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Abstract. This study presents the performance of a low-

cost airborne infection isolation room (AIIR). The system 

consists of an ante room, two AIIRs, a blower, two butterfly 

valves, an air conditioner, a controller, and a ventilation 

system. Pressure and temperature sensors were calibrated 

and installed in all rooms. The control was an in-house 

system, including Arduino Uno R3, ESP32, NI-USB 6009, 

and PLC FX5U. PID control was employed to regulate the 

pressure inside the AIIRs by adjusting the outlet air blower 

speed. The system was tested under various negative 

pressures, i.e. -2.5 to -10 Pa, and the effect of inlet opening 

was also investigated. The results showed that the system 

effectively controlled the pressure under all experimental 

conditions. The blower speed and room pressure were found 

to be related, with higher blower speeds required when all 

butterfly valves were open. The current of the motor 

increased with the valve set connected, and the highest 

current was observed when all butterfly valves were open. 

The air velocity generated by the blower suction varied with 

the room pressure, with a decrease in pressure leading to an 

increase in air velocity. However, for one room operation, 

the velocity difference was insignificant. 
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1. Introduction 

From the outbreak of COVID-19, this pandemic has had 

a profound global impact. The pandemic has led to 

numerous confirmed cases and deaths worldwide, along 

with significant disruptions to daily life, economies, and 

healthcare systems [1]–[3]. Although situation seems to be 

better, coronavirus infection still remains over the whole 

world, because virus transmits easily along the air contained 

droplet nuclei [4]–[7] and ventilation systems in the 

confined space [8]–[11]. To control the spread of 

coronavirus and the new airborne infectious diseases, 

various solutions [12]–[14] have been implemented, 

including social distancing, mask-wearing, frequent 

handwashing, testing, contact tracing, quarantine, and the 

vaccination. For quarantine, the cost of quarantine can vary 

greatly depending on the country and region due to 

differences in government policies and regulations [15], 

[16]. Lee et al [17] demonstrate that the infectious virus 

deposition was reduced by 87-fold when the hood was 

operated. Bergeron et al [18] showed that the use of high 

flow air decontamination units can reduce 5 times of the 

peak contamination levels with faster removal rates greater 

than 33% compared with the traditional extractor in the 

infectious areas. Moreover, as the situation evolves and new 

guidelines are introduced, the cost may fluctuate over time. 

It is recommended to consult official government sources or 

relevant health authorities for precise information on the 

quarantine expenses in a specific location or context. The 

airborne infection isolation room is a major expense 

prepared by health organization of governments. To make 

the system available with low cost of construction, Sukarno 

et al [19] revealed that the heat pipe heat exchanger for pre-

air cooling for the HVAC system of the airborne infection 

isolation room (AIIR) significantly reduces the energy 

consumption. In addition, Nuntapap et al [20] proposed an 

AIIR with an air control system. The control system was 

developed from commercial sensors and a proportional 

integral derivative (PID) control mechanism. PID is suitable 

for controlling engineering devices with wide range of 

application [21]–[23]. Prior to implementation, all sensors 

were calibrated for accurate system functioning. A user 

interface was created using LabVIEW. The key design 

parameter focused on achieving a pressure reduction 

capability of -2.5 Pa. Additionally, the study analyzed the 

airflow distribution within the AIIR at different outlet 

positions. The test results demonstrated that the PID-

controlled system achieved the desired room pressure 

setpoints (at least -2.5 Pa) within 15 seconds and maintained 

stability. The outlet positioned at 10 cm height exhibited 

minimal air dispersion and turbulence, whereas the outlet at 

60 cm height showed backflow and significant air 

dispersion. It is clear that with key parameters the low-cost 
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system could be achieved. However, there is so far no 

performance test on this system. 

Therefore, to assess that this system could be deployed 

with low cost operation, the objective of this work is to study 

performance of the low-cost airborne infection isolation 

room. The stability of control is also revealed. 

2. Methodology 

In this study, the low-cost airborne infection isolation 

room consists of ante room (room 1), two AIIRs (room 2 and 

3), a blower, electrically controllable butterfly valves, an air 

conditioner, controller and ventilation system with air filter 

system as shown in Fig. 1 and Fig. 2. There were pressure 

and temperature sensors for all rooms. All sensors were well 

calibrated, shown in Fig. 3, and setup before tests. The 

electrically controllable butterfly valve was installed at pipe 

before inlet. An in-house control system of this work was 

developed by using a micro controller Arduino Uno R3 and 

ESP32 for automatic control, NI-USB 6009 for data 

interface, and PLC FX5U for air damper control. C++ was 

used for operating Arduino Uno R3 to receive signals from 

all sensors. GX-Work3 was a Lader program for PLC FX5U 

which connected with USB 6009. PLC was used to control 

air damper, air conditioner and lighting system. LabVIEW 

was crucial part of control. It was used to calculate and 

control all system using PID.  

 

 

Fig. 1 Measurement and control system design. 

 

 
(a) Front view of AIIR 

 

 
(b) Back view of AIIR 

Fig. 2 The low-cost airborne infection isolation room (AIIR). 

 

 

Fig. 3 Sensor calibration. 

 

The control principle to regulate pressure inside AIIRs 

was used to adjust the speed of the outlet air blower while 

speed for the inlet air blower was kept constant. To achieve 

the required air exchange rate (over 12 air changes per hour) 

and maintain a negative pressure inside the room below 2.5 

Pa, the outlet air blower was controlled based on 

Proportional integral derivative (PID) control using 

measured data from room 2 and 3 as shown in Fig. 4. More 

details of PID control are available in previous work [20]. 
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Fig. 5 shows monitoring of measured air temperature from 

room 1 to 3.  

In this work, the performance of system were tested 

under various negative pressures of -2.5, -5 and -10 bar to 

assess the operation of fan, consumption of energy and 

velocity at outlet. In addition, effect of inlet opening was 

investigated. The system was tested in different situations, 

i.e. one room operation (room 2 or rooom 3 was selected) 

and full operation (all rooms were operated). 

 

 
Fig. 4 Example of pressure controlled at  -2.5 Pa by PID control. 

 

 
Fig. 5 Dashboard of all room temperature monitoring. 

 

3. Results and Discussion 

Fig. 6 shows the operation of pressure controller at -2.5, 

-5, and -10 Pa within a time window of 3.5 seconds. The 

signal fluctuation for pressures of at -2.5, -5, and -10 Pa are 

±0.6, 0.6, and 0.8, respectively. The fluctuation signal is 

higher at pressure of -10 Pa due to higher motor speed, 

causing pressure oscillation. However, the system can be 

able to control the pressure under all experimental 

conditions. 

 

 
Fig. 6 Room pressures tested at -2.5, -5 and   -10 Pa using low-cost 

control system. 

 

The relation of blower speed and room pressure is 

illustrated in Fig. 7. The blower speeds were measured for 

the operation of both rooms. When the designated pressure 

was maintained in each negative pressure, a higher blower 

speed was required when all butterfly valves are open. This 

is necessary to expel more air in order to maintain the desired 

room pressure as intended. In case of operating room 3, 

blower speed were higher because of higher friction due to 

longer pipe compared to room 2 as shown in Fig. 2.  

As the room pressure decreases from -2.5 to -10 Pa, the 

blower speed increased significantly in all cases. This is 

because the higher blower speed corresponded to an 

increased flow rate, which effectively reduced the room 

pressure. However, in the case of all valves are open, the 

decrease in room pressure has a slightly lesser impact on the 

blower speed. This is due to the fact that the air can distribute 

equally through the outlets of each room. 

Fig. 8 shows the measured current of motor during tests. 

It was found that at light load (only fan operating without the 

butterfly valve set), the current remained constant at 0.76 A 

because the motor had a low load, resulting in consistent 

current. When the valve set was connected, it was observed 

that the current increased. The highest current was detected 

when all butterfly valves were open. The condition where 

room 2 was open and room 3 was closed resulted in a lower 

flow rate compared to all other test conditions because the 

suction pipe was closest to the blower, resulting in a lower 

friction. Conversely, opening all rooms resulted in the 

highest current as the motor rotation speed was higher, 

allowing for a greater current. 

Fig. 9 illustrates the air velocity generated by the blower 

suction for each room pressure. As expected, it was observed 

that the air velocity was changed by air flow rate 

corresponding to room pressure, where a decrease in 

pressure resulted in an increase in air velocity. However, for 

one room operation (room 2 or rooom 3 was selected), the 

velocity is insignificant difference. 
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Fig. 7 Blower speed related with room pressure. 

 
Fig. 8 Currents tested at room pressure of -2.5, -5 and -10 Pa. 
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Fig. 9 Air velocity at outlet varied with room pressure. 

 

4. Conclusions 

This study examined the performance of an airborne 

infection isolation room (AIIR) equipped with a low-cost 

PID controller. All devices were available in the markets. 

Testing the system under different negative pressures 

ranging from -2.5 to -10 Pa with different inlet opening 

revealed that higher blower speeds were necessary when all 

butterfly valves were opened. The current of the motor 

increased with load and the highest current was observed 

when all butterfly valves were opened. The air velocity 

varied according to room pressure, whereby a decrease in 

pressure resulted in an increase in air velocity. Overall, the 

findings demonstrate the effective performance and control 

capabilities of the low-cost AIIR system. 
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