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Abstract. Optimizing process parameters in boring
operation is extremely important as aids to maintain
high resource conservation and efficiency and the free
flow of boring data while optimally using boring
resources. With optimal parameters, real-time
information is offered to process engineers for the
practical control the boring operation thus reducing
the cost of boring operations. This article presents an
investigation on the use of optimization and
prioritization in the boring process of 1S 2062 E250
steel plates wusing coupled Taguchi-Pareto-Box
Behnken Design-grey wolf optimization approach.
The experimental data, drawn from the literature, was
initially provided by Patel and Deshpande on CNC TC
machine. The objective function, constraints,
population size, number of iterations, and fitness
function were determined. Then the solution for the
grey wolf optimization is generated using the python
programming language. Three representative
parameters of speed, feed and depth of cut were
foundations of the Taguchi’s experimental design used
for solving the problem. The optimal parameters were
determined from the experiments. For the first time,
the coupled Taguchi-Pareto-Box Behnken Design-
grey wolf optimization method to make optimization
decisions for the boring process. Using 50 iterations
and 200 wolfs, the best fitness value of wolves at the
end of the 50" iteration is 872728.53 when the
objective function is generated from optimized Box
Behnken Design parameters. It also has an optimal
solution of speed, feed, depth of cut and nose radius as
800rpm, 0.06,1 and 0, respectively. However, on the

application of the regression equation from the Box
Behnken Design to form an objective function, using
the same 50 iteration and 200 wolves the best fitness
value of wolves at the end of 50™ iteration is -51.49
while the optimal parameters are 1189.58, 0.089,
1.22, 0.55 for the speed, feed, depth of cut and nose
radius, respectively. Hence, the outcome of this study
may be a route to reducing time and money associated
with unnecessary usage of non-optimal boring data
during operations planning decisions.

Keywords: Grey wolf optimization, CNC machine,
Taguchi-Pareto, fitness values, parameters

1. Introduction

The attainment of substantially low surface
roughness has been the principal pursuit of process
engineers in most machining activities [1], [2], [3], [4].
This challenge is even more compelling and requires
an urgent attention because boring operation is widely
recognized as a secondary procedure used to finish up
a pre-existing hole or enlarge it [1], [5], [6]. Thus,
many machine parts cannot be delivered to customers
until boring actions are completed, holding on the
profits in investments that should have been made by
the company. Alongside, Trung [1] argued on the
constraint of low productivity imposed on the
machining process since the depth of cut is marginally
chosen in such processes as grinding. By extension,
boring process has the same limitations [7].
Furthermore, Trung [1] declared that while machining
productivity greatly influence the principal cutting
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parameters such as the speed, feed rate, depth of cut
and nose radius used in the present study, the surface
roughness outcome is also affected by these
parameters. Besides, the surface roughness, which is
the dominant response in the present study also
associate with cooling parameters, experimental
equipment situations, the dressing process and
machining materials according to Trung [1]. The
feasible approach is then to consider merely a few
parameters from this pool of parameters and establish
the thresholds of these parameters that produce the
least possible surface roughness considered as the
output of the 1S 2062 E250 steel grade boring process.

For some time, researchers have recognized this
approach and produced several experimental studies to
actualize this goal [1], [8], [9], [10], [11], [12]. Also,
by evaluating some of these reports, it is evident
Taguchi technique has played a dominant role to the
successful enhancement of machining performance.
An explanation for this success story is the nature of
the Taguchi method being an experimental design
framework. This philosophy allows several
researchers and practicing process engineers to obtain
solutions to machining problems wusing lesser
experiments and the opportunity of working with
several inputs that could be scaled to various levels [1].
Trung [1] added that Taguchi methods success is
based on the ability of the process engineer with fewer
data to utilize qualitative data such as the kind of
boring tool as in the present article’s case. Despite
these merits, there is difficulty in applying Taguchi
alone for the boring process problem formulated in
this article. If Taguchi method alone is applied to the
experimental matrix in Taguchi design, and the signal
to noise quotients determined, the obtained parametric
values for the boring process, for instance, can be
evaluated for only a criterion at a time. It implies that
if there exists more responses than the surface
roughness discussed in the present article, the Taguchi
method cannot obtain results at the same time. But the
present article is laying a foundation to work with
several responses and multiple input despite merely
focusing on only one response, surface roughness used
an example in the present study. Thus, the argument
here is that Taguchi method is not capable for multiple
response treatment at the same time. If a widely
acceptable method is to be developed in this article as
anticipated, this weakness of the Taguchi method
should be overcome [1]. Fortunately, previous
researchers have identified and proffered some
solutions to the mentioned problem.

Nonetheless, unfortunately, it seems no research
has applied the combination of Taguchi-Pareto
method, Box Behnken Design method and grey wolf
optimization method to analyses the optimization
status in boring process. But it is known that the IS

2062 E250 steel plates is extensively used in tanks and
application entailing non-pressure parts in industries
such as marine, seawater, gas process and chemical
processes [13]. Thus, the IS 2062 E250 steel plates is
a first choice in these industries. In these industries, as
machining process are performed for elevated level of
precision, the boring process, it is a surprise to be
unable to identify at least one study that has applied
the Taguchi-Pareto-Box Behnken Design grey wolf
method to the boring operation of the IS 2062 E250
steel plates. Given the scenario described in the
preceding paragraphs, it is revealed that the several
advantages of Taguchi method are important but
coupling the Taguchi technique and three approaches
in evaluation (Pareto, Box Behnken design and grey
wolf optimization) is also absent in all studies so far
reported on boring process. The closure of the gap is
pursued in the present article. In particular, based on
the experiments reported by Patel and Deshpande [14],
which followed experimental design principle and
focusing on IS 2062 E250 steel plates, the combined
Taguchi-Pareto Box Behnken design—grey wolf
optimization method will be applied in this article.

In this article, the authors employed the grey wolf
optimization as an added optimization method to the
Taguchi-Pareto-Box Behnken methodical
combination and not another optimization method
since, distinct from other optimization approaches, the
process engineer (decision maker) can adjust the
procedure as often as needed. Moreover, the grey wolf
optimization approach demonstrate ability to search
through self-adaptation to optimize solutions based on
the wolves behavior in hunting, where the wolves
divides themselves into groups and encircle their
preys. Furthermore, the other benefits of the grey wolf
optimization procedure are their fast-seeking speed,
simplicity in principle, easily realizable method and
high search precision.

2. Literature review

Sustainable development challenges have made
energy and environmental issues relevant to all
industries around the world. However, the ever-
increasing demand for quality from customers has
resulted in a superior surface polish and, as a result,
higher energy usage. Machine tools have usually low
energy efficiency, especially during discrete item
manufacture [15]. Table 1 is a summary of the
literature. Several studies have applied the ANOVA
method in their CNC turning machine operations [15],
[16], [17], [18], [19], [20]. Others have used the
following methods in their studies - Taguchi [17],
grasshopper optimization algorithm [21], response
surface methodology [20], [21], ANN and regression
analysis [18], grey wolf optimization algorithm [16],



ENGINEERING ACCESS, VOL. 10, NO. 1, JANUARY-JUNE 2024 30

[19], [20], genetic algorithms [16], [20], Jaya
optimization, whale optimization, particle swarm

optimization, and simulated annealing algorithm [20]
and principal component analysis [15].

Table 1 Summary of the literature

Machining
operation/
machine Output
Author(s) Material tool parameters Input parameters Methodology Conclusions
Tool life increased by
Drilling/LV varying the machining
-45, Spindle speed, condition. Greywolf
three-axis feed rate, optimization achieved
milling acceleration, Grey wolf and | optimized speed and feed
Mary etal. [22] | EN24 centre Tool wear force signals neural controller parameter.
Water  pressure,
Surface nozzle diameter,
roughness jet velocity,
Abrasive Material abrasive
water-jet removal rate, | concentration, Algorithm avoids local
Chakraborty machining overcut,and nozzle tip distance | Grey wolf | optima. GWO improved in
and Mitra [23] (AWJIM) taper e optimizer response values
Surface
roughness A 1.5wt% MWCNT, 1500
(Ra), Cutting rpm spindle speed, 50
force (Fc),and | MWCNT weight | Grey wolf | mm/min feed rate, and 3
Polymer Material percent,  spindle | optimization mm depth of cut are the best
Kharwar  and | nanocomp removal rate | speed, depthofcut, | algorithm, combinations to reduce
Verma [19] osites Milling (MRR) and feed rate ANOVA surface roughness.
The optimized artificial
network  can  predict
machining  force  and
surface  roughness  of
Cutting speed, feed milling Also, when the
Milling forces | rate, the axial | Artificial neural | cutting speed is increased,
Inconel and  surface | depth of cutting, | network, and | the machining forces are
Imani et al. [24] | 738 Milling roughness and coolant Genetic algorithm | reduced.
Ball end Spindle speed, The GWO model was the
milling/CN feed per tooth, best solution in all the three
Sekulic et al. | Hardened C milling | Surface axial depth and | ANOVA, GA and | models. -
[16] steel center roughness radial depth of cut | GWO
Grey relational | Based on ANOVA results,
analysis, principle | the feed rate is the most
component important input parameter,
Power analysis, followed by depth of cut,
consumption Cutting speed,feed | and response | and finally cutting speed for
Kant and | AISI 1045 and  surface | rate,and depth of | surface reduced surface roughness
Sangwan [15] steel machining roughness cut methodology and power usage.
High Wire Pulse off time
carbon Electrical (TOFF), upper It was found that the most
high Discharge flush (UF), lower influential component for
Kulkarni  and | chromium | Machining Material flush (LF) and wire | Taguchi and Gray | MRR is determined to be
Kulkarni [25] steel (WEDM) removal rate tension (WT). wolf optimization TON.
Feed rate is the most
CNC cutting speed, important parameter for
Burande et al. turning/ Surface depth of cut and | ANOVA and | obtaining an  optimal
[17] ENB8 steel Turning roughness feed rate Taguchi surface roughness
The grasshopper
Grasshopper optimization algorithm was
AISI 316 Feed rate (fd), | optimization effective in finding the best
austenitic CNC speed (vc), and | algorithm, surface roughness (Ra)
Kulkarni et al. | stainless lathe/Turni Surface depth  of  cut | response surface | values in dry, wet, and
[21] steel ng roughness (DoC) methodology cryogenic environments.
Grey Taguchi-
based response
Arc current, torch | surface The GT-RSM method was
stand-off, cutting | methodology (GT- | shown to significantly
304L Plasma arc | Surface speed RSM), Taguchi, | improve  the  quality
Ramalingam et | stainless cutting roughness and | and gas pressure | response surface | characteristics of
al. [26] steel (PAC) kerf width play methodology components
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The best possible trade-off

between the algorithm's
exploration and
exploitation  abilities s
guaranteed by the optimal
Convergence settings of the GWO's main
Khalilpourazari constant, Robust Grey Wolf | parameters and that the
and Total population size of | Optimizer RGWO was able to get the
Khalilpourazary multi-pass production gray wolf, and | (RGWO) and | best viable solution for
[27] milling time number of iteration | Taguchi method various cutting strategies.
Multi-objective dragonfly
Surface algorithm with an efficient
Khalilpourazari quality, maximum number | multi-objective constraint handling
and milling and | grinding cost | of iteration and | dragonfly technique is able to find
Khalilpourazary machining and total | numbers of dragon | algorithm and | non-dominated Pareto
[28] processes process time fly Taguchi method optimum solutions.
Surface The most  significant
roughness parameter on  surface
(Ra), cutting roughness and dimensional
time (t) and surface response | deviation is the tool
dimensional Tool diameter, | method and Grey | diameter. Feed is the most
Ms58 Multi-axis deviation feedrate and | relationship beneficial parameter in
Secgin [29] Brass CNC Lathe (dev) rotation speed analysis - reducing cutting time.
hybrid RSM-
nature inspired
optimization
technique,
RSM(BBD),
Genetic algorithm,
Grey wolf
optimization, Jaya
Material optimization,
removal rate, Whale
chamfer, heat- optimization, The most influential cutting
affected zone, | Stand-off gap, gas | Particle =~ Swarm | parameters are cutting
Portable surface pressure, cutting | optimization, and | speed, square value of the
stainless plasma arc | roughness, speed, simulated current, and the interaction
Mangaraj et al. | steel (AISI | cutting kerf width,and | and cutting | annealing between speed and cutting
[20] 304) system dross current. algorithm current.
Maximum
Dissimilar force required
material to break
workpiece, Hybrid RSM-
(aluminum maximum WASPAS
alloy and | Friction stir | stress (weighted Compared to other process
commerci | spot developed and aggregated  sum | factors, pin length has the
ally used | welding heat affected | Rotational speed, | product biggest impact to
Pradhan et al. | copper (FSSW) zone at the | pin length and | assessment)-grey controlling Max. Force,
[30] alloy) process welding joint tool tilt angle wolf Max. Stress, and HAZ.
Surface Low speeds and moderate
roughness feeds are used to reduce
cutting force | Rotational speed n | Multi-parameter main cutting force, while
and maximum | (rpm); feed rate f | analysis;Optimizat | high speeds and moderate
CuZn39Pb height of the | (mm/rev) and | ion, feeds are used to reduce
Fountas et al. | 3 brass profile Rt | depth of cut a | Grey Wolf | roughness parameters Ra
[31] alloy. Turning (um) (mm). algorithm. and Rt
Feed rate had the greatest
influence on the resultant
cutting force of the three
ANN , regression | cutting parameters, while
Hanief et al. | Red brass speed, depth of cut | analysis and | the depth of cut had the
[18] (C23000) Turning Cutting forces | and feed rate ANOVA least
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3. Method

In the objective statement, it was declared that the
grey wolf algorithm will be deployed in solving the boring
operation process optimization. This means that the
parametric optimization when boring will be modelled
and solved by using the social hierarchy (leadership
structure) of the grey wolves and their hunting
characteristics. While implementing the grey wolf
algorithm, the social hierarchy of the grey wolves which
identifies members of the park as having varied authorities
and influences on the decision of the parle as a whole is
adapted to solve the boring operation parametric
optimization. This social hierarchy identifies the alpha
wolves as the parle leaders with powers given to them to
decide on major issues on the parle, including when the
parle members should wake up and sleep and whether the
prey that enters their territories should be encircled and
killed or not. Beyond this mathematics, the algorithm that
shows the implementation also reveals the behaviors
during hunting. Often the alpha wolves, which consist of
the male and female decide on whether to pursue prey or
not through the facial signals sent to the members of the
pack.

In the following steps, the procedure for
implementing the grey wolf algorithm is explained here
using illustrative data besides the experimental data
obtained from the literature. It is thought that such an
effort will permit an easy replication of the method since
it is difficult to obtain intermediate data from the
implemental experimental data used in the literature. It
should be noted that as a result of implementing the
procedure using the python programming code only the
values at certain iterations are declared by the
programmer. Now, the following are the steps to
implement the grey wolf algorithm for the boring process
in this work.

Step 1: Determine the objective function of the problem,
its constraints and the projected population size. However,
the objective function is a mathematical model used to
either maximize a benefit to the boring operation or
minimize a disadvantage to the boring operation. Thus in
the results section that comes afterwards, the data from the
literature by Abdullahi and Oke [32] is used as the
objective function of the present work but in this section
on methods, an objective function for the first scenario
that is similar to the actual one used in the results section
suggests as

F(x) =5S + 0.005F + 0.08DC + 0.013NR (1)
This data comes with constraints that declare the limits to
which the variables are feasible. These constraints for the

first and second scenarios are as follows:

1<5<4,0.001<f<0.01,0.07<dc<0.17,and 0.2 <nr<
0.005

Next, the grey wolf expects the user to define the
population size. Interestingly, population size is defined
as the number of individuals contained in a population.
The meaning is that several series of experiments may be
run for the boring process. Here, the number of
experiments defines the population size. In each
experimental trial, several parameters may be captured in
the experiment, which include speed, nose radius, depth
of cut and feed. Now, in this illustration, the population of
the grey wolves is limited to 4 for illustration ease but
extended to 200 for the implementation of the
experimental data from the boring operation. Next is the
number of iterations, which could be defined as the
repeated computation of the fitness function (objective
function) whose output at each step gives information as
to whether the desired output value has been produced or
not. Thus, in the present study, as the fitness function is
run, if convergence is reached then the iteration could be
terminated. It means that values obtained at the next
iteration are not substantially different from those at the
earlier stages. From the above illustration, the objective
function, which is the fitness function has been declared,
itis also accompanied by constraint. The population of the
grey wolves at this illustrative stage is 4 while the number
of iterations is fixed at 3. Now, the objective function
under the guiding principles of the social hierarchy and
hunting behaviors of the grey wolves is run for the
parameters of speed, feed, depth of cut and nose radius
that characterize each boring operation task. Hence, a grey
wolf in the population, a grey wolf may be computed to
have [1, 0.004, 0.05, 0.01]. Here, each component of the
matrix is a data item of speed, feed, nose radius and depth
of cut, respectively. It implies that there should be four of
these matrices because the population of wolves
considered is four. By introducing each of these
parameters into the objective function earlier stated, the
fitness value of the population may be computed as
5.0042, 2.5052, 6.0029 and 5.5015.

Step 2: The sorting of the computed fitness value is made
in ascending order to determine the three best fithess
values with the lowest value being the best and the highest
value being the worst. The objective criterion is
minimization. By following up on step 1 and with four
values given in the last statement of the step, 2.5052 is the
lowest fitness value while its corresponding wolf has the
characteristic matrix component of speed, feed, nose
radius and depth of cut as [0.5 0.004, 0.06 0.03]. Since the
pursued objective criterion is minimization, the lowest
value is the best and it is chosen as the alpha wolf,
designated as X,. The second to the lowest fitness value is
5.0042 and its corresponding wolf’s matrix is [10.004,
0.05, 0.01], which is referred to as the beta wolf and
represented as Xg. Lastly, the third to the lowest fitness
value and its corresponding wolf matrix are 5.5015 and
[1.1 0.006 0.01 0.05] respectively while the variable

representation for this wolfis X .

Step3a: New solutions are generated using the grey wolf
mathematical model. Here, the contributions of the
wolves to the hunting task are considered in the evaluation
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of the Xnew. It is known that the alpha wolf, X,,
represented by X; leads the hunting and communicates the
next task to the pack through facial expressions. In
response, the beta wolves, Xg, represented by X, which
are next in the social hierarchy, follow the alpha wolves

closely. Next, the delta wolves, X also matches the

alpha wolves, and follows the beta involves since the beta
involves is higher in the hierarchy than the alpha wolves.
This delta involves are represented as X3 in the evaluation
of the Xnew (i.€. the new position of the pack members
when pursuing the prey). However, the omega wolves are
neglected from the updating mathematics on the
assumption that they do not contribute to the hunting
success of the pack directly. Their indirect contributions
could be as caregivers to the wounded wolves during
hunting. They also protect the elders, which are the old
wolves that had served as the alpha wolves but due to old
age cannot cope with the responsibility of the alpha group
and are hence relegated to the omega group where
extremely less demands are made from them. So it could
be noted that such efforts made by the omega wolves do
not interpret into position changes of the wolf's pack and
they are ignored in the computation of the position
updating. Thus, the updated position of the pack is known
as Xnew and represented as Equation (1):

X+ X, + X,
new = #
Equation (1) contains three variables, X;, X, and Xj,

X @

which are the positions of the wolves obtained from
different equations that follow.

The next step is to check the terminating criterion, which
states that if t is less than 3 the researchers continue and
otherwise stop. This condition is mathematically stated as
follows:

Check (t < max t) 2)

This means check t if it is less than the maximum value of
the iteration set for the programme. In this particular
instance, in the beginning, t = 0. Therefore the condition
0 < 3 is true and the researchers move to the next step.
This next step is referred to as updating the position of the
present search agent. Thus, the researchers are using the
coefficient factors A; and C;. But A; is a function of “a”,
where the value of “a” linearly decreases from 2 to 0 as in
Equation (3):

a=2- (t/Max t)) 3)
Then A, is expressed in Equation (4) as follows:

Ai=2ar:- a 4)
Also, the second coefficient factor C; is expressed in

Equation (5) as follows:

Ci=2n, (5)

For both Equations (4) and (5), r1 and r; are random
numbers which are differently generated in each case and
range between 0 and 1. So by using Equations (4) and (5),
the values for A; and Ci could be obtained for further
processing. Now, we progress the grey wolf hunting
model, which consists of six set of Equations (6) to (11).

D, =C,X, - X, (6)
D, =C,X, - X, )
D, =C,X, — X, ®)
X,=X,—AD, 9
X, =Xy = AD, (10)
X, =X,—AD, (12)

In Equations (6) to (11), the values of the coefficient
factors A; and C; earlier obtained are substituted in them.
It should be noted that different random numbers are used

to compute the variables Dy, D, D; . The researchers

should note that the values of the coefficient factor “a”
obtained in Equations (4) and (5) change with that of
Equation (4) changing in a linearly decreasing manner.
Now, to illustrate the working of the coefficient factor “a”,
if the maximum number of iterations is given as 5, then a
is computed as 2(1-1/5), which gives 1.6

Step 3b: Next is the computation of X1, Xz, X3

To achieve this computation, reference is made to
Equation (4) where the previously computed value of “a”
as 1.6 is substituted and Equation (4) yields a value of -
1.088 from the computation, which is the value for A;.
Now to compute the coefficient factor C1, consider a new
random number 0.3. Thus random number, when
substituted into Equation (5) with a value of "a" as 1.6,
which was previously obtained yields the coefficient
factor Cias 0.6. Recall that we are illustrating the working
of the mathematical model for the grey wolf and are at the
point of evaluating Equation (6). For this equation to be
computed C; has already been evaluated as 0.6,X, is also
already known, which was declared as [0.5, 0.004, 0.06,
0.03]in step 2. The only variable left to be specified is X,
which is given as [0.4, 0.05, 0.02, 0.04] for the current
wolf under consideration, as stated earlier. Then a matrix
multiplication is conducted between the co-efficient
factor C; 0.6 and the matrix X, and the matrix X; is
subtracted from the results to yield a matrix

0.1
_|0.0026

° 10.016
0.022

But Equation (9) relates D, A1, X, and X1, which already
has all the values of the component variables to be
substituted to obtain
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0.3912
~ 0.0012
' 10.0426

0.0061

From this evaluation of X3, the interpretation of the results
for the boring problem is a speed of 0.3912, feed as
0.0012, depth of cut 0.0426 and nose radius being 0.0061.
Therefore, Xz and X3 could be computed using the same
process to obtain

0.5132 0.3132
0.0023 0.0013
Xo= and Xs=
0.0325 0.0265
0.0052 0.0032

Step 3c. Step 3b is followed by the computation of the new
wolf’s position, Xnew has declared in Equation (1). Thus,
the values of Xi, X, and X3 obtained from step 3b are
substituted in the equation to obtain Xpw for each
parameter of speed, feed, depth of cut and nose radius as
0.4059, 0.0016, 0.0339 and 0.0048, respectively.
Therefore, the new wolf position Xnewis given by [0.4049,
0.0016. 0.0339, 0.0048].

Step 4: Next, check if the new computed wolf position is
within the search space of each parameters, if it is less than
the lower bound of a particular parameter, then the lower
bound value of that parameter replaces the computed

value in X, of that parameter, and if the computed

valuein X of a particular parameter is greater than the

upper bounds of that parameter, then the upper bound
value of the parameter replaces the computed value in

X of that parameter. Therefore, applying the

new

new

boundary check to X, we have
Xnew=[1, 0.0016, 0.07, 0.0048]

Step 5a: Compute the fitness value of X, using the

objective function described in step 1, we have F(x) =5
x1 + 0.005%0.0016 + 0.08 x0.07 + 0.013 x0.0048 =
5.0561

Step 5b: Perform the greedy selection to check if the new
wolf fitness value is better than the fitness value of the
current wolf under consideration, which was earlier

computed in step 3b as X, fitness = 2.0021, being better

means if X, fitness is smaller than X, fitness, in this

case, the fitness value of the current wolf under
consideration is better than the fitness value of the newly
computed wolf position. Therefore, the newly computed
wolf position and it fitness value is discarded, while the
wolf under consider and it fitness value is retained as
before, Note: that the objective being illustrated here is
minimization.

Step 6: Complete the first iteration by repeating step 3a to
step 5b above for all the wolf in the population, at the end
of which the wolf in the population is then sort again as in
step 2 in this procedure, while taking note of the alpha
wolf and it fitness value as the best in the population and
store it.

Step 7: Repeat the procedure from step 2 to step 6 for the
chosen maximum number of iteration, therefore in this
case we chose 5 as the maximum iteration to be perform,
so the procedure should be repeated 5 times, and at the
end of each iteration the best wolf and it fitness value is
capture and stored.

Step 8: Code the above procedures using python
programming language, for accuracy and ease of
computation using high population size and high
maximum number iteration, and lastly ease of
visualization of the output using plots.

4. Results and discussion

This section presents the details of the results at the
implementation of the mathematical models and
equations presented and illustrated with numerical
examples in the section on method. Thus, the equations
and the grey wolf optimizer are applied to the boring
operation data previously presented in Patel and
Deshpande [14] and worked on to an integrated model of
Taguchi-Box Behnken design firefly, Fasina et al. [33].
The objective function developed in the later study serves
as the input to the present study while the experimental
details of Patel and Deshpande [14] were also utilized in
the analysis presented here. In the previous section, the
present authors discussed about the main motivations to
develop the grey wolf optimizer as the social hierarchy
and hunting mechanism of the grey wolves. In the
hierarchy, which is strictly followed in the wolf pack are
have, the alpha, beta, delta and omega wolves
representing the top down to the lowest in the hierarchy.
For the hunting mechanism, the wolves’ chases a prey that
enters its territory until its energy exhaust and can hardly
run and move again. As it pants, resting to gather more
energy the wolves attack it. As it bleeds and become weak
they overcome and kill to prey.

In the application of the mathematical model and
equation for the grey, the starting point here is to apply the
social hierarchy aspect of the grey as solutions to work
with. In this case, the objective function formulated in
Abdullahi and Oke [32] for grey wolf data when the
objective function is generated from the optimized Box
Behnken design parameters is introduced into the python
programme used for computational efficiency of the
solution. The objective function is stated as follows:

Minimize S/N ratio, SNR = -70.00 + 0.0233 speed -3 feed
+3.8 depth of cut +10.92 nose radius -0.000010 speed x
speed + 35 feed x feed -1.6 depth of cut x depth of cut -
7.72 nose radius x nose radius 0.0000 speed x feed -
0.00092 speed x nose radius -9.2 feed x nose radius (12)
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Next, the population of wolves considered in the
work is 200 wolves while 50 iterations are considered.
First, the population of the grey wolves is initialized with
Xi stated to have varying from 1 to n. Also the coefficient
factors a, A and C are initialized. Then, the fitness
function of each search agent is computed to establish the
best, second best and third best search agent. The search
agents Ai, Ay As, Ci, Cyand C; are evaluated using
various random numbers as 0.61424, 0.90222, and
0.50349, 0.85676, 0.024209 and 0.90519, respectively.
First, consider Equation (3) where t = 0, the value of “a”
becomes 2. In this case, all the values of A;, Ay, As, Cy,
C, and Cswill be computed based on a= 2 at the first
iteration. This gives A;= 0.45696 since 0.61424 is
substituted into Equation (4). By using the structure of
Equation (4) and 0.90222 and 0.50349 as the random
numbers for the equations to compute Az and As, then
these values of A, and Asare computed as 1.60888 and
0.01396, respectively. To compute Ci, C, and Cs,
Equation (5) is adopted and the corresponding random
numbers used are 0.85676, 0.02429 and 0.90519,
respectively. Thus, C1, Czand Csare 1.71352, 0.04858 and
1.81038, respectively. Next, the fitness of each search

agent X, Xp and X;is calculated. To achieve this

purpose, the researchers substituted the values of speed,
feed, depth of cut and nose radius it each of levels 1,2,3
and 4 as in Table 4 of Patel and Deshpande [14] to the
Equation (12) for the optimized values of the Box
Behnken Design fitness value to obtain four sets of SN

ratios, from which X,, Xgand X ; will be brought out. To

start this evaluation, Equation (12) is recalled and the
values of the experiment for the boring operation
substituted into it at level 1, which is [800, 0.06, 1, and
0.08] for speed, feed, depth of cut and nose radius,
respectively. A Microsoft Excel spreadsheet was set up to
calculate the solution. On substituting the values of these
parameters into Equation (12), the SNR obtained is
3.9016. Next, considering levels 2, 3 and 4 and the
corresponding data on parameters from Table 1 of Patel
and Deshpande [14], the values of SNR obtained are
81.984, 80.474 and 79.564, respectively. Now, it is from
these calculate values of SNR, which are four items that
the best, second best and third best search agents will be

chosen. By considering these SNR values, X,, Xgand X

are 79.564, 80.474 and 81.984, respectively. Recall that
these values are being awaited for further substitution into

Equations (6) to (11). Then the values of D, Dg, D; X,

Xz and X3 could be obtained when the previous results are
substituted into Equations (6) to (11). It should be noted
that X, is taken as X; at this stage since we do not know
the prey’s location and this assumption is that X is the best
solution for determining the prey’s position since it is
known to be the leading wolf to attack the prey. Then, D
= 56.77051 based on the values of Ci= 1.71352, X, =
79.564, and X;= 79.564. Also, Dg= -75.6546 where the
component variables that yielded Dgare C,= 0.04858, Xg=

80.474 and Xi= 79.564. Furthermore, D, = 68.85819

where the component variables are C3=1.81038, X,

=81.984 and X;=79.564. Besides, X1, Xz, Xzare computed
based on Equations (9) to (11) as 53.62215, 202.1931 and
81.02274 and Xnew, Which is the average of these Xi, Xz
and Xj yields 112.2793.

Next, the coefficient factor “a” is updated by
increasing t from 0 to 1. This gives a = 1.98. It should be
noted that t = 1, maximum iteration=50. Then the whole
process of computing Ai, Az, As, Ci1, Co, Cs, X1, X2, X3,

Do, D and Dj is repeated. However, before increasing t

to 1, the value of X noted which is at the first iteration.
Having obtained X,, the speed, feed, depth of cut and nose
radius are then read from the python programme results as
[800, 0.06, 1, 0] where speed =800rpm,
feed=0.06mm/rev, depth of cut=1mm while nose radius is
0. Furthermore, the programme is repeated to t=1 and till
t=10, X, =872829.534 obtained after t = 10. More results
are generated as shown in section 4.1. Besides, the same
procedure is run but using the regression equation from
the BBD as the objective function. The results are shown
in section 4.2.

4.1 Grey wolf data when objective function is
generated from optimized the BBD
parameters

Maximum iteration = 50 iterations

Population = 200wolfs
[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
0 [800, 0.06, 1, 0]
The best fitness value of
wolfs at the end of 10™
iteration is 872728.534

P OO ~NO O WNE

11 [800, 0.06, 1, 0]
12 [800, 0.06, 1, 0]
13 [800, 0.06, 1, 0]
14 [800, 0.06, 1, 0]
15 [800, 0.06, 1, 0]
16 [800, 0.06, 1, 0]
17 [800, 0.06, 1, 0]
18 [800, 0.06, 1, 0]
19 [800, 0.06, 1, 0]
20 [800, 0.06, 1, 0]

The best fitness value of
wolfs at the end of 201
iteration is 872728.534

21 [800, 0.06, 1, 0]
22 [800, 0.06, 1, 0]
23 [800, 0.06, 1, 0]
24 [800, 0.06, 1, 0]
25 [800, 0.06, 1, 0]

26 [800, 0.06, 1, 0]
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27
28
29
30

31
32
33
34
35
36
37
38
39
40

41
42
43

44
45
46
47
48
49
50

Optimal

solution

[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
The best fitness value of

wolfs at the end of 30t
iteration is 872728.534

[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
[800, 0.06, 1, 0]

The best fitness value of

wolfs at the end of 50t
iteration is 872728.534

[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
[800, 0.06, 1, 0]

[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
[800, 0.06, 1, 0]
The best fitness value of

wolfs at the end of 50t
iteration is 872728.5336000001

[800, 0.06, 1, 0]

Figure 1 shows the performance of the objective
function value during iterations but when grey wolf data
when objective function is generated from optimized the

BBD parameters.

uDjective TUNCTion vaiue

920000

900000

880000

860000

840000

Evolution of the best graywolf

T T T T
20 30 40 50
Iteration

Fig. 1 Performance of the objective function value during

iterations (optimized the BBD parameters)

4.2 Grey wolf optimization data when
regression equation from the BBD is used as
objective function

Maximum iteration = 50 iterations

Population = 200wolfs

Iterations
1

10

11

12

13

14

15

16

17

18

Optimal Solution

[1400, 0.12, 15,
0.7998494077077948]

[1400, 0.12, 15,
0.9266947131496583]

[1400, 0.12, 15,
0.9266947131496583]

[1400, 0.12, 15,
0.9266947131496583]

[1400, 0.12, 15,
0.9142809822476746]

[1400, 0.12, 15,
0.9521322355263552]

[1400, 0.12, 15,
0.9521322355263552]

[1400, 0.12, 15,
0.8183576525571928]

[1400, 0.12, 15,
0.8183576525571928]

[1400, 0.12, 15,
0.7561705480213964]

The best fitness value of
wolfs at the end of 50t iteration is -
51.503

[1400, 0.12, 15,
0.7561705480213964]

[1400, 0.12, 15,
0.716205386390976]

[1400, 0.12, 15,
0.716205386390976]

[1296.808766906948,
0.07848402333756388,
1.2611786713610218,
0.5549105218827534]

[1400, 0.09702983228255345,
1.4174285579294976,
0.6354410778039873]

[1400, 0.09702983228255345,
1.4174285579294976,
0.6354410778039873]

[1373.3029436160589,
0.11103574045667443,
1.45937413100888,
0.6506974336568464]

[1373.3029436160589,
0.11103574045667443,
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19

20

21

22

23

24

25

26

27

28

29

30

31

1.45937413100888,
0.6506974336568464]

[1373.3029436160589,
0.11103574045667443,
1.45937413100888,
0.6506974336568464]

[1373.3029436160589,
0.11103574045667443,
1.45937413100888,
0.6506974336568464]

The best fitness value of
wolfs at the end of 20t iteration is -
51.491

[1261.962817283115,
0.10310164068682792,
1.3289511875202542,
0.5589682380329987]

[1261.7130515163246,
0.10282916683807825,
1.311130279921355,
0.5792279196248411]

[1261.7130515163246,
0.10282916683807825,
1.311130279921355,
0.5792279196248411]

[1261.7130515163246,
0.10282916683807825,
1.311130279921355,
0.5792279196248411]

[1261.7130515163246,
0.10282916683807825,
1.311130279921355,
0.5792279196248411]

[1261.7130515163246,
0.10282916683807825,
1.311130279921355,
0.5792279196248411]

[1261.7130515163246,
0.10282916683807825,
1.311130279921355,
0.5792279196248411]

[1219.5872615697167,
0.10073983475277971,
1.2930126720521737,
0.5548516693871298]

[1219.2308636187952,
0.09963767363948217,
1.2719779555196427,
0.5587624065696885]

[1219.2308636187952,
0.09963767363948217,
1.2719779555196427,
0.5587624065696885]

The best fitness value of wolfs at
the end of 300t iteration is -51.491

[1219.2308636187952,
0.09963767363948217,

32

33

34

35

36

37

38

39

40

41

42

43

44

1.2719779555196427,
0.5587624065696885]

[1219.2308636187952,
0.09963767363948217,
1.2719779555196427,
0.5587624065696885]

[1219.2308636187952,
0.09963767363948217,
1.2719779555196427,
0.5587624065696885]

[1203.7105458112567,
0.09094659333978998,
1.229814154259614,
0.5497731543278458]

[1203.7105458112567,
0.09094659333978998,
1.229814154259614,
0.5497731543278458]

[1203.7105458112567,
0.09094659333978998,
1.229814154259614,
0.5497731543278458]

[1203.7105458112567,
0.09094659333978998,
1.229814154259614,
0.5497731543278458]

[1201.8667639024052,
0.0887649120312805,
1.2203543256198701,
0.5439837121669641]

[1201.8667639024052,
0.0887649120312805,
1.2203543256198701,
0.5439837121669641]

[1210.3384470690364,
0.08762136214580944,
1.2274828370791884,
0.5252834771242613]

The best fitness value of
wolfs at the end of 40t iteration is -
51.491

[1210.3384470690364,
0.08762136214580944,
1.2274828370791884,
0.5252834771242613]

[1201.8667639024052,
0.0887649120312805,
1.2203543256198701,
0.5439837121669641]

[1195.9500476927262,
0.08840038928613259,
1.2151842043706027,
0.5414881583854834]

[1192.2572986211783,
0.08876374377039566,
1.2379604158569308,
0.5677748329471014]
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45 [1200.2592201959799,
0.08921811572217586,
1.2320789942692294,
0.5580975612783549]

46 [1191.9781951023076,
0.08865634140918455,
1.2249697415298957,
0.5556227389395847]

47 [1197.1766315752343,
0.08894149220735675,
1.2264405222570909,
0.554543131504797]

48 [1192.2151387835816,
0.08861160035971917,
1.2209222486320466,
0.5518671776660374]

49 [1191.9781951023076,
0.08865634140918455,
1.2249697415298957,
0.5556227389395847]

50 [1189.5771506857511,
0.08848085594306532,
1.2202638619101076,
0.5523376994219448]

The best fitness value of
wolfs at the end of 501" iteration is -

51.490994127543615
Optimal [1189.5771506857511,
solution 0.08848085594306532,
1.2202638619101076,
0.5523376994219448]

Figure 2 also shows the performance of the objective
function value during iterations but when the grey wolf
optimization data when regression equation from the BBD
is used as objective function

Evolution of the best graywolf

—51.4925 4

—51.4950

—51.4975 4

—51.5000 4

-51.5025

—51.5050

—51.5075 4

-51.5100

T T T T T T
0 10 20 30 40 50
Iteration

Fig. 2 Performance of the objective function value during
iterations (linear equation)

4.3 Sensitivity analysis
The aim of embarking on the sensitivity of the data
is to estimate the degree of responsiveness of each input

relative to the output. To this end a brief sensitivity
analysis was conducted where for each input, namely
speed, feed, depth of cut and nose radius, 10% increases
and reductions were made consecutively on the
parameters (optimized) and the new values of the surface
roughness which is the output were noticed for six
simulations (Table 2). Microsoft Excel was used to aid the
computations. While increasing and decreasing these
values of a particular variable (say speed), other variables
were not adjusted (i.e. feed, depth of cut and nose radius).
In all, four scenarios of analysis were created,
representing scenarios, 2, 3 and 4 for the respective
adjustments made on 10% and decrease for speed, feed,
depth of cut and nose radius. For scenario 1, for feed, this
optimized parameter initially has a value of 1189.58. It
was increased by 10% at each count in six counts to a
maximum of 1824.37. This yielded a decrease of surface
roughness value from -51.55056424 at the first count -
56.21341419. However, when the speed parameter was
reduced by 10% in six counts the response was decreases
in the surface roughness from the first count of -
51.5734018 to -54.80794278 in the fifth count but a
sudden increase in the surface roughness value to -
51.55056424. The implication of the results is that for the
increase of speed variable by 10%, a negative correlation
between the speed and the optimal surface roughness
exist. Furthermore, the value of the optimized output does
not show large variable suggesting that the speed
parameter might not have a strong impact on the surface
roughness. However, considering the situation of 10%
decrease in speed, it is suggested that the optimal surface
roughness shows sensitivity to changes in the speed
parameter with a non-linear response. Also, it shows that
the speed parameter has a strong impact on the output
(surface roughness). Moreover, scenarios 2 to 4 were
explored using the same procedure followed in scenario 1.
The results are shown in Figures 2 to 5.

The conclusion from scenario 2 where feed is
increased by 10% in each count of six is that as the feed
parameter increases, the optimal surface roughness starts
to decrease and then at a point begins to increase linearly,
revealing that the optimal surface roughness is sensitive
to changes in the feed parameter. Also, it shows that the
feed parameter is critical to the surface roughness. Still on
the feed parameter, as it is decreased by 10% in each of
the six counts, the optimal surface roughness shows a non-
linear response. It shows an initial decrease in the optimal
surface roughness followed by an increase in the surface
roughness. It implies that surface roughness is sensitive to
changes in the feed parameter and it is important in this
aspect. For the nose radius, as a 10% increase in this
parameter was initiated, the surface roughness gradually
decreases. It shows a negative correlation between depth
of cut and the optimized outputs. Besides, the optimized
surface roughness shows sensitivity to changes in the
depth of cut and the sensitivity is shown in the consistent
decrease in the surface roughness as depth of cut
increases. As the nose radius is reduced by 10% in each of
the six counts, the optimized surface roughness shows a
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non-linear response. There was an initial increase in the
output followed by a decrease, suggesting that the
optimized surface roughness shows sensitivity it changes
in the depth of cut variable with a non-linear response.

Now, the last parameter tested (scenario 4) is the
nose radius. As a 10% increase was initiated, for the nose
radius, the optimized surface roughness shows a non-
linear response. There was an initial decrease in the
surface roughness followed by an increase in the surface
roughness. The optimized output shows sensitivity to
changes in the nose radius variable and this sensitivity is
reflected in the non-linear response observed in the
output. When a 10% decrease in the nose radius was
initiated, the optimized surface roughness showed a non-
linear response. It exhibited an initial increase in the
surface roughness followed by a decrease in the surface
roughness optimal value. The optimized output shows
sensitivity to changes in the nose radius variable with a
non-linear response.

Table 2 10% increase and decrease in Speed, feed, depth of cut and nose
radius with the corresponding changes in surface roughness

10% increase 10% decrease
Speed SR Speed SR
1 1189.58 -51.550564 1070.622 -51.5734
2 1308.538 -51.810747 944.664 -51.9061
3 1437.496 -52.412509 818.706 -52.5561
4 1566.454 -53.346874 692.748 -53.5233
5 1695.412 -54.613842 566.79 -54.8079
6 1824.37 -56.213414 1189.58 -51.5506
10% increase 10% decrease
Feed SR Feed SR
1 0.089 -51.550564 0.0801 -51.5315
2 0.0979 -51.564079 0.07209 -51.5096
3 0.10769 -51.572541 0.064881 -51.4861
4 0.118459 -51.5741 0.058393 -51.4618
5 0.130305 -51.566439 0.052554 -51.4374
6 0.143335 -51.546666 0.089 -51.5506
10% increase 10% decrease
DC SR DC SR
1 1.22 -51.550564 1.098 -51.5617
2 1.342 -51.587067 0.9882 -51.6124
3 1.4762 -51.682231 0.88938 -51.6911
4 1.62382 -51.853474 0.800442 -51.7886
5 1.786202 -52.122385 0.720398 -51.898
6 1.964822 -52.515641 1.22 -51.5506
10% increase 10% decrease
NR SR NR SR
1 0.55 -51.550564 0.495 -51.6022
2 0.605 -51.545604 0.4455 -51.6887
3 0.6655 -51.594093 0.40195 -51.796
4 0.73205 -51.712705 0.361755 -51.921
5 0.805255 -51.92216 0.32558 -52.0549
6 0.885781 -52.248128 0.55 -51.5506

5. Conclusions

In this article, the boring process involves the
machining of IS 2062 E250 steel plates was analyzed from
the literature data of Patel and Deshpande [14]. The
method of Taguchi-Pareto-Box Behnken Design-grey
wolf optimization was applied with the design of

experiments as the foundation of the analysis. The speed,
feed rate, depth of cut and nose radius were the variables
of the process used in the experiment. The principal
response for the boring process is the surface roughness,
which was to be optimized. For the objective function,
two methods were adopted. The first method is when the
objective function is generated from optimized Box
Behnken design parameters. The second is the case where
the grey wolf optimization data contains an objective from
the perspective of regression equation generated from the
Box Behnken Desigh method. The principal conclusions
from this work are as follows:

e The use of Taguchi-Pareto-Box Behnken
Design-Grey Wolf Optimization methods for the
boring process is feasible.

e To ascertain utmost surface roughness of the
process values of the 1S 2062 E250 steel plates,
process value of speed, feed rate, depth of cut
and nose radius are 800, 0.06, 1 and 0 when the
objective function was obtained from optimized
Box Behnken Design parameters. However, it
was 1189.58, 0.089, 1.22 and 0.55 for the
respective parameters when the regression model
was introduced from the Box Behnken Design as
an objective function.

e For the first time, the coupling of Taguchi-
Pareto, Box Behnken Design, grey wolf
optimization methods was done to implement
optimization decisions for the boring process to
obtain the best solution for the surface roughness
of the 1S 2062 E250 steel plates.

The combined method helps to reduce time and
money during operational planning decision. To
understand this claim, it is acknowledged that engineers
spend time and money to obtain reliable results for
decision making. However, much of this information is
obtainable from trial and error cases and the past
experiences of the engineer. This involves searching past
records of performance during the previous planning
operations, interviewing operators responsible for the
success of previous boring operations to obtain the critical
elements of success. Moreover, as the engineer deploys
optimal results obtained from the hybrid method proposed
in planning, there is no need for extensive past record
searching, which is man-hours saved.

In the future, other optimization procedures could be
substituted for the grey wolf optimization procedure. Such
methods as particle swarm optimization and ant colony
optimization methods are promising to obtain new
objectives of the articles. Furthermore, the industrial
usage of the IS 2062 E250 steel plates analyzed in the
present study are diverse. They include storage tanks,
pipeline construction and for equipment in oil and gas
industries. To manufacture components under the
mentioned categories, milling, drilling and cutting
processes could be applied to the 1S 2062 E250 steel for
processing. For instance, consider the storage tank where
several cutting activities are to be made. The researchers
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need to collect information on the cutting speed, depth of
cut and the cutting angle, at different levels. Then the
orthogonal arrays and objective functions could be
formulated. Afterwards, this work could be applied to
obtain result from which conclusions may be drawn. Thus,
it is suggested that future studies should focus on applying
the suggested method to the IS 2062 E250 steel for

processing in milling, drilling and cutting processes.
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