

Carbon Capture Based on Chemical Absorption: Process Design and Techno-Economic Assessments

Muataz Mohammed Sulaiman¹, Zainab Al-Khafaji^{2,3*}, Zaid N. Shareef^{1*}, and Mayadah Falah⁴

¹ Department of Chemical Engineering, University of Babylon, Hilla, Babil, Iraq

² Scientific Research Center, Al-Ayen University, Thi-Qar, 64001, Iraq

³ Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Ke-bangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

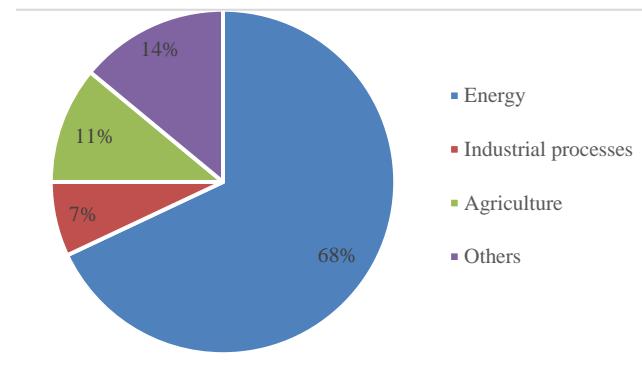
⁴ Building and Construction Techniques Engineering Department, College of Engineering and Engineering Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq

*Corresponding Email : p123005@iswa.ukm.edu.my

Received May 3, 2024, Revised July 8, 2024, Accepted July 10, 2024, Published December 17, 2024

Abstract. It is a widely accepted scientific fact that emissions of greenhouse gases, mostly Carbon dioxide (CO₂) from fossil fuels, contribute to global warming. However, the world's energy industry continues to rely mostly on fossil fuels, which still provide an 85 percent of the world's energy needs. The realization has set in that fossil fuels would remain the main energy source for many years due to the lack of economically viable sources of renewable power and the availability of cheap fuels including coal. Consequently, it is imperative to create technology that allows for the continued use of fossil fuels while reducing the amount of Carbon dioxide released into the environment. To minimize emissions into the atmosphere, CO₂ from pollution sources should be captured. The theory behind several methods of CO₂ collection will be examined in this study, and their benefits and drawbacks will be considered. After that, a selected separation method will be thoroughly examined by running simulations of the process utilizing the program As-pen Plus with three solvents, including NH₃, DEA, and MEA. The effectiveness of the separation process was examined concerning operational circumstances. In contrast with other solvents, DEA stands out because of its increased CO₂ removal efficiency and its decreased sensitivity to lean loading.

Keywords:


Carbon capture, Chemical absorption, MEA, DEA, NH₃

1. Introduction

Fossil fuels can provide about 68 percent of the world's production energy requirements, and carbon dioxide (CO₂) releases from fossil fuel combustion have been recognized as a key cause of climate change [1]. At the present level of development, nevertheless, it is difficult to lessen reliance on fuels of fossil and shift to non-fossil, including renewable and hydrogen energy. Furthermore, the non-fossil fuel conversion efficiency is often lower than fossil fuels. As a result, in order to reach mid- to long-term

objectives, cost-effective CO₂ emission reduction methods must be found [2].

Fossil fuel power plants seem to be the greatest Carbon dioxide potential sources, accounting for more than 1/3 of global CO₂ releases. As a result, reducing CO₂ emissions from power station flue gas becomes critical [3]. There are numerous efficient ways to reduce carbon dioxide emissions, which will be covered in the sections below. The focus will be on the most economical and efficient method to treat power plant emissions, which is absorption using chemical solutions.

Fig. 1 CO₂ emissions percent from fuel combustion usage per field [4].

2. Carbon Capture and Storage (CCS)

Carbon dioxide capture and storage (CCS) is one of the alternatives for lowering CO₂ emissions from human activities in the atmosphere. CO₂ is released primarily through the combustion of fossil fuels, which occurs in big combustion units like those utilized in electric power production and smaller, dispersed sources, including automotive engines and ovens utilized in home and commercial buildings. The releasing of CO₂ is also produced by several industrial and resource extraction activities, and forest fires during land clearing. Significant CO₂ point sources of, including large industrial activities

and power stations, would most likely benefit from CCS. Some sources might provide decarbonized fuels like hydrogen to the industrial, transportation, and construction sectors, lowering releases from those spread sources [5].

CCS includes using techniques to gather and concentrate CO₂ generated by energy- and industrial-related activities, transport it to an appropriate storage place, after storing it for a long time away from the environment. Fossil fuels could be used with less GHG because of CCS. Suppose the biomass is not harvested at an unsustainable rate. In that case, CCS may result in net CO₂ removal from the atmosphere (frequently known as "negative releases") by absorbing and storing the ambient CO₂ absorbed by biomass. As shown in Figure 2, the three crucial steps in the CCS process are storage, conveyance, and capture. These elements are used in industrial operations but not necessarily for CO₂ storage. One step in the capture process includes CO₂ extrication from other gaseous products. In fuel-burning operations like those used in power stations, extraction techniques may capture CO₂ after decarbonizing or combustion the fuel before combustion. Moving CO₂ gathered from the CO₂ source to a suitable storage facility located far away may need the transport phase. In order to facilitate both transportation and storing, the captured CO₂ gas is frequently subjected to pressure to increase the density at the capturing facility. Possible storing alternatives include industrial fixation in inorganic carbonates, injection into deep ocean sedimentary formations, and injection into subterranean geological formations. Numerous industrial processes may use small amounts of collected CO₂ and store it in manufactured items. Different CCS system components have different levels of technical development. While certain technologies, particularly in the gas and oil industry, are still in the study, production, or demonstration phases, others are now extensively used in established businesses [6].

Oxyfuel combustion capture, pre-combustion capture, and post-combustion capture are the three main techniques of CCS [8]. In the short- to medium-term, post-combustion carbon capture is the best option because, unlike the other two strategies, it could be adapted to current power plants [7]. Post-combustion Carbon dioxide capture may be separated into three categories as the last carbon capturing phase of the entire combustion process: chemical, physical, and biological approaches.

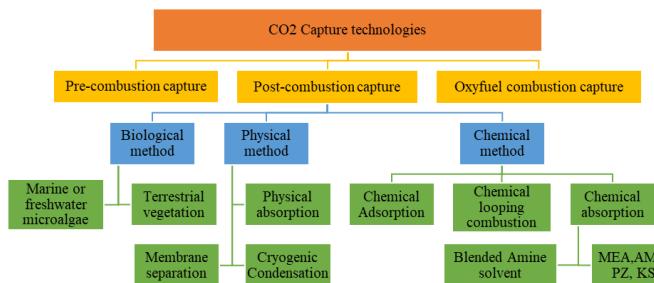


Fig. 2 CO₂ capture Technologies.

A. Biological method

Regarding the biological process, CO₂ is fixed without needing energy via photosynthesis in photosynthetic bacteria, algae, and plants. Biological fixing by terrestrial ecosystems and freshwater and marine microalgae is one of the biological methods. However, its applicability is hampered by its limited absorption capacity and efficiency [8].

B. Physical method

The physical approach involves utilizing organic solutions to absorb and eliminate CO₂ from flue gas. The CO₂ capture procedure does not include any chemical reactions, and this approach's main goal is to identify absorbents' features. Membrane separation, cryogenic condensation, and physical absorption technology are part of the physical technique. The physical approach has a better CO₂ absorption efficiency than the biological method, but the absorbent cost is higher due to certain unique criteria. CO₂ was extracted from power station flue gas utilizing a chemical process that involves interacting with chemical absorbents [9].

C. Chemical method

Chemical processes involve chemical absorption, chemical adsorption, and chemical looping combustion. On the other hand, chemical absorption offers several obvious advantages, including low cost, proven technology, and great efficiency. The most common chemical absorption method is CO₂ capture by amine solutions. The core concept is the neutralization process, where amine solutions are utilized as an absorbent and combines with CO₂ in the flue gas to produce carbonate and bicarbonate. [10].

3. The Benefits and Drawbacks of CO₂ Capture

Compared to other forms of carbon removal technology, CCS provides several benefits [11]. By transferring heating more rapidly and requiring less energy to compress steam, CO₂-based steam cycles, where CO₂ subjects to pressure into a supercritical fluid, may improve the efficiency of power generation turbines. Additionally, extracting geothermal heating from the same locations where it is injected utilizing geologically stored CO₂ may be possible, producing sustainable geothermal energy. Additionally, it is theoretically probable to change CO₂ into fuel. A few techniques to do this are available, but they are all costly and time-consuming. Infrastructure with a longer lifespan might be created by utilizing CO₂ absorbed from the atmosphere to strengthen concrete. The production of polymers and chemicals, including polyurethanes, which are utilized to produce soft foams, including those present in mattresses may also be accomplished by utilizing CO₂.

High oxygen concentrations are employed during oxyfuel burning, which significantly reduces emissions of

sulfur dioxide and nitrogen oxide (NOx) [12]. When oxyfuel combustion is assessed to combustion with traditional air, one study conducted for the Argonne National Lab detected a 50 percent decrease in NOx releases [13]. An electrostatic precipitator could be utilized to eliminate the particles left behind after consuming oxyfuel. CCS The financial impact of carbon appears to be a financial evaluation of the benefits and costs to society from the effects of climate change brought on by one more metric tonne of CO₂ released into the atmosphere every year. Instances of societal consequences of rising CO₂ emission include hurricane damage and detrimental effects on human health. The increase in agriculture's overall productivity may be advantageous. Removing CO₂ directly from the source may decrease net societal losses.

Regardless of the benefits of utilizing CCS to aid decrease CO₂ emissions into the environment, several implementation issues still require to be handled. Product costs would increase when subsidies are not provided to upgrade existing electric manufacturing plants and industries with CCS technique. To compensate for the deployment of CCS technology, specialists at the University of Utah estimated that energy costs would increase by 50 to 80 percent [14]. The cost of materials and equipment required to extract CO₂, construct infrastructure to transport it, and then store it could be prohibitively costly since there are currently no governmental drivers in most spaces to promote or mandate the utilization of CCS.

A fatal leak is always possible despite the rarity of CO₂ delivery errors. CO₂ leaks from a pipeline, a concentration of 7 to 10% in the surrounding air might immediately endanger human life. Another possibility at the subsurface storage facility is leaking. If a CO₂ leak happens unexpectedly at an injection site, the health of nearby humans and animals may be in danger. A slow leak from injection wells or rock stratum cracks might harm the soil and groundwater in the vicinity of the storage location. CO₂ injection-induced earthquakes may create havoc in the vicinity of the storage facility [15]. The public is hesitant about carbon storage through CCS due to several perceived risks. A CO₂ storage facility would require large-scale CCS installation [16].

The MEA-based CO₂ capture method has received much attention in the literature [17], where various operating strategies and control parameters designed to cut down on energy use throughout solvent regeneration have been detailed. The most significant factor in the system's response time has been proven to be the liquid residence time in the boiler. A linear relationship has been found between the optimum solvent rate, the energy flow to the boiler, and the boiler load [18]. Numerous operating scenarios for the process were identified, and the input flue gas flow rate impacts the degree of unrestricted freedom.

In certain studies, technical advancements to the conventional approach are being made to utilize less energy. For instance, [19] reduced the high duty demand of the stripper by utilizing a CO₂ ab-sorption-desorption

system that relies on MEA with capacitive deionization (CDI). The carbon-rich MEA solution was concentrated in a CDI cell before being sent to the stripper for regeneration; throughout the charging cycle, ionic species were adsorbed at oppositely charged electrodes, and an ion-free solution was sent back to the absorber. The results suggest that 10-45 percent of the total energy supplied to the stripper might well be conserved due to the high Carbon dioxide loading of the solution. It was also illustrated that utilizing ultrasounds accelerates physical desorption, which is possible at temperatures lower than 80-degree centigrade [20].

In [21] suggested two options for the desorption process, contemporaneous amine deprotonation and removing a reaction product, namely the bicarbonate ion. These methods greatly lowered the energy needed to regenerate the assessed tertiary amines (TIPA, triisopropanolamine, triethanolamine, me-thyldiethanolamine, and pyrrolidine) (for instance, the carbon dioxide-rich amine treated with calcium hydroxide or utilizing an anionic exchange resin).

Another example is the combination of amine-based chemical absorption with solar-assisted post-combustion CO₂ capture for CO₂ collecting in a power station [22]. Solar thermal energy may meet the thermal need for CO₂ collection, and the recommended integration tends to outperform the conventional method while maintaining a low investment cost. Solar thermal energy is still a potential technology due to the global size of CO₂ collection; however, its capacity is currently inadequate to supply all energy needs.

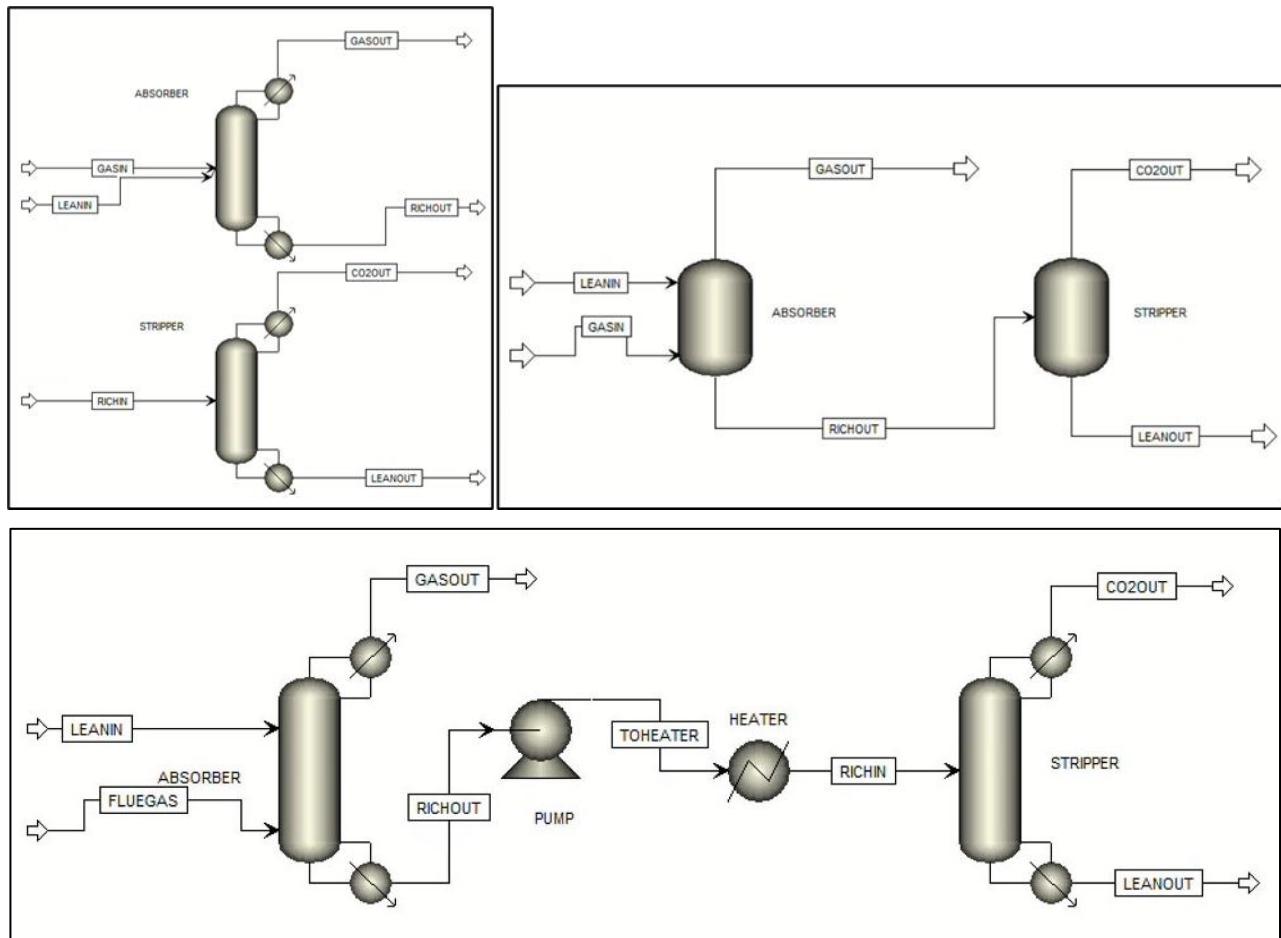
In order to reduce the amount of Carbon dioxide released into the atmosphere, a study is now being done. The collected Carbon dioxide may subsequently be used for improved oil recovery, ocean or subsurface storage, or both. Carrying out simulation studies on a chosen technique (Carbon capture based on chemical absorption) utilizing Aspen Plus software. As well as exploring the influence of MEA solvent on the chemical absorption of CO₂ capture.

4. Materials and Methods

Figure 3 depicts the traditional CO₂ collecting procedure utilizing MEA scrubbing. An absorber, a heat exchanger, and a stripper are the main components of the MEA process. The CO₂ in flue gas (Flue Gas) reaches the absorber at the bottom, while the MEA solvents (Cold Lean MEA) enter the absorber at the top. The CO₂ is preferentially absorbed by the MEA solvent thru an exothermic process [23].

The CO₂-rich solution (Cold Rich MEA) drains from the bottom of the absorbers and is preheated by passing thru the heating exchanger. The stripper's top is filled with a preheated rich solvent (Hot Rich MEA) and desorbs CO₂ at a high temperature. The CO₂ is caught at the stripper's top, and the CO₂ lean solvent (Hot Lean MEA) drains out the stripper's bottom. The cool leaner solvent (Cold Lean MEA) has been recycled and entered the top of the absorber

after the lean solvent has been cooled by passing via a heating exchanger and a cooler.


The present emphasis of CO₂ absorption research utilizing MEA is on reducing energy usage during solvent regeneration [24][25] compiled a comprehensive evaluation of CO₂ absorption process enhancement depending on patents and study materials. Three main study classifications have been recognized, along with their sub-groups:

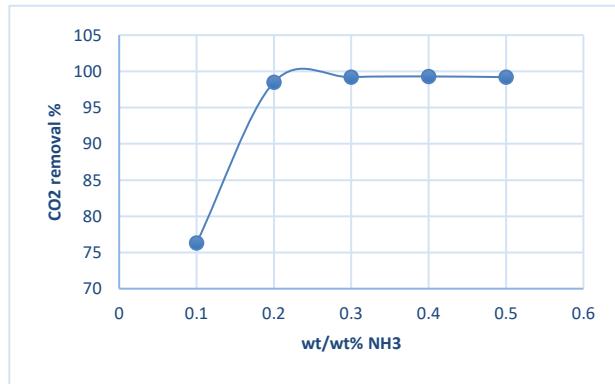
- Absorption improvement: inter-heated absorber, double loop absorber, rich solvent recycles, expansion and flue gas compression;
- Heating integration: rich solvents (splitting, preheating, and flashing), inter-heated stripper, heat integrated stripper, multi-effect stripper, and vacuum operated stripper;
- Heat pump: integrated heating pump, lean vapor compression, and rich vapor compression. Because

most research was performed through process modeling, this investigation illustrates a detectable dearth of pilot plant size estimation. Moreover, the capture processing energy performance is enhanced, which affects complexity and cost and diminishes its operability.

Table 1 Flue gas feeding amount and input factors

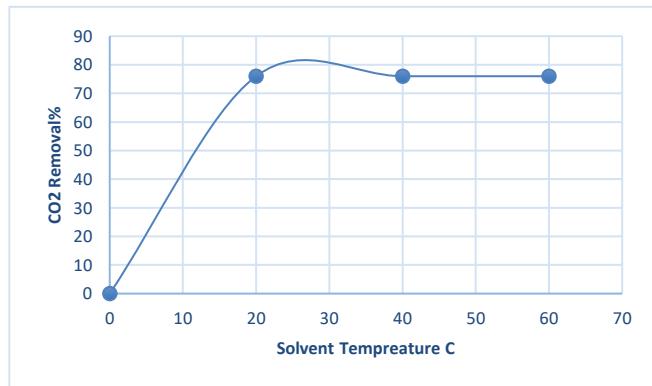
Factors	Value
The rate of flow	2861 tones/hr
Temperature	40°C
Pressure	1.1 bar
Feeding gas composition	Value (mol%)
H ₂ O	8
sN ₂	76
CO ₂	4
O ₂	12
H ₂ S	0

Fig. 3 The PFD of the CO₂ capture process utilizing aqueous NH₃, DEA, and MEA scrubbing.


5. Results

A. For NH₃ solvent

Figure 4 illustrates the CO₂ removal efficacy under various amounts of aqueous ammonia solution. Figure 4 detected that the CO₂ removing efficiency improved with


increasing the amount of NH₃, where the best NH₃ amount that obtained the highest removal was 0.25, and increasing the amount of NH₃ higher than this ratio made the removal constant. As the ammonia amount rises, the mole fraction of ammonia to carbon dioxide also rises. This means that as the ammonia amount rises, more active ammonia would be accessible to diffuse towards the gas-liquid interaction and

interface with Carbon dioxide, which will boost the development parameter and increase the absorption rate [26].

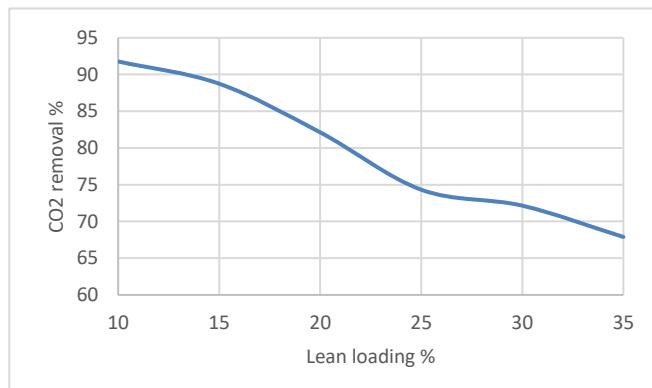
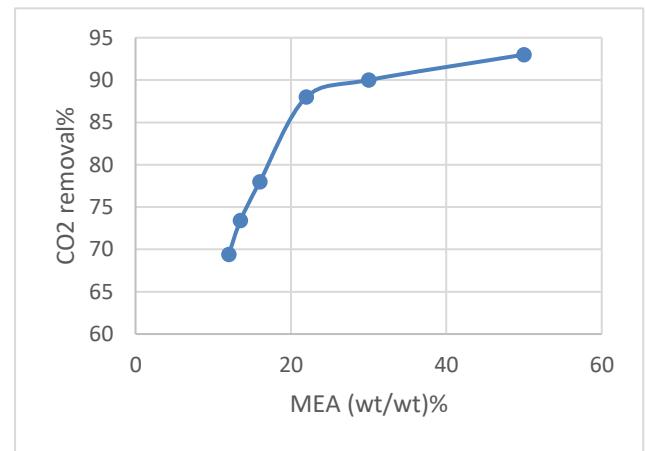


Fig. 4 CO2 removal variation by NH3 different concentration

Figure 5 studies the impact of NH3 solvent temp on the CO2 removing efficacy. Although increasing the solvent temperature increases the efficiency of CO2 removal, the findings illustrated that the higher CO2 removal of about 80% could be reached when the solvent temperature is around 20-30 C, which industrially is considered acceptable and economical. However, as shown in figure 6, the CO2 removal efficacy is impacted by the lean loading %. It has been demonstrated beyond any reasonable doubt that elevating the lean loading will reduce CO2 removal efficiency.

Fig. 5 CO2 removal with NH3 solvent temperature.


Fig. 6 CO2 removal with lean loading of NH3

B. MEA

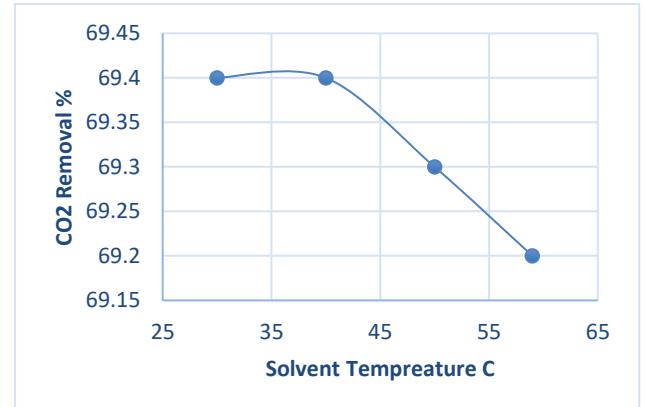

MEA is one of the popular amine solvents used in the CO2 capture field. This study focuses on the efficiency of CO2 removal. Several factors affect how well CO2 is removed, but the two most important are amine concentration and solvent temperature. As shown in figure 7, increasing the MEA amount will increase the removal efficiency. The higher efficiency could be obtained at 50 wt% o MEA, about 93%. However, MEA solvents of about 25wt% would deliver an efficiency of about 90%, considered the most economically acceptable in the industrial field.

Figure 8 shows that increasing the temperature, but to a certain value, increases the CO2 removal efficacy. Nevertheless, if the temperature is raised above that value, the effect will be reversed. The higher efficiency could be reached when the solvent temperature is around 40 C.

As demonstrated in the previous case with NH3, increasing the lean loading negatively impacts the efficiency of CO2 removal, as shown in figure 9.

Fig. 7 Removal variation by MEA different concentration

Fig. 8 CO2 removal with MEA solvent temperature

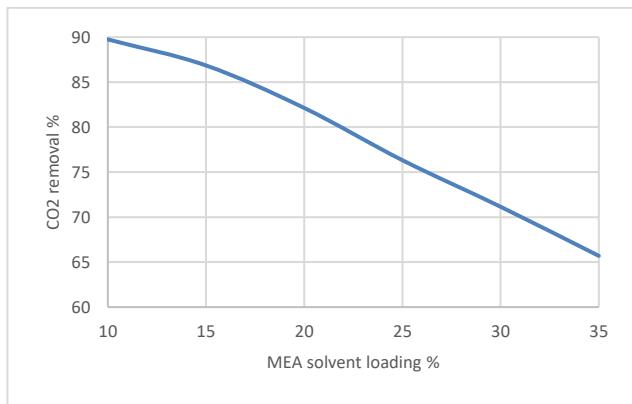


Fig. 9 CO₂ removal with lean loading of MEA

C. DEA

DEA is a developed amine version of the last one considered in this work. Solvent Concentration and temperature were considered the key elements are influencing CO₂ removal efficiency. As shown in figures 10 & 11, increasing the DEA concentration or the solvent temperature will increase the CO₂ removal efficiency. The maximum efficient concentration is around 30wt%, as illustrated in figure 8, where increasing the amount more than that may not have a significant effect but may cause problems such as corrosion. Regarding the solvent temperature, a higher removal efficiency could be obtained at about 45C.

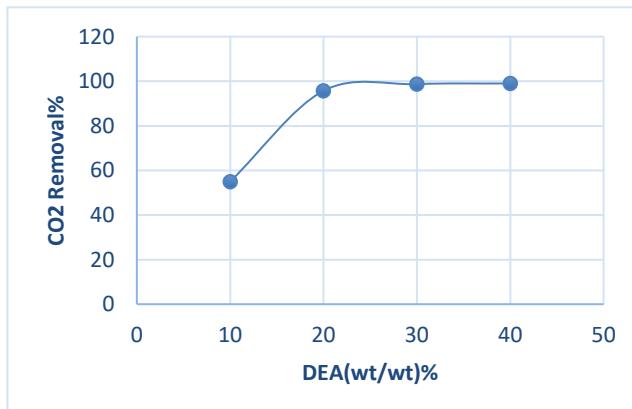


Fig. 10 CO₂ removal variation by DEA different concentration

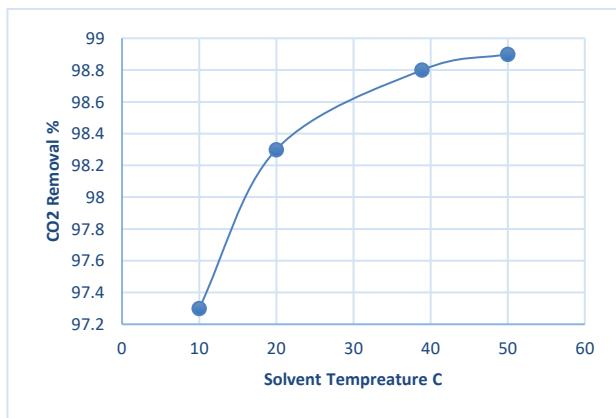


Fig. 11 CO₂ removal with DEA solvent temperature

As established in the previous cases with NH₃ and MEA, increasing the lean loading negatively impacts the efficiency of CO₂ removal. However, in this case, the effect was slightly less than the other solvents as shown in figure 12.

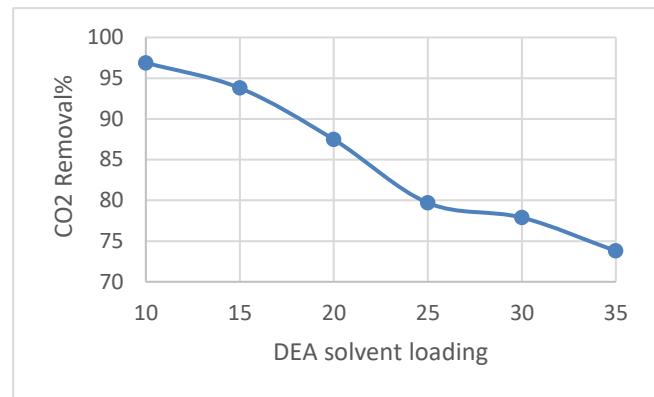


Fig. 12 CO₂ removal with lean loading of DEA

From reviewing all the above factors of the three solvents, we can conclude that the best removal efficiency obtained is for the DEA amine at a temperature of 45 C and an amount of 30 wt.%.

D. The reboiler duty

The most significant factor that usually is considered in the study of CO₂ capture is the required amount of energy in the amine regeneration plant [27], which is affected by many parameters, including amine concentration, solvent temperature, circulation rate, CO₂ content, and size and pressure of the regeneration tower. After reviewing the previous factors and reaching a conclusion of the most efficient amine and operating conditions, the absorber's packing height and pressure will be investigated to study their effect on the reboiler duty. As shown in figures 13 and 14, increasing either one of them will decrease the reboiler duty, which means a more economical process.

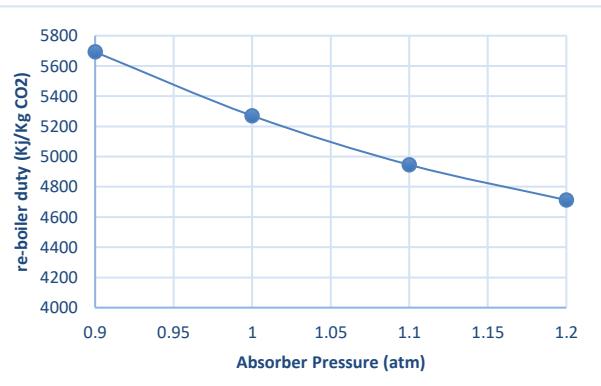
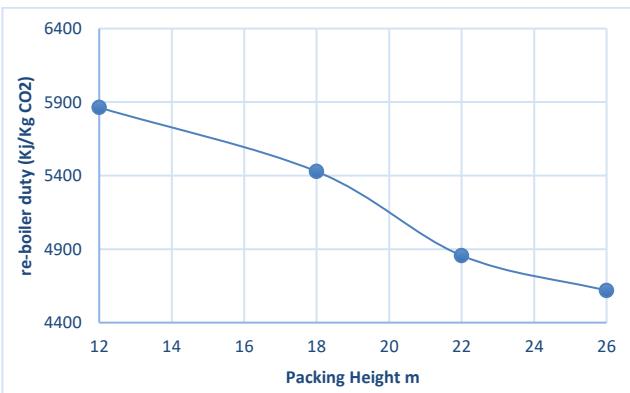



Fig. 13 Re-boiler duty variation with absorber pressure

Fig. 14 Re-boiler duty with absorber packing height

Briefly, the most important factor in the studies of CO₂ capture is the economic side, which should be precisely investigated when deciding the amine type to maintain the minimum possible operational cost.

6. Conclusions

CO₂ Removal efficiency is very sensitive to solvent characteristics such as solvent concentration, temperature, and lean solvent loading. Lean solvent loading has an inverse relationship with removal efficiency, increasing solvent concentration, and temperature. Because the solvent's CO₂ reduces, the CO₂ removal efficiency drops. However, increasing solvent concentration will increase CO₂ absorption capacity. Similarly, increasing the lean solvent temperature will decrease the absorption capacity's driving force, which will increase the reaction rate, resulting in higher CO₂ capture.

Compared to other solvents, DEA distinguishes out due to its higher CO₂ removal efficiency and its reduced sensitivity to lean loading. However, other factors need to be revised and considered for further understanding.

Studying CO₂ removal efficiency is the target of this study; however, the most important target is the economic side of the process, which is mainly affected by the reboiler duty of the regeneration plant. Therefore, the most driving factors of the reboiler duty are the tower pressure and the packing height, which increased either factor resulting in a lower duty.

References

- [1] I. P. O. C. Change, "Climate change 2007: the physical science basis," *Agenda*, vol. 6, no. 07, p. 333, 2007.
- [2] Y. S. Yu, Y. Li, H. F. Lu, R. F. Dong, Z. X. Zhang, and X. Feng, "Synergy pinch analysis of CO₂ desorption process," *Industrial & engineering chemistry research*, vol. 50, no. 24, pp. 13997–14007, 2011, doi: 10.1021/ie030286.
- [3] X. M. Wu, Y. S. Yu, C. Y. Zhang, G. X. Wang, and B. Feng, "Identifying the CO₂ capture performance of CaCl₂-supported amine adsorbent by the improved field synergy theory," *Industrial & Engineering Chemistry Research*, vol. 53, no. 24, pp. 10225–10237, 2014, doi: 10.1021/ie500841n.
- [4] D. Kearns, H. Liu, and C. Consoli, "Technology readiness and costs of CCS," *Global CCS Institute, Brussels, Belgium*, 2021.
- [5] J. Gibbins and H. Chalmers, "Carbon capture and storage," *Energy policy*, vol. 36, no. 12, pp. 4317–4322, 2008, doi: 10.1016/j.enpol.2008.09.058.
- [6] E. Rubin, "Summary of the IPCC special report on carbon dioxide capture and storage," 2006.
- [7] G. Qi *et al.*, "High efficiency nanocomposite sorbents for CO₂ capture based on amine-functionalized mesoporous capsules," *Energy & Environmental Science*, vol. 4, no. 2, pp. 444–452, 2011, doi: 10.1039/COEE00213E.
- [8] R. A. Gill, H. W. Polley, H. B. Johnson, L. J. Anderson, H. Maherli, and R. B. Jackson, "Nonlinear grassland responses to past and future atmospheric CO₂," *Nature*, vol. 417, no. 6886, pp. 279–282, 2002, doi: 10.1038/417279a.
- [9] T. C. Merkel, H. Lin, X. Wei, and R. Baker, "Power plant post-combustion carbon dioxide capture: An opportunity for membranes," *Journal of membrane science*, vol. 359, no. 1–2, pp. 126–139, 2010, doi: 10.1016/j.memsci.2009.10.041.
- [10] Y. Peng, B. Zhao, and L. Li, "Advance in post-combustion CO₂ capture with alkaline solution: a brief review," *Energy Procedia*, vol. 14, pp. 1515–1522, 2012, doi: 10.1016/j.egypro.2011.12.1126.
- [11] C. Göpfert, C. Wamsler, and W. Lang, "Institutionalizing climate change mitigation and adaptation through city advisory committees: Lessons learned and policy futures," *City and Environment Interactions*, vol. 1, p. 100004, 2019, doi: 10.1016/j.cacint.2019.100004.
- [12] D. Y. C. Leung, G. Caramanna, and M. M. Maroto-Valer, "An overview of current status of carbon dioxide capture and storage technologies," *Renewable and sustainable energy reviews*, vol. 39, pp. 426–443, 2014, doi: 10.1016/j.rser.2014.07.093.
- [13] B. J. P. Buhre, L. K. Elliott, C. D. Sheng, R. P. Gupta, and T. F. Wall, "Progress Energy Combust," *Sci*, vol. 31, no. 4, pp. 283–307, 2005, doi: 10.1016/j.pecs.2005.07.001.
- [14] L. L. Davies, K. Uchitel, and J. Ruple, "Understanding barriers to commercial-scale carbon capture and sequestration in the United States: An empirical assessment," *Energy Policy*, vol. 59, pp. 745–761, 2013, doi: 10.1016/j.enpol.2013.04.033.
- [15] A. Raza, R. Gholami, R. Rezaee, V. Rasouli, and M. Rabiei, "Significant aspects of carbon capture and storage—A review," *Petroleum*, vol. 5, no. 4, pp. 335–340, 2019, doi: 10.1016/j.petlm.2018.12.007.
- [16] P. Tsvetkov, A. Cherepovitsyn, and S. Fedoseev, "Public perception of carbon capture and storage: A state-of-the-art overview," *Helijon*, vol. 5, no. 12, p. e02845, 2019, doi: 10.1016/j.helijon.2019.e02845.
- [17] M. Panahi and S. Skogestad, "Economically efficient operation of CO₂ capturing process part I: Self-optimizing procedure for selecting the best controlled variables," *Chemical Engineering and Processing: Process Intensification*, vol. 50, no. 3, pp. 247–253, 2011, doi: 10.1016/j.cep.2011.02.005.
- [18] S. Ziaii, G. T. Rochelle, and T. F. Edgar, "Dynamic modeling to minimize energy use for CO₂ capture in power plants by aqueous monoethanolamine," *Industrial & Engineering Chemistry Research*, vol. 48, no. 13, pp. 6105–6111, 2009, doi: 10.1021/ie801385q.
- [19] Y. A. C. Jande, M. Asif, S. M. Shim, and W.-S. Kim, "Energy minimization in monoethanolamine-based CO₂ capture using capacitive deionization," *International journal of energy research*, vol. 38, no. 12, pp. 1531–1540, 2014, doi: 10.1002/er.3168.
- [20] S. Gantert and D. Möller, "Ultrasonic desorption of CO₂—a new technology to save energy and prevent solvent degradation," *Chemical engineering & technology*, vol. 35, no. 3, pp. 576–578, 2012, doi: 10.1002/ceat.201100395.
- [21] A. García-Abuín, D. Gómez-Díaz, and J. M. Navaza, "New processes for amine regeneration," *Fuel*, vol. 135, pp. 191–197, 2014, doi: 10.1016/j.fuel.2014.06.067.
- [22] L. Zhao, R. Zhao, S. Deng, Y. Tan, and Y. Liu, "Integrating solar Organic Rankine Cycle into a coal-fired power plant with amine-based chemical absorption for CO₂ capture," *International Journal of Greenhouse Gas Control*, vol. 31, pp. 77–86, 2014, doi: 10.1016/j.ijgpc.2014.09.025.
- [23] P. Luis, "Use of monoethanolamine (MEA) for CO₂ capture in a global scenario: Consequences and alternatives,"

Desalination, vol. 380, pp. 93–99, 2016, doi: 10.1016/j.desal.2015.08.004.

[24] M. Lucquiaud and J. Gibbins, “On the integration of CO₂ capture with coal-fired power plants: A methodology to assess and optimise solvent-based post-combustion capture systems,” *Chemical Engineering Research and Design*, vol. 89, no. 9, pp. 1553–1571, 2011, doi: 10.1016/j.cherd.2011.03.003.

[25] Y. Le Moullec, T. Neveux, A. Al Azki, A. Chikukwa, and K. A. Hoff, “Process modifications for solvent-based post-combustion CO₂ capture,” *International Journal of Greenhouse Gas Control*, vol. 31, pp. 96–112, 2014, doi: 10.1016/j.ijggc.2014.09.024.

[26] Z. Qing, G. Yincheng, and N. Zhenqi, “Experimental studies on removal capacity of carbon dioxide by a packed reactor and a spray column using aqueous ammonia,” *Energy Procedia*, vol. 4, pp. 519–524, 2011, doi: 10.1016/j.egypro.2011.01.083.