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Abstract. Solar-powered charging systems have gained
increasing attention in various applications. However,
ineffective charge regulation can degrade their performance,
particularly under partial shading conditions (PSC). To
address this problem, a global maximum power point
tracking based on particle swarm optimization (GMPPT-
PSO) jointly operated with an MPPT-based fuzzy logic
controller is proposed. To achieve an optimal charge
controller, the main parameters of the GMPPT-PSO are
adaptively changed to catch the dynamic PSCs, and all fuzzy
parameters are derived and optimized through another PSO
to reduce complexity. As a result, the control fuzzy rules have
significantly reduced by about 20%. When applied to the
battery through constant current-voltage charge, the
proposed controller provides a fast transient and reduces the
steady-state oscillations that shorten the battery life more
efficiently than the conventional controllers. In addition,
energy utilization and charging efficiencies, power loss
improvement, and charge time reduction are improved by up
to 17%, 8%, 20%, and 20%, respectively, over the rest.
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1. Introduction

Solar-powered charging systems have increasingly been
used to satisfy energy demand in off-grid areas. The
maximum solar energy is required to continuously supply the
battery to maximize energy utilization while preserving high
charging efficiency. In practice, two main techniques used to
enable the solar photovoltaic (SPV) generator to operate at
the maximum power point (MPP) are the electromechanical-
based sun tracker [1] and the power-switching-based MPP
tracking (MPPT) [2-6]. The latter is the most used, although
their hybridization ensures optimal performance at the cost of
increased complexity and expenses [7]. However, achieving
accurate MPP tracking is not easily due to the nonlinear and
weather-dependent SPV power output characteristics.

In the literature, the conventional MPPT (e.g.,
proportional-integral-derivative (PID) controller [3]), the
hill-climbing algorithms [1-2], and their modified versions
have been proposed to apply in the SPV charging system.

They are simple and easeful implement but usually detect the
MPP in the wrong direction and increase high voltage stress
(i.e., spike and oscillations around the MPP), causing heat
losses. This problem has been addressed using the additional
circuits placed across converter switches [9]. Instead of
modifying the converter, the adaptive MPPTs as a soft-
switching control, such as neural network-based controller
(NNC), and fuzzy logic controller (FLC), provide better
control responses and more accurate MPP without
oscillations [4-6]. However, over-fitting is the main problem
for the NNC. Instead, the MPPT-FLC possessing many
control rules is more advantageous. Meanwhile, their hybrids
outperform others at the expense of complexity [6]. However,
the conventional FLC design may not lead to optimal control.

In the presence of partial shading conditions (PSC), i.e.,
the non-uniformly distributed solar irradiance over the SPV
generator exhibiting multiple-peak of power, mismatch
losses drastically decrease the efficiency of the SPV charger-
controller. Based on searching a zero gradient of the SPV
power-voltage (P-V) curves, the above-stated controllers
cannot identify the GMPP among the local MPPs. Also, they
are frequently stuck on the first local peak, so they fail in
tracking GMPP [8]. Alternatively, the GMPPT-based bio-
inspired optimizations can overcome such a problem since
their searches do not depend on the P-V patterns. Several are
reported in literature [9-11]. Among them, the PSO, a
population-based search with less-used parameters, is the
most successfully used. However, the slow rate convergence
to the GMPP is a major drawback. In literature, its
modifications, such as enhanced leader PSO [10], and FLC-
PSO [11], were introduced. Besides, as a time-invariant
method, PSO always gets stuck at the first GMPP in the
beginning search, which cannot catch the dynamic GMPP
under time-varying PSCs.

Herein, this work is to design the GMPPT-PSO assisted
with the FLCs for the constant current-voltage (CC-CV)
SPV-powered battery charging system. The adaptive-
accelerated PSO is used to improve the charging control
responses under PSCs. The charger controllers are optimized
to increase charging efficiencies while reducing complexity.
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2. Method and Methodology

2.1 Description of the Overall SPV Charger-
Controller

The SPV charger-controller system (Fig. 1) through the
CC-CV (bulk-float) charge consists of four parts: an SPV

generator, a buck converter, the battery, and the proposed
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controller (GMPPT-PSO assisted MPPT-FLC). During CC-
charge, if a PSC exists, the GMPPT-PSO searches the GMPP,
and the FLC-CC fine-tunes to reduce the power oscillations.
An additional PI controller limits the exceeded charge current
to prevent overcharge and heat that shortens the battery life.
To stabilize the battery voltage when reaching the nominal
voltage (14.4 V) and prevent overvoltage, the FLC-CV
controls the CV charging to a full charge.
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Fig. 1 (a) Schematic diagram of the proposed SPV-powered battery charger-controller, and (b) The battery voltage and resistance against the SoC.

For the Ns-cell and Ne-string in a series-parallel SPV
module (Fig. 1), let Npsc, i be the number of shaded cells in
the i"-string, and Vspy be the voltage under uniform
irradiance. Under PSCs, the voltage of the i-string of the
unshaded cells (Nupsc), Vpsc, i, and the total current (Ipsc)
related to Vpsc, i for the given solar irradiance (G) and
operated temperature (T) can be respectively expressed by,

VPsc,i = NUPSC,i ><VSPV = (NS - NPSC,i) XVSF'V (1)

| :NEP Ion —lsq | €XP 7V;SC -1|- 7\/;” (2
PSC
i=1 P NP,iNUPsc,iVT NUPSC‘iRSh

where Voo = Np Voee i + Nyosc i 1psc iRs + Iph i the photo-current,

Isq is the diode saturation current, Rs is the series resistance,
Rsn is the parallel resistance, and V+ is the thermal voltage.

Generally, the used SPV module provides more voltage
than the battery voltage (Vp). So, the buck converter (Fig. 1)
is used to step down Vpsc to Vp as in (3) according to a duty
ratio (D) generated from the charge controller,

Vb =DVpsc 3)

In a buck converter design, the interval of D is

considered from the SPV and the charging voltage/current

ranges. In general, large capacitance and high switching

frequency (fsw) are chosen for reducing ripples (), but this is

an impractical implementation. A more detailed design is
referred to in [12].

To deal with lead-acid batteries, the circuit-based model
consisting of a controlled voltage source V(SoC) in series
with internal resistance Ry,(SoC) is used in the simulation
(Fig. 1), where SoC is the ratio of the current capacity, in Ah,
to the nominal capacity (C). So, V, can be expressed as,

Vj, =V (SoC) — IR, (SoC) 4)
where |y, is the battery current, V(SoC) and Ry(SoC) can be

approximated from the curve-fitted using the experimental
data shown in Fig. 1(b), and the updated SoC; is as follows,

S0C; = S0Cy 4 +m(kbvblb ~KgeS0C; 1) ©)
where Ky is the charging parameter, K is the self-discharge
rate, and fsp is the sampling frequency.

Using Vi (5) and Ry(SoC) (Fig. 1(b)), the charge
efficiency (ne), as a ratio of total energy stored (Ep),
determined by the integral of work done by battery voltage,
and an energy loss (Eiess) due to the battery resistance during
the initial and final SoC [SoC;, SoCy], can be obtained by,

2
- By 1C(ASOC)((ZSOC) —(ASOC)—Z.GS] ©)

" Ep + Eross At 0.017(2S0C) + 0.138

where ASoC = SoCs— SoC;, £SoC = SoCs + SoCj, ASoC =
2S0C + SoCt x SoC;, and At is charging time in second.

2.2 The Charger-Controller Design

The operating stepwise of the SPV charger controllers
is shown in Fig. 2 (a), which comprises three subroutines:
GMPPT-PSO, MPPT-FLC-CC, and FLC-CV.

At the initial stage, 3% of the SPV current at the MPP is
set as the threshold (li) to decide whether the operating point
changed. When Al=lpy(k)—lpv(k—1) is more than I, means the
weather conditions are changed, so the FLC-CC is activated
for tracking a new power (Prrc.cc). Next, if |Pric.cc—Pmax| IS
higher than the threshold power (APw), as about 5% of Pmax
obtained from Eq. (1) and (2) for Npsc = 0O, this MPP is
assumed to be the local MPP. Then, the GMPPT-PSO is
taken-actioned on tracking the GMPP which is further refined
by the MPPT-FLC-CC. The FLC-CV finally completes the
charge. The details of all subroutines are as follows.

2.3 The GMPPT-PSO

In implementing the PSO for the GMPPT (Fig. 2 (b)),
at time k, the duty ratios represented by position vector D(k)=
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[di(k), ..., dn(k)]T of the N-particle disperse over the search
space [0, 1], and are updated by Ad through the velocity
vector V(K)=[V1(K), ..., Vn(k)]". In the first step, D and V are
initiated to regulate the buck converter. The corresponding
SPV powers, P(k) = [P1(k), ..., Pn(k)]", measured for each
particle, are evaluated the strength through the objective
function in Eq. (10), but removing the first term of NRs, for
assigning personnel and global best positions (Ppest(k),
Grest(K)). Next, the new velocity V(k+1), resulting from the
vector sum, and the updated D(k+1) are determined as [13],
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Fig. 2 Block diagram of the SPV-powered charger-controllers.

V(k +2) = @V (k) + ity (Pyest — D)(K) + €U (Gpest Iy — D)(K) (7)
and

D(k +1) =D(k) + V(k +1), k=12,.. K @)

respectively, where 1y is a 1s vector of length N, @ is the
inertia constant, c; and c; are private and social learning rates,
u; and uz ~ N(0, 1), and K is the maximum iteration.

After evaluating the SPV powers for all updated d;, Ppest
and Gpest are updated; Prest, i(k+1) = Di(K), if Pi(K) > Ppest, i(K)
and Gpest(k+1) = Ppest, i(K), if Pi(k) > Gpest(k), i=1, ..., N. To
bound solutions, if di(k) > 1, di(k) = 0.95, else if di(k) <0, di(k)
=0.05. The iteration terminated when met the stopping
criteria. In general, the PSO parameters, i.e., @, c1, and ¢y, are

predefined and fixed. For the GMPPT, various methods were
applied to parameter selection, e.g., [eel-2]. However, they
are not a generalization. To increase the degree of freedom in
optimization and adaptive with the dynamic PSCs, those are
included in D and simultaneously optimized with the duty
ratios, where @, and ¢ and ¢, range in [ @min, Wmax], and [Cmin,
Cmax], respectively. Moreover, a technique to reduce the
searching region or reduction zone is conducted around the
vicinity of the first local peaks obtained from the MPPT-
FLC-CC about [x|% (in Fig. 2(c)), thus accelerating the
convergence of the PSO.

2.4 The MPPT-based FLC-CC optimized by
PSO

In the FLC-CC design (Fig. 2(d)), let dPspv/dVspy (E)
and its change (AE) be the fuzzy inputs, and the increment
duty ratio (ADcc) be the controlled output. Through the three
steps based on the Mamdani fuzzy inference system (M-FIS),
starting with fuzzification, the crisp of E and AE is mapped,
respectively, to fuzzy values, w#(E) and (AE), by five
spanning Gaussian membership functions (GMFs) that cover
the range of SPV voltage, each including NB, PB, NS, PS, and
Z. Next, the IF-THEN rules evaluate the j"-fuzzy output with
the max-min operation, £(ADcc;) = max(min{(E), 1(AE)}).
Finally, ADcc is defuzzied by,

AD = ZjADcc,j/U(ADcc,j)/Zj#(ADcc,j) (9)

Here, all fuzzy parameters are offline adjusted by
another PSO to obtain the optimal MPPT-FLC. First, M-
particle is randomly generated, each possessing vector Fcc
containing the GMFs parameters, i.e., mean (¢) and deviation
(o) of E, AE, and ADcc, (2x3x5 parameters) and 5x5 fuzzy
rules each represented by 0 or 1, where ‘0s’ and ‘1s’ mean
redundant and significant rules, respectively. In training, after
the MPPT-FLC took the Fcc into the M-FIS and generated
the duty ratio, Dcc(k)=Dcc(k-1)+ADcc, the buck converter is
regulated by the PWM signal to move the current operating
point (Isev(K), Vspv(K)) to the new one at k+1. The transient
and steady errors between the power obtained by the MPPT-
FLC (Pwper-ric) and Pwupp, 1) are collected. The strength of
the i-particle at the j"-iteration is evaluated through the
following multi-objective function, i.e., minimizing the
errors while reducing the redundant rules,

fitness; ; = R T > > -
i,j-1 Zk:l‘ wppa.T) — Puper—ric (1) )‘

where NR and SP are the number of fuzzy rules and samples.

The performance of the proposed MPPT controller
represented by the energy utilization efficiency (7uilize) Over
the charging time interval [t;, t]] can be expressed as

Mutilize = Ltif (PMPPT )/ PMPP(G,T))dt : (11)
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2.5 The FLC-CV Optimized by PSO

In the FLC-CV design, let Vo—Vpref (AVb), and ADcy be
input and output, respectively. They are fuzzified through 3
spanning GMFs: NS, Z, and PS. So, 6 GMF parameters (3-C’s
and 3-o’s) are adjusted, and a total of 3 fuzzy rules is not
needed to reduce. In M-FIS, the output of the j"-fuzzy rule is
H(ADcv,j) =(AVy), where 1(AVy) and g(ADcyv, ;) are the fuzzy
values of AV and ADcyv,j, respectively. The crisp output ADcy
is determined through Eq. (9). For the FLC-CV/PSO, the Q-
particle each possessing Fcv containing the GMF parameters
is taken into the M-FIS. In the beginning, V, at the last
iteration of the CC-charge is taken to compute AVy. After
generating the duty ratio, Dcy(k) = Dcv(k—1)+ADcy, to
regulate the buck converter, the new Vu(i, k) is measured.
Until 1y, is less than Iy, st (1.5 A), the differences between Vy
and Vy, rerare cumulative to determine the strength through,

. . -1
fitness; j =y (Vo rer —Vo(i,k) [ +1) . (12)

3. Results and Discussion

For modelling the SPV solar battery charging system,
all pre-controlled datasets are collected from the experiments
(Fig. 3(a)). The commercial 8-cell and 4-string in a series-
parallel SPV generator are tested under varying G and T of
uniform irradiance and PSC (Fig. 3(b)) by using the pseudo-
solar irradiance. The system parameters used include SPV
module; Prax(STC) = 130 W, Voc = 22V, Isc =8.09 A, Ipy =
8.01 A, Is= 8.77 uA, Rs = 0.016 Q, Ry = 697.7 Q, buck
converter; inductance = 250 uH, capacitance = 20 uF, y =
5%, fsw = 20 kHz, lead-acid battery; C = 50 Ah, Kg. = 0.054,
Kp = 0.95, GMPPT-PSO; [@min, ®max] = [0.2, 1.2], [Cmin, Cmax]
=[1,2],N=5, and FLCs; E  [-200, 200], AE e [-100, 100],
AV € [-10, 10], AD € [-2, 2], M = Q = 10. The simulations
used the above-said parameters are implemented using
MATLAB software.

The proposed PSO converges to the GMPP more
efficiently than the conventional PSO (as shown in Fig. 4 (a)),
however, both result in oscillations around the GMPP at
steady state. For the optimization of FLC-CC and FLC-CV
by PSO, the convergence to the best solutions is shown in Fig.
4 (b) and (c). For the FLC-CC, 5 redundant rules are removed
from a total 25 rules means reducing 20% complexity. The
best shapes of GMFs of FLC-CC and FLC-CV from the PSO
are depicted in Fig. 5 (a)-(c), and (d)-(e), respectively.

The charging control results using the proposed
controller under PSCs are shown in Fig. 6, which achieves
CC-CV charge. It reaches the nominal voltage during the CC
charge and regulates near the nominal voltage with about
96% of accuracy during the CV charge. However, their
operating points vary depending on the switching regulated
by the controlled duty ratios. The transient and steady-state
responses of the proposed controller are compared with those
of the other charger controllers for some PSCs (Fig. 7).
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Fig. 6 The charging control results of the proposed charger-controller.
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Fig. 7 Transient and steady-state responses under PSCs.

It is seen that the proposed GMPPT-PSO/FLCs
controller provides fluctuated powers in the early due to the
PSO until reaching the GMPP without oscillations, whereas
the GMPPT-PSO results in more oscillations. Besides, the
conventional FLC gives a slow transient response with
negligible overshoot, nor oscillations, whereas the hill-
climbing controller provides a fast response but oscillations.
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However, their tracking powers trapped in the local MPP are
lower than those of the proposed controllers based on
GMPPT, shown in comparison in Fig. 8(a).
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=120 = GupprpsoFLcs = —e— The proposed GMPPT-PSOIFLCs
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Fig. 8 A comparison of the charger-controllers’ performances of
(a) tracking power, and (b) charging efficiency.

The proposed GMPPT-PSO/FLCs, the GMPPT-PSO,
the FLC, and the hill-climbing controller give 7uiiize, EQ. (11),
about 90%, 86%, 77%, and 73%, respectively. For charging
efficiency comparison depicted in Fig. 8(b), the range of 7cn,
Eq. (6), of the PSO-based controllers varies within 96.5%-
97.8% under the PSCs, whereas those of the FLC and the
neuro-fuzzy controller [6] varies 96.8%-98.2%, and 97.5%-
98.7% under the uniform irradiance. As a result, the high
initial fluctuations of the PSO-based controllers inducing
more heat losses in the battery reduces the mnen while
increasing the charging time to full charge in the presence of
PSCs. The results of SoC with time confirm this statement
(Fig. 9 and Table 1), achieving 80% of maximum SoC
(SoCmax) as the criterion, the proposed GMPPT-PSO/FLC
outperforms the rest for taking less charging time by 0.3-1.5
hours than the others. Moreover, using (6) at this point and
SoCi = 0.1 and computing neh of the GMPPT-PSO/FLC not
slightly different with the NFC [6], GMPPT-PSO, and FLC
yield 84.56%, 84.03%, and 76.82%, respectively, where
assuming 80% battery efficiency.

The performance metrics of the proposed charger-
controller and the others, and their comparison, are
summarized in Table 1. Its superior performance is evident.
However, other factors, such as the temperature of the battery
and the electronic device losses that were not taken into
account in the simulations when developing this charger-
controller, could cause the theoretical outcomes to differ from
those that would be observed in practice.

1

= The GMPPT-PSO/FLC
>—The NFC [6]
0.8 The GMERT-PSO

—&— The conventional FLC

0.6

SoC

8:00 9:00 10:00 11:00 12:00 13:00
Operating time

Fig. 9 A comparison of the charging performance in hours per a charge of
the charger-controllers under the setting PSCs.

Performance index Achieving | . Percentage
improvement
The utilization efficiency (Nuiilize) 90% 4%-17%
Nominal power loss 30W 5% — 20%
The charge efficiency (1cn) 84.5% 0.5%-8%
Charging time (hours) per charge 5 5%—20%

Table 1 The performance improvements of the proposed charger-controller
compared to the other existing’s under the setting PSCs.

4. Conclusion

This study presents the adaptive GMPPT-PSO and the
optimal MPPT-FLC to improve charging efficiencies. When
applied to the SPV-powered battery charging system through
the CC-CV charge under the PSCs, the proposed controller
outperforms the others by 4% — 17%, 5% — 20%, 0.5% — 8%,
and 5% — 20% for the utilization efficiency, power losses
improvement, the charge efficiency, and charging time
reduction, respectively. In the future, the microcontroller-
based prototype of these controllers will implement for
validating the performance of simulations.
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