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Abstract. Ensemble Learning is gaining traction in 

Reinforcement Learning (RL) due to its ability to improve 

performance, robustness, and capabilities of RL models. 

This paper addresses the challenge of production 

planning with fluctuating demand by proposing a novel 

Mixture of Experts Deep Reinforcement Learning (MoE-

DRL) model.  We leverage a combination of Proximal 

Policy Optimization (PPO), a powerful reinforcement 

learning algorithm, and Ensemble learning, a technique 

that combines multiple models. We propose a mixture of 

expert ensemble learning model that combine multiple 

expert PPO-DRL agents through a gating model (MoE 

PPO-DRL). The gating model learns to select the best 

expert agent for predicting the most suitable production 

plan for each situation's different demand patterns. The 

proposed model was trained and tested against the 

results obtained from the Mixed Integer Linear 

Programming model and the individual expert PPO 

agents. The MoE PPO-DRL model achieved a total 

average profit that was 25.9%  higher than an average of 

all expert single-agent models. It also achieved a 11.02% 

optimality gap, which is significantly lower than the 

22.93% average gap of all expert single-agent models. 
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1. Introduction

The cement industry, a significant heavy industry

sector, contributes substantially to numerous economies 

worldwide [1]. Developing efficient production planning 

models for cement plants can revolutionize this industry. 

Cement plants exemplify complex production systems, 

demand volatility, and applicability to other industries. 

Research from this case study can inform effective 

reinforcement learning models for production planning in 

cement plants and other industries facing similar 

challenges [2]. 

Production capacity planning (PCP) is crucial for 

factories to determine the appropriate production levels 

to meet customer demand, considering the available 

production resources such as the number of machines and 

labor hours. Effective production planning enables 

production departments to meet customer demand in full 

and on time, reduce production costs, and improve 

operational efficiency, which ultimately leads to 

increased factory profitability [3]  

PCP involves balancing numerous factors to find 

the best solution. As problems get more intricate, finding 

an optimal solution becomes exponentially harder due to 

the increasing number of variables and constraints. This 

complexity makes PCP problems NP-hard. While 

traditional optimization methods are still used for 

modelling [4-9], recent research explores metaheuristics 

to find near-optimal solutions faster for increasingly 

complex problems [10-15].  

The application of artificial intelligence (AI) to 

tackle industrial problems is gaining traction. Within the 

realm of production planning and scheduling, Takeda-

Berger [16]  identified a surge in machine learning 

research, with 31 studies published between 2015 and 

2020. Of these, Artificial Neural Networks (ANNs), 

regression models, tree-based algorithms, and genetic 

algorithms emerged as the dominant approaches. 

A comprehensive review by Kulmer [3] analyzed 

research leveraging Reinforcement Learning (RL) and 

other methods like Genetic Algorithms (GA) and 

optimization techniques to tackle PCP problems. Their 
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search within the Scopus database up to November 2021 

yielded 53 relevant articles. The review highlights RL's 

growing popularity for such dynamic problems, noting 

that RL outperforms rule-based approaches and 

heuristics in solution quality. They also noted that most 

RL research has focused on short-term PCP, leaving a 

research gap in medium-term applications. 

In recent years, research has begun to explore the 

use of Reinforcement Learning (RL) principles to solve 

PCP problems. Hubbs [17] deep reinforcement learning 

(A2C) principles to solve the chemical production 

scheduling process. This is a production scheduling 

process in which one machine produces several products 

to meet the demand for the delivery of products in each 

period. The model took into account the uncertainty of 

the parameters that may change at each period from the 

online database system. The scheduling results with the 

RL model were benchmarked against a mixed-integer 

linear programming (MILP) model. The RL model 

achieved a gap of only 19% versus the optimum, 

demonstrating its effectiveness. They noted that RL has 

a significant advantage in the speed and flexibility of 

solving a scheduling system's real-time optimization 

compared to other methods. Mowbray [18] applied 

Distributional Reinforcement Learning to address 

production scheduling problems in the presence of 

uncertainty in chemical production processes. The results 

were benchmarked against MILP models. 

In addition, several other research studies have 

applied RL principles to solve production planning and 

scheduling problems [3, 17-22]. Some studies have 

compared RL to meta-heuristic methods and found that 

RL can provide better-quality answers [21, 23].  

However, RL algorithms can be inefficient and 

computationally expensive, especially in high-

dimensional state spaces where input data exhibits high 

variance. This limitation hinders RL's applicability in 

real-world scenarios with complex dynamics [24]. 

Therefore, several methods have been developed to 

improve the performance of RL models and address the 

issues in such situations. Transfer learning utilizes 

knowledge learned from one task to improve 

performance on another. Curriculum learning gradually 

increases the difficulty of tasks for the RL agent. 

Exploration bonuses reward the RL agent for exploring 

new states and actions. Ensemble learning combines 

multiple models to improve overall performance. 

Ensemble learning is a machine learning technique 

integrating multiple base learners to construct an 

ensemble learner. Its primary goal is to enhance the 

system's overall learning performance. This technique 

has garnered significant attention and achieved 

remarkable success in various artificial intelligence 

applications [25] Ensemble learning has been used in 

various research studies to improve the performance of 

prediction and classification tasks [26, 27].

Researchers have recently explored various 

advanced techniques of Ensemble Learning Algorithms 

to improve predictive performance beyond that of single-

agent models. Adaptive Boosting (AdaBoost) has been 

employed as an EL mechanism, adjusting the weights of 

individual models within a boosting algorithm based on 

their performance [28, 29]. Gradient Boosting Machines 

(GBM) utilize decision trees as base learners, 

constructing models sequentially to correct errors in 

previous models [30]. XGBoost further enhances GBM 

by incorporating regularization and tree-pruning 

techniques [31]. The mixture of Experts (MoE) divides 

tasks into sub-tasks, training specialized models for each 

and employing a gating model to select the optimal 

expert for each input [32],[33]. 

Yuksel et al.[34] survey Mixture of Experts (MoE) 

models, discussing their use in regression, classification, 

and various training methods. They found that ME has 

been applied in various fields like electricity demand 

prediction, robot navigation, and financial forecasting. 

MoE can be used for optimization tasks where the goal is 

to find the best solution. By dividing the problem into 

subtasks. Cheng et al. [35] propose an attention-based 

approach for multi-task reinforcement learning. It utilizes 

separate experts for different task aspects and combines 

them with an attention mechanism, achieving better 

sample efficiency and performance in benchmark 

environments than baseline methods. This demonstrates 

the potential of applying MoE principles to RL. 

However, from our review of MoE and RL research, 

more research is still needed on applying MoE in 

conjunction with RL principles to improve the efficiency 

of solving industrial production planning problems. This 

is the gap that our research will fill. 

This paper investigates the effectiveness of a 

Mixture of Experts Deep Reinforcement Learning (MoE-

DRL) model for Production Capacity Planning (PCP) 

under fluctuating demand. Using a cement factory as a 

case study, we developed and trained five individual PPO 

agents within a custom PCP environment. Each agent 

was trained on a different demand dataset to specialize 

them in different demand patterns and then combined 

into an MoE-DRL model. The performance of the single 

PPO agents and the MoE-DRL model was compared 
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against an optimal Mixed Integer Linear Programming 

(MILP) model. This research explores the potential of 

Ensemble Reinforcement Learning models for PCP using 

a mixture of experts approach, paving the way for future 

advancements in complex PCP systems. 

This paper makes significant contributions by 

pioneering developing a Mixture of Experts Deep 

Reinforcement Learning (MoE-DRL) model for 

predicting production planning outcomes within a 

custom-designed environment. This environment mirrors 

real-world production complexities, catering to discrete-

time medium-term batch production capacity and 

inventory planning under fluctuating demand scenarios. 

2. Problem Statement

This article presents a case study of the cement

production process. Raw materials are continuously 

supplied to two parallel cement grinding machines (M1 

and M2) using a predetermined mixture formula. Each 

machine can produce three types of products. 

Currently, factory employees utilize a spreadsheet 

program to execute a computational planning method. 

This method employs an experiential heuristic approach 

to assign three products (P1, P2, and P3) production 

across two machines (M1 and M2) for each planning 

period. Employees will create a monthly production plan 

divided into 60 shifts or 30 days to maintain inventory 

levels and ensure that products are delivered to customers 

on time and in full. However, this manual planning 

method proves inefficient and inflexible when faced with 

fluctuating product demand data. This inflexibility 

hinders cost optimization and necessitates frequent re-

planning. 

The proposed models serve as prototypes for 

industrial plants, enabling enhanced production planning 

efficiency. The models can be generalized to similar 

production systems within the scope of this research. 

3. Formulation of MILP

To establish an upper benchmark for DRL models, we 

propose a novel MILP model that incorporates time-

varying electricity prices into a discrete-time multi-

parallel machine production setting under fluctuating 

electricity pricing. The constraints and objective function 

were derived from a combination of the research of 

Castro, Dogan, and Zhao[4, 5, 36]. 

3.1 Inventory Balance Constraint 

The quantity of products r remaining at the end of 

period t, denoted by Rr, t, can be computed by Eq. (1). 

𝑅𝑟,𝑡 = 𝑅𝑟,𝑡−1 + ∑ 𝑃𝑚,𝑟,𝑡
𝑀
𝑚=1 − 𝑑𝑟,𝑡 − 𝐿𝑟,𝑡  (1) 

∀𝑟 ∈ 𝑃, 𝑡 ∈ 𝑇 

where :Rr,t−1 is the number of inventories carried 

forward from the previous period, 

Pm,r,t  is the number of finished products received by 

machine production m, 

dr,t  is the product demand to be delivered to the 

customer during period t, and 

Lr,t  is the shortage quantity to be delivered to the 

customer at that time. 

3.2 Production Capacity Constraints 

Let Pr,m,t denote the production capacity of machine 

m for product r in period t. Each period t has a duration 

of Tt hours, encompassing both on-peak and off-peak 

periods. As production capacity constraints, Eq. (2) 

specifies the limitation on Pr,m,t as follows. 

TtMmPr

NprTP tmrmrttmr



=

,,

,,,,,

    (2) 

∑ 𝑁𝑟,𝑚,𝑡𝑟 ≤ 1  ∀𝑟 ∈ 𝑃, ∀𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇  (3) 

where: Pm is the production rate of product r (tons per 

hour) of the machine m, Nr,m,t is a binary variable 

indicating whether the machine m produces the product r 

or not at period t. Eq. (3) determines the constraints for 

each machine to produce no more than one type of 

product per period. 

3.3 Level of Inventory Constraints 

Eq. (4) specifies the product minimum and 

maximum inventory level in its storage tank. 

TtPrRRR rtrr  ,max
,

min  (4) 

where Rrmax is the cement storage tank capacity, 

while Rrmin is the minimum possible inventory level, 

which is zero since lost sales are allowed. 

3.4 Switch On-Off Constraints 

For each machine m, the decision variable for 

turning the machine on or off, denoted by SWr,m,t, can be 

computed by Eq. (5 and 6). 
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 𝑆𝑊𝑟,𝑚,𝑡 = ∑ 𝑁𝑟,𝑚,𝑡

𝑟

 𝑎𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡 = 1      (5) 

𝑆𝑊𝑟,𝑚,𝑡 ≥ ∑ 𝑁𝑟,𝑚,𝑡

𝑟

− ∑ 𝑁𝑟,𝑚,𝑡−1

𝑟

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    (6) 

3.5 Objective Equation 

The objective function aims to maximize total profit 

within the production capacity and inventory planning 

environment E. By letting G = [Nr,m,t|∀r ∈ R, m ∈ M, t ∈ 

T] be a production planning, we define the total profit as

the gap between the total revenue and the incurred total

cost, as shown in Eq. (7).

(7) 

where: pr is the price of product r [USD/ton], 

         dr,t is the demand of product r at period t [ton], 

         Lr,t is the lost sale of product r due to stockout [ton], 

given in Eq. (2). 

         Ψ(G|E) is the cost function for a production 

planning [USD]. 

The total cost for a production planning G with 

respect to the environment E is further defined as follows. 

       (8) 

where:  cur is the unit cost of product r [USD/ton], 

     cet is the electricity cost at during time interval t 

[USD/kWh], 

    pwm is the amount of electricity used by machines m to 

produce product [kWh/ton], 

    fm is the fixed cost incurred when there is a production 

on machine m [USD], 

    scm is the costs incurred from re-setup the machine m 

for production after it was stopped from the       previous 

period [USD], 

    cor′ is the cost incurred by changing production from 

producing any product to producing r′ [USD], 

   𝐶̂r’,m.t  is the changeover binary variable indicates the 

transition from producing product type r to product type 

r' 

    hr is the holding cost of product r per one period 

[USD/ton], and 

    lscr is the penalty cost per ton for the shortage of 

product r [USD/ton]. 

The cost calculation parameters are based on real-

world data collected during the cement production 

process described in Section 2. To find the optimal 

planning that maximizes the total profit concerning 

environment E, the objective equation can be written as 

Eq. (9) subject to the constraints in Eqs. (1) to (6) 

 (9) 

4. Reinforcement Learning Models

4.1 Reward Functions 

The reward function guides the RL agent toward 

the desired goal (Sutton & Barto, 2018). We define the 

reward function of our RL model as the total profit 

function. 

(10) 

where Ω is the total profit defined in Eq. (10), and G 

represents production capacity planning, derived from 

the action trajectory generated by the policy learned 

from environment E. This equation incorporates total 

revenue and cost, resembling the objective function of 

the MILP model. 

4.2 Proximal Policy Optimization (PPO) 

PPO, introduced by Schulman [37], represents a 

significant advancement in policy-based methods, 

outperforming algorithms like A2C [38]. Our 

implementation is based on Lapan's [39] code with our 

algorithm modifications. PPO aims to maximize 

policy improvement, as formulated below. 

  (11) 

where I is the improvement ratio of the new 

parameters ′ given the state st, the action at, and the 

previous parameters : 

(12) 

where A(st, at|πΘ) is the advantage function of the 

policy πΘ  

To limit the size of gradient updates, The PPO 

method added a term to the equation for clipping the 
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objective. Therefore, the objective function (11) is 

converted to Eq. (13): 

  (13) 

where g is the clipping function defined below: 

The objective of the old and the new policy ratio is 

limited to the range 1 − ɛ to 1 + ɛ. Therefore, adjusting 

ɛ will affect the learning performance. 

4.3 Mixture of Experts (MoE) model 

A mixture of experts (MoE) is one type of 

ensemble learning model that utilizes a trainable 

gating network to combine classifiers through 

weighted rule assignment. Each expert focuses on a 

specific subtask. Trained via decision trees, 

expectation-maximization (EM), or neural networks, 

the gating network assigns weights to each expert 

based on the input data. This allows MoE to efficiently 

learn the feature space and act as a classifier selection 

system, choosing the most relevant expert for the task 

[40]. 

(𝑦𝑖|𝑥𝑖 , 𝑧𝑖) = 𝑔~𝑓𝑔 (𝑦𝑖|𝜃𝑔(𝑥𝑖)) ,    𝑃(𝑧𝑖 = 𝑔|𝑥𝑖) = 𝑛𝑔(𝑥𝑖) (16)

Equation 16 expresses the output y of a neural 

network as a weighted sum of expert agent predictions, 

where the weights represent the probabilities of 

selecting each expert. To predict an output y from an 

input feature vector x, a Mixture of Experts (MoE) 

employs a gating network (NN) to combine the 

predictions of multiple expert models (𝜭 or Thetas). 

Each expert model 𝜭, potentially a neural network, 

processes x and generates a prediction. These 

predictions are then fed into a corresponding gating 

network NN, which weights each expert's prediction 

based on the input data. Finally, the weighted 

predictions are aggregated to produce the final output. 

Unlike traditional ensemble methods, which simply 

average predictions, MoE dynamically selects the 

most relevant expert for each input, improving 

performance. 

5. Ensemble MoE Deep Reinforcement Learning

Formulation 

This section describes the components and steps involved 

in creating an Ensemble learning - Mixture of experts 

DRL model. The process begins with establishing a 

production environment for training agents. Next, a 

learning mechanism for the PPO-DRL model is designed. 

Individual PPO-DRL models are trained on each dataset 

to obtain expert agents for each type of demand data. 

Finally, all generated expert agents are combined to form 

an Ensemble learning - A mixture of expert models.  

5.1 Creating an Training Environment of 

Expert Single Agent 

The environment defines the rules and limitations 

of the agent's actions, prompting the agent to learn and 

select the most rewarding action within constraints 

[38, 41]. For this study, the production capacity and 

inventory planning environment is modeled as the 

production system (see Section 2) to train individual 

DRL agents. The agent's action space consists of 16 

discrete actions shown in Fig. 1. Fig. 2 illustrates the 

interaction pattern between the environment and the 

agent learning. The agent receives state information in 

the form of 79 observational parameters. These 

variables can be divided into four groups based on 

product r ∈ [1, 3], machine m ∈ [1, 2], and future 

period k ∈ [1, 2], these variables can be divided into 

four groups: 

- Inventory level of each product: Ir and Ir
k

- Incoming shipment demand for each planning

period: dr and dk
r

- The demand type randomly selected for each

episode in the simulation: Dp 

- Machine production information: Nm,r

- Electricity rates during the planning period: Eon

These variables and parameters serve as inputs to 

the agent with the neural network mechanism in the 

RL model. The agent utilizes these inputs to create and 

develop a policy that guides the selection of one 

among 16 actions. As the action is made, it results in  

Fig. 1 List of actions. For an action matrix a, each element am,r 

represents a flag for machine m to produce the product type r. 

(14) 

(15)
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Fig. 2 Interaction between the learning agents and the environment. 

state transition and the reward is computed in Eq. (10). 

The reward and observation of transitioned state st+1 

obtained from the environment will be sent back to the 

agent for processing and updating the policy to choose 

an action that gives better rewards. 

During agent training, each agent is exposed to 

various product demand patterns, limited to 2-3 

patterns each. The overall framework encompasses 

eight distinct demand patterns. For this experiment, 

four expert agents are trained on specific demand 

patterns, as shown in Table 1. The experimental data is 

comprised of random variation (RV) with values 

ranging from a specified minimum to maximum and 

seasonal indices with different peak levels: low 

seasonal index (LSI), medium seasonal index (MSI), 

and high seasonal index (HIS). Average demand 

values are randomized within specified intervals per  

Table 1 Types of data patterns used to train expert agents 

Agent 

Data 
Max 
Season 
Index 

Min value Max Value 
Data 
Set 

Type 

Agent1 1 RV - 2,233   3,233  

2 RV - 1,333   3,533  
Agent2 3 LSI 1.31   2,167    2,500  

4 LSI 1.40   2,167    2,500  
Agent3 5 MSI 1.43   2,167    2,500  

6 MSI 1.47   2,167    2,500  
Agent4 7 HSI 1.55   2,167    2,500  

8 HSI 1.57   2,167    2,500  

delivery period within each demand pattern to reflect 

real-world scenarios. Each episode in the agent's 

training consists of 60 steps/states representing 60 

production planning periods (1 month). In each state, 

the production quantity is determined by the agent's 

action and used to calculate state parameters like 

inventory balance and incurred costs, similar to the 

MILP model's equations. 

5.2 Expert Agents Training 

This section focuses on training a single 

reinforcement learning (RL) agent using the Proximal 

Policy Optimization (PPO) algorithm. The goal is to 

develop an expert agent that experiences a diverse 

dataset of policy values under simulated conditions 

that vary across episodes. The trained expert agent's 

converged parameters will lead to an effective 

planning solution that minimizes total planning costs. 

During training, the agent explores various actions 

until the action distribution converges to a set of 

potential actions. 

The hyperparameters play a crucial role in 

determining the learning performance of the agent. 

The discount factor and learning rate are two of the 

most important hyperparameters that affect learning 

[42]. In our experiments, we used a trial-and-error 

method to adjust the hyperparameters using Hubb's 

[17] default values. We observed the convergence

characteristics of the reward curves until we found the

appropriate hyperparameter values for the PPO

models, which are shown in Table 2.

The architecture of a neural network, particularly 

its depth, is a critical factor that profoundly influences 

its learning capacity. we designed our policy network 

(actor) as a multilayer perceptron (MLP) with six 

hidden layers (820, 820, 656, 524, 420, and 328 

nodes). The output layer has 16 nodes or units 

reflecting the log probability for each action. The 

value network (critic) has four layers (820, 820, 820, 

and 656 nodes), and the output layer has one node 

representing one scalar value specifying the 

corresponding value of a state. Since the actor and 

critic networks have more than three layers, we can 

identify our model as a deep reinforcement model 

(DRL). [43]. 

In the PPO model training, we set the learning 

rate to 5×10−6 to allow the agent to learn gradually. 

The discount factor γ was set to 0.95 to simulate a long 

enough trajectory of states. The clipping value 0.1 

helps the PPO’s agent appropriately limit the gradient 

update size. 

5.3 Mixture of DRL-PPO Experts Model 

(M-DRL-PPO-E) Formulation 

An ensemble of four pre-trained expert agents 

was constructed using the Mixture of Experts (MoE) 

model. The MoE model can learn via a neural network 

using the Proximal Policy Optimization (PPO) 
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algorithm, similar to single expert agents. 

Consequently, the model can learn a policy for 

selecting the most appropriate expert for each type of 

product demand encountered in each episode. 

The MoE model incorporates a Gating agent as 

a central processing unit for selecting an expert agent. 

The selected expert agent executes a planning action 

in the PCP environment for an entire episode. 

Subsequently, the episode reward is returned to the 

Gating agent to refine its policy for selecting agents in 

subsequent rounds. Fig. 3 illustrates the structure and 

components of the MoE model for this research. The 

diagram illustrates the workflow structure of the 

model. The model consists of a gating agent that acts 

as an agent selector. This agent learns to select the 

appropriate local or expert agent to generate 

production plans that align with the emerging product 

demand patterns. The performance of these plans is 

measured by the reward, which is the net profit 

obtained from the production plan. A detailed 

workflow of MoE is illustrated in Fig. 4. 

The performance of a trained Mixture of Experts 

(MoE) model in production planning is assessed using 

a diverse set of demand data with varying patterns. The 

following section presents the results of training both 

single agents and MoE and model comparisons 

between individual expert agents, MoE, and the MILP 

model (used as the Upper upper-bound optimal 

solution). 

6. Experiment Results

6.1 Single Expert PPO Model Training 

Convergence 

All DRL models and MILP training and testing 

experiments were performed on a 

2.30 GHz Intel i7-11800H CPU with 16 hyperthreads 

equipped with an NVIDIA  RTX-3050 Ti GPU card 

with 2,560 cores at 1485 MHz and 4GB of VRAM. 

The MILP model was  optimized to the optimal gap of 

1% using Pulp 1.6.10 [44]. The proposed DRL models 

were implemented with PyTorch 1.7.0 [45] on Python 

3.10 [46].  

Using the hyperparameters settings in Table 2. Both 

models are trained by having the agent perform 

incremental learning in each training round until it 

yields the highest convergence stable reward. Fig. 5 

show an example of the convergences  of   the reward 

Fig. 3 The structure and components of the MoE model for this 

research 

Fig. 4 A detailed workflow of MoE 

from one PPO expert model called Agent1 (out of 

Agents 0 to 4). In Fig. 5a, the Agent1 model converges 

at 90 training time steps and yields consistent rewards 

hereafter. To validate the stability of our model, we 

trained it for a total of 12 hours, or 900 time steps 

(1,800,000 episodes). As shown in Fig. 5b, the reward 

quickly stabilizes at a value of 8.71 million USD, 

indicating that the model has reached a state of optimal 

performance. 
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The PPO model's stable reward value is due to its 

use of a surrogate clipping objective function 

mechanism. This mechanism enables the PPO to make 

more aggressive policy updates while still ensuring 

learning stability. As a result, the PPO agent is better 

able to accommodate input data with high variation, 

such as customer demand.  

In addition to the previously trained Agent1, 

three additional expert models (Agent 2,3 and 4) were 

trained until convergence under different data 

configurations, as detailed in Table 1. Other single 

expert agents also exhibit similar convergence 

behaviors to Agent 1 

Table 2 Hyperparameter values used to train the agent of each DRL 

model. 

6.2 Mixture of Expert PPO Models Training 

Convergence 

Similar to single-agent training, the gating agent in the 

MoE model is trained to select the appropriate expert 

agent for each situation. Since the MoE learning 

mechanism employs the PPO algorithm, similar to 

single expert agents, most of the hyperparameters used 

are the same as those used in single expert agent 

training (Table 2). 

The MoE model was trained using the 

architecture shown in Fig. 3 and the training procedure 

outlined in Fig. 4. As illustrated in Fig. 6, the model 

converged after 16,000 episodes, and was further 

trained for up  to  400,000 episodes to confirm 

convergence and stability. 

(a) 

(b) 

Fig. 5 Reward convergence of Agent1 Expert model trained for the 

first 90 (a) and 900 training time steps (b) 

6.3 Testing Models Efficiency 

To evaluate the performance of our models, we 

simulated eight demand datasets. The MILP model 

was used as an upper benchmark to compare the 

reward results. 

Demand datasets for testing the models: To 

simulate the uncertainty of customer demand, we 

prepared eight datasets with different demand patterns. 

Each dataset was re-simulated under the same 

framework with the same min-max and peak seasonal 

index values as Table 1.This resulted in eight demand 

datasets for testing the performance of the MoE model 

Types Hyperparameters Values 

Common Dimension of input vectors 27 

Actor's hidden layers 6 

Critic's hidden layers 4 

Units in the first hidden layer 820 

Entropy regularization  1x10-4 

Dropout probability 0.2 

Discount factor  0.95 

Upper bound (U) 2,100 

PPO Learning rate 5x10-6 

Number of epochs 30 

Early stopping (time steps) 900 

Batch size 100 

Number of trajectories 2,000 

Clipping value  0.1 
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Fig. 6 Cross entropy loss convergence of Mixture of Experts 

model 

compared to each individual expert agent. Agent0 was 

also included in the comparison, which is an expert 

agent trained on all eight datasets simultaneously. 

Reward and Optimality gap: The reward values 

obtained for each dataset of every model are shown in

Table 3. The MILP model can find the best answer for 

production planning from all demand data sets, 

representing an average total production profit of 9.92 

million USD. The MoE model achieves an average 

total profit of 8.83 from the production plan, 

outperforming all individual expert agents (Agent 0-

4). Further analysis of individual data sets reveals that 

Agent 1 performs poorly on data sets with high 

seasonality indices (Sets 5 to 8). Agents 2 to 4 struggle 

with random variation data due to their training on data 

sets with seasonality patterns. 

The values in Table 4 align with those in Table 3, 

representing the % Optimality gap of each model's 

profit compared to the MILP model. As shown, the 

MoE model achieves a %Gap of 11.02, which is the 

closest to the MILP model among all models. 

Interestingly, Agent 0, trained on all eight data 

types, performed less effectively on datasets 7 and 8 

than the MoE model. This is likely due to the increased 

data type diversity, making it challenging for a single 

agent to generate policies that effectively cover all 

scenarios. 

 Computing time: Table 5 compares the efficiency of 

models in terms of the time taken to find the solution. 

The PPO and MOE  have an average prediction time 

of 69.06 and 65.92 seconds per round. This is 

significantly faster than the MILP model about 2502 

times, which takes an average of 178,000 seconds per 

round. However, it is essential to note that PPO and 

MoE require 43,740 and 40,400 seconds of training 

before they can be used to find a solution. 

Table 3 Episode reward of production plans from different models 

under various data patterns 

Table 4 Percent Optimal Gap compares the reward value of DRL 

models with MILP 

Testing 
Data 

Average Reward from Each Model 

Set Pattern 

MILP A0 A1 A2 A3 A4 MoE 

1 RV 
9.48 8.77 8.59 8.66 8.25 8.63 8.55 

2 RV 
9.64 -0.14 8.86 4.35 7.54 8.36 8.63 

3 LSI. 
10.08 8.63 8.62 8.81 8.83 8.71 8.59 

4 LSI. 
9.95 8.35 8.69 8.35 8.96 8.63 8.61 

5 MSI. 
10.18 9.28 -15.11 9.34 9.81 9.28 9.46 

6 MSI. 
10.00 8.90 -2.79 8.95 9.04 9.14 9.11 

7 HSI. 
9.98 3.11 -11.22 8.59 9.52 7.49 8.92 

8 HSI. 
10.05 6.23 -2.38 8.48 8.39 9.14 8.76 

Average 9.92 6.64 0.41 8.19 8.79 8.67 8.83

Testing Data Model 

Set  Pattern A 0 A1 A2 A3 A4 MoE 

1 
RV 

9.56 9.36 8.69 12.99 8.93 9.84 

2 
RV 

101.48 8.05 54.88 21.80 13.31 10.50 

3 
LSI. 

14.46 14.52 12.61 12.41 13.65 14.78 

4 
LSI. 

16.09 12.62 16.09 9.97 13.25 13.51 

5 
MSI. 

8.87 248.42 8.24 3.69 8.89 7.11 

6 
MSI. 

10.98 127.89 10.55 9.58 8.63 8.95 

7 
HSI. 

68.82 212.36 13.94 4.66 24.97 10.65 

8 
HSI. 

38.00 123.65 15.64 16.49 9.10 12.82 

Average 33.53 94.61 17.58 11.45 12.59 11.02 
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Table 5 Model performance in terms of average training time and 

prediction time. 

MILP PPO MoE 

Training time (s) - 43,740 40,400 

Prediction time (s) 172,800 69.06 65.92 

6.4 Experimental Results Discussion

The experimental results validate the hypothesis that 

RL algorithms can be inefficient and computationally 

expensive, particularly in high-dimensional state 

spaces with high-variance input data. Agent 0, trained 

on a diverse set of demand data formats, exemplifies 

this challenge, exhibiting suboptimal performance due 

to the high variance of the input data. In contrast, the 

MoE model demonstrates significant improvements in 

handling all demand data formats. It achieves a higher 

average profit and lower optimality gap compared to 

Agent 0 and all individual agents. These findings 

underscore the effectiveness of MoE-DRL, 

particularly its ability to adapt to changing demand 

patterns. The integration of ensemble learning with RL 

strengthens the model's knowledge of the study and 

enables it to outperform traditional methods and 

individual RL agents. 

 Utilizing the model in actual situations is similar to 

the step-by-step training method shown in Figure 3. 

However, the train gating agent command is turned 

off, allowing the model to enter testing mode, which 

generates production plans based on various user input 

demand patterns into the system. This will generate 

production orders for each period throughout the 

month, as described in the production planning 

problem in Section 2. Each production plan prediction 

takes approximately one minute (as shown in Table 5). 

Additionally, if the demand pattern changes from the 

previously trained pattern or if the environment 

parameters change, users can train new expert agents 

and add them to the model. These principles make the 

model flexible and efficient for use in real-world 

situations and provide a roadmap for future model 

improvements. 

6.5 Model Limitations and Future 

Directions 

The MoE model's performance depends on the number 

of data formats assigned to each expert agent for pre-

training. Therefore, future research directions should 

focus on enhancing the model's capabilities by 

incorporating a wider variety of demand data formats 

and increasing the number of expert agents. This 

would allow the model to handle the diverse demand 

patterns encountered in real-world scenarios more 

effectively. 

The study also acknowledges the inherent 

limitations of DRL models. While PPO and MoE 

models offer faster predictions than MILP, they may 

compromise on solution quality. A key advantage of 

DRL lies in its ability to adapt to complex 

environments. Unlike MILP, DRL agents can 

continuously learn and improve through interaction, 

making them well-suited for real-world applications 

with dynamic and uncertain conditions. 

7. Conclusions

This paper introduces the Mixture of Expert Deep 

Reinforcement Learning (MoE-DRL) model for 

production planning. The model is embedded within a 

custom-designed environment replicating real-world 

production intricacies and handles discrete-time 

medium-term batch production capacity and inventory 

planning under fluctuating demand scenarios. The 

proposed method effectively balances production 

costs and inventory levels, outperforming traditional 

simulation and real-world experiment methods. This 

research's contribution is the pioneering application of 

MoE in conjunction with DRL principles to enhance 

the efficiency of solving industrial production 

planning problems. This approach aims to be 

implemented in real-world factory planning and to 

further develop the model's capabilities in the future. 

Our proposed model was evaluated against 

traditional Mixed-Integer Linear Programming 

(MILP) and individual expert PPO agents. The MoE 

PPO-DRL model achieved significant improvements 

compared to single-agent models. It delivered a total 

average profit 25.9% higher and achieved an 11.02% 

optimality gap, which is substantially lower than the 

average 22.93% gap observed with single-agent 

models. These results demonstrate the effectiveness of 

MoE PPO-DRL in production planning under 

fluctuating demand. Combining ensemble learning 

with RL, the model offers superior performance 

compared to traditional methods and individual RL 

agents. 

PPO and MOE models offer faster prediction 

than MILP but may compromise solution quality. 

DRL's key advantage is its ability to adapt to changing 

and complex environments. Unlike MILP, DRL 

agents can continuously learn and improve through 
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interaction, making them suitable for real-world 

applications with dynamic and uncertain conditions. 

To further enhance the proposed model, we 

suggest incorporating a wider variety of demand data 

formats and increasing the number of expert agents.

This would allow the model to handle the diverse 

demand patterns in real-world scenarios more 

effectively. Additionally, we propose incorporating 

other DRL models, such as Adaptive Reinforcement 

Learning, into the experimentation and comparing 

their respective capabilities to refine the model's 

potential further. 
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