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Abstract. The Constraint Application Protocol (CoAP) is
a restricted protocol used for communication in the Internet
of Things (10T). It allows limited resource devices to connect
to the Internet, exchange request/response messages, and
block-wise transfer for large data transfers. CoAP also
includes an observed mode, which allows a client to monitor
resources on servers and receive notification messages via
unicast when the state of the resource is changed. However,
the default congestion control algorithm used by CoAP,
called Binary Exponential Back-Off (BEB), is insufficient for
group communication resource observation with block-wise
transfer and can lead to significant congestion, resulting in
a buffer overflow, data loss, and connection drop. To
address this problem, we conducted a study to evaluate the
effectiveness of two alternative algorithms for congestion
control in CoAP: Fibonacci Pre-Increase Back-off (FPB)
and Half Binary Exponential Backoff (HBEB) algorithms.
We tested these algorithms using a Cooja simulation and
compared their performance to the default BEB algorithm.
Our results showed that HBEB outperformed both BEB and
FPB in terms of throughput and packet loss ratio (PLR),
where BEB provides the best in term of end-to-end delay.
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1. Introduction

The Internet of Things (1oT) refers to the connection of
various networking systems and everyday devices to the
Internet. The Constrained Application Protocol (CoAP),
developed by the Internet Engineering Task Force (IETF), is
a specific web transmission protocol designed for using in
devices with limited resources in 10T. CoAP uses a User
Datagram Protocol (UDP) with IEEE 802.15.4, rather than
the resource-intensive Transmission Control Protocol (TCP)
to make operation easier and reduce system resource needs,
as shown in Fig. 1. Moreover, CoAP is also used in machine-
to-machine (M2M) communications [1], [2].

Web Internet of Things
( XML ) [ Web Object j
[ HTTP ) ( CoAP )
( TLS ) [ DTLS j
- ¢~
( IPv4/IPv6 ) ( 6LoWPAN )

Fig. 1 HTTP and CoAP protocol stack

The design of CoAP is similar to HTTP in a
request/response model which allows clients to send
requests to servers and receive responses. Moreover, COAP
also includes additional features called Observing Resources
(OBS), which allows for group communication and
notification of resource changes. This provides benefits for
smart cities and healthcare applications to monitor data from
sensors in real-time [3]-[7].
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Fig. 2 CoAP Observe with Block-Wise Transfer

Furthermore, CoAP provides the block-wise transfer
feature, which enables efficient data transfer in resource-
limited environments. This feature allows large amounts of
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data to be divided into smaller blocks and transferred
individually within a single operation, as illustrated in Fig.
2.

The use of CoAP OBS allows multiple servers to
transfer data simultaneously, which can result in congestion
at a client. However, the default CoAP congestion control
algorithm called Binary Exponential Back-Off (BEB) has
been found to be ineffective in reducing OBS congestion [8].
In this study, we examine the use of two alternative
algorithms called FPB and HBEB to improve throughput
and reduce packet loss in the context of block-wise transfer
with CoAP OBS. Our aim is to identify effective congestion
control strategies for this common scenario in loT.

The remainder of the paper is organized as follows. In
Section 2, we summarize CoAP functions and its congestion
control algorithm. Section 3, we study the effect of FPB and
HBEB on the congestion control mechanism for CoAP
Observe with block-wise transfer and present the simulation
setup and communication protocol stack settings that we
determine the performance of our proposed mechanism and
compare it with the standard CoAP mechanism. The results
of these evaluations are presented in Section 4. In the final
section, we provide the conclusions of this paper.

2. Literature Review

CoAP is a lightweight protocol for resource-
constrained devices that enables efficient communication
between devices over the Internet. It is commonly utilized in
IoT applications where device processing, memory, and
network bandwidth are constrained. CoAP is built on the
Representational State Transfer (REST) architectural style,
which uses HTTP-like protocols to access and modify
resources on a server (GET, POST, PUT and DELETE).
CoAP messages can be transmitted via multicast or unicast
and are commonly sent over UDP. CoAP uses four types of
messages to request and manipulate resources on a server:

*Confirmable (CON): A confirmable message requires
a response from the server and will be retransmitted if a
response is not received within a specific time period. Then,
Confirmable messages are used for reliable communications
such as POST and PUT requests.

*Non-Confirmable (NON): A non-confirmable
message does not require a response from the server and will
not be retransmitted if a response is not received. Non-
confirmable messages are used for unreliable
communication such as GET requests.

*Acknowledgment (ACK): An acknowledgment
message is a response to a confirmable message and
indicates that the request has been received and processed
by the server.

*Reset (RST): A reset message is used to cancel a
confirmable message that is in progress or to indicate that a
non-confirmable message has been received and processed
by the server.

CoAP also includes congestion control mechanisms
designed to help reduce network congestion by spacing out
retransmissions of messages when a response has not been
received within a specific time period. The default BEB
mechanism in CoAP provides an interval between
retransmissions and allows the interval to increase gradually
over time to ensure that retransmissions are spaced out and
do not flood the network.

CoAP offers Observe Resource (OBS) [9] in addition
to the conventional request/response mechanisms known as
CoAP-based transmission, as shown in Fig. 3 (a). In the
CoAP OBS, a client performs as an observer registers
resources to interested servers. Then, each server will notify
the client whenever a registered resource changes, as shown
in Fig. 3 (b). The notification transmitted by the default
server uses the NON message. In this study, we concentrated
on the CoAP OBS and applied the CON message to provide
the congestion control mechanisms.

Client Server

CON (ID: 0xAAS51)
GET /Temp
Token 0x14

B —

ACK (ID: 0xAASI)
D ——— 28C
Token 0x14

Client Server

[=CON,Code=0.01 GET
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Observe: 0
T=ACK, Code=2.05
Token: 0x31
Observe:12
Payload: 28 C
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Token: 0x31
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Fig. 3 CoAP-based message transfer and Observing resource
message transfer

Furthermore, the client can register for a large data of
resources in the observe mode, and those cannot be sent in a
single CoAP packet. As a result, the server must partition
into numerous data blocks, known as block-wise transfer. As
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shown in Fig. 4, each block contains the number of the most
recently transmitted block (#Block), the block size (Size),
and the number of subsequent blocks (M). Also, data
retransmission uses a timeout.

Since CoAP works on top of UDP data transfer
protocol, it is necessary to use extra congestion control.
Default CoAP uses a straightforward stop-and-wait
congestion control strategy to manage network congestion
automatically by using Retransmission TimeOut (RTO)
value to retransmit lost packets at exponential intervals until
they obtain an ACK. However, doing so will increase
network traffic congestion.

Client Server

T=CON, ID= 0xAAS51, GET, /data

T=ACK, ID= 0xAAS51,
* Block(nr=0,m=1,8z=1024), 2.05 Content

T=CON, ID= 0xAA52, GET, /data ,
Block(nr=1,m=0,57=1024)

>

T=ACK, ID= 0xAA52,

[~ Block(nr—1,m-1,5z-1024), 2.05 Content — | P
(3072B)
T-CON, ID- 0xAAS3, GET, /data ,
Block(nr=2,m=0,sz=1024)
I=ACK, ID= 0xAA53,
le—

Block(nr=3.m=0,sz=1024), 2.05 Content

Fig. 4 CoAP Block-Wise Transfer

Several studies have been conducted to examine CoAP
congestion control mechanisms in order to achieve optimal
performance in various scenarios. For example, the
approaches in [10]-[17] allow for dynamically determining
RTO value based on round-trip time (RTT) samples and
considering multiple outstanding interactions. However, the
practical implementation has limitations in terms of
constraints on RTT observation time and the possibility of
ignoring burst traffic [18]. In addition, they are complex to
implement and may not be backward compatible. Also,
using a high RTO value in CoAP, especially in networks
with high bit error rates such as CoAP OBS may result in
long idle times, which can be a problem for resource-
constrained devices like sensors and motes that rely on
battery power. In order to address this issue, it is crucial to
consider the limited battery power of 10T devices and to
design protocols that are both efficient and easy to
implement in terms of energy consumption [19]. The default
CoAP algorithm minimizes complexity by not requiring the
calculation and management of end-to-end connection
information.

In general, the default CoAP behavior is entirely
unaware of the state of the network. Numerous studies have
shown that using a basic CoOAP congestion control strategy
might lead to substandard network performance [20].

Congestion control algorithms play an essential part in a
wide range of 10T applications. As a result, numerous efforts
have been made to identify and reduce congestion in the 1oT.
Two back-off mechanisms have been implemented in CoAP
observe group communication algorithms introduced in
[21], namely FPB and HBEB. The two proposed back-off
mechanisms are to improve the packet drop ratio and
throughput by changing the RTO value in CoAP observe
mode without using RTT measurements. Hence, the
working of the original CoAP algorithm remains largely
unaffected.

3. Research Methodology

To alleviate congestion, CoAP calculates RTO with
BEB to generate a random interval between 2—4 seconds. If
a retransmission occurs, RTO is double leading to a long idle
time to send another packet in case that congestion has
stayed for a long period. In this study, we apply the FPB and
HBEB to lower the RTO. Beginning with the RTO value of
2 seconds, overall time before the timeout was about 32
seconds for the BEB, 12 seconds for the FPB, and 8 seconds
for the HBEB, as shown in Fig. 5. Similar to the default
CoAP, our study permits retransmissions up to four times
before classifying the notice as an error or failure.

35 eestee BEB
K g veohes FPB
++ @+« HBEB

RTO Interval (in s

it 1 2 3 4

Number of retransmission

Fig. 5 The comparison of back-off method BEB, FPB, and HBEB

3.1 Fibonacci Pre-Increase Back-Off (FPB)

Fibonacci Pre-Increase Back-Off (FPB) [21] is a
congestion control algorithm that uses a sequence of
numbers based on the Fibonacci sequence to determine the
amount of time to wait before retransmitting a message that
the receiver has not acknowledged. In the FPB algorithm,
the sender starts by waiting a certain number of milliseconds
before retrying and then increases the wait time for each
subsequent retry based on the Fibonacci sequence. FPB is
defined as equation (1) presented in Algorithm 1:

RTOcyrrent = RTOprevious X Fibonacci[i] (1)

Where RTOcurent is the amount of time to wait on the
next retransmission, RTOprevious iS the amount of time
waiting in the current retransmission, and Fibonacci[i] is the
calculation of the Fibonacci number of the i retransmission.
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define ini_rto [2,3]

int RTO = ini_rto

int retransmissions = 0
void send_request()

if (received_response)
retransmissions++
RTOcurrent = RT Oprevious * fib(retransmissions);
Wait(RTOcurrent)
send_request()

int fib(int n)

11. if(n<=1)returnn

12.  return fib(n-1) + fib(n-2)

Algorithm 1 FPB algorithm

COoONOOA~WNE

=
=

3.2 Half Binary Exponential Back-Off
(HBEB)

Half Binary Exponential Back-Off (HBEB) [21] is a
congestion control algorithm that uses a binary exponential
back-off approach to determine the RTO before
retransmitting a message that the receiver has not
acknowledged. In the HBEB algorithm, the sender starts by
waiting a certain number of seconds before retrying and then
increases the RTO for each subsequent retry by doubling the
previous RTO. However, unlike BEB, the HBEB algorithm
only increases the RTO for every other retry rather than for
every retry. HBEB is defined as equation (2) and presents in
Algorithm 2 :

RTOcyrrent = RTOprevious x 2K (2)

Where RTOcurent is the amount of time to wait on the
next retransmission, RTOprevious iS the amount of time
waiting in the current retransmission, and k is equal to 1 for
odd retransmission and equal to 0 for even retransmission.
For example, if the initial wait time is 2 seconds and the
message is not acknowledged on the first attempt, the RTO
will not be increased on the second attempt. It will only be
increased on the third attempt, and so on. This means that
the RTO will be increased less frequently in the HBEB
algorithm than in the BEB algorithm.

define ini_rto [2,3]

int RTO =ini_rto

int retransmissions = 0
void send_request()

if (Ireceived_response)
retransmissions++

if (retransmissions % 2 == 1)
RTocurrenl = RToprevious
else

10 RTOcurrem = RTOprevious * 2
11, wait(RTOcurrent)

12. send_request()

Algorithm 2 HBEB algorithm

©CONOO~WNE

3.3 Evaluation Setup

This section presents a setup for performance
evaluations of the three congestion control algorithm: the
default CoAP BEB, FPB, and HBEB with simulation setup,

traffic scenarios, network topologies and performance
metrics.

3.3.1 Simulation Setup

The experiment runs on Cooja Simulation in Contiki
0S 3.0, a well-known loT operating system that supports the
6LOWPAN communications over IEEE 802.15.4.
Moreover, it can upload the hex file created by the Cooja
Simulation into the actual WSN mote for a real environment
evaluation [22]. The simulation parameters are displayed in
Table 1.

Value
Zolertia (Z1)

Routing protocol for lower-power
and lossy networks (RPL)
UDGM, transmission range =
15m, interference rage = 30m

Node distant 10m
Transport and Network UDP + ulPv6 + 6LoWPAN

Radio duty cycling NUll-RDC, null-MAC

Setting
Mote

Routing protocol

Wireless channel model

(RDC)
Radio band 2.4 GHz
Radio channel 26
Chanel check rate 128 Hz
Physical PHY IEEE.802.15.4 PHY

. . Default CoAP BEB, FPB and
Congestion mechanism

HBEB
Maximum 4
retransmissions
Simulation time out 300s
Maximum open 11

transaction
Table 1 Cooja simulation parameter setup

In this simulation, Zolertia Z1 mote is selected, which
is a low-power wireless sensor network (WSN) node
supporting 6LOWPAN. The hardware specifications of the
Z1 mote are displayed in Table 2.

Setting Value
Microcontroller MSP430F267 low power
RAM 8KB
ROM 92KB
Data rate 250Kbps
Clock Speed 16MHz

Table 2 mote hardware specification

3.3.2 Network Topology

The research in this article examines the potential effects
of various congestion control strategies for RTO value on
the overall network performance. To compare the
performance of the default CoAP BEB, FPB, and HBEB, we
use grid traffic scenarios that have been used in a variant of
research on CoAP congestion control [8], [10], [15], [16],
[21], [23]-][25]. The arrangement of the nodes model in 3x3
and 3x4 is shown in Fig. 6. Each node is separated by 10
meters, the transmission range is 15 meters, and the
interference range is 30 meters. The communication in these
scenarios uses OBS.
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Fig. 6 Simulation node setup used for performance analysis

3.3.3 Traffic Scenarios

In OBS, one CoAP client is registered one by one to all
CoAP observe servers. As soon as the OBS server
completely registers with the CoAP client, it sends the
periodic resource continuously to the client every second if
the data of the resource changes.

We model our experiment with one border router
(circle with a cross) node and one CoAP client (circle with
six dashes) node. There are up to two CoAP Observe nodes
(circle with three dashes) with the block-wise transfer. The
rest of the nodes (black circle) are generally observed nodes,
as illustrated in Fig. 6. Each node performs the following
functions:

¢ The border router routes data between an internal
network and the Internet.

* The CoAP client is used for getting data from all
CoAP servers.

* The regular CoAP OBS is the server with periodic
sending data (resource) with a size of 8 bytes and will notify
the client every second if the resource has changed its value.

» CoAP OBS with the block-wise transfer is the server
with a more significant resource payload of 1024 bytes.
Therefore, we use the observer feature of COAP as a trigger
for sending block-wise data. The block size can be varied
between 16 bytes and 1024 bytes per block. Due to memory
constraints in the Z1 mote, we use a maximum 48 bytes
block size of CoAP. Fig. 7 shows the structure of a CoAP
OBS with block-wise transfer.

Six scenarios are tested for the effects of the RTO
mechanisms, as shown in Fig. 6. These scenarios compare
FPB and HBEB with default BEB on regular OBS and OBS
with block-wise transfer performance in terms of packet loss
ratio (PLR), end-to-end delay, and throughput. In every
scenario, we test for 300 seconds after the client has
registered all servers. Each scenario was repeated 50 times

with different random seed numbers in the Cooja simulation.

Client Server

Register OBS —— T=CON, gET:rl\:re); OxAAS, —
SErve:

Accept register and
Receive notification | T=ACK, ID=0xAAS5I, | nomapcmi;“ of the
trigger Observe: 12 current state
T=CON, ID= 0xAA52,

GET. /status
T=ACK, ID= 0xAAS2,
i Block(n=0,m=1,s7=48), ]
2.05 Content

Getting data after  f—
receive triger

3
.
.

T=CON, ID= 0xAA60, GET, /status,

Block(nr=1,m=0,5z=36)

T=ACK, ID=0xAAG0,
* Block(nr=1,m=0,sz-36), 2.05

Receive notification T=NON, ID= 0xAATI,

Notification upon
trigger Observe:12

a state change
T=CON, ID= 0xAAT7S5,
GET, /status
I=ACK, ID= 0xAATS,
Block(nr=0,m=1,sz=48),
2.05 Content

Getting data after |
receive triger

fe—

T=CON, ID= 0xAABQ, GET, /status,
Block(nr—1,m—0,5z2-36)

T-ACK, ID- 0xAAS0,
—  Block(nr=1,m=0,57=36), 2.05
L]

Fig. 7 CoAP OBS with the block-wise transfer

4. Result and Discussion

CoAP OBS behavior allows a client to request
notifications from multiple servers about the changes of
particular resources. This allows the client to receive updates
from the server in real-time without continuously polling the
updates. However, all servers constantly send data to the
client whenever their resource changes. As shown in Table
3, the PLR is over 50%. At both grid scenarios, 3x3 and 3x4
without the block-wise transfer, the use of HBEB performs
the best in terms of throughput and packet loss. However,
BEB performs the best in terms of end-to-end delay.

With one and two block-wise transfers, congestion is
higher because the block-wise node sends a large amount of
data into the network. This causes delays in transferring
resources, reduces network performance, or fails in
communication. However, once the block-wise transfer is
finished, congestion is quickly reduced. BEB has a negative
impact on high congestion networks because it doubles the
RTO value with each retransmission causing the sender to
wait longer before retransmitting a packet. In highly
congested networks, many packets are waiting in the queue
which leads to packet drops and retransmissions. Then, the
throughput of the network is lower.

In contrast, compared to BEB, the gradual increase in
RTO of HBEB values in a highly congested network
provides the benefit of reducing congestion and increasing
the chances of successful delivery. As shown in Fig. 5, the
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lower increasing period of HBEB provides enough time to
reduce congestion. Then, packets are retransmitted quickly.
This improves the overall network throughput. Therefore,
the results show that HBEB outperforms both BEB and FPB
in terms of throughput and packet loss as shown in Table 3.

Grid Back-off PLR Eﬁgdd-(te?e;y Throughput

Size algorithm (%) (ms) (Kbps)
BEB 53.59 5.61 8.30

3x3-0 FPB 52.57 6.28 10.06
HBEB 52.72 6.24 15.18

BEB 54.41 3.89 11.18

3x4-0 FPB 54.05 5.02 11.67
HBEB 53.82 4.24 12.34

BEB 54.15 5.59 10.03

3x3-1 FPB 54.02 5.39 11.76
HBEB 53.96 5.43 12.44

BEB 53.97 3.99 14.04

3x4-1 FPB 54.59 4.46 15.74
HBEB 55.31 4.02 16.44

BEB 55.05 4.29 10.30

3x3-2 FPB 54.42 4.27 11.12
HBEB 54.36 4.53 11.42

BEB 55.25 3.17 15.88

3x4-2 FPB 55.20 3.88 16.14
HBEB 54.98 3.61 17.18

Table 3 Overall performance metric value comparison (number in
bold is the better performance)

5. Conclusion

The goal of this research was to examine the potential
effects of different congestion control strategies on the RTO
value in CoAP observe group communication with the
block-wise transfer. We compared three strategies: default
CoAP BEB, FPB, and HBEB in terms of their impacts on
packet loss ratio, end-to-end delay, and throughput. In our
simulation, we implemented CoAP in the Cooja simulation
of Contiki OS 3.0 with multiple CoAP servers sending back-
to-back traffic to an OBS client in scenarios with no block-
wise transfers, one block-wise transfer and two block-wise
transfers. The results showed that network traffic is often
highly congested in CoAP OBS with the block-wise transfer.
As a result, using the HBEB resulted in the best throughput
and packet loss ratio. These findings suggest that HBEB is
an effective option for congestion control in CoAP,
especially in scenarios involving group communication
resource observation with the block-wise transfer.
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