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Abstract. Solar-powered charging systems have gained 

increasing attention in various applications. However, 

ineffective charge regulation can degrade their performance, 

particularly under partial shading conditions (PSC). To 

address this problem, a global maximum power point 

tracking based on particle swarm optimization (GMPPT-

PSO) jointly operated with an MPPT-based fuzzy logic 

controller is proposed. To achieve an optimal charge 

controller, the main parameters of the GMPPT-PSO are 

adaptively changed to catch the dynamic PSCs, and all fuzzy 

parameters are derived and optimized through another PSO 

to reduce complexity. As a result, the control fuzzy rules have 

significantly reduced by about 20%. When applied to the 

battery through constant current-voltage charge, the 

proposed controller provides a fast transient and reduces the 

steady-state oscillations that shorten the battery life more 

efficiently than the conventional controllers. In addition, 

energy utilization and charging efficiencies, power loss 

improvement, and charge time reduction are improved by up 

to 17%, 8%, 20%, and 20%, respectively, over the rest. 
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1. Introduction 

Solar-powered charging systems have increasingly been 

used to satisfy energy demand in off-grid areas. The 

maximum solar energy is required to continuously supply the 

battery to maximize energy utilization while preserving high 

charging efficiency. In practice, two main techniques used to 

enable the solar photovoltaic (SPV) generator to operate at 

the maximum power point (MPP) are the electromechanical-

based sun tracker [1] and the power-switching-based MPP 

tracking (MPPT) [2-6]. The latter is the most used, although 

their hybridization ensures optimal performance at the cost of 

increased complexity and expenses [7]. However, achieving 

accurate MPP tracking is not easily due to the nonlinear and 

weather-dependent SPV power output characteristics. 

In the literature, the conventional MPPT (e.g., 

proportional-integral-derivative (PID) controller [3]), the 

hill-climbing algorithms [1-2], and their modified versions 

have been proposed to apply in the SPV charging system. 

They are simple and easeful implement but usually detect the 

MPP in the wrong direction and increase high voltage stress 

(i.e., spike and oscillations around the MPP), causing heat 

losses. This problem has been addressed using the additional 

circuits placed across converter switches [9]. Instead of 

modifying the converter, the adaptive MPPTs as a soft-

switching control, such as neural network-based controller 

(NNC), and fuzzy logic controller (FLC), provide better 

control responses and more accurate MPP without 

oscillations [4-6]. However, over-fitting is the main problem 

for the NNC. Instead, the MPPT-FLC possessing many 

control rules is more advantageous. Meanwhile, their hybrids 

outperform others at the expense of complexity [6]. However, 

the conventional FLC design may not lead to optimal control. 

In the presence of partial shading conditions (PSC), i.e., 

the non-uniformly distributed solar irradiance over the SPV 

generator exhibiting multiple-peak of power, mismatch 

losses drastically decrease the efficiency of the SPV charger-

controller. Based on searching a zero gradient of the SPV 

power-voltage (P-V) curves, the above-stated controllers 

cannot identify the GMPP among the local MPPs. Also, they 

are frequently stuck on the first local peak, so they fail in 

tracking GMPP [8]. Alternatively, the GMPPT-based bio-

inspired optimizations can overcome such a problem since 

their searches do not depend on the P-V patterns. Several are 

reported in literature [9-11]. Among them, the PSO, a 

population-based search with less-used parameters, is the 

most successfully used. However, the slow rate convergence 

to the GMPP is a major drawback. In literature, its 

modifications, such as enhanced leader PSO [10], and FLC-

PSO [11], were introduced. Besides, as a time-invariant 

method, PSO always gets stuck at the first GMPP in the 

beginning search, which cannot catch the dynamic GMPP 

under time-varying PSCs. 

Herein, this work is to design the GMPPT-PSO assisted 

with the FLCs for the constant current-voltage (CC-CV) 

SPV-powered battery charging system. The adaptive-

accelerated PSO is used to improve the charging control 

responses under PSCs. The charger controllers are optimized 

to increase charging efficiencies while reducing complexity.  
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2. Method and Methodology  

2.1 Description of the Overall SPV Charger-

Controller  

The SPV charger-controller system (Fig. 1) through the 

CC-CV (bulk-float) charge consists of four parts: an SPV 

generator, a buck converter, the battery, and the proposed 

controller (GMPPT-PSO assisted MPPT-FLC). During CC-

charge, if a PSC exists, the GMPPT-PSO searches the GMPP, 

and the FLC-CC fine-tunes to reduce the power oscillations. 

An additional PI controller limits the exceeded charge current 

to prevent overcharge and heat that shortens the battery life. 

To stabilize the battery voltage when reaching the nominal 

voltage (14.4 V) and prevent overvoltage, the FLC-CV 

controls the CV charging to a full charge. 

 
                                                                                  (a)                                                                                 (b) 

Fig. 1 (a) Schematic diagram of the proposed SPV-powered battery charger-controller, and (b) The battery voltage and resistance against the SoC. 

For the NS-cell and NP-string in a series-parallel SPV 

module (Fig. 1), let NPSC, i be the number of shaded cells in 

the ith-string, and VSPV be the voltage under uniform 

irradiance. Under PSCs, the voltage of the ith-string of the 

unshaded cells (NUPSC), VPSC, i, and the total current (IPSC) 

related to VPSC, i for the given solar irradiance (G) and 

operated temperature (T) can be respectively expressed by,  

   , , ,( )
PSC PSC SPVi UPSC i SPV s iV N V N N V=  = −                 (1)        
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where *

, ,, ,PSC P i PSC UPSC i PSC Si iV N V N I R= + , Iph is the photo-current, 

Isd is the diode saturation current, Rs is the series resistance, 

Rsh is the parallel resistance, and VT is the thermal voltage. 

Generally, the used SPV module provides more voltage 

than the battery voltage (Vb). So, the buck converter (Fig. 1) 

is used to step down VPSC to Vb as in (3) according to a duty 

ratio (D) generated from the charge controller, 

                                b PSCV DV=                            (3) 

In a buck converter design, the interval of D is 

considered from the SPV and the charging voltage/current 

ranges. In general, large capacitance and high switching 

frequency (fsw) are chosen for reducing ripples (), but this is 

an impractical implementation. A more detailed design is 

referred to in [12]. 

To deal with lead-acid batteries, the circuit-based model 

consisting of a controlled voltage source V(SoC) in series 

with internal resistance Rb(SoC) is used in the simulation 

(Fig. 1), where SoC is the ratio of the current capacity, in Ah, 

to the nominal capacity (C). So, Vb can be expressed as, 

                    ( ) ( )b b bV V SoC I R SoC= −                           (4) 

where Ib is the battery current, V(SoC) and Rb(SoC) can be 

approximated from the curve-fitted using the experimental 

data shown in Fig. 1(b), and the updated SoCt is as follows, 

      ( )1 1
1

3600
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where Kb is the charging parameter, Kdc is the self-discharge 

rate, and fsp is the sampling frequency. 

Using Vb (5) and Rb(SoC) (Fig. 1(b)), the charge 

efficiency (ch), as a ratio of total energy stored (Eb), 

determined by the integral of work done by battery voltage, 

and an energy loss (Eloss) due to the battery resistance during 

the initial and final SoC [SoCi, SoCf], can be obtained by, 
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where SoC  SoCf – SoCi, SoC   SoCf + SoCi, SoC  

SoC + SoCf  SoCi, and t is charging time in second. 

2.2 The Charger-Controller Design 

The operating stepwise of the SPV charger controllers 

is shown in Fig. 2 (a), which comprises three subroutines: 

GMPPT-PSO, MPPT-FLC-CC, and FLC-CV. 

At the initial stage, 3% of the SPV current at the MPP is 

set as the threshold (Ith) to decide whether the operating point 

changed. When I=IPV(k)–IPV(k–1) is more than Ith means the 

weather conditions are changed, so the FLC-CC is activated 

for tracking a new power (PFLC-CC). Next, if |PFLC-CC –Pmax| is 

higher than the threshold power (Pth), as about 5% of Pmax 

obtained from Eq. (1) and (2) for NPSC = 0, this MPP is 

assumed to be the local MPP. Then, the GMPPT-PSO is 

taken-actioned on tracking the GMPP which is further refined 

by the MPPT-FLC-CC. The FLC-CV finally completes the 

charge. The details of all subroutines are as follows. 

2.3 The GMPPT-PSO 

In implementing the PSO for the GMPPT (Fig. 2 (b)), 

at time k, the duty ratios represented by position vector D(k)= 
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[d1(k), …, dN(k)]T of the N-particle disperse over the search 

space [0, 1], and are updated by d through the velocity 

vector V(k)=[V1(k), …, VN(k)]T. In the first step, D and V are 

initiated to regulate the buck converter. The corresponding 

SPV powers, P(k) = [P1(k), …, PN(k)]T, measured for each 

particle, are evaluated the strength through the objective 

function in Eq. (10), but removing the first term of NRs, for 

assigning personnel and global best positions (Pbest(k), 

Gbest(k)). Next, the new velocity V(k+1), resulting from the 

vector sum, and the updated D(k+1) are determined as [13], 

 

Fig. 2 Block diagram of the SPV-powered charger-controllers. 

1 1 2 2( 1) ( ) ( )( ) ( )( )best best Nk k c u k c u G k+ = + − + −V V P D 1 D  (7) 

and 

          ( 1) ( ) ( 1), 1,2,...,k k k k K+ = + + =D D V                (8) 

respectively, where 1N is a 1s vector of length N,  is the 

inertia constant, c1 and c2 are private and social learning rates, 

u1 and u2  N(0, 1), and K is the maximum iteration. 

After evaluating the SPV powers for all updated di, Pbest 

and Gbest are updated; Pbest, i(k+1) = Di(k), if Pi(k) > Pbest, i(k) 

and Gbest(k+1) = Pbest, i(k), if Pi(k) > Gbest(k), i = 1, …, N. To 

bound solutions, if di(k) > 1, di(k) = 0.95, else if di(k)  0, di(k) 

=0.05. The iteration terminated when met the stopping 

criteria. In general, the PSO parameters, i.e., , c1, and c2, are 

predefined and fixed. For the GMPPT, various methods were 

applied to parameter selection, e.g., [ee1-2]. However, they 

are not a generalization. To increase the degree of freedom in 

optimization and adaptive with the dynamic PSCs, those are 

included in D and simultaneously optimized with the duty 

ratios, where , and c1 and c2 range in [min, max], and [cmin, 

cmax], respectively. Moreover, a technique to reduce the 

searching region or reduction zone is conducted around the 

vicinity of the first local peaks obtained from the MPPT-

FLC-CC about |x|% (in Fig. 2(c)), thus accelerating the 

convergence of the PSO. 

2.4 The MPPT-based FLC-CC optimized by 

PSO 

In the FLC-CC design (Fig. 2(d)), let dPSPV/dVSPV (E) 

and its change (E) be the fuzzy inputs, and the increment 

duty ratio (DCC) be the controlled output. Through the three 

steps based on the Mamdani fuzzy inference system (M-FIS), 

starting with fuzzification, the crisp of E and E is mapped, 

respectively, to fuzzy values, (E) and (E), by five 

spanning Gaussian membership functions (GMFs) that cover 

the range of SPV voltage, each including NB, PB, NS, PS, and 

Z. Next, the IF-THEN rules evaluate the jth-fuzzy output with 

the max-min operation, (DCC,j) = max(min{(E), (E)}). 

Finally, DCC is defuzzied by,  

        , , ,( ) ( )
CC CC CC CCj j jj j

D D D D  =                (9) 

Here, all fuzzy parameters are offline adjusted by 

another PSO to obtain the optimal MPPT-FLC. First, M-

particle is randomly generated, each possessing vector FCC 

containing the GMFs parameters, i.e., mean (c) and deviation 

() of E, E, and DCC, (235 parameters) and 55 fuzzy 

rules each represented by 0 or 1, where ‘0s’ and ‘1s’ mean 

redundant and significant rules, respectively. In training, after 

the MPPT-FLC took the FCC into the M-FIS and generated 

the duty ratio, DCC(k)=DCC(k-1)+DCC, the buck converter is 

regulated by the PWM signal to move the current operating 

point (ISPV(k), VSPV(k)) to the new one at k+1. The transient 

and steady errors between the power obtained by the MPPT-

FLC (PMPPT-FLC) and PMPP(G, T) are collected. The strength of 

the ith-particle at the jth-iteration is evaluated through the 

following multi-objective function, i.e., minimizing the 

errors while reducing the redundant rules,  

        
( , )

,
,
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1

( , )SP

MPP G T MPPT FLC

i j
i j

i j k

NR
fitness

NR P P i k−− =

= 
−

          (10) 

where NR and SP are the number of fuzzy rules and samples. 

The performance of the proposed MPPT controller 

represented by the energy utilization efficiency (utilize) over 

the charging time interval [ti, tf] can be expressed as  

    ( )( , )( ) = 
f

i
MPPT MPP

t
utilize G Tt

P t P dt .                  (11)  
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2.5 The FLC-CV Optimized by PSO 

In the FLC-CV design, let Vb–Vb,ref (Vb), and DCV be 

input and output, respectively. They are fuzzified through 3 

spanning GMFs: NS, Z, and PS. So, 6 GMF parameters (3-c’s 

and 3-’s) are adjusted, and a total of 3 fuzzy rules is not 

needed to reduce. In M-FIS, the output of the jth-fuzzy rule is 

(DCV, j) =(Vb), where (Vb) and (DCV, j) are the fuzzy 

values of Vb and DCV, j, respectively. The crisp output DCV 

is determined through Eq. (9). For the FLC-CV/PSO, the Q-

particle each possessing FCV containing the GMF parameters 

is taken into the M-FIS. In the beginning, Vb at the last 

iteration of the CC-charge is taken to compute Vb. After 

generating the duty ratio, DCV(k) = DCV(k–1)+DCV, to 

regulate the buck converter, the new Vb(i, k) is measured. 

Until Ib is less than Ib, set (1.5 A), the differences between Vb 

and Vb, ref are cumulative to determine the strength through, 

   ( ),

1

, | ( , ) | 1b ref bi j kfitness V V i k
−

= − + .             (12) 

3. Results and Discussion 

For modelling the SPV solar battery charging system, 

all pre-controlled datasets are collected from the experiments 

(Fig. 3(a)). The commercial 8-cell and 4-string in a series-

parallel SPV generator are tested under varying G and T of 

uniform irradiance and PSC (Fig. 3(b)) by using the pseudo-

solar irradiance. The system parameters used include SPV 

module; Pmax(STC) = 130 W, VOC  = 22V, ISC  = 8.09 A, Iph  = 

8.01 A, IS = 8.77 A, Rs = 0.016 , Rsh = 697.7 , buck 

converter; inductance = 250 H, capacitance = 20 F,   = 

5%, fsw = 20 kHz, lead-acid battery; C = 50 Ah, Kdc = 0.054, 

Kb = 0.95, GMPPT-PSO; [min, max] = [0.2, 1.2], [cmin, cmax] 

= [1, 2], N = 5, and FLCs; E  [-200, 200], E  [-100, 100], 

Vb  [-10, 10], D  [-2, 2], M = Q = 10. The simulations 

used the above-said parameters are implemented using 

MATLAB software.  

The proposed PSO converges to the GMPP more 

efficiently than the conventional PSO (as shown in Fig. 4 (a)), 

however, both result in oscillations around the GMPP at 

steady state. For the optimization of FLC-CC and FLC-CV 

by PSO, the convergence to the best solutions is shown in Fig. 

4 (b) and (c). For the FLC-CC, 5 redundant rules are removed 

from a total 25 rules means reducing 20% complexity. The 

best shapes of GMFs of FLC-CC and FLC-CV from the PSO 

are depicted in Fig. 5 (a)-(c), and (d)-(e), respectively. 

The charging control results using the proposed 

controller under PSCs are shown in Fig. 6, which achieves 

CC-CV charge. It reaches the nominal voltage during the CC 

charge and regulates near the nominal voltage with about 

96% of accuracy during the CV charge. However, their 

operating points vary depending on the switching regulated 

by the controlled duty ratios. The transient and steady-state 

responses of the proposed controller are compared with those 

of the other charger controllers for some PSCs (Fig. 7).  

 
                              (a)                                                           (b) 

Fig. 3 (a) Hardware settings, and (b) Weather conditions in testing. 

 
          (a) GMPPT-PSO          (b) MPPT-FLC-CC/PSO      (c) FLC-CV/PSO 

Fig. 4 Convergence of the PSO for the charger-controllers. 

 
                     (a)                                     (b)                                  (c) 

 
                                   (d)                                               (e) 

Fig. 5 The best GMFs of MPPT-FLC-CC/PSO for (a) E, (b) E, and (c) 

DCC and FLC-CV for (d) Vb, and (e) DCV. 

 

Fig. 6 The charging control results of the proposed charger-controller. 

 

Fig. 7 Transient and steady-state responses under PSCs. 

It is seen that the proposed GMPPT-PSO/FLCs 

controller provides fluctuated powers in the early due to the 

PSO until reaching the GMPP without oscillations, whereas 

the GMPPT-PSO results in more oscillations. Besides, the 

conventional FLC gives a slow transient response with 

negligible overshoot, nor oscillations, whereas the hill-

climbing controller provides a fast response but oscillations. 
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However, their tracking powers trapped in the local MPP are 

lower than those of the proposed controllers based on 

GMPPT, shown in comparison in Fig. 8(a). 

 

                                    (a)                                                      (b) 

Fig. 8 A comparison of the charger-controllers’ performances of  

(a) tracking power, and (b) charging efficiency. 

The proposed GMPPT-PSO/FLCs, the GMPPT-PSO, 

the FLC, and the hill-climbing controller give utilize, Eq. (11), 

about 90%, 86%, 77%, and 73%, respectively. For charging 

efficiency comparison depicted in Fig. 8(b), the range of ch, 

Eq. (6), of the PSO-based controllers varies within 96.5%-

97.8% under the PSCs, whereas those of the FLC and the 

neuro-fuzzy controller [6] varies 96.8%-98.2%, and 97.5%-

98.7% under the uniform irradiance. As a result, the high 

initial fluctuations of the PSO-based controllers inducing 

more heat losses in the battery reduces the ch while 

increasing the charging time to full charge in the presence of 

PSCs. The results of SoC with time confirm this statement 

(Fig. 9 and Table 1), achieving 80% of maximum SoC 

(SoCmax) as the criterion, the proposed GMPPT-PSO/FLC 

outperforms the rest for taking less charging time by 0.3–1.5 

hours than the others. Moreover, using (6) at this point and 

SoCi = 0.1 and computing ch of the GMPPT-PSO/FLC not 

slightly different with the NFC [6], GMPPT-PSO, and FLC 

yield 84.56%, 84.03%, and 76.82%, respectively, where 

assuming 80% battery efficiency.  

The performance metrics of the proposed charger-

controller and the others, and their comparison, are 

summarized in Table 1. Its superior performance is evident. 

However, other factors, such as the temperature of the battery 

and the electronic device losses that were not taken into 

account in the simulations when developing this charger-

controller, could cause the theoretical outcomes to differ from 

those that would be observed in practice. 

 

Fig. 9 A comparison of the charging performance in hours per a charge of 

the charger-controllers under the setting PSCs. 

 

 

Performance index Achieving 
Percentage 

improvement 

The utilization efficiency (utilize) 90% 4%–17% 

Nominal power loss 30 W 5% – 20% 

The charge efficiency (ch)  84.5% 0.5%–8%  

Charging time (hours) per charge 5 5%–20% 

Table 1 The performance improvements of the proposed charger-controller 

compared to the other existing’s under the setting PSCs. 

4. Conclusion 

This study presents the adaptive GMPPT-PSO and the 

optimal MPPT-FLC to improve charging efficiencies. When 

applied to the SPV-powered battery charging system through 

the CC-CV charge under the PSCs, the proposed controller 

outperforms the others by 4% – 17%, 5% – 20%, 0.5% – 8%, 

and 5% – 20% for the utilization efficiency, power losses 

improvement, the charge efficiency, and charging time 

reduction, respectively. In the future, the microcontroller-

based prototype of these controllers will implement for 

validating the performance of simulations.  
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