are 

neglected from the updating mathematics on the 

assumption that they do not contribute to the hunting 

success of the pack directly. Their indirect contributions 

could be as caregivers to the wounded wolves during 

hunting. They also protect the elders, which are the old 

wolves that had served as the alpha wolves but due to old 

age cannot cope with the responsibility of the alpha group 

and are hence relegated to the omega group where 

extremely less demands are made from them. So it could 

be noted that such efforts made by the omega wolves do 

not interpret into position changes of the wolf's pack and 

they are ignored in the computation of the position 

updating. Thus, the updated position of the pack is known 

as Xnew and represented as Equation (1):  

3

321 XXX
X new

++
= (1) 

Equation (1) contains three variables, 1X , 2X and 3X , 

which are the positions of the wolves obtained from 

different equations that follow. 

The next step is to check the terminating criterion, which 

states that if t is less than 3 the researchers continue and 

otherwise stop. This condition is mathematically stated as 

follows:  

Check (t < max t) (2) 

This means check t if it is less than the maximum value of 

the iteration set for the programme. In this particular 

instance, in the beginning, t = 0. Therefore the condition 

0 < 3 is true and the researchers move to the next step. 

This next step is referred to as updating the position of the 

present search agent. Thus, the researchers are using the 

coefficient factors A1 and C1. But A1 is a function of “a”, 

where the value of “a” linearly decreases from 2 to 0 as in 

Equation (3): 

a = 2- (t/Max t))     (3) 

Then A, is expressed in Equation (4) as follows: 

A1=2ar1- a              (4) 

Also, the second coefficient factor C1 is expressed in 

Equation (5) as follows:  

C1= 2r2   (5) 

For both Equations (4) and (5), r1 and r2 are random 

numbers which are differently generated in each case and 

range between 0 and 1. So by using Equations (4) and (5), 

the values for A1 and C1 could be obtained for further 

processing. Now, we progress the grey wolf hunting 

model, which consists of six set of Equations (6) to (11). 

tXXCD −=  1 (6) 

tXXCD −=  2 (7) 

tXXCD −=  3 (8) 

 DAXX 11 −= (9) 

 DAXX 22 −= (10) 

 DAXX 33 −= (11) 

In Equations (6) to (11), the values of the coefficient 

factors A1 and C1 earlier obtained are substituted in them. 

It should be noted that different random numbers are used 

to compute the variables Dα, Dβ, D . The researchers 

should note that the values of the coefficient factor “a” 

obtained in Equations (4) and (5) change with that of 

Equation (4) changing in a linearly decreasing manner. 

Now, to illustrate the working of the coefficient factor “a”, 

if the maximum number of iterations is given as 5, then a 

is computed as 2(1-1/5), which gives 1.6 

Step 3b: Next is the computation of X1, X2, X3 

To achieve this computation, reference is made to 

Equation (4) where the previously computed value of “a” 

as 1.6 is substituted and Equation (4) yields a value of -

1.088 from the computation, which is the value for A1. 

Now to compute the coefficient factor C1, consider a new 

random number 0.3. Thus random number, when 

substituted into Equation (5) with a value of "a" as 1.6, 

which was previously obtained yields the coefficient 

factor C1as 0.6. Recall that we are illustrating the working 

of the mathematical model for the grey wolf and are at the 

point of evaluating Equation (6). For this equation to be 

computed C1 has already been evaluated as 0.6,Xα is also 

already known, which was declared as [0.5, 0.004, 0.06, 

0.03]in step 2. The only variable left to be specified is Xt, 

which is given as [0.4, 0.05, 0.02, 0.04] for the current 

wolf under consideration, as stated earlier. Then a matrix 

multiplication is conducted between the co-efficient 

factor C1 0.6 and the matrix Xα and the matrix Xt is 

subtracted from the results to yield a matrix 

=D

022.0

016.0

0026.0

1.0

But Equation (9) relates Dα, A1, Xα and X1, which already 

has all the values of the component variables to be 

substituted to obtain  
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=1X

0061.0

0426.0

0012.0

3912.0

From this evaluation of X1, the interpretation of the results 

for the boring problem is a speed of 0.3912, feed as 

0.0012, depth of cut 0.0426 and nose radius being 0.0061. 

Therefore, X2 and X3 could be computed using the same 

process to obtain 

X2=

0052.0

0325.0

0023.0

5132.0

  and X3=

0032.0

0265.0

0013.0

3132.0

Step 3c. Step 3b is followed by the computation of the new 

wolf’s position, Xnew has declared in Equation (1). Thus, 

the values of X1, X2 and X3 obtained from step 3b are 

substituted in the equation to obtain Xnew for each 

parameter of speed, feed, depth of cut and nose radius as 

0.4059, 0.0016, 0.0339 and 0.0048, respectively. 

Therefore, the new wolf position Xnewis given by [0.4049, 

0.0016. 0.0339, 0.0048]. 

Step 4: Next, check if the new computed wolf position is 

within the search space of each parameters, if it is less than 

the lower bound of a particular parameter, then the lower 

bound value of that parameter replaces the computed 

value in newX  of that parameter, and if the computed 

value in newX  of a particular parameter is greater than the 

upper bounds of that parameter, then the upper bound 

value of the parameter replaces the computed value in 

newX of that parameter. Therefore, applying the 

boundary check to newX we have 

Xnew=[1, 0.0016, 0.07, 0.0048] 

Step 5a: Compute the fitness value of newX using the 

objective function described in step 1, we have    F(x) = 5

1 + 0.0050.0016 + 0.08 0.07 + 0.013 0.0048 = 

5.0561 

Step 5b: Perform the greedy selection to check if the new 

wolf fitness value is better than the fitness value of the 

current wolf under consideration, which was earlier 

computed in step 3b as tX fitness = 2.0021, being better 

means if newX fitness is smaller than tX fitness, in this 

case, the fitness value of the current wolf under 

consideration is better than the fitness value of the newly 

computed wolf position. Therefore, the newly computed 

wolf position and it fitness value is discarded, while the 

wolf under consider and it fitness value is retained as 

before, Note: that the objective being illustrated here is 

minimization. 

Step 6: Complete the first iteration by repeating step 3a to 

step 5b above for all the wolf in the population, at the end 

of which the wolf in the population is then sort again as in 

step 2 in this procedure, while taking note of the alpha 

wolf and it fitness value as the best in the population and 

store it. 

Step 7: Repeat the procedure from step 2 to step 6 for the 

chosen maximum number of iteration, therefore in this 

case we chose 5 as the maximum iteration to be perform, 

so the procedure should be repeated 5 times, and at the 

end of each iteration the best wolf and it fitness value is 

capture and stored. 

Step 8: Code the above procedures using python 

programming language, for accuracy and ease of 

computation using high population size and high 

maximum number iteration, and lastly ease of 

visualization of the output using plots. 

4. Results and discussion

        This section presents the details of the results at the 

implementation of the mathematical models and 

equations presented and illustrated with numerical 

examples in the section on method. Thus, the equations 

and the grey wolf optimizer are applied to the boring 

operation data previously presented in Patel and 

Deshpande [14] and worked on to an integrated model of 

Taguchi-Box Behnken design firefly, Fasina et al. [33]. 

The objective function developed in the later study serves 

as the input to the present study while the experimental 

details of Patel and Deshpande [14] were also utilized in 

the analysis presented here. In the previous section, the 

present authors discussed about the main motivations to 

develop the grey wolf optimizer as the social hierarchy 

and hunting mechanism of the grey wolves. In the 

hierarchy, which is strictly followed in the wolf pack are 

have, the alpha, beta, delta and omega wolves 

representing the top down to the lowest in the hierarchy. 

For the hunting mechanism, the wolves’ chases a prey that 

enters its territory until its energy exhaust and can hardly 

run and move again. As it pants, resting to gather more 

energy the wolves attack it. As it bleeds and become weak 

they overcome and kill to prey.  

       In the application of the mathematical model and 

equation for the grey, the starting point here is to apply the 

social hierarchy aspect of the grey as solutions to work 

with. In this case, the objective function formulated in 

Abdullahi and Oke [32] for grey wolf data when the 

objective function is generated from the optimized Box 

Behnken design parameters is introduced into the python 

programme used for computational efficiency of the 

solution. The objective function is stated as follows: 

Minimize S/N ratio, SNR = -70.00 + 0.0233 speed -3 feed 

+3.8 depth of cut +10.92 nose radius -0.000010 speed ×

speed + 35 feed × feed -1.6 depth of cut × depth of cut -

7.72 nose radius × nose radius 0.0000 speed × feed -

0.00092 speed × nose radius -9.2 feed × nose radius (12)
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        Next, the population of wolves considered in the 

work is 200 wolves while 50 iterations are considered. 

First, the population of the grey wolves is initialized with 

Xi stated to have varying from 1 to n. Also the coefficient 

factors a, A and C are initialized. Then, the fitness 

function of each search agent is computed to establish the 

best, second best and third best search agent. The search 

agents A1, A2, A3, C1, C2 and C3 are evaluated using 

various random numbers as 0.61424, 0.90222, and 

0.50349, 0.85676, 0.024209 and 0.90519, respectively. 

First, consider Equation (3) where t = 0, the value of “a” 

becomes 2. In this case, all the values of A1, A2, A3, C1, 

C2 and C3will be computed based on a= 2 at the first 

iteration. This gives A1= 0.45696 since 0.61424 is 

substituted into Equation (4). By using the structure of 

Equation (4) and 0.90222 and 0.50349 as the random 

numbers for the equations to compute A2 and A3, then 

these values of A2 and A3 are computed as 1.60888 and 

0.01396, respectively. To compute C1, C2 and C3, 

Equation (5) is adopted and the corresponding random 

numbers used are 0.85676, 0.02429 and 0.90519, 

respectively. Thus, C1, C2 and C3 are 1.71352, 0.04858 and 

1.81038, respectively. Next, the fitness of each search 

agent Xα, Xβ and X is calculated. To achieve this 

purpose, the researchers substituted the values of speed, 

feed, depth of cut and nose radius it each of levels 1,2,3 

and 4 as in Table 4 of Patel and Deshpande [14] to the 

Equation (12) for the optimized values of the Box 

Behnken Design fitness value to obtain four sets of SN 

ratios, from which Xα, Xβ and X will be brought out. To 

start this evaluation, Equation (12) is recalled and the 

values of the experiment for the boring operation 

substituted into it at level 1, which is [800, 0.06, 1, and 

0.08] for speed, feed, depth of cut and nose radius, 

respectively. A Microsoft Excel spreadsheet was set up to 

calculate the solution. On substituting the values of these 

parameters into Equation (12), the SNR obtained is 

3.9016. Next, considering levels 2, 3 and 4 and the 

corresponding data on parameters from Table 1 of Patel 

and Deshpande [14], the values of SNR obtained are 

81.984, 80.474 and 79.564, respectively. Now, it is from 

these calculate values of SNR, which are four items that 

the best, second best and third best search agents will be 

chosen. By considering these SNR values, Xα, Xβ and X

are 79.564, 80.474 and 81.984, respectively. Recall that 

these values are being awaited for further substitution into 

Equations (6) to (11). Then the values of Dα, Dβ, D
,
X1, 

X2 and X3 could be obtained when the previous results are 

substituted into Equations (6) to (11). It should be noted 

that Xα is taken as Xt at this stage since we do not know 

the prey’s location and this assumption is that X is the best 

solution for determining the prey’s position since it is 

known to be the leading wolf to attack the prey. Then, Dα 

= 56.77051 based on the values of C1= 1.71352, Xα = 

79.564, and Xt = 79.564. Also, Dβ= -75.6546 where the 

component variables that yielded Dβ are C2= 0.04858, Xβ= 

80.474 and Xt= 79.564. Furthermore, D = 68.85819 

where the component variables are C3=1.81038, X

=81.984 and Xt=79.564. Besides, X1, X2, X3 are computed 

based on Equations (9) to (11) as 53.62215, 202.1931 and 

81.02274 and Xnew, which is the average of these X1, X2 

and X3 yields 112.2793.  

        Next, the coefficient factor “a” is updated by 

increasing t from 0 to 1. This gives a = 1.98. It should be 

noted that t = 1, maximum iteration=50. Then the whole 

process of computing A1, A2, A3, C1, C2, C3, X1, X2, X3, 

Dα, Dβ and D is repeated. However, before increasing t 

to 1, the value of X noted which is at the first iteration. 

Having obtained Xα, the speed, feed, depth of cut and nose 

radius are then read from the python programme results as 

[800, 0.06, 1, 0] where speed =800rpm, 

feed=0.06mm/rev, depth of cut=1mm while nose radius is 

0. Furthermore, the programme is repeated to t=1 and till

t = 10, Xα = 872829.534 obtained after t = 10. More results

are generated as shown in section 4.1. Besides, the same

procedure is run but using the regression equation from

the BBD as the objective function. The results are shown

in section 4.2.

4.1 Grey wolf data when objective function is 

generated from optimized the BBD 

parameters 

Maximum iteration = 50 iterations 

Population = 200wolfs 

1 [800, 0.06, 1, 0] 

2 [800, 0.06, 1, 0] 

3 [800, 0.06, 1, 0] 

4 [800, 0.06, 1, 0] 

5 [800, 0.06, 1, 0] 

6 [800, 0.06, 1, 0] 

7 [800, 0.06, 1, 0] 

8 [800, 0.06, 1, 0] 

9 [800, 0.06, 1, 0] 

10 [800, 0.06, 1, 0] 

 The best fitness value  of 

wolfs at the end of 10th 

iteration is 872728.534 

11 [800, 0.06, 1, 0] 

12 [800, 0.06, 1, 0] 

13 [800, 0.06, 1, 0] 

14 [800, 0.06, 1, 0] 

15 [800, 0.06, 1, 0] 

16 [800, 0.06, 1, 0] 

17 [800, 0.06, 1, 0] 

18 [800, 0.06, 1, 0] 

19 [800, 0.06, 1, 0] 

20 [800, 0.06, 1, 0] 

 The best fitness value  of 

wolfs at the end of 20th 

iteration is 872728.534 

21 [800, 0.06, 1, 0] 

22 [800, 0.06, 1, 0] 

23 [800, 0.06, 1, 0] 

24 [800, 0.06, 1, 0] 

25 [800, 0.06, 1, 0] 

26 [800, 0.06, 1, 0] 
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27 [800, 0.06, 1, 0] 

28 [800, 0.06, 1, 0] 

29 [800, 0.06, 1, 0] 

30 [800, 0.06, 1, 0] 

 The best fitness value  of 

wolfs at the end of 30th 

iteration is 872728.534 

31 [800, 0.06, 1, 0] 

32 [800, 0.06, 1, 0] 

33 [800, 0.06, 1, 0] 

34 [800, 0.06, 1, 0] 

35 [800, 0.06, 1, 0] 

36 [800, 0.06, 1, 0] 

37 [800, 0.06, 1, 0] 

38 [800, 0.06, 1, 0] 

39 [800, 0.06, 1, 0] 

40 [800, 0.06, 1, 0] 

 The best fitness value  of 

wolfs at the end of 50th 

iteration is 872728.534 

41 [800, 0.06, 1, 0] 

42 [800, 0.06, 1, 0] 

43 [800, 0.06, 1, 0] 

44 [800, 0.06, 1, 0] 

45 [800, 0.06, 1, 0] 

46 [800, 0.06, 1, 0] 

47 [800, 0.06, 1, 0] 

48 [800, 0.06, 1, 0] 

49 [800, 0.06, 1, 0] 

50 [800, 0.06, 1, 0] 

The best fitness value  of 

wolfs at the end of 50th 

iteration is 872728.5336000001 

Optimal 

solution 

 [800, 0.06, 1, 0] 

Figure 1 shows the performance of the objective 

function value during iterations but when grey wolf data 

when objective function is generated from optimized the 

BBD parameters. 

Fig. 1 Performance of the objective function value during 

iterations (optimized the BBD parameters)

4.2 Grey wolf optimization data when 

regression equation from the BBD is used as 

objective function 

Maximum iteration = 50 iterations 

Population = 200wolfs 

Iterations Optimal Solution 

1 [1400, 0.12, 1.5, 

0.7998494077077948] 

2 [1400, 0.12, 1.5, 

0.9266947131496583] 

3 [1400, 0.12, 1.5, 

0.9266947131496583] 

4 [1400, 0.12, 1.5, 

0.9266947131496583] 

5 [1400, 0.12, 1.5, 

0.9142809822476746] 

6 [1400, 0.12, 1.5, 

0.9521322355263552] 

7 [1400, 0.12, 1.5, 

0.9521322355263552] 

8 [1400, 0.12, 1.5, 

0.8183576525571928] 

9 [1400, 0.12, 1.5, 

0.8183576525571928] 

10 [1400, 0.12, 1.5, 

0.7561705480213964] 

The best fitness value  of 

wolfs at the end of 50th iteration is -

51.503 

11 [1400, 0.12, 1.5, 

0.7561705480213964] 

12 [1400, 0.12, 1.5, 

0.716205386390976] 

13 [1400, 0.12, 1.5, 

0.716205386390976] 

14 [1296.808766906948, 

0.07848402333756388, 

1.2611786713610218, 

0.5549105218827534] 

15 [1400, 0.09702983228255345, 

1.4174285579294976, 

0.6354410778039873] 

16 [1400, 0.09702983228255345, 

1.4174285579294976, 

0.6354410778039873] 

17 [1373.3029436160589, 

0.11103574045667443, 

1.45937413100888, 

0.6506974336568464] 

18 [1373.3029436160589, 

0.11103574045667443, 
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1.45937413100888, 

0.6506974336568464] 

19 [1373.3029436160589, 

0.11103574045667443, 

1.45937413100888, 

0.6506974336568464] 

20 [1373.3029436160589, 

0.11103574045667443, 

1.45937413100888, 

0.6506974336568464] 

 The best fitness value  of 

wolfs at the end of 20th iteration is -

51.491 

21 [1261.962817283115, 

0.10310164068682792, 

1.3289511875202542, 

0.5589682380329987] 

22 [1261.7130515163246, 

0.10282916683807825, 

1.311130279921355, 

0.5792279196248411] 

23 [1261.7130515163246, 

0.10282916683807825, 

1.311130279921355, 

0.5792279196248411] 

24 [1261.7130515163246, 

0.10282916683807825, 

1.311130279921355, 

0.5792279196248411] 

25 [1261.7130515163246, 

0.10282916683807825, 

1.311130279921355, 

0.5792279196248411] 

26 [1261.7130515163246, 

0.10282916683807825, 

1.311130279921355, 

0.5792279196248411] 

27 [1261.7130515163246, 

0.10282916683807825, 

1.311130279921355, 

0.5792279196248411] 

28 [1219.5872615697167, 

0.10073983475277971, 

1.2930126720521737, 

0.5548516693871298] 

29 [1219.2308636187952, 

0.09963767363948217, 

1.2719779555196427, 

0.5587624065696885] 

30 [1219.2308636187952, 

0.09963767363948217, 

1.2719779555196427, 

0.5587624065696885] 

 The best fitness value  of wolfs at 

the end of 300th iteration is -51.491 

31 [1219.2308636187952, 

0.09963767363948217, 

1.2719779555196427, 

0.5587624065696885] 

32 [1219.2308636187952, 

0.09963767363948217, 

1.2719779555196427, 

0.5587624065696885] 

33 [1219.2308636187952, 

0.09963767363948217, 

1.2719779555196427, 

0.5587624065696885] 

34 [1203.7105458112567, 

0.09094659333978998, 

1.229814154259614, 

0.5497731543278458] 

35 [1203.7105458112567, 

0.09094659333978998, 

1.229814154259614, 

0.5497731543278458] 

36 [1203.7105458112567, 

0.09094659333978998, 

1.229814154259614, 

0.5497731543278458] 

37 [1203.7105458112567, 

0.09094659333978998, 

1.229814154259614, 

0.5497731543278458] 

38 [1201.8667639024052, 

0.0887649120312805, 

1.2203543256198701, 

0.5439837121669641] 

39 [1201.8667639024052, 

0.0887649120312805, 

1.2203543256198701, 

0.5439837121669641] 

40 [1210.3384470690364, 

0.08762136214580944, 

1.2274828370791884, 

0.5252834771242613] 

The best fitness value  of 

wolfs at the end of 40th iteration is -

51.491 

41 [1210.3384470690364, 

0.08762136214580944, 

1.2274828370791884, 

0.5252834771242613] 

42 [1201.8667639024052, 

0.0887649120312805, 

1.2203543256198701, 

0.5439837121669641] 

43 [1195.9500476927262, 

0.08840038928613259, 

1.2151842043706027, 

0.5414881583854834] 

44 [1192.2572986211783, 

0.08876374377039566, 

1.2379604158569308, 

0.5677748329471014] 
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45 [1200.2592201959799, 

0.08921811572217586, 

1.2320789942692294, 

0.5580975612783549] 

46 [1191.9781951023076, 

0.08865634140918455, 

1.2249697415298957, 

0.5556227389395847] 

47 [1197.1766315752343, 

0.08894149220735675, 

1.2264405222570909, 

0.554543131504797] 

48 [1192.2151387835816, 

0.08861160035971917, 

1.2209222486320466, 

0.5518671776660374] 

49 [1191.9781951023076, 

0.08865634140918455, 

1.2249697415298957, 

0.5556227389395847] 

50 [1189.5771506857511, 

0.08848085594306532, 

1.2202638619101076, 

0.5523376994219448] 

The best fitness value  of 

wolfs at the end of 50th iteration is -

51.490994127543615 

Optimal 

solution 

 [1189.5771506857511, 

0.08848085594306532, 

1.2202638619101076, 

0.5523376994219448] 

        Figure 2 also shows the performance of the objective 

function value during iterations but when the grey wolf 

optimization data when regression equation from the BBD 

is used as objective function 

Fig. 2 Performance of the objective function value during 

iterations (linear equation)

4.3 Sensitivity analysis 

        The aim of embarking on the sensitivity of the data 

is to estimate the degree of responsiveness of each input 

relative to the output. To this end a brief sensitivity 

analysis was conducted where for each input, namely 

speed, feed, depth of cut and nose radius, 10% increases 

and reductions were made consecutively on the 

parameters (optimized) and the new values of the surface 

roughness which is the output were noticed for six 

simulations (Table 2). Microsoft Excel was used to aid the 

computations. While increasing and decreasing these 

values of a particular variable (say speed), other variables 

were not adjusted (i.e. feed, depth of cut and nose radius). 

In all, four scenarios of analysis were created, 

representing scenarios, 2, 3 and 4 for the respective 

adjustments made on 10% and decrease for speed, feed, 

depth of cut and nose radius. For scenario 1, for feed, this 

optimized parameter initially has a value of 1189.58. It 

was increased by 10% at each count in six counts to a 

maximum of 1824.37. This yielded a decrease of surface 

roughness value from -51.55056424 at the first count -

56.21341419. However, when the speed parameter was 

reduced by 10% in six counts the response was decreases 

in the surface roughness from the first count of -

51.5734018 to -54.80794278 in the fifth count but a 

sudden increase in the surface roughness value to -

51.55056424. The implication of the results is that for the 

increase of speed variable by 10%, a negative correlation 

between the speed and the optimal surface roughness 

exist. Furthermore, the value of the optimized output does 

not show large variable suggesting that the speed 

parameter might not have a strong impact on the surface 

roughness. However, considering the situation of 10% 

decrease in speed, it is suggested that the optimal surface 

roughness shows sensitivity to changes in the speed 

parameter with a non-linear response. Also, it shows that 

the speed parameter has a strong impact on the output 

(surface roughness). Moreover, scenarios 2 to 4 were 

explored using the same procedure followed in scenario 1. 

The results are shown in Figures 2 to 5.  

        The conclusion from scenario 2 where feed is 

increased by 10% in each count of six is that as the feed 

parameter increases, the optimal surface roughness starts 

to decrease and then at a point begins to increase linearly, 

revealing that the optimal surface roughness is sensitive 

to changes in the feed parameter. Also, it shows that the 

feed parameter is critical to the surface roughness. Still on 

the feed parameter, as it is decreased by 10% in each of 

the six counts, the optimal surface roughness shows a non-

linear response. It shows an initial decrease in the optimal 

surface roughness followed by an increase in the surface 

roughness. It implies that surface roughness is sensitive to 

changes in the feed parameter and it is important in this 

aspect. For the nose radius, as a 10% increase in this 

parameter was initiated, the surface roughness gradually 

decreases. It shows a negative correlation between depth 

of cut and the optimized outputs. Besides, the optimized 

surface roughness shows sensitivity to changes in the 

depth of cut and the sensitivity is shown in the consistent 

decrease in the surface roughness as depth of cut 

increases. As the nose radius is reduced by 10% in each of 

the six counts, the optimized surface roughness shows a 



39 ENGINEERING ACCESS, VOL. 10, NO. 1, JANUARY-JUNE 2024 

non-linear response. There was an initial increase in the 

output followed by a decrease, suggesting that the 

optimized surface roughness shows sensitivity it changes 

in the depth of cut variable with a non-linear response.  

        Now, the last parameter tested (scenario 4) is the 

nose radius. As a 10% increase was initiated, for the nose 

radius, the optimized surface roughness shows a non-

linear response. There was an initial decrease in the 

surface roughness followed by an increase in the surface 

roughness. The optimized output shows sensitivity to 

changes in the nose radius variable and this sensitivity is 

reflected in the non-linear response observed in the 

output. When a 10% decrease in the nose radius was 

initiated, the optimized surface roughness showed a non-

linear response. It exhibited an initial increase in the 

surface roughness followed by a decrease in the surface 

roughness optimal value. The optimized output shows 

sensitivity to changes in the nose radius variable with a 

non-linear response.     

Table 2 10% increase and decrease in Speed, feed, depth of cut and nose 
radius with the corresponding changes in surface roughness 

10% increase 10% decrease 

Speed SR Speed SR 

1 1189.58 -51.550564 1070.622 -51.5734 

2 1308.538 -51.810747 944.664 -51.9061 

3 1437.496 -52.412509 818.706 -52.5561 

4 1566.454 -53.346874 692.748 -53.5233 

5 1695.412 -54.613842 566.79 -54.8079 

6 1824.37 -56.213414 1189.58 -51.5506 

10% increase 10% decrease 

Feed SR Feed SR 

1 0.089 -51.550564 0.0801 -51.5315 

2 0.0979 -51.564079 0.07209 -51.5096 

3 0.10769 -51.572541 0.064881 -51.4861 

4 0.118459 -51.5741 0.058393 -51.4618 

5 0.130305 -51.566439 0.052554 -51.4374 

6 0.143335 -51.546666 0.089 -51.5506 

10% increase 10% decrease 

DC SR DC SR 

1 1.22 -51.550564 1.098 -51.5617 

2 1.342 -51.587067 0.9882 -51.6124 

3 1.4762 -51.682231 0.88938 -51.6911 

4 1.62382 -51.853474 0.800442 -51.7886 

5 1.786202 -52.122385 0.720398 -51.898 

6 1.964822 -52.515641 1.22 -51.5506 

10% increase 10% decrease 

NR SR NR SR 

1 0.55 -51.550564 0.495 -51.6022 

2 0.605 -51.545604 0.4455 -51.6887 

3 0.6655 -51.594093 0.40195 -51.796 

4 0.73205 -51.712705 0.361755 -51.921 

5 0.805255 -51.92216 0.32558 -52.0549 

6 0.885781 -52.248128 0.55 -51.5506 

5. Conclusions

        In this article, the boring process involves the 

machining of IS 2062 E250 steel plates was analyzed from 

the literature data of Patel and Deshpande [14]. The 

method of Taguchi-Pareto-Box Behnken Design-grey 

wolf optimization was applied with the design of 

experiments as the foundation of the analysis. The speed, 

feed rate, depth of cut and nose radius were the variables 

of the process used in the experiment. The principal 

response for the boring process is the surface roughness, 

which was to be optimized. For the objective function, 

two methods were adopted. The first method is when the 

objective function is generated from optimized Box 

Behnken design parameters. The second is the case where 

the grey wolf optimization data contains an objective from 

the perspective of regression equation generated from the 

Box Behnken Design method. The principal conclusions 

from this work are as follows: 

• The use of Taguchi-Pareto-Box Behnken

Design-Grey Wolf Optimization methods for the

boring process is feasible.

• To ascertain utmost surface roughness of the

process values of the IS 2062 E250 steel plates,

process value of speed, feed rate, depth of cut

and nose radius are 800, 0.06, 1 and 0 when the

objective function was obtained from optimized

Box Behnken Design parameters. However, it

was 1189.58, 0.089, 1.22 and 0.55 for the 

respective parameters when the regression model 

was introduced from the Box Behnken Design as 

an objective function. 

• For the first time, the coupling of Taguchi-

Pareto, Box Behnken Design, grey wolf

optimization methods was done to implement

optimization decisions for the boring process to

obtain the best solution for the surface roughness

of the IS 2062 E250 steel plates.

        The combined method helps to reduce time and 

money during operational planning decision. To 

understand this claim, it is acknowledged that engineers 

spend time and money to obtain reliable results for 

decision making. However, much of this information is 

obtainable from trial and error cases and the past 

experiences of the engineer. This involves searching past 

records of performance during the previous planning 

operations, interviewing operators responsible for the 

success of previous boring operations to obtain the critical 

elements of success. Moreover, as the engineer deploys 

optimal results obtained from the hybrid method proposed 

in planning, there is no need for extensive past record 

searching, which is man-hours saved. 

 In the future, other optimization procedures could be 

substituted for the grey wolf optimization procedure. Such 

methods as particle swarm optimization and ant colony 

optimization methods are promising to obtain new 

objectives of the articles. Furthermore, the industrial 

usage of the IS 2062 E250 steel plates analyzed in the 

present study are diverse. They include storage tanks, 

pipeline construction and for equipment in oil and gas 

industries. To manufacture components under the 

mentioned categories, milling, drilling and cutting 

processes could be applied to the IS 2062 E250 steel for 

processing. For instance, consider the storage tank where 

several cutting activities are to be made. The researchers 
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need to collect information on the cutting speed, depth of 

cut and the cutting angle, at different levels. Then the 

orthogonal arrays and objective functions could be 

formulated. Afterwards, this work could be applied to 

obtain result from which conclusions may be drawn. Thus, 

it is suggested that future studies should focus on applying 

the suggested method to the IS 2062 E250 steel for 

processing in milling, drilling and cutting processes. 
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