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Abstract. The Constraint Application Protocol (CoAP) is 

a restricted protocol used for communication in the Internet 

of Things (IoT). It allows limited resource devices to connect 

to the Internet, exchange request/response messages, and 

block-wise transfer for large data transfers. CoAP also 

includes an observed mode, which allows a client to monitor 

resources on servers and receive notification messages via 

unicast when the state of the resource is changed. However, 

the default congestion control algorithm used by CoAP, 

called Binary Exponential Back-Off (BEB), is insufficient for 

group communication resource observation with block-wise 

transfer and can lead to significant congestion, resulting in 

a buffer overflow, data loss, and connection drop. To 

address this problem, we conducted a study to evaluate the 

effectiveness of two alternative algorithms for congestion 

control in CoAP: Fibonacci Pre-Increase Back-off (FPB) 

and Half Binary Exponential Backoff (HBEB) algorithms. 

We tested these algorithms using a Cooja simulation and 

compared their performance to the default BEB algorithm. 

Our results showed that HBEB outperformed both BEB and 

FPB in terms of throughput and packet loss ratio (PLR), 

where BEB provides the best in term of end-to-end delay. 
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1. Introduction 

The Internet of Things (IoT) refers to the connection of 

various networking systems and everyday devices to the 

Internet. The Constrained Application Protocol (CoAP), 

developed by the Internet Engineering Task Force (IETF), is 

a specific web transmission protocol designed for using in 

devices with limited resources in IoT. CoAP uses a User 

Datagram Protocol (UDP) with IEEE 802.15.4, rather than 

the resource-intensive Transmission Control Protocol (TCP) 

to make operation easier and reduce system resource needs, 

as shown in Fig. 1. Moreover, CoAP is also used in machine-

to-machine (M2M) communications [1], [2]. 

 
Fig. 1 HTTP and CoAP protocol stack 

The design of CoAP is similar to HTTP in a 

request/response model which allows clients to send 

requests to servers and receive responses. Moreover, CoAP 

also includes additional features called Observing Resources 

(OBS), which allows for group communication and 

notification of resource changes. This provides benefits for 

smart cities and healthcare applications to monitor data from 

sensors in real-time [3]–[7]. 

Fig. 2 CoAP Observe with Block-Wise Transfer 

Furthermore, CoAP provides the block-wise transfer 

feature, which enables efficient data transfer in resource-

limited environments. This feature allows large amounts of 
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data to be divided into smaller blocks and transferred 

individually within a single operation, as illustrated in Fig. 

2. 

The use of CoAP OBS allows multiple servers to 

transfer data simultaneously, which can result in congestion 

at a client. However, the default CoAP congestion control 

algorithm called Binary Exponential Back-Off (BEB) has 

been found to be ineffective in reducing OBS congestion [8]. 

In this study, we examine the use of two alternative 

algorithms called FPB and HBEB to improve throughput 

and reduce packet loss in the context of block-wise transfer 

with CoAP OBS. Our aim is to identify effective congestion 

control strategies for this common scenario in IoT. 

The remainder of the paper is organized as follows. In 

Section 2, we summarize CoAP functions and its congestion 

control algorithm. Section 3, we study the effect of FPB and 

HBEB on the congestion control mechanism for CoAP 

Observe with block-wise transfer and present the simulation 

setup and communication protocol stack settings that we 

determine the performance of our proposed mechanism and 

compare it with the standard CoAP mechanism. The results 

of these evaluations are presented in Section 4. In the final 

section, we provide the conclusions of this paper. 

2. Literature Review  

CoAP is a lightweight protocol for resource-

constrained devices that enables efficient communication 

between devices over the Internet. It is commonly utilized in 

IoT applications where device processing, memory, and 

network bandwidth are constrained. CoAP is built on the 

Representational State Transfer (REST) architectural style, 

which uses HTTP-like protocols to access and modify 

resources on a server (GET, POST, PUT and DELETE). 

CoAP messages can be transmitted via multicast or unicast 

and are commonly sent over UDP. CoAP uses four types of 

messages to request and manipulate resources on a server: 

• Confirmable (CON): A confirmable message requires 

a response from the server and will be retransmitted if a 

response is not received within a specific time period. Then, 

Confirmable messages are used for reliable communications 

such as POST and PUT requests.  

• Non-Confirmable (NON): A non-confirmable 

message does not require a response from the server and will 

not be retransmitted if a response is not received. Non-

confirmable messages are used for unreliable 

communication such as GET requests. 

• Acknowledgment (ACK): An acknowledgment 

message is a response to a confirmable message and 

indicates that the request has been received and processed 

by the server.  

• Reset (RST): A reset message is used to cancel a 

confirmable message that is in progress or to indicate that a 

non-confirmable message has been received and processed 

by the server. 

CoAP also includes congestion control mechanisms 

designed to help reduce network congestion by spacing out 

retransmissions of messages when a response has not been 

received within a specific time period. The default BEB 

mechanism in CoAP provides an interval between 

retransmissions and allows the interval to increase gradually 

over time to ensure that retransmissions are spaced out and 

do not flood the network. 

CoAP offers Observe Resource (OBS) [9] in addition 

to the conventional request/response mechanisms known as 

CoAP-based transmission, as shown in Fig. 3 (a). In the 

CoAP OBS, a client performs as an observer registers 

resources to interested servers. Then, each server will notify 

the client whenever a registered resource changes, as shown 

in Fig. 3 (b). The notification transmitted by the default 

server uses the NON message. In this study, we concentrated 

on the CoAP OBS and applied the CON message to provide 

the congestion control mechanisms. 

 

 
Fig. 3 CoAP-based message transfer and Observing resource 

message transfer 

Furthermore, the client can register for a large data of 

resources in the observe mode, and those cannot be sent in a 

single CoAP packet. As a result, the server must partition 

into numerous data blocks, known as block-wise transfer. As 
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shown in Fig. 4, each block contains the number of the most 

recently transmitted block (#Block), the block size (Size), 

and the number of subsequent blocks (M). Also, data 

retransmission uses a timeout. 

Since CoAP works on top of UDP data transfer 

protocol, it is necessary to use extra congestion control. 

Default CoAP uses a straightforward stop-and-wait 

congestion control strategy to manage network congestion 

automatically by using Retransmission TimeOut (RTO) 

value to retransmit lost packets at exponential intervals until 

they obtain an ACK. However, doing so will increase 

network traffic congestion. 

 

 
Fig. 4 CoAP Block-Wise Transfer 

Several studies have been conducted to examine CoAP 

congestion control mechanisms in order to achieve optimal 

performance in various scenarios. For example, the 

approaches in [10]–[17] allow for dynamically determining 

RTO value based on round-trip time (RTT) samples and 

considering multiple outstanding interactions. However, the 

practical implementation has limitations in terms of 

constraints on RTT observation time and the possibility of 

ignoring burst traffic [18]. In addition, they are complex to 

implement and may not be backward compatible. Also, 

using a high RTO value in CoAP, especially in networks 

with high bit error rates such as CoAP OBS may result in 

long idle times, which can be a problem for resource-

constrained devices like sensors and motes that rely on 

battery power. In order to address this issue, it is crucial to 

consider the limited battery power of IoT devices and to 

design protocols that are both efficient and easy to 

implement in terms of energy consumption [19]. The default 

CoAP algorithm minimizes complexity by not requiring the 

calculation and management of end-to-end connection 

information. 

In general, the default CoAP behavior is entirely 

unaware of the state of the network. Numerous studies have 

shown that using a basic CoAP congestion control strategy 

might lead to substandard network performance [20]. 

Congestion control algorithms play an essential part in a 

wide range of IoT applications. As a result, numerous efforts 

have been made to identify and reduce congestion in the IoT. 

Two back-off mechanisms have been implemented in CoAP 

observe group communication algorithms introduced in 

[21], namely FPB and HBEB. The two proposed back-off 

mechanisms are to improve the packet drop ratio and 

throughput by changing the RTO value in CoAP observe 

mode without using RTT measurements. Hence, the 

working of the original CoAP algorithm remains largely 

unaffected. 

3. Research Methodology  

To alleviate congestion, CoAP calculates RTO with 

BEB to generate a random interval between 2–4 seconds. If 

a retransmission occurs, RTO is double leading to a long idle 

time to send another packet in case that congestion has 

stayed for a long period. In this study, we apply the FPB and 

HBEB to lower the RTO. Beginning with the RTO value of 

2 seconds, overall time before the timeout was about 32 

seconds for the BEB, 12 seconds for the FPB, and 8 seconds 

for the HBEB, as shown in Fig. 5. Similar to the default 

CoAP, our study permits retransmissions up to four times 

before classifying the notice as an error or failure. 

 
Fig. 5 The comparison of back-off method BEB, FPB, and HBEB 

3.1 Fibonacci Pre-Increase Back-Off (FPB) 

Fibonacci Pre-Increase Back-Off (FPB) [21] is a 

congestion control algorithm that uses a sequence of 

numbers based on the Fibonacci sequence to determine the 

amount of time to wait before retransmitting a message that 

the receiver has not acknowledged. In the FPB algorithm, 

the sender starts by waiting a certain number of milliseconds 

before retrying and then increases the wait time for each 

subsequent retry based on the Fibonacci sequence. FPB is 

defined as equation (1) presented in Algorithm 1: 

𝑅𝑇𝑂𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑅𝑇𝑂𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 × 𝐹𝑖𝑏𝑜𝑛𝑎𝑐𝑐𝑖[𝑖] (1) 

Where RTOcurrent is the amount of time to wait on the 

next retransmission, RTOprevious is the amount of time 

waiting in the current retransmission, and Fibonacci[i] is the 

calculation of the Fibonacci number of the i retransmission. 
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3.2 Half Binary Exponential Back-Off 

(HBEB) 

Half Binary Exponential Back-Off (HBEB) [21] is a 

congestion control algorithm that uses a binary exponential 

back-off approach to determine the RTO before 

retransmitting a message that the receiver has not 

acknowledged. In the HBEB algorithm, the sender starts by 

waiting a certain number of seconds before retrying and then 

increases the RTO for each subsequent retry by doubling the 

previous RTO. However, unlike BEB, the HBEB algorithm 

only increases the RTO for every other retry rather than for 

every retry. HBEB is defined as equation (2) and presents in 

Algorithm 2 : 

𝑅𝑇𝑂𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑅𝑇𝑂𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 × 2𝑘 (2) 

Where RTOcurrent is the amount of time to wait on the 

next retransmission, RTOprevious is the amount of time 

waiting in the current retransmission, and k is equal to 1 for 

odd retransmission and equal to 0 for even retransmission. 

For example, if the initial wait time is 2 seconds and the 

message is not acknowledged on the first attempt, the RTO 

will not be increased on the second attempt. It will only be 

increased on the third attempt, and so on. This means that 

the RTO will be increased less frequently in the HBEB 

algorithm than in the BEB algorithm. 

 

3.3 Evaluation Setup 

This section presents a setup for performance 

evaluations of the three congestion control algorithm: the 

default CoAP BEB, FPB, and HBEB with simulation setup, 

traffic scenarios, network topologies and performance 

metrics. 

3.3.1 Simulation Setup 

The experiment runs on Cooja Simulation in Contiki 

OS 3.0, a well-known IoT operating system that supports the 

6LoWPAN communications over IEEE 802.15.4. 

Moreover, it can upload the hex file created by the Cooja 

Simulation into the actual WSN mote for a real environment 

evaluation [22]. The simulation parameters are displayed in 

Table 1. 
 

Setting Value 

Mote Zolertia (Z1) 

Routing protocol 
Routing protocol for lower-power 

and lossy networks (RPL) 

Wireless channel model 
UDGM, transmission range = 
15m, interference rage = 30m 

Node distant 10 m 

Transport and Network UDP + uIPv6 + 6LoWPAN 

Radio duty cycling 
(RDC) 

Null-RDC, null-MAC 

Radio band 2.4 GHz 

Radio channel 26 

Chanel check rate 128 Hz 

Physical PHY IEEE.802.15.4 PHY 

Congestion mechanism 
Default CoAP BEB, FPB and 

HBEB 

Maximum 

retransmissions 
4 

Simulation time out 300 s 

Maximum open 

transaction 
11 

Table 1 Cooja simulation parameter setup 

In this simulation, Zolertia Z1 mote is selected, which 

is a low-power wireless sensor network (WSN) node 

supporting 6LoWPAN. The hardware specifications of the 

Z1 mote are displayed in Table 2. 
 

Setting Value 

Microcontroller MSP430F267 low power  

RAM 8KB 

ROM 92KB 

Data rate 250Kbps 

Clock Speed 16MHz 

Table 2 mote hardware specification 

3.3.2 Network Topology 

The research in this article examines the potential effects 

of various congestion control strategies for RTO value on 

the overall network performance. To compare the 

performance of the default CoAP BEB, FPB, and HBEB, we 

use grid traffic scenarios that have been used in a variant of 

research on CoAP congestion control [8], [10], [15], [16], 

[21], [23]–[25]. The arrangement of the nodes model in 3x3 

and 3x4 is shown in Fig. 6. Each node is separated by 10 

meters, the transmission range is 15 meters, and the 

interference range is 30 meters. The communication in these 

scenarios uses OBS. 

1. define ini_rto [2,3]  

2. int RTO = ini_rto 

3. int retransmissions = 0 
4. void send_request() 

5. if (!received_response)  

6. retransmissions++ 
7.  RTOcurrent = RTOprevious * fib(retransmissions); 

8. wait(RTOcurrent) 

9. send_request() 
10. int fib(int n)  

11. if (n <= 1) return n 
12.  return fib(n-1) + fib(n-2) 

Algorithm 1 FPB algorithm 

1. define ini_rto [2,3]  

2. int RTO = ini_rto 
3. int retransmissions = 0 

4. void send_request()  

5. if (!received_response)  
6. retransmissions++ 

7.  if (retransmissions % 2 == 1)  

8.  RTOcurrent = RTOprevious  
9.  else  

10.  RTOcurrent = RTOprevious * 2 

11. wait(RTOcurrent) 
12. send_request() 

13. int fib(int n) { 

14. if (n <= 1) return n; 
15.  return fib(n-1) + fib(n-2);} 

Algorithm 2 HBEB algorithm 
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Fig. 6 Simulation node setup used for performance analysis 

3.3.3 Traffic Scenarios 

In OBS, one CoAP client is registered one by one to all 

CoAP observe servers. As soon as the OBS server 

completely registers with the CoAP client, it sends the 

periodic resource continuously to the client every second if 

the data of the resource changes.  

We model our experiment with one border router 

(circle with a cross) node and one CoAP client (circle with 

six dashes) node. There are up to two CoAP Observe nodes 

(circle with three dashes) with the block-wise transfer. The 

rest of the nodes (black circle) are generally observed nodes, 

as illustrated in Fig. 6. Each node performs the following 

functions: 

• The border router routes data between an internal 

network and the Internet. 

• The CoAP client is used for getting data from all 

CoAP servers. 

• The regular CoAP OBS is the server with periodic 

sending data (resource) with a size of 8 bytes and will notify 

the client every second if the resource has changed its value. 

• CoAP OBS with the block-wise transfer is the server 

with a more significant resource payload of 1024 bytes. 

Therefore, we use the observer feature of CoAP as a trigger 

for sending block-wise data. The block size can be varied 

between 16 bytes and 1024 bytes per block. Due to memory 

constraints in the Z1 mote, we use a maximum 48 bytes 

block size of CoAP. Fig. 7 shows the structure of a CoAP 

OBS with block-wise transfer. 

Six scenarios are tested for the effects of the RTO 

mechanisms, as shown in Fig. 6. These scenarios compare 

FPB and HBEB with default BEB on regular OBS and OBS 

with block-wise transfer performance in terms of packet loss 

ratio (PLR), end-to-end delay, and throughput. In every 

scenario, we test for 300 seconds after the client has 

registered all servers. Each scenario was repeated 50 times 

with different random seed numbers in the Cooja simulation. 

 
Fig. 7 CoAP OBS with the block-wise transfer 

4. Result and Discussion  

CoAP OBS behavior allows a client to request 

notifications from multiple servers about the changes of 

particular resources. This allows the client to receive updates 

from the server in real-time without continuously polling the 

updates. However, all servers constantly send data to the 

client whenever their resource changes. As shown in Table 

3, the PLR is over 50%. At both grid scenarios, 3x3 and 3x4 

without the block-wise transfer, the use of HBEB performs 

the best in terms of throughput and packet loss. However, 

BEB performs the best in terms of end-to-end delay. 

With one and two block-wise transfers, congestion is 

higher because the block-wise node sends a large amount of 

data into the network. This causes delays in transferring 

resources, reduces network performance, or fails in 

communication. However, once the block-wise transfer is 

finished, congestion is quickly reduced. BEB has a negative 

impact on high congestion networks because it doubles the 

RTO value with each retransmission causing the sender to 

wait longer before retransmitting a packet. In highly 

congested networks, many packets are waiting in the queue 

which leads to packet drops and retransmissions. Then, the 

throughput of the network is lower. 

In contrast, compared to BEB, the gradual increase in 

RTO of HBEB values in a highly congested network 

provides the benefit of reducing congestion and increasing 

the chances of successful delivery. As shown in Fig. 5, the 
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lower increasing period of HBEB provides enough time to 

reduce congestion. Then, packets are retransmitted quickly. 

This improves the overall network throughput. Therefore, 

the results show that HBEB outperforms both BEB and FPB 

in terms of throughput and packet loss as shown in Table 3. 
 

Grid 
size 

Back-off 

algorithm 

PLR 

(%) 

End-to-

End delay 

(ms) 

Throughput 

(Kbps) 

3x3-0  

BEB 53.59 5.61 8.30 

FPB 52.57 6.28 10.06 

HBEB 52.72 6.24 15.18 

3x4-0  

BEB 54.41 3.89 11.18 

FPB 54.05 5.02 11.67 

HBEB 53.82 4.24 12.34 

3x3-1  

BEB 54.15 5.59 10.03 

FPB 54.02 5.39 11.76 

HBEB 53.96 5.43 12.44 

3x4-1  

BEB 53.97 3.99 14.04 

FPB 54.59 4.46 15.74 

HBEB 55.31 4.02 16.44 

3x3-2  

BEB 55.05 4.29 10.30 

FPB 54.42 4.27 11.12 

HBEB 54.36 4.53 11.42 

3x4-2 

BEB 55.25 3.17 15.88 

FPB 55.20 3.88 16.14 

HBEB 54.98 3.61 17.18 

Table 3 Overall performance metric value comparison (number in 

bold is the better performance) 

5. Conclusion 

The goal of this research was to examine the potential 

effects of different congestion control strategies on the RTO 

value in CoAP observe group communication with the 

block-wise transfer. We compared three strategies: default 

CoAP BEB, FPB, and HBEB in terms of their impacts on 

packet loss ratio, end-to-end delay, and throughput. In our 

simulation, we implemented CoAP in the Cooja simulation 

of Contiki OS 3.0 with multiple CoAP servers sending back-

to-back traffic to an OBS client in scenarios with no block-

wise transfers, one block-wise transfer and two block-wise 

transfers. The results showed that network traffic is often 

highly congested in CoAP OBS with the block-wise transfer. 

As a result, using the HBEB resulted in the best throughput 

and packet loss ratio. These findings suggest that HBEB is 

an effective option for congestion control in CoAP, 

especially in scenarios involving group communication 

resource observation with the block-wise transfer. 
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