
ENGINEERING ACCESS, VOL. 9, NO. 1, JANUARY-JUNE 2023 86

Congestion Control in CoAP Protocol: A Case study of

Observing Resource with Block-Wise Transfer

Thavrak Chan1, Chanwit Suwannapong2 and Chatchai Khunboa1,*

1,* Department of Computer Engineering, Faculty of Engineering, Khon Kaen University,

Mittraphap Road, Muang, Khon Kaen 40002, Thailand.
2 Division of Computer Engineering, Faculty of Engineering, Nakhon Phanom University,

Chayangkol Road, Tambol Khamtao, A.Muang, Nakhon Phanom 48000, Thailand

thavrak.c@kkumail.com, schanwit@npu.ac.th and chatchai@kku.ac.th*

Abstract. The Constraint Application Protocol (CoAP) is

a restricted protocol used for communication in the Internet

of Things (IoT). It allows limited resource devices to connect

to the Internet, exchange request/response messages, and

block-wise transfer for large data transfers. CoAP also

includes an observed mode, which allows a client to monitor

resources on servers and receive notification messages via

unicast when the state of the resource is changed. However,

the default congestion control algorithm used by CoAP,

called Binary Exponential Back-Off (BEB), is insufficient for

group communication resource observation with block-wise

transfer and can lead to significant congestion, resulting in

a buffer overflow, data loss, and connection drop. To

address this problem, we conducted a study to evaluate the

effectiveness of two alternative algorithms for congestion

control in CoAP: Fibonacci Pre-Increase Back-off (FPB)

and Half Binary Exponential Backoff (HBEB) algorithms.

We tested these algorithms using a Cooja simulation and

compared their performance to the default BEB algorithm.

Our results showed that HBEB outperformed both BEB and

FPB in terms of throughput and packet loss ratio (PLR),

where BEB provides the best in term of end-to-end delay.

Received by 20 January 2023

Revised by 26 April 2023

Accepted by 28 April 2023

Keywords:

block-wise transfer, CoAP, congestion control, group

communication, IoT, observe resource

1. Introduction

The Internet of Things (IoT) refers to the connection of

various networking systems and everyday devices to the

Internet. The Constrained Application Protocol (CoAP),

developed by the Internet Engineering Task Force (IETF), is

a specific web transmission protocol designed for using in

devices with limited resources in IoT. CoAP uses a User

Datagram Protocol (UDP) with IEEE 802.15.4, rather than

the resource-intensive Transmission Control Protocol (TCP)

to make operation easier and reduce system resource needs,

as shown in Fig. 1. Moreover, CoAP is also used in machine-

to-machine (M2M) communications [1], [2].

Fig. 1 HTTP and CoAP protocol stack

The design of CoAP is similar to HTTP in a

request/response model which allows clients to send

requests to servers and receive responses. Moreover, CoAP

also includes additional features called Observing Resources

(OBS), which allows for group communication and

notification of resource changes. This provides benefits for

smart cities and healthcare applications to monitor data from

sensors in real-time [3]–[7].

Fig. 2 CoAP Observe with Block-Wise Transfer

Furthermore, CoAP provides the block-wise transfer

feature, which enables efficient data transfer in resource-

limited environments. This feature allows large amounts of

87 ENGINEERING ACCESS, VOL. 9, NO. 1, JANUARY-JUNE 2023

data to be divided into smaller blocks and transferred

individually within a single operation, as illustrated in Fig.

2.

The use of CoAP OBS allows multiple servers to

transfer data simultaneously, which can result in congestion

at a client. However, the default CoAP congestion control

algorithm called Binary Exponential Back-Off (BEB) has

been found to be ineffective in reducing OBS congestion [8].

In this study, we examine the use of two alternative

algorithms called FPB and HBEB to improve throughput

and reduce packet loss in the context of block-wise transfer

with CoAP OBS. Our aim is to identify effective congestion

control strategies for this common scenario in IoT.

The remainder of the paper is organized as follows. In

Section 2, we summarize CoAP functions and its congestion

control algorithm. Section 3, we study the effect of FPB and

HBEB on the congestion control mechanism for CoAP

Observe with block-wise transfer and present the simulation

setup and communication protocol stack settings that we

determine the performance of our proposed mechanism and

compare it with the standard CoAP mechanism. The results

of these evaluations are presented in Section 4. In the final

section, we provide the conclusions of this paper.

2. Literature Review

CoAP is a lightweight protocol for resource-

constrained devices that enables efficient communication

between devices over the Internet. It is commonly utilized in

IoT applications where device processing, memory, and

network bandwidth are constrained. CoAP is built on the

Representational State Transfer (REST) architectural style,

which uses HTTP-like protocols to access and modify

resources on a server (GET, POST, PUT and DELETE).

CoAP messages can be transmitted via multicast or unicast

and are commonly sent over UDP. CoAP uses four types of

messages to request and manipulate resources on a server:

• Confirmable (CON): A confirmable message requires

a response from the server and will be retransmitted if a

response is not received within a specific time period. Then,

Confirmable messages are used for reliable communications

such as POST and PUT requests.

• Non-Confirmable (NON): A non-confirmable

message does not require a response from the server and will

not be retransmitted if a response is not received. Non-

confirmable messages are used for unreliable

communication such as GET requests.

• Acknowledgment (ACK): An acknowledgment

message is a response to a confirmable message and

indicates that the request has been received and processed

by the server.

• Reset (RST): A reset message is used to cancel a

confirmable message that is in progress or to indicate that a

non-confirmable message has been received and processed

by the server.

CoAP also includes congestion control mechanisms

designed to help reduce network congestion by spacing out

retransmissions of messages when a response has not been

received within a specific time period. The default BEB

mechanism in CoAP provides an interval between

retransmissions and allows the interval to increase gradually

over time to ensure that retransmissions are spaced out and

do not flood the network.

CoAP offers Observe Resource (OBS) [9] in addition

to the conventional request/response mechanisms known as

CoAP-based transmission, as shown in Fig. 3 (a). In the

CoAP OBS, a client performs as an observer registers

resources to interested servers. Then, each server will notify

the client whenever a registered resource changes, as shown

in Fig. 3 (b). The notification transmitted by the default

server uses the NON message. In this study, we concentrated

on the CoAP OBS and applied the CON message to provide

the congestion control mechanisms.

Fig. 3 CoAP-based message transfer and Observing resource

message transfer

Furthermore, the client can register for a large data of

resources in the observe mode, and those cannot be sent in a

single CoAP packet. As a result, the server must partition

into numerous data blocks, known as block-wise transfer. As

ENGINEERING ACCESS, VOL. 9, NO. 1, JANUARY-JUNE 2023 86

shown in Fig. 4, each block contains the number of the most

recently transmitted block (#Block), the block size (Size),

and the number of subsequent blocks (M). Also, data

retransmission uses a timeout.

Since CoAP works on top of UDP data transfer

protocol, it is necessary to use extra congestion control.

Default CoAP uses a straightforward stop-and-wait

congestion control strategy to manage network congestion

automatically by using Retransmission TimeOut (RTO)

value to retransmit lost packets at exponential intervals until

they obtain an ACK. However, doing so will increase

network traffic congestion.

Fig. 4 CoAP Block-Wise Transfer

Several studies have been conducted to examine CoAP

congestion control mechanisms in order to achieve optimal

performance in various scenarios. For example, the

approaches in [10]–[17] allow for dynamically determining

RTO value based on round-trip time (RTT) samples and

considering multiple outstanding interactions. However, the

practical implementation has limitations in terms of

constraints on RTT observation time and the possibility of

ignoring burst traffic [18]. In addition, they are complex to

implement and may not be backward compatible. Also,

using a high RTO value in CoAP, especially in networks

with high bit error rates such as CoAP OBS may result in

long idle times, which can be a problem for resource-

constrained devices like sensors and motes that rely on

battery power. In order to address this issue, it is crucial to

consider the limited battery power of IoT devices and to

design protocols that are both efficient and easy to

implement in terms of energy consumption [19]. The default

CoAP algorithm minimizes complexity by not requiring the

calculation and management of end-to-end connection

information.

In general, the default CoAP behavior is entirely

unaware of the state of the network. Numerous studies have

shown that using a basic CoAP congestion control strategy

might lead to substandard network performance [20].

Congestion control algorithms play an essential part in a

wide range of IoT applications. As a result, numerous efforts

have been made to identify and reduce congestion in the IoT.

Two back-off mechanisms have been implemented in CoAP

observe group communication algorithms introduced in

[21], namely FPB and HBEB. The two proposed back-off

mechanisms are to improve the packet drop ratio and

throughput by changing the RTO value in CoAP observe

mode without using RTT measurements. Hence, the

working of the original CoAP algorithm remains largely

unaffected.

3. Research Methodology

To alleviate congestion, CoAP calculates RTO with

BEB to generate a random interval between 2–4 seconds. If

a retransmission occurs, RTO is double leading to a long idle

time to send another packet in case that congestion has

stayed for a long period. In this study, we apply the FPB and

HBEB to lower the RTO. Beginning with the RTO value of

2 seconds, overall time before the timeout was about 32

seconds for the BEB, 12 seconds for the FPB, and 8 seconds

for the HBEB, as shown in Fig. 5. Similar to the default

CoAP, our study permits retransmissions up to four times

before classifying the notice as an error or failure.

Fig. 5 The comparison of back-off method BEB, FPB, and HBEB

3.1 Fibonacci Pre-Increase Back-Off (FPB)

Fibonacci Pre-Increase Back-Off (FPB) [21] is a

congestion control algorithm that uses a sequence of

numbers based on the Fibonacci sequence to determine the

amount of time to wait before retransmitting a message that

the receiver has not acknowledged. In the FPB algorithm,

the sender starts by waiting a certain number of milliseconds

before retrying and then increases the wait time for each

subsequent retry based on the Fibonacci sequence. FPB is

defined as equation (1) presented in Algorithm 1:

𝑅𝑇𝑂𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑅𝑇𝑂𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 × 𝐹𝑖𝑏𝑜𝑛𝑎𝑐𝑐𝑖[𝑖] (1)

Where RTOcurrent is the amount of time to wait on the

next retransmission, RTOprevious is the amount of time

waiting in the current retransmission, and Fibonacci[i] is the

calculation of the Fibonacci number of the i retransmission.

88

87 ENGINEERING ACCESS, VOL. 9, NO. 1, JANUARY-JUNE 2023

3.2 Half Binary Exponential Back-Off

(HBEB)

Half Binary Exponential Back-Off (HBEB) [21] is a

congestion control algorithm that uses a binary exponential

back-off approach to determine the RTO before

retransmitting a message that the receiver has not

acknowledged. In the HBEB algorithm, the sender starts by

waiting a certain number of seconds before retrying and then

increases the RTO for each subsequent retry by doubling the

previous RTO. However, unlike BEB, the HBEB algorithm

only increases the RTO for every other retry rather than for

every retry. HBEB is defined as equation (2) and presents in

Algorithm 2 :

𝑅𝑇𝑂𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑅𝑇𝑂𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 × 2𝑘 (2)

Where RTOcurrent is the amount of time to wait on the

next retransmission, RTOprevious is the amount of time

waiting in the current retransmission, and k is equal to 1 for

odd retransmission and equal to 0 for even retransmission.

For example, if the initial wait time is 2 seconds and the

message is not acknowledged on the first attempt, the RTO

will not be increased on the second attempt. It will only be

increased on the third attempt, and so on. This means that

the RTO will be increased less frequently in the HBEB

algorithm than in the BEB algorithm.

3.3 Evaluation Setup

This section presents a setup for performance

evaluations of the three congestion control algorithm: the

default CoAP BEB, FPB, and HBEB with simulation setup,

traffic scenarios, network topologies and performance

metrics.

3.3.1 Simulation Setup

The experiment runs on Cooja Simulation in Contiki

OS 3.0, a well-known IoT operating system that supports the

6LoWPAN communications over IEEE 802.15.4.

Moreover, it can upload the hex file created by the Cooja

Simulation into the actual WSN mote for a real environment

evaluation [22]. The simulation parameters are displayed in

Table 1.

Setting Value

Mote Zolertia (Z1)

Routing protocol
Routing protocol for lower-power

and lossy networks (RPL)

Wireless channel model
UDGM, transmission range =
15m, interference rage = 30m

Node distant 10 m

Transport and Network UDP + uIPv6 + 6LoWPAN

Radio duty cycling
(RDC)

Null-RDC, null-MAC

Radio band 2.4 GHz

Radio channel 26

Chanel check rate 128 Hz

Physical PHY IEEE.802.15.4 PHY

Congestion mechanism
Default CoAP BEB, FPB and

HBEB

Maximum

retransmissions
4

Simulation time out 300 s

Maximum open

transaction
11

Table 1 Cooja simulation parameter setup

In this simulation, Zolertia Z1 mote is selected, which

is a low-power wireless sensor network (WSN) node

supporting 6LoWPAN. The hardware specifications of the

Z1 mote are displayed in Table 2.

Setting Value

Microcontroller MSP430F267 low power

RAM 8KB

ROM 92KB

Data rate 250Kbps

Clock Speed 16MHz

Table 2 mote hardware specification

3.3.2 Network Topology

The research in this article examines the potential effects

of various congestion control strategies for RTO value on

the overall network performance. To compare the

performance of the default CoAP BEB, FPB, and HBEB, we

use grid traffic scenarios that have been used in a variant of

research on CoAP congestion control [8], [10], [15], [16],

[21], [23]–[25]. The arrangement of the nodes model in 3x3

and 3x4 is shown in Fig. 6. Each node is separated by 10

meters, the transmission range is 15 meters, and the

interference range is 30 meters. The communication in these

scenarios uses OBS.

1. define ini_rto [2,3]

2. int RTO = ini_rto

3. int retransmissions = 0
4. void send_request()

5. if (!received_response)

6. retransmissions++
7. RTOcurrent = RTOprevious * fib(retransmissions);

8. wait(RTOcurrent)

9. send_request()
10. int fib(int n)

11. if (n <= 1) return n
12. return fib(n-1) + fib(n-2)

Algorithm 1 FPB algorithm

1. define ini_rto [2,3]

2. int RTO = ini_rto
3. int retransmissions = 0

4. void send_request()

5. if (!received_response)
6. retransmissions++

7. if (retransmissions % 2 == 1)

8. RTOcurrent = RTOprevious
9. else

10. RTOcurrent = RTOprevious * 2

11. wait(RTOcurrent)
12. send_request()

13. int fib(int n) {

14. if (n <= 1) return n;
15. return fib(n-1) + fib(n-2);}

Algorithm 2 HBEB algorithm

89

ENGINEERING ACCESS, VOL. 9, NO. 1, JANUARY-JUNE 2023 86

Fig. 6 Simulation node setup used for performance analysis

3.3.3 Traffic Scenarios

In OBS, one CoAP client is registered one by one to all

CoAP observe servers. As soon as the OBS server

completely registers with the CoAP client, it sends the

periodic resource continuously to the client every second if

the data of the resource changes.

We model our experiment with one border router

(circle with a cross) node and one CoAP client (circle with

six dashes) node. There are up to two CoAP Observe nodes

(circle with three dashes) with the block-wise transfer. The

rest of the nodes (black circle) are generally observed nodes,

as illustrated in Fig. 6. Each node performs the following

functions:

• The border router routes data between an internal

network and the Internet.

• The CoAP client is used for getting data from all

CoAP servers.

• The regular CoAP OBS is the server with periodic

sending data (resource) with a size of 8 bytes and will notify

the client every second if the resource has changed its value.

• CoAP OBS with the block-wise transfer is the server

with a more significant resource payload of 1024 bytes.

Therefore, we use the observer feature of CoAP as a trigger

for sending block-wise data. The block size can be varied

between 16 bytes and 1024 bytes per block. Due to memory

constraints in the Z1 mote, we use a maximum 48 bytes

block size of CoAP. Fig. 7 shows the structure of a CoAP

OBS with block-wise transfer.

Six scenarios are tested for the effects of the RTO

mechanisms, as shown in Fig. 6. These scenarios compare

FPB and HBEB with default BEB on regular OBS and OBS

with block-wise transfer performance in terms of packet loss

ratio (PLR), end-to-end delay, and throughput. In every

scenario, we test for 300 seconds after the client has

registered all servers. Each scenario was repeated 50 times

with different random seed numbers in the Cooja simulation.

Fig. 7 CoAP OBS with the block-wise transfer

4. Result and Discussion

CoAP OBS behavior allows a client to request

notifications from multiple servers about the changes of

particular resources. This allows the client to receive updates

from the server in real-time without continuously polling the

updates. However, all servers constantly send data to the

client whenever their resource changes. As shown in Table

3, the PLR is over 50%. At both grid scenarios, 3x3 and 3x4

without the block-wise transfer, the use of HBEB performs

the best in terms of throughput and packet loss. However,

BEB performs the best in terms of end-to-end delay.

With one and two block-wise transfers, congestion is

higher because the block-wise node sends a large amount of

data into the network. This causes delays in transferring

resources, reduces network performance, or fails in

communication. However, once the block-wise transfer is

finished, congestion is quickly reduced. BEB has a negative

impact on high congestion networks because it doubles the

RTO value with each retransmission causing the sender to

wait longer before retransmitting a packet. In highly

congested networks, many packets are waiting in the queue

which leads to packet drops and retransmissions. Then, the

throughput of the network is lower.

In contrast, compared to BEB, the gradual increase in

RTO of HBEB values in a highly congested network

provides the benefit of reducing congestion and increasing

the chances of successful delivery. As shown in Fig. 5, the

90

87 ENGINEERING ACCESS, VOL. 9, NO. 1, JANUARY-JUNE 2023

lower increasing period of HBEB provides enough time to

reduce congestion. Then, packets are retransmitted quickly.

This improves the overall network throughput. Therefore,

the results show that HBEB outperforms both BEB and FPB

in terms of throughput and packet loss as shown in Table 3.

Grid
size

Back-off

algorithm

PLR

(%)

End-to-

End delay

(ms)

Throughput

(Kbps)

3x3-0

BEB 53.59 5.61 8.30

FPB 52.57 6.28 10.06

HBEB 52.72 6.24 15.18

3x4-0

BEB 54.41 3.89 11.18

FPB 54.05 5.02 11.67

HBEB 53.82 4.24 12.34

3x3-1

BEB 54.15 5.59 10.03

FPB 54.02 5.39 11.76

HBEB 53.96 5.43 12.44

3x4-1

BEB 53.97 3.99 14.04

FPB 54.59 4.46 15.74

HBEB 55.31 4.02 16.44

3x3-2

BEB 55.05 4.29 10.30

FPB 54.42 4.27 11.12

HBEB 54.36 4.53 11.42

3x4-2

BEB 55.25 3.17 15.88

FPB 55.20 3.88 16.14

HBEB 54.98 3.61 17.18

Table 3 Overall performance metric value comparison (number in

bold is the better performance)

5. Conclusion

The goal of this research was to examine the potential

effects of different congestion control strategies on the RTO

value in CoAP observe group communication with the

block-wise transfer. We compared three strategies: default

CoAP BEB, FPB, and HBEB in terms of their impacts on

packet loss ratio, end-to-end delay, and throughput. In our

simulation, we implemented CoAP in the Cooja simulation

of Contiki OS 3.0 with multiple CoAP servers sending back-

to-back traffic to an OBS client in scenarios with no block-

wise transfers, one block-wise transfer and two block-wise

transfers. The results showed that network traffic is often

highly congested in CoAP OBS with the block-wise transfer.

As a result, using the HBEB resulted in the best throughput

and packet loss ratio. These findings suggest that HBEB is

an effective option for congestion control in CoAP,

especially in scenarios involving group communication

resource observation with the block-wise transfer.

References

[1] P. Sharma, I. Pandey, and P. M. Pradhan, "Hardware

Implementation and Comparison of IoT Data Protocol for Home

Automation Application," in 2022 IEEE Delhi Section Conference
(DELCON), pp.1–6, 2022 doi:

10.1109/DELCON54057.2022.9752957.

[2] D. Ray, P. Bhale, S. Biswas, S. Nandi, and P. Mitra, "DAISS: Design
of an Attacker Identification Scheme in CoAP Request/Response

Spoofing," in TENCON 2021-2021 IEEE Region 10 Conference

(TENCON), pp. 941–946, 2021, doi:
10.1109/TENCON54134.2021.9707405.

[3] D. Ugrenovic and G. Gardasevic, "CoAP protocol for Web-based

monitoring in IoT healthcare applications," Nov. 2015. doi:
10.1109/TELFOR.2015.7377418.

[4] M. D. Babakerkhell and N. Pandey, "Analysis of different IOT based

healthcare monitoring systems," Int J Innov Technol Explor Eng
(IJITEE), 2019.

[5] P. K. Rath, N. Mahapatro, S. Sahoo, and S. Chinara, "IoT Based

Health Monitoring System for Hospital Management," 2021.

[6] A. Aldribi and A. Singh, "Blockchain Empowered Smart Home: A

Scalable Architecture for Sustainable Smart Cities," Mathematics,

vol. 10, no. 14, p. 2378, 2022.

[7] S. Beloualid, S. El Aidi, A. El Allali, A. Bajit, and A. Tamtaoui,

"Applying Advanced IoT Network Topologies to Enhance
Intelligent City Transportation Cost Based on a Constrained and

Secured Applicative IoT CoAP Protocol," Advances in Information,

Communication and Cybersecurity: Proceedings of ICI2C’21, vol.
357, p. 195, 2022.

[8] E. Ancillotti and R. Bruno, "Comparison of CoAP and CoCoA+

congestion control mechanisms for different IoT application

scenarios," in 2017 IEEE Symposium on Computers and

Communications (ISCC), pp. 1186–1192, 2017, doi:

10.1109/ISCC.2017.8024686.

[9] J. Youn and H. Choi, "CoAP-based Reliable Message Transmission

Scheme in IoT Environments," Journal of the Korea Society of

Computer and Information, vol. 21, pp. 79–84, 2016, doi:
10.9708/jksci.2016.21.1.079.

[10] A. Betzler, C. Gomez, I. Demirkol, and J. Paradells, "CoCoA+: An

advanced congestion control mechanism for CoAP," Ad Hoc
Networks, pp. 126–139, 2016, doi: 10.1016/j.adhoc.2015.04.007.

[11] R. Bhalerao, S. S. Subramanian, and J. Pasquale, "An analysis and

improvement of congestion control in the CoAP Internet-of-Things
protocol," in 2016 13th IEEE Annual Consumer Communications &

Networking Conference (CCNC), pp. 889–894, 2016. doi:

10.1109/CCNC.2016.7444906.

[12] C. Bormann, A. Betzler, C. Gomez, and I. Demirkol, "CoAP Simple

Congestion Control/Advanced," Internet Engineering Task Force,

Internet Draft draft-ietf-core-cocoa-00, 2017. [Accessed: Jan. 28,
2022].

[13] H. Meng, H. HongBing, and L. WeiPing, "An Adaptive Congestion

Control Algorithm with CoAP for the Internet of Thing," Int. J.
Comput. Tech, vol. 4, pp. 46–51, 2017.

[14] I. Jarvinen, I. Raitahila, Z. Cao, and M. Kojo, "FASOR

Retransmission Timeout and Congestion Control Mechanism for
CoAP," in 2018 IEEE Global Communications Conference

(GLOBECOM), pp. 1–7, 2018, doi:

10.1109/GLOCOM.2018.8647909.

[15] S. Bolettieri, G. Tanganelli, C. Vallati, and E. Mingozzi, "pCoCoA:

A precise congestion control algorithm for CoAP," Ad Hoc

Networks, vol. 80, pp. 116–129, 2018, doi:
10.1016/j.adhoc.2018.06.015.

91

ENGINEERING ACCESS, VOL. 9, NO. 1, JANUARY-JUNE 2023 86

[16] V. Rathod, N. Jeppu, S. Sastry, S. Singala, and M. P. Tahiliani,

"CoCoA++: Delay gradient based congestion control for Internet of

Things," Future Generation Computer Systems, vol. 100, pp. 1053–
1072, 2019, doi: 10.1016/j.future.2019.04.054.

[17] G. A. Akpakwu, G. P. Hancke, and A. M. Abu-Mahfouz, "CACC:

Context-aware congestion control approach for lightweight
CoAP/UDP-based Internet of Things traffic," Transactions on

Emerging Telecommunications Technologies, vol. 31, no. 2, p.

e3822, 2020.

[18] R. K. Yadav, N. Singh, and P. Piyush, "Genetic CoCoA++: genetic

algorithm based congestion control in CoAP," in 2020 4th

International Conference on Intelligent Computing and Control
Systems (ICICCS), pp.808–813, 2020. doi:

10.1109/ICICCS48265.2020.9121093.

[19] M. A. Tariq, M. Khan, M. T. Raza Khan, and D. Kim,
"Enhancements and Challenges in CoAP—A Survey," Sensors, vol.

20, no. 21, 2020, doi: 10.3390/s20216391.

[20] I. Järvinen, L. Daniel, and M. Kojo, "Experimental evaluation of
alternative congestion control algorithms for Constrained

Application Protocol (CoAP)," in 2015 IEEE 2nd World Forum on

Internet of Things (WF-IoT), pp. 453–458, 2015, doi: 10.1109/WF-
IoT.2015.7389097.

[21] C. Suwannapong and C. Khunboa, "EnCoCo-RED: Enhanced

congestion control mechanism for CoAP observe group
communication," Ad Hoc Networks, vol. 112, p. 102377, 2021, doi:

10.1016/j.adhoc.2020.102377.

[22] I. Essop, J. C. Ribeiro, M. Papaioannou, G. Zachos, G. Mantas, and

J. Rodriguez, "Generating Datasets for Anomaly-Based Intrusion

Detection Systems in IoT and Industrial IoT Networks," Sensors,
vol. 21, no. 4, 2021, doi: 10.3390/s21041528.

[23] V. J. Rathod and M. P. Tahiliani, "Geometric Sequence Technique

for Effective RTO Estimation in CoAP," in 2020 IEEE International
Conference on Advanced Networks and Telecommunications

Systems (ANTS), pp. 1–6, 2020. doi:

10.1109/ANTS50601.2020.9342748.

[24] N. Makarem, W. Bou Diab, I. Mougharbel, and N. Malouch, "On

the design of efficient congestion control for the Constrained

Application Protocol in IoT," Computer Networks, vol. 207, p.
108824, 2022, doi: 10.1016/j.comnet.2022.108824.

[25] S. Deshmukh and V. T. Raisinghani, "AdCoCoA- Adaptive

Congestion Control Algorithm for CoAP," in 2020 11th
International Conference on Computing, Communication and

Networking Technologies (ICCCNT), pp. 1–7, 2020, doi:

10.1109/ICCCNT49239.2020.9225315.

Biographies

Thavrak Chan received a B.Sc. degree in

information technology and engineering

from the Royal University of Phnom Penh,

Cambodia, in 2016. Currently, he is

continuing his master’s degree at the

Department of Computer Engineering at

Khon Kaen University.

Chanwit Suwannapong received a

B.Eng., M.Eng, and a Ph.D. degree in

computer engineering from Khon Kaen

University, Thailand, in 2011, 2013, and

2020 respectively. He has published many

publications in the area of Wireless Sensor

Networks, Ad Hoc Networks, and Smart

Agriculture.

Chatchai Khunboa is an associate

professor in the Department of Computer

Engineering at Khon Kaen University,

Thailand. Dr. Khunboa received a B.Eng.

from Khon Kaen University in 1992, his

MSc degree in Telecommunications from

the University of Pittsburgh in 2000, and

his Ph.D. degree in Information Technology from George

Mason University in 2005. His research interests include

Wireless Sensor Networks, the Internet of Things, and

Software-defined Networks (SDN).

92

