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Abstract. Job shop scheduling (JSS) is a critical 

problem in the field of operations research and 

manufacturing, where the goal is to optimize the 

scheduling of jobs on machines to enhance productivity 

and efficiency. Combinatorial optimization problems like 

JSS present significant challenges due to their diverse 

applications and practical importance. In order to meet 

this challenge, metaheuristic algorithms have become 

extremely effective tools. They provide effective solutions 

that strike a balance between computational cost and 

solution quality. Given the Nondeterministic Polynomial 

time (NP)-hard nature of the problem, exact methods are 

often impractical for large instances, making 

metaheuristic approaches highly valuable due to their 

ability to find near-optimal solutions within reasonable 

computational times. The primary purpose of this review 

manuscript is to comprehensively analyze and synthesize 

the current state of research on metaheuristic algorithms 

applied to JSS. This review categorizes and summarizes 

contemporary metaheuristic methods such as harmony 

search, and ant colony optimization, alongside traditional 

techniques like genetic algorithms, simulated annealing, 

tabu search, and particle swarm optimization. The 

fundamental concepts, key components, and typical 

applications of metaheuristic algorithms are explored. The 

paper evaluates robustness, scalability, and adaptability 

of different methods to different problem instances and 

constraints, and performance metrics, highlighting their 

strengths and weaknesses. Additionally, this paper reviews 

recent advancements in hybrid and multi-objective 

metaheuristic methods aimed at balancing scheduling 

constraints and improving solution quality and 

convergence speed. By offering a critical evaluation of the 

literature, this manuscript aims to identify trends, gaps, 

and future research directions in the application of 

metaheuristic algorithms to JSS. The discussion includes 

an exploration of emerging techniques and their potential 

impact on the field, as well as the practical implications 

for industrial applications. The conclusion of the review 

highlights that while significant advancements have been 

made, there remain numerous opportunities for innovation 

and improvement in developing more robust, efficient, and 

adaptive metaheuristic algorithms. Future research 

should focus on hybrid approaches, real-time scheduling, 

and integrating machine learning techniques to further 

enhance the performance and applicability of these 

algorithms in complex, real-world JSS problems. This 

comprehensive review not only serves as a valuable 

resource for researchers and practitioners but also sets 

the stage for future innovations in the optimization of 

complex scheduling problems. 
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1. Introduction

Effective scheduling is essential to many industrial and

manufacturing processes; it affects things like output 

volume, how resources are used, and total operating 

expenses. Because of its complexity and the numerous 

constraints involved, job shop scheduling (JSS) stands out 

among the many scheduling issues as a particularly 

difficult task. A set of jobs must be completed in a job 

shop setting in a certain order on a set of machines while 

abiding by a number of restrictions, include processing 

times, resource availability, and precedence relationships 

[1]. Traditionally, precise optimization techniques like 

mathematical programming have been used to solve job 

shop scheduling problem (JSSP). However, for large 

problem sizes encountered in real-world scenarios, exact 

methods are frequently computationally impractical due to 

the combinatorial nature of these problems [2]. 

Metaheuristic algorithms have become a potential and 

useful tool for solving intricate optimization problems, 

such as JSS, in recent years [3]. When it comes to 

optimization, metaheuristics provide a versatile and 

adaptive method that can quickly and effectively search 
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through large solution spaces and identify excellent 

solutions [4].  

The goal of this review is to give a thorough overview 

of metaheuristic algorithms used to solve scheduling 

issues in job shops. This paper examines the foundations 

of JSS, present several metaheuristic algorithms frequently 

employed in this setting, and investigate their uses, 

difficulties, and potential applications. 

A. Brief Overview of Job Shop Scheduling

Problem

The JSSP is a well-known optimization problem that 

arises in manufacturing settings where a range of jobs, 

each with a unique processing requirement and sequence 

of operations must be processed on a set of machines. 

Essentially, the objective is to efficiently assign resources 

and ascertain the best order in which to complete tasks in 

order to minimizing makespan (the total amount of time 

needed to finish all jobs) or other performance metrics 

while respecting different constraints. The origins of job 

shop production scheduling can be traced back to the early 

days of industrialization when manufacturing processes 

began to diversify, necessitating more sophisticated 

scheduling techniques to manage the increased complexity 

[5]. Over the years, JSS has evolved into a prominent area 

of research within the fields of operations research, 

industrial engineering, and computer science, owing to its 

significance in optimizing resource utilization, reducing 

production lead times, and improving overall efficiency 

[6]. Traditional methods of JSS, such as manual 

scheduling or simple rule-based approaches, often proved 

inadequate in handling the complexities inherent in 

modern manufacturing environments. This led to the 

development of algorithmic approaches aimed at 

automating and optimizing the scheduling process, thereby 

enabling manufacturers to achieve higher levels of 

productivity and competitiveness [7]. JSS is more 

complicated than simpler scheduling problems where each 

job travels a predetermined path through the production 

system. In this case, each job might need to be processed 

on several machines in a particular order, and factors like 

processing times, machine availability, and precedence 

relationships must be taken into account [8]. The 

combinatorial explosion of possible schedules as the 

number of jobs and machines increases is the fundamental 

complexity of the JSSP [9]. Consequently, for real-world 

scenarios with large problem sizes, finding an optimal 

solution through exhaustive search methods becomes 

unmanageable. For manufacturing operations to increase 

productivity, cut lead times, and maximize resource 

utilization, the JSSP must be solved effectively [10]. 

Therefore, in order to effectively address this difficult 

problem, researchers and practitioners have turned to 

optimization techniques like metaheuristic algorithms. 

This paper examines how metaheuristic algorithms 

present a viable method for dealing with the difficulties 

involved in JSS and producing excellent results in a 

reasonable amount of computational time. Moreover, this 

paper explores a range of metaheuristic algorithms, how 

they are used in JSS, and their comparative performance 

analysis. 

B. Importance of Efficient Scheduling in

Industrial and Manufacturing Processes

Effective scheduling is critical to industrial and 

manufacturing processes because it affects many aspects 

of the business, such as overall competitiveness, 

productivity, and resource utilization. Manufacturers face 

constant pressure to streamline their production 

procedures and meet customer deadlines for high-quality 

products in today's hectic and fiercely competitive 

business world. By ensuring that resources are used 

effectively and production targets are met efficiently, 

efficient scheduling is essential to achieving these goals 

[11]. Figure 1 shows the various key aspects of efficient 

scheduling. 

Key Aspects of Efficient Scheduling

• Resource utilization: Using machinery, labor, and

materials to their fullest potential is made possible by

effective scheduling [12]. Throughput and

productivity can be increased in manufacturing by

avoiding bottlenecks and minimizing idle time [13].

• Lead time minimization: It is critical to reduce lead

times in order to better respond to market shifts and

satisfy customer demands. By cutting down on

waiting times between operations, efficient

scheduling speeds up production and makes it

possible to fulfill orders more quickly [14].

• Production cost optimization: By lowering overtime

costs, cutting setup times, and maximizing inventory

levels, efficient scheduling techniques assist in

lowering production costs. Manufacturing

organizations can reduce costs and increase

profitability by optimizing their production processes

[15].

• Increased flexibility: Manufacturers need to be able

to react fast to shifts in market conditions, resource

availability, and demand in the fast-paced business

world of today. Greater flexibility is made possible

by efficient scheduling, which makes it possible to

quickly modify production schedules in response to

shifting requirements [16].

• Competitive advantage and customer satisfaction:

Efficient scheduling gives manufacturers a big

competitive edge because it allows them to deliver

products faster, cheaper, and of better quality than

their rivals [17]. Manufacturers can become

preferred suppliers in the market, increase customer

satisfaction, and forge closer bonds with customers

by streamlining their production processes and

strengthening their scheduling skills. In the end,

effective scheduling promotes operational excellence
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and adds value for customers, which leads to long-

term business success and sustainable growth [18]. 

Thus, efficient scheduling is essential to optimizing 

industrial and manufacturing processes, reducing costs, 

increasing output, and maintaining competitiveness in 

today's fast-paced business environment. In the following 

sections of this review, the paper explores the ways in 

which advanced scheduling techniques, more especially 

metaheuristic algorithms, facilitate efficient scheduling 

and continuous improvement in manufacturing and 

industrial processes. 

Fig. 1  Key aspects of efficient scheduling 

C. Introduction to Metaheuristic Algorithms as

a Solution Approach

In the quest of solving complicated optimization 

issues, large-scale examples with extensive solution 

spaces and multiple constraints frequently present 

challenges for conventional exact methods. In 

particular, metaheuristic algorithms provide a strong 

substitute for optimization when dealing with issues 

involving non-linear relationships and high 

computational complexity [19]. 

Definition of Metaheuristic Algorithm: 

Metaheuristic algorithms are iterative approaches to 

solving problems that search for better solutions by 

exploring and navigating solution spaces using ideas 

drawn from mathematics, social behavior, or natural 

phenomena. Metaheuristics are ideally suited to tackle 

real-world optimization problems because they put an 

emphasis on obtaining good solutions in a reasonable 

amount of time, as opposed to exact methods that ensure 

optimality but may have scalability issues [20].  

Key Characteristics of Metaheuristic Algorithms: 

• Iterative Improvement: Through a series of

continuous steps, metaheuristic algorithms

improve candidate solutions iteratively, gradually

bringing the solution closer to optimality [20].

• Exploration and Exploitation: Metaheuristics strike

a balance between exploitation (exploiting

promising areas to refine the search towards

optimal solutions) and exploration (diversifying

the search to explore different regions of the

solution space) [21].

• Stochastic Components: Many metaheuristic

algorithms include unpredictable elements such as

randomness, probabilistic making decisions, or

simulated annealing (SA) in order to introduce

randomness into the search process and escape

local optimal conditions [4, 19].

• Adaptability: By changing parameters, operators,

or search strategies, metaheuristic algorithms can

be made more specialized for particular problem

domains. This adaptability is a common feature [4,

20].
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Categories of Metaheuristic Algorithms: 

Metaheuristic algorithms come in a multitude of forms, 

each with unique search mechanisms, optimization 

strategies, and underlying principles. Figure 2 presents 

timeline of various meta-heuristic algorithm for JSS. 

Typical metaheuristic categories include the following 

[20]: 

• Genetic Algorithms (GA)

• Simulated Annealing (SA)

• Tabu Search (TS)

• Particle Swarm Optimization (PSO)

• Harmony Search (HS)

• Ant Colony Optimization (ACO)

• Artificial Bee Colony (ABC)

Fig. 2  Timeline of Meta-heuristic algorithm for job shop scheduling 

Applications of Metaheuristic Algorithms: 

Applications for metaheuristic algorithms are widely 

used in many different fields, such as engineering, 

finance, healthcare, and telecommunications, etc. 

Figure 3 portrays the various applications of 

metaheuristic algorithms. When it comes to solving 

real-world problems where precise methods might not 

be feasible or practical, they are an invaluable tool due 

to their efficiency, versatility, and capacity to handle 

complex optimization problems [4, 44, 45]. 

Metaheuristic algorithms present a viable method for 

maximizing production schedules, minimizing 

makespan, and enhancing resource efficiency in the 

context of JSS [46-48]. The upcoming sections of this 

review examine the use of metaheuristic algorithms as a 

solution approach for JSSP, emphasizing their efficacy, 

applications, and potential to improve industrial and 

manufacturing process efficiency. 

This paper examines the application of 

metaheuristic algorithms as a solution approach for JSS 

issues in the ensuing sections of this review. By delving 

into the underlying principles, mechanisms, and 

applications of metaheuristic algorithms in this context, 

this paper aim to provide insights into their 

effectiveness and potential for optimizing scheduling 

processes in industrial and manufacturing environments. 
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Fig. 3  Application of Meta-heuristic Algorithm 

D. Objectives of using Metaheuristic 

Algorithm

• Minimize Maximum Completion Time (MMCT):

Completion time refers to the arrangement of tasks

in a way that maximizes the early completion of

the longest task. The goal of this strategy is to

shorten the total amount of time needed to finish

all tasks. To guarantee effectiveness and cut down

on delays, it is frequently used in scheduling.

Concentrating on the most extended task aids in

workload distribution and boosts output [55].

• Minimizing Makespan (MMK): The total amount

of time needed to finish every task in a production

schedule is referred to as makespan. This

objective's algorithms focus on minimizing the

makespan by streamlining the machine's sequence

of operations to shorten the total production time.

These algorithms give top priority to finishing

every task as soon as possible, which reduces

production time and boosts throughput overall

[56].

• Robustness (RBS): This is a system's capacity to

withstand unforeseen alterations or disruptions

without malfunctioning. It guarantees

dependability and stability in a range of

circumstances. In engineering and design, a robust

system is able to continue operating in the face of

uncertainty. For the creation of reliable and long-

lasting processes and products, this attribute is

crucial [57].

• Convergence Speed (CVS): This refers to how

quickly a process or algorithm reaches its outcome

or solution. In optimization and iterative methods,

faster convergence means fewer steps to achieve

the desired result. This is crucial for efficiency, 

saving time and computational resources [46]. 

• Accuracy (ACC): This refers to the degree to

which a result or measurement aligns with the true

or accepted value. High accuracy translate into less

error and more precision in the result. For results

that are valid and dependable in domains like

science, engineering, and data analysis, accuracy is

essential [58, 59].

• Minimization of Tardiness (MTD): Tardiness

refers to the delay in completing jobs beyond their

due dates or deadlines. This objective's algorithms

prioritize minimizing tardiness by making sure that

tasks are finished on time or ahead of schedule. In

order to maximize customer satisfaction, reduce

late delivery penalties, and maintain a competitive

advantage in the market, these algorithms optimize

production schedules to meet predetermined

deadlines [60, 61].

• Improve Scheduling Efficiency (ISE): Efficient

scheduling ensures that tasks are completed in a

timely and organized manner, reducing downtime

and bottlenecks. This objective is essential in

industries like manufacturing, project

management, and logistics. Increasing scheduling

efficiency results in higher productivity and lower

operating costs. It results in improved performance

overall and more efficient workflows [62, 63].

• Sequence Dependent Adjust Time (SDAT): This

refers to the variation in the time required to

switch from one task to another based on the order

in which tasks are performed. This adjustment

time depends on the specific sequence of

operations. In scheduling and manufacturing,

accounting for sequence-dependent adjust time is

crucial for accurate planning and minimizing
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delays. It ensures that transitions between tasks are 

efficient, reducing overall completion time and 

improving productivity [64, 65]. 

• Machine Release Date (MRD): This refers to the

specific time when a machine becomes available

for use in a production process. This date is crucial

for planning and scheduling tasks, ensuring that

operations begin as soon as the machine is ready.

Knowing the release date helps in coordinating

activities and avoiding delays. It ensures that

resources are utilized efficiently and production

timelines are met [66, 67].

• Production Efficiency (PEF): This refers to the

ability to maximize output while minimizing input,

such as time, materials, and labour. A high level of

production efficiency involves quick and minimal

waste product creation. Reaching this goal is

essential to cutting expenses and raising profits.

Efficient production processes guarantee improved

resource utilization and increased productivity

[68].

• Work Sequence (WSQ): This describes the precise

sequence in which actions or tasks are carried out.

Sequencing correctly is essential for productivity

and a seamless workflow. It guarantees that every

task is finished on schedule, reducing delays and

avoiding conflicts. An ideal sequence of operations

improves output and efficient use of resources in

both manufacturing and project management [69].

• Minimization of Production Time (MPT): This

aims to reduce the overall duration required to

manufacture goods or complete tasks. This

objective focuses on optimizing processes,

eliminating bottlenecks, and streamlining

operations. By minimizing production time,

businesses can increase output, meet deadlines,

and respond swiftly to customer demands [70, 71].

• Cost Saving (CSV): This involves identifying and

implementing measures to reduce expenses

without compromising quality or efficiency. The

goal of this objective is to reduce unnecessary

expenditures in order to strengthen an

organization's financial position. Achieving cost

savings involves a variety of tactics, including

improving resource usage, negotiating better prices

with suppliers, and putting cost-effective

technologies into use [72, 73].

• Minimize Set-up Time (MST): Set-up time is a

crucial element in manufacturing and production

processes, representing the duration required

preparing equipment, machinery, or systems for

the execution of a specific task or production run.

It encompasses activities such as equipment

adjustment, tooling, calibration, and material

preparation before actual production can

commence. Set-up time plays a significant role in

overall production efficiency, as it directly affects 

downtime, throughput, and resource utilization 

[74, 75]. 

• Minimize Flow Time (MFT): Flow time is the

amount of time needed for a job to proceed from

the start of production to the end. In order to

minimize the flow time for each job, algorithms

that aim to minimize flow time focus on

optimizing the job sequences and resource

allocations. These algorithms seek to minimize

flow time in order to increase customer

responsiveness, decrease work-in-progress

inventory, and increase production efficiency [76,

77].

• Minimize Relative Error (MRE): This objective

aims to reduce discrepancies between planned and

actual job completion times, enhancing scheduling

accuracy [78].

• Improve Solution Quality (ISQ): This objective

focuses on enhancing overall scheduling outcomes

by optimizing job sequencing and resource

allocation for better performance. This makes the

schedule better to achieve higher efficiency and

performance [78, 79].

• Minimize Earliness Penalties (MEP): Goal is to

decrease costs associated with completing jobs

earlier than required, thus reducing financial

penalties [80, 81].

• Time Lag Requirement (TLR): This objective

focuses on meeting specific time constraints

between consecutive job operations to ensure

smooth workflow and timely completion. It

ensures the correct time intervals between tasks to

meet production needs [82, 83].

• Minimize Energy Consumption (MEC): This aims

to optimize scheduling to reduce energy usage,

contributing to environmental sustainability and

cost savings. This decreases the energy used in

production to save money and resources [84, 85].

• Minimize Transportation Time (MTT): This

objective focuses on minimizing the time required

for transporting materials or products between

different stages or workstations, improving

efficiency and reducing delays. It cuts down the

time needed to move materials between

workstations [86, 87].

2. Overview of Job Shop Scheduling

JSS is an essential issue in operations management and 

manufacturing, which involves a requirement to allocate 

resources efficiently to complete a set of jobs on a set of 

machines, subject to various constraints [6]. This 

section will explore the essential ideas and concepts of 

JSS, including its definition, key characteristics, and 
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categorization. JSS includes the coordination and 

sequencing of operations or tasks across different 

machinery to meet production objectives while 

satisfying various constraints. JSS differs from simpler 

scheduling problems in that it involves figuring out the 

best order of operations for every job on every machine, 

taking into account variables like processing times, 

machine availability, and precedence relationships [2, 

82]. 

A. Definition of Job Shop Scheduling

This section delves into the definition and key

characteristics of the JSS. At its core, the JSSP revolves 

around the efficient allocation of resources to complete 

a set of jobs on a set of machines within a specified 

period.  

JSS is a typical optimization scenario came across 

in manufacturing and operations management, where a 

number of jobs must be processed through a series of 

operations on a number of machines. Every job consists 

of a number of tasks or operations that, under a number 

of restrictions, must be completed on a particular 

machine in the correct sequence [5, 88, 89]. 

Key Characteristics of JSS [90]: 

• Machine Dependency: Each task within a job

involves a series of operations that must be

carried out on specific machines. On the other

hand, machines might differ in their capacities,

which could limit their availability and use.

• Precedence Constraints: Before they can begin,

some operations might need to wait for others

to finish. In order to ensure that the schedule is

correct, these precedence constraints must be

met.

• Complexity: The JSSP involves a large number

of potential schedules, making it fundamentally

combinatorial in nature. The complexity of the

problems grows exponentially with the no. of

jobs and machines, making it difficult to find

optimal solutions using conventional

optimization techniques.

• Objective Function: The main aim of JSS

revolves around minimizing the makespan,

which refers to the total duration required to

complete all tasks. Other goals could be

maximizing machine utilization, reducing

tardiness, or distributing the workload evenly

among the machines.

Importance of JSS: In manufacturing 

environments, maximizing resource utilization, cutting 

production lead times, and enhancing overall 

operational efficiency all depend on effective JSS. The 

implementation of efficient scheduling strategies can 

result in notable cost savings and productivity gains as 

they minimize idle time, minimize setup costs, and 

maximize machine utilization [1, 5, 6]. 

B. Description of the Job Shop Constraints

In this subsection, this paper discusses the

constraints usually encountered in JSS, including 

machine availability, processing times, precedence 

relationships between tasks, and resource constraints. It 

is essential to understand the constraints, when creating 

scheduling problems and optimization algorithms.  

Constraints in JSS: 

• Machine Availability: Due to factors like

resource limitations, setup times, and

maintenance, each machine has a limited

amount of availability. Jobs cannot be

processed on machines that are already busy

with other tasks [91].

• Processing Times: Every operation has a

processing time that corresponds to how long it

takes to finish the task on a specific machine.

Processing times can differ based on a number

of variables, including material properties, job

complexity, and machine capabilities [92].

• Precedence Relationships: There are 

precedence relationships among certain 

operations, which determine that they must be 

carried out in a particular order. For instance, 

the outcome of machining operations on the 

same or separate machines may be necessary 

for the assembly process to proceed [93]. 

• Resource constraints: JSS may be impacted by

limitations on labor, materials, and tools.

Limited resources may have an influence on

scheduling choices and reduce the

effectiveness of production as an entire process

[94].

• Job priorities: Different jobs may have varying

priorities depending on things like deadlines,

client demands, and output targets. Setting the

right priorities for your work is crucial to

meeting deadlines and maximizing output [95].

• Optimization objectives: The goal of JSS is to

maximize machine utilization, minimize idle

time, minimize makespan (total completion

time), and reduce job tardiness (lateness).

Alternatives may need to be made during the

scheduling process because these goals may

conflict with one another [96].

Understanding the job shop constraints is essential 

for formulating scheduling problems, designing 

effective algorithms, and making informed scheduling 

decisions. By considering these factors, researchers and 

practitioners can develop strategies to improve 
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production efficiency, meet customer demands, and 

optimize resource utilization in job shop environments. 

C. Classification of Job Shop Scheduling

Problems

By categorizing JSSP, scholars and professionals 

are able to understand the details and complexity of 

various problem scenarios. It makes it easier to choose 

the best approaches for solving problems and to create 

specialized scheduling plans that are suited to the 

demands and features of particular problems [5].  

The application of various metaheuristic 

algorithms to various JSSP, which aim to maximize 

production schedules, reduce makespan, and enhance 

resource utilization in industrial and manufacturing 

settings are discussed in the following sections of this 

review. The number of machines, the nature of the jobs 

and operations, and the scheduling environment are 

some of the factors that can be used to categorize JSS 

issues. Selecting suitable solution approaches and 

creating efficient scheduling strategies require an 

understanding of these classifications.  

Classification of JSSPs: 

Number of Machines: 

• Single-Machine Job Shop: There is just one

machine available for processing tasks in a

single-machine job shop. Every job requires

scheduling of several operations on this one

machine. In comparison to other

configurations, this scenario is very simple

[81].

• Parallel Machine Job Shop: A parallel machine

job shop has several identical machines that

can process orders at the same time. More

scheduling flexibility is possible with this

configuration, which may also result in better

throughput and resource use [97], [98].

• Hybrid Job Shop: A hybrid job shop

incorporates aspects of parallel and single

machine configurations. It could be made up of

a combination of parallel and single machines,

each with different processing capabilities and

constraints [98].

Characteristics of Jobs and Operations: 

• Deterministic Job Shop: The processing times

for operations in a deterministic job shop are

fixed and unchanging. Because job completion

times and resource requirements can be

accurately predicted, this helps to partially

simplify the scheduling problem [99].

• Stochastic Job Shop: Processing times for

operations are uncertain in a stochastic job

shop. Scheduling decisions become more

difficult when considering processing times 

that indicate random fluctuations or follow 

probabilistic distributions [99].  

• Job Shop with Setup Times: Setup times are a

factor in some scheduling problems in job

shops because they are necessary when

switching between various tasks or operations.

Setup times add extra costs and delays to

production, which can have a negative impact

on efficiency [100].

Scheduling Environment: 

• Static Job Shop: In a static job shop,

scheduling choices are predetermined based on

the known constraints and characteristics of the

job. Scheduling algorithms are able to optimize

schedules in person without requiring real-time

adjustments, and the scheduling environment is

still comparatively stable [101].

• Dynamic Job Shop: Scheduling decisions in a

dynamic job shop are made either dynamically

or in real-time in response to shifts in job

priorities, the availability of resources, or

outside variables. Adaptive algorithms that can

quickly adjust to changing conditions and

minimize production schedule disruptions are

necessary for dynamic JSS [102].

Researchers and practitioners can effectively 

optimize scheduling processes and customize solution 

approaches to specific problem instances by having a 

thorough understanding of the classifications of JSSPs. 

The application of various metaheuristic algorithms to 

various JSSP, which aim to maximize production 

schedules, reduce makespan, and enhance resource 

utilization in industrial and manufacturing settings are 

discussed in the following sections of this review. 

3. Overview of Metaheuristic Algorithms

In this section, the paper provides an overview of 

metaheuristic algorithms, exploring their principles, 

characteristics, and applications in solving optimization 

problems. Metaheuristic algorithms provide flexible and 

adaptive methods for optimization. They can quickly 

and effectively search through large solution spaces to 

find outstanding solutions. Developing an understanding 

of the foundations of metaheuristic algorithms is 

necessary to fully utilize their potential in solving 

complicated optimization problems, such as JSSPs. 

A. Commonly Used Metaheuristic Algorithms

This subsection provides an overview of common

metaheuristic algorithms used in JSS. Metaheuristic 

algorithms are powerful optimization techniques that 

offer flexible and robust approaches for finding near-

optimal solutions to complex scheduling problems. By 

exploring these common metaheuristic algorithms, this 
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paper aims to elucidate their principles, operational 

characteristics, and advantages in addressing various 

scheduling challenges in different environments.  

• Genetic Algorithm (GA): Utilizes evolutionary

processes to iteratively evolve solutions

(schedules). Representing potential schedules

as chromosomes, genetic operators like

selection, crossover, and mutation are applied

to breed better solutions across generations

[22, 103].

• Simulated Annealing (SA): Mimics the

physical annealing process, starting with an

initial solution and exploring neighboring

solutions probabilistically. By gradually

decreasing the temperature parameter, it allows

for escaping local optima and converging

towards near-optimal solutions [23, 104].

• Tabu Search (TS): Employs a local search

mechanism with a tabu list to avoid revisiting

previously explored solutions. Aspiration

criteria allow overcoming some restrictions,

enabling efficient traversal of the search space

and finding superior schedules [24, 105, 106].

• Parallel Genetic Algorithm (PGA): Utilizes

parallel computing to speed up GA processes

by running multiple instances concurrently,

exploring different solution areas

simultaneously [25, 103].

• Artificial Immune Algorithm (AIA): Mimics

immune system processes to optimize

problems, using antibodies to represent

solutions and leveraging immune memory and

clonal selection for adaptation [26].

• Ant Colony Optimization (ACO): Based on the

foraging behavior of ants, where pheromone

trails guide the search for solutions. Ants

probabilistically select jobs and machines, with

pheromone updates leading to the construction

of high-quality schedules over time [27, 107].

• Music-Based Harmony Search (MBHS):

Inspired by creating harmonious music.

Solutions are represented as melodies, updated

using principles of harmony and music theory

to explore and find near-optimal solutions [28,

108].

• Improved Music Based Harmony Search

(IMBHS): Enhances traditional Harmony

Search with advanced harmony memory and

improvisation techniques, improving

convergence speed and solution quality for

various optimization problems [28].

• Real Coded Genetic Algorithm (RGA): Uses

real-number vectors instead of binary strings to

represent solutions, allowing effective

optimization of problems with continuous 

variables [29, 103]. 

• Bacterial Foraging Optimization (BFO):

Simulates bacterial foraging behaviors.

Solutions (bacterial colonies) are iteratively

improved through chemotaxis, reproduction,

and elimination-dispersal, effectively finding

optimal solutions for various problems [26,

109].

• Particle Swarm Optimization (PSO): Inspired

by social behaviors of animals, particles

represent potential solutions. They move

through the solution space based on their own

experiences and those of the swarm, iteratively

improving their positions to find near-optimal

schedules [30, 44, 110].

• Artificial Bee Colony (ABC): Models the

foraging behavior of honeybees. Employed,

onlooker, and scout bees explore the solution

space, sharing information and introducing

diversity to iteratively improve solutions and

converge towards optimal schedules [31, 111].

• Improved Artificial Bee Colony (IABC)

Algorithm: The IABC algorithm improves the

ABC algorithm. It ensures thorough search

space coverage by using a four-layer

chromosome encoding structure to represent

solutions in an adaptable and natural way.

Performance is further optimized by adding a

random selection method for onlooker bees and

a neighborhood search mechanism for

employed bees [32, 112].

• Parallel Artificial Bee Colony (PABC)

Algorithm: This algorithm enhances the

traditional ABC by mimicking the foraging

behavior of bees in a parallelized manner. The

colony is divided into several sub colonies, and

in order to increase efficiency, parallel

operations are carried out within each sub

colony with dynamic migration [33, 113, 114].

• Invasive Weed Optimization (IWO): Inspired

by the invasive behavior of weeds. Candidate

solutions (weed areas) evolve by growth,

reproduction, and competition, efficiently

exploring the solution space [26, 115].

• Differential Evolution (DE) Algorithm: It

improves solutions by combining and mutating

existing ones. This helps to reduce the total

time needed to complete all jobs. It also

enhances the use of resources efficiently [34,

116].

• Improved Differential Evolution (IDE) 

Algorithm: This algorithm improves traditional 

DE with four mutation strategies and an 

exponential crossover method, developing new 
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candidate solutions repeatedly. By choosing 

the best solution from each iteration based on 

fitness, it seeks to maximize the objectives in 

JSSP [35, 117]. 

• Cuckoo Search (CS) Algorithm: This

algorithm optimizes JSS by mimicking cuckoo

breeding strategies. It replaces poor solutions

with better ones discovered through random

search and Lévy flights. This method

minimizes the total job completion time and

improves scheduling efficiency [36, 118].

• Discrete Cuckoo Search (DCS) Algorithm:

This algorithm uses random generation to

create an initial population. It then transforms

continuous solutions into discrete permutations

and evaluates the fitness of each population.

The algorithm accepts new solutions based on

an exponentially decreasing probability and

improves the population based on random

moves (swap, insert, and inverse) [37, 119].

• Bat Algorithm (BA): The Bat Algorithm is

used for JSS by simulating bat echolocation to

explore solutions. It adjusts job sequences

based on loudness and pulse rates, finding

optimal schedules. This reduces completion

time and improves scheduling efficiency [38,

120].

• Parallel Bat Algorithm (PBA): This algorithm

enhances the traditional BA by uses a random-

key encoding scheme for mapping continuous

positions to discrete job sequences. It uses

parallel processing, executing several

procedures at once, and combining the

outcomes on a regular basis to improve the

quality of the solution. Neighborhood operators

that enhance local search efficiency and

preserve population diversity include

swapping, insertion, and inversion [39, 121].

• Coral Reef Optimization (CRO): Mimics the

cooperative behaviors of coral reef organisms.

Candidate solutions interact through feeding,

communication, and reproduction, effectively

solving a range of optimization problems [40,

122].

• Parallel Coral Reef Optimization (PCRO): This

algorithm establishes multiple sub-populations

(coral reefs) and employs local search and

crossover operators in parallel to enhance

solution diversity and quality. Periodically, it

improves convergence towards the ideal job 

scheduling by merging and exchanging 

solutions between subpopulations [41, 122]. 

• Grey Wolf Optimization (GWO): Inspired by

the hunting behavior of grey wolves, where

positions of solutions are updated based on

alpha, beta, and delta wolves. The algorithm

balances exploration and exploitation to find

optimal solutions [42, 123].

• Discrete Grey Wolf Optimization (DGWO): A

variation of GWO for discrete problems.

Wolves reposition themselves similarly,

evaluating solutions and converging towards

optimal results [43, 124].

• Modified Genetic Algorithm (MoGA): A

customized version of the classic genetic

algorithm designed to address specific

optimization problems, evolving solutions

iteratively through processes like crossover,

mutation, and selection [125].

• Improved Genetic Algorithm (IGA): Enhances

the traditional genetic algorithm with

sophisticated strategies like elitism and

adaptive parameter tuning to improve

exploration and exploitation, leading to faster

convergence towards optimal or nearly optimal

solutions [103, 126].

• Modified Ant Colony Optimization Algorithm

(MACO): Customizes the standard ACO

algorithm with improved pheromone updating

rules, sophisticated heuristic data, or specific

exploration tactics to quickly approach optimal

or nearly optimal solutions [127].

• Enhanced Particle Swarm Optimization

(EPSO): Improves the traditional PSO

algorithm with mechanisms like adaptive

inertia weights and local search strategies to

explore solution spaces and approach optimal

or nearly optimal solutions more effectively

[128].

Table 1 presents the summary of various 

metaheuristic algorithms based on main concept, 

advantages, disadvantages and specific performance 

characteristics of specified research work from the 

literature. 
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Table 1 Summary of Metaheuristic Algorithms 

Study/Reference Metaheuristic 

Algorithm 

Main Concept Advantages Disadvantages Note on Performance 

[22], [103] Genetic Algorithm Evolutionary algorithm 
using selection, 

crossover, and mutation 

Good global search 
capabilities, 

adaptable 

Can be slow, may 
converge 

prematurely 

Often used for its 
robustness and ability to 

escape local optima 

[23], [104] Simulated Annealing Probabilistic technique 
inspired by annealing in 

metallurgy 

Simple, avoids local 
minima effectively 

Slow convergence, 
parameter tuning is 

critical 

Effective for problems 
with a complex landscape 

[24], [105], [106] Tabu Search Uses memory structures 
to avoid cycles and 

enhance search 

Avoids local 
minima, flexible 

memory structures 

Computationally 
intensive, parameter 

tuning required 

Performs well with 
complex constraints 

[25], [103] Parallel Genetic 
Algorithm 

Parallel execution of 
Genetic Algorithms 

Faster execution, 
maintains diversity 

Complexity in 
implementation, 

requires parallel 

computing resources 

Suitable for large-scale 
problems 

[26] Artificial Immune 

Algorithm 

Inspired by the human 

immune system's 

adaptive learning 

Good global search, 

adaptable to changes 

Can be 

computationally 

expensive, complex 

Effective in dynamic 

environments 

[27], [107] Ant colony 

optimization 

Mimics behavior of ants 

finding paths to food 

sources 

Good for 

combinatorial 

problems, positive 
feedback loop 

Slow convergence, 

requires many 

iterations 

Effective for routing and 

network problems 

[28], [108] Music Based 

Harmony Search 

Inspired by musical 

improvisation 

Simple, few 

parameters to tune 

Can get stuck in 

local optima, 
performance 

depends on harmony 

memory 

Easy to implement, often 

used for optimization 
problems with continuous 

variables 

[28] Improved Music 

Based Harmony 

Search 

Enhanced version of 

Harmony Search with 

better exploration and 
exploitation 

Improved 

performance over 

basic Harmony 
Search 

More complex, 

requires fine-tuning 

Better convergence and 

solution quality compared 

to basic version 

[29], [103] Real Coded Genetic 

Algorithm 

Genetic Algorithm using 

real numbers instead of 
binary 

Handles continuous 

optimization well 

Similar issues as GA 

(slow convergence, 
premature 

convergence) 

Suitable for continuous 

optimization problems 

[26], [109] Bacterial Foraging 
Optimization 

Inspired by the foraging 
behavior of bacteria 

Good global search 
ability, adaptable 

Computationally 
intensive, slow 

convergence 

Effective for dynamic and 
noisy environments 

[30], [44], [110] Particle Swarm 

Optimization 

Models social behavior 

of birds flocking or fish 

schooling 

Simple, few 

parameters, fast 

convergence 

May get trapped in 

local optima, 

sensitive to 
parameter settings 

Popular for its simplicity 

and efficiency 

[31], [111] Artificial Bee Colony Mimics the foraging 

behavior of honey bees 

Simple, flexible, 

good global search 
ability 

Can converge 

prematurely, 
requires balancing 

exploration and 

exploitation 

Effective for a wide range 

of optimization problems 

[32], [112] Improved Artificial 

Bee Colony 

Algorithm 

Enhanced version with 

mechanisms to improve 

convergence and 
solution quality 

Better performance 

compared to basic 

ABC 

Increased 

complexity 

Improved results in terms 

of convergence speed and 

solution quality 

[33], [113], [114] Parallel Artificial Bee 

Colony Algorithm 

Parallel implementation 

of ABC for faster 

execution 

Faster, maintains 

diversity, scalable 

Complexity in 

implementation, 

parallel computing 

resources required 

Suitable for large-scale and 

complex problems 

[26], [115] Invasive Weed 
Optimization 

Inspired by the 
colonizing behavior of 

weeds 

Good for multi-
modal optimization 

Can be 
computationally 

expensive, 

parameter sensitivity 

Effective for dynamic and 
multi-modal environments 

[34], [116] Differential 

Evolution Algorithm 

Uses differential 

mutation and crossover 

for optimization 

Robust, simple, 

good for continuous 

optimization 

May converge 

slowly, sensitive to 

parameter settings 

Popular for continuous and 

real-valued optimization 

problems 
[35], [117] Improved 

Differential 

Evolution Algorithm 

Enhanced version with 

better exploration and 

exploitation strategies 

Better performance 

over basic DE 

Increased 

complexity, requires 

fine-tuning 

Improved convergence 

speed and solution quality 

compared to basic DE 
[36], [118] Cuckoo Search 

Algorithm 

Based on brood 

parasitism of some 

cuckoo species 

Simple, efficient for 

global optimization 

Can converge 

prematurely, 

parameter sensitivity 

Effective for various 

optimization problems, 

often outperforms some 
traditional algorithms 
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Study/Reference Metaheuristic 

Algorithm 

Main Concept Advantages Disadvantages Note on Performance 

[37], [119] Discrete Cuckoo 

Search Algorithm 

Adapted for discrete 

optimization problems 

Effective for 

discrete problems 

Can be complex to 

implement 

Suitable for scheduling and 

combinatorial optimization 
problems 

[38], [120] Bat Algorithm Inspired by the 

echolocation behavior of 
bats 

Good balance of 

exploration and 
exploitation 

May require fine-

tuning, can converge 
prematurely 

Effective for continuous 

optimization problems 

[39], [121] Parallel Bat 

Algorithm 

Parallel implementation 

of Bat Algorithm for 
faster execution 

Faster, maintains 

diversity 

Complexity in 

implementation, 
requires parallel 

computing resources 

Suitable for large-scale 

problems 

[40] Coral Reef Algorithm Models coral reef 
formation and 

reproduction 

Good balance of 
exploration and 

exploitation 

Relatively new, less 
studied, parameter 

sensitivity 

Promising results, effective 
for various optimization 

problems 

[41], [122] Parallel Coral Reef 
Algorithm 

Parallel implementation 
for faster and scalable 

optimization 

Faster, scalable, 
maintains diversity 

Complexity in 
implementation, 

requires parallel 

computing resources 

Suitable for large-scale and 
complex problems 

[42], [123] Grey Wolf Optimizer Inspired by the social 

hierarchy and hunting 

mechanism of grey 
wolves 

Simple, effective for 

various types of 

optimization 
problems 

May converge 

prematurely, 

sensitive to 
parameter settings 

Effective for multi-modal 

optimization problems 

[43], [124] Discrete Grey Wolf 

Optimizer 

Adapted for discrete 

optimization problems 

Effective for 

discrete problems 

Can be complex to 

implement 

Suitable for scheduling and 

combinatorial optimization 
problems 

[125] Modified Genetic 

Algorithm 

Genetic Algorithm with 

modifications to 
improve performance 

Improved 

performance over 
basic GA 

Increased 

complexity, still 
may converge 

prematurely 

Improved convergence 

speed and solution quality 
compared to basic GA 

[126], [103] Improved Genetic 
Algorithm 

Enhanced version with 
better exploration and 

exploitation strategies 

Better performance 
compared to basic 

GA 

Increased 
complexity 

Better results in terms of 
convergence speed and 

solution quality 

[127] Modified Ant Colony 
Optimization 

Algorithm 

Enhanced version of 
ACO with better 

exploration and 

exploitation strategies 

Improved 
performance over 

basic ACO 

More complex, 
computationally 

expensive 

Better convergence speed 
and solution quality 

compared to basic ACO 

[128] Enhanced Particle 

Swarm Optimization 

Enhanced version with 

better mechanisms to 
avoid local optima and 

improve convergence 

Better performance 

over basic PSO 

Increased 

complexity, 
parameter sensitivity 

Improved convergence 

speed and solution quality 
compared to basic PSO 

Understanding the working principle of these 

commonly used metaheuristic algorithms in JSS is 

crucial for selecting appropriate solution approaches and 

designing effective scheduling strategies tailored to 

specific problem instances. The subsequent section 

(performance evaluation) of this review delves into each 

metaheuristic algorithms in more detail, analyzing their 

effectiveness, performance, and practical implications in 

industrial and manufacturing settings. 

B. Advantages of Using Metaheuristics for JSS

This subsection discusses the advantages of

employing metaheuristic algorithms as solution 

approaches for JSSP. Metaheuristic algorithms offer 

several benefits over traditional exact optimization 

methods when it comes to addressing the complexities 

of JSS, including their ability to efficiently explore large 

solution spaces, find high-quality solutions, and adapt to 

changing conditions.  

• Flexibility and Adaptability: Metaheuristic

algorithms are inherently flexible and

adaptable, able to handling various problem

instances and constraints [4]. By modifying the

parameters, operators, and search strategies, 

they can be made to fit particular JSS 

scenarios, providing effective and customized 

solutions. 

• Efficient Exploration of Solution Spaces:

Scheduling issues in job shops usually involve

large solution spaces with multiple possible

schedules. Metaheuristic algorithms to

effectively explore these solution spaces,

finding promising areas and avoiding local

optima, use iterative search strategies [9].

• Effective Handling of Complex Constraints:

Complex constraints like machine

dependencies, precedence relationships, and

setup times are frequently present in JSSP [93].

In order to find workable and superior

solutions, metaheuristic algorithms can

efficiently navigate these constraints by taking

into account several objectives and constraints

at once [20].

• Scalability to Large Problem Instances: Large-

scale JSSPs, which may be computationally

demanding for precise optimization techniques,
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are ideally suited for metaheuristic algorithms 

[91]. They provide scalable solutions that do 

not significantly impair performance even as 

problem sizes increase [129]. 

• Robustness to Uncertainty and Variability:

Environments used for JSS are frequently

unpredictable and variable due to things like

unforeseen events, machine breaks down, or

changes in processing times [56]. 

Metaheuristic algorithms demonstrate 

resilience against these kinds of uncertainties 

by dynamically adjusting to shifts in the 

scheduling context while preserving consistent 

performance [19]. 

 Understanding the advantages of using 

metaheuristic algorithms for JSS is crucial for selecting 

appropriate solution approaches and designing effective 

scheduling strategies. This explores specific 

metaheuristic algorithms and their advantages in 

addressing JSSP, analyzing their effectiveness, 

performance, and practical implications in industrial and 

manufacturing settings. 

4. Performance Evaluation

This section conducts a comprehensive performance 

evaluation and comparison of the various metaheuristic 

algorithms discussed in the preceding sections. By 

systematically assessing the effectiveness, efficiency, 

and robustness of these optimization methods across 

different problem instances and evaluation metrics, this 

aims to provide insights into their relative performance 

and practical implications for JSS applications.  

 Evolutionary Algorithm for JSS Optimization: 

Yongsuo et al. [130] This study addresses dynamic 

JSS with extended constraints, using a GA to minimize 

the maximum completion time. The GA outperforms 

heuristic algorithms (weighted shortest processing time 

(WSPT), earliest due date (EDD), first come first serve 

(FCFS), longest processing time (LPT), critical ratio 

(CR)) in achieving better results across various 

scenarios. Siregar et al. [131] In an aluminum industry 

case, the GA significantly reduced the makespan from 

55,970 to 46,637 hours compared to the FCFS method, 

improving efficiency by 20.13% and demonstrating the 

GA's effectiveness in production scheduling. Wang et 

al. [132] This research introduces the search economics 

for job-shop scheduling problem (SEJSP) algorithm for 

flexible JSS, which outperforms other algorithms like 

CRO and GA in minimizing makespan. SEJSP's 

efficient exploration and parameter settings lead to 

superior or competitive performance on benchmark 

instances. Mishra et al. [26] Evaluating various 

evolutionary algorithms (PSO, AIA, IWO, BFO, 

MBHS) on 250 benchmark instances, study finds that 

selective initial populations yield better results. Hybrid 

methods, particularly Hybrid PSO (HPSO), Hybrid AIA 

(HAIA), and IMBHS, show enhanced performance, 

providing effective solutions for single-objective JSSP. 

Hu et al. [133] This study proposes a differential 

evolutionary algorithm with uncertainty handling 

techniques (DEA_UHT) for stochastic reentrant JSSP 

(SRJSSP). DEA_UHT, utilizing hypothesis tests and 

optimal budget allocation, outperforms conventional 

methods, balancing computational efficiency and 

solution quality amidst uncertainties. 

Heuristic algorithm and real world-constraints: 

Huynh-Tuong et al. [134] This study addresses a 

teamwork scheduling problem with job-person 

constraints, using a Mixed integer linear programming 

(MILP) model, heuristics, and metaheuristic 

(Assignment algorithm based on FCFS (ASGN), 

Assignment algorithm based on SPT (ASPT), 

Assignment algorithm based on LPT (ALPT)), and SA 

to minimize makespan. The SA metaheuristic achieves 

the best solution quality but with longer computation 

time, while the other heuristics offer faster runtimes 

with lower solution quality. Future research may 

explore evolutionary algorithms for larger instances and 

additional constraints. Liu et al. [135] The study focuses 

on coordinated scheduling in shared manufacturing 

environments using a non-cooperative game model. The 

Nash equilibrium genetic algorithm (NE-GA) is 

proposed to minimize completion time and makespan 

while ensuring fair payoff distribution among 

customers. The NE-GA outperforms heuristic 

algorithms (FCFS, SPT, LPT) and other metaheuristic 

optimization techniques (SA, PSO). Future work may 

consider transportation capacity limits and theoretical 

convergence analysis. Campo et al. [136] This research 

addresses the flexible JSSP with real-world constraints 

using a GA integrated with fuzzy logic to minimize 

tardiness/earliness penalties. Tested on a fabric finishing 

production system, the proposed method outperforms 

traditional heuristics by over 30%, providing efficient 

and effective solutions. Future research may compare 

with other metaheuristics and explore additional 

constraints. 

Novel algorithmic framework and optimization: 

Zhang et al. [137] This study addresses the flexible 

JSSP with Lot Streaming (LSFJSP) using a DGWO. 

The DGWO algorithm shows strong robustness and 

superior convergence speed compared to GA and PSO, 

demonstrating competitive performance in 

computational experiments. Kumar et al. [138] The 

study compares Shifting Bottleneck (SB), GA, and PSO 

for solving JSSP. GA performs best for smaller 

problems, SB is faster but less reliable, and PSO 

struggles with larger problems due to random 

initialization. Future research may explore dynamic 

JSSP scenarios. Wang et al. [139] Introduces an ABC 

algorithm for the Flexible JSSP, focusing on 

minimizing maximum completion time. The ABC 

algorithm demonstrates effective global exploration and 
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local exploitation, showing efficiency in simulations 

compared to existing methods. Zarrouk et al. [140] 

Presents a two-level PSO algorithm for the flexible job-

shop scheduling problem (FJSP), where the upper level 

assigns operations to machines and the lower level 

manages sequencing. The algorithm improves efficiency 

by reducing evaluated solutions and demonstrates 

significant performance improvements in convergence 

and central processing unit (CPU) time. Hajibabaei et al. 

[141] Investigates the Flexible JSSP with unrelated

parallel machines and sequence-dependent setup times

(SDST). In study TS algorithm outperforms GA,

particularly in instances with varying job numbers and

processing times, confirmed by statistical validation.

Dabah et al. [142] Focuses on the Blocking JSSP with

zero buffer capacity. The study proposes a parallelized

TS algorithm, demonstrating significant improvements

in solution quality and exploration efficiency over

sequential approaches, highlighting the benefits of

parallelism.

Comparative study and Algorithm performance: 

Alharkan et al. [143] This study introduces TS and 

GPSO for scheduling jobs on two identical parallel 

machines with a single server to minimize makespan, an 

NP-hard problem. TS and Greedy PSO (GPSO) are 

compared to SA, GA, and Local search (I-L) 

algorithms, showing strong performance, especially for 

medium and large instances, with TS performing best 

overall except in cases with 8 and 200 jobs. Yu et al. 

[144] Provides a comprehensive overview of JSSP and

solutions, emphasizing the importance of efficient

scheduling in manufacturing. It discusses three main

approaches GA, TS, and SA highlighting their

principles, advancements, and applications. The study

underscores the need for integrating diverse algorithms

and methodologies to enhance scheduling efficiency and

precision. Hasani et. al [145] examines scheduling n

jobs on two parallel machines with a single server to

minimize the makespan, proposing two heuristic

algorithms: one to minimize machine idle time and

another to minimize gaps between job loadings.

Experiments reveal that for small to medium instances

(up to 400 jobs), SA and GA methods outperform the

heuristics. However, for larger instances (500 jobs and

above), the proposed I-L Algorithm proves superior,

remaining efficient even for very large instances up to

10,000 jobs. Hasani et al. [146] Focuses on minimizing

makespan by scheduling jobs on two parallel machines

with a single server, using SA and GA. These methods

are tested on instances with up to 1000 jobs, showing

that SA and GA outperform previous algorithms,

particularly for instances up to 250 jobs. SA tends to

perform better for larger instances, although GA

occasionally reaches the lower bound more frequently

for very large instances. Future research will explore

hybrid algorithms and different objective functions.

Parallel Genetic Algorithm (PGA) for JSS 

optimization: 

Defersha et al. [147] This study explores the 

Flexible JSSP, allowing operations to be assigned to 

multiple machines, considering SDST, machine release 

dates, and time lags. A PGA is proposed to solve this 

model efficiently. Numerical examples show that PGA 

significantly enhances computational performance, 

particularly for medium to large problem instances, 

where traditional sequential GA struggles. Future work 

will extend this approach to handle multiple objectives 

and additional constraints. Abdullah et al. [148] Focuses 

on the NP-hard JSSP and introduces a PGA with 

adaptive genetic operators and a migration operation to 

improve results and reduce computation time. Extensive 

experiments reveal that adaptive operators and 

parallelism significantly enhance scheduling quality and 

efficiency. The PGA effectively minimizes job 

completion times by scheduling tasks across multiple 

machines and jobs, demonstrating notable 

improvements in both scheduling quality and 

computational efficiency. 

Meta-heuristic algorithm for scheduling problem 

and optimization: 

Liu, Z. et al. [149] This study focuses on the 

Flexible JSSP and proposes an enhanced GA with a 

three-layer coding mechanism to optimize batching 

strategies and subsequent scheduling. Experimental 

results show significant improvements in flexible JSSP 

optimization compared to traditional algorithms, 

highlighting the algorithm's effectiveness in stabilizing 

production in batch job shops. Future research may 

involve exploring more advanced optimization 

algorithms and addressing uncertainties in dynamic 

production environments. Kumar, P. et al. [150] This 

study presents a MoGA approach for solving the JSSP 

to optimize makespan in manufacturing systems. The 

algorithm effectively reduces makespan for specific 

problems sourced from literature, highlighting the 

significance of considering short processing time and 

transportation time in JSS optimization. Future research 

aims to consider additional factors like maintenance 

time and setup time in machine scheduling. Habbadi, S. 

et al. [151] Discusses the application of GA in solving 

the JSSP, focusing on manual implementation to 

understand the procedure and decision-making involved 

in finding optimal solutions. The study emphasizes the 

importance of population initialization and coding in 

GA processes, shedding light on practical applications 

of mathematics and programming for complex 

scheduling problems. Abdullah, N. et al. [152] 

Introduces a modified PSO algorithm to efficiently 

solve the JSSP. By overcoming idle particle positions, 

the enhanced PSO algorithm demonstrates improved 

performance in finding optimal schedules across 

different problem instances, effectively tackling the 

complexities of the JSSP. Ali, B. et al. [153] Focuses on 

the Dynamic JSSP and proposes a GA approach to 

minimize makespan while considering setup times and 

precedence constraints. The experiments demonstrate 
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the superior performance of the GA-based approach in 

dynamic scheduling scenarios, highlighting the 

competitiveness and effectiveness of GA in minimizing 

makespan. Shen, Z. et al. [154] Addresses the JSSP in a 

brewery production setting, implementing GA, SA, and 

ACO algorithms for optimization. Results show 

significant improvements in production time for all 

three algorithms compared to the unoptimized case, 

with GA performing the best, highlighting the 

effectiveness of metaheuristic methods in optimizing 

complex production processes. Janes, G. et al. [155] 

Utilizes a GA to efficiently find schedules for various 

real-world scenarios of the JSSP, demonstrating 

satisfactory results and potential cost savings by using 

fewer machines. The study emphasizes the algorithm's 

readiness for industrial application and provides insights 

for system performance evaluation. Salido et al. [156] 

Addresses the JSSP with Machine Speed Scaling 

(JSMS), proposing a GA to efficiently solve this NP-

hard problem by optimizing both makespan and energy 

consumption objectives. The GA presents a promising 

approach for addressing large-scale scheduling 

problems with energy-aware optimization requirements. 

Chaouch et al. [127] Explores bio-inspired algorithms, 

including Ant System (AS), Ant Colony System (ACS), 

and MACO, to tackle the Distributed JSSP. MACO 

emerges as superior, consistently outperforming AS and 

ACS across different instances, demonstrating 

promising results in addressing the challenging 

Distributed JSSP. Teekeng et al. [128] Introduces 

EPSO, a novel algorithm based on PSO, designed to 

solve the Flexible JSSP. EPSO demonstrates superior 

performance compared to existing optimization 

methods, consistently achieving solutions equal to or 

better than lower bounds of benchmarks, paving the 

way for future research in complex flexible JSSP 

scenarios. 

Multi-objective optimization and advanced 

algorithmic technique: 

Zhang et al. [157] Introduces an IGA for the 

Flexible JSSP, aiming to minimize makespan, total 

setup time, and total transportation time while 

considering constraints such as processing time, setup 

time, and transportation time. Experimental studies 

validate the effectiveness of the proposed approach 

across various datasets, demonstrating superior 

performance compared to existing algorithms in terms 

of finding non-dominated solutions and optimizing 

objective values. The IGA consistently produces high-

quality solutions across different problem sizes and 

complexities, confirming its efficacy in addressing FJSP 

with multiple time constraints. Future research may 

explore the relationship between initial and final 

solutions and enhance genetic operators using individual 

fitness information. Sel et al. [158] Addresses the 

Dynamic JSSP by introducing a Simulation Model (SM) 

that incorporates machine failures and changing due 

dates. Three scheduling rules (SRs) are integrated into 

the SM, and a SA based simulation-optimization 

approach is proposed to find optimal schedules in the 

dynamic system. Results indicate that SA closely 

approximates the performance of the shortest SPT rule 

with reasonable computational burden, outperforming 

other scheduling rules. The study suggests possible 

extensions, including generalizing the SM to handle 

other types of disturbances and incorporating different 

heuristics for larger-scale applications. Zhang et al. 

[159] Proposes a multi-population genetic algorithm for

the multi-objective scheduling of flexible JSP, aiming to

reduce the longest makespan of workpieces, the load on

each machine, and the total machine load

simultaneously. By considering factors such as shortest

processing time and balanced machine utilization, the

method efficiently allocates machines and simplifies the

scheduling process. The algorithm demonstrates

superior performance compared to conventional

algorithms in terms of population quality, initial

solution quality, and convergence rate, offering an

effective solution to the multi-objective scheduling

challenges in flexible job-shop environments.

Dynamic scheduling and rescheduling strategy: 

Zhang et al. [160] introduce the Improved 

Heuristic Kalman Algorithm (IHKA) for Dynamic 

JSSP, utilizing a cellular neighbor network to efficiently 

find optimal schedules. Compared to other methods like 

HKA and Genetic Algorithm-Mixed (GAM), IHKA 

demonstrates superior performance, quickly generating 

practical solutions for real-world factories. Singh et al. 

[161] tackle the Flexible JSSP using Quantum-Behaved

Particle Swarm Optimization (QPSO), which integrates

GA mutation and chaotic numbers for enhanced global

search capabilities, showing promising results in

minimizing makespan across various datasets. Wang et

al. [162] address Dynamic JSSP in manufacturing,

developing a mixed-integer programming model and

enhanced PSO with modified decoding schemes and

population initialization strategies to efficiently handle

rescheduling tasks, demonstrating superior performance

compared to existing methods across diverse instances.

Integration of Meta-heuristic and machine learning 

for scheduling problem: 

Lin et. al [163] The Learning-based Cuckoo 

Search (LCS) algorithm, integrated with machine 

learning techniques like auto encoders and factorization 

machines (FM), efficiently tackles the flexible JSSP. By 

compressing solution spaces and dynamically adjusting 

parameters through reinforcement learning (RL), LCS 

achieves faster convergence and higher-quality 

solutions compared to conventional methods. 

Computational experiments demonstrate LCS's 

superiority over heuristic rules, metaheuristics, and even 

IBM CPLEX Interactive Optimizer, particularly in 

large-scale scenarios. This amalgamation of machine 

learning and metaheuristics positions LCS as a potent 

tool for resolving complex Flexible JSSPs, with future 



80  ENGINEERING ACCESS, VOL. 11, NO. 1, JANUARY-JUNE 2025 

improvements focusing on enhancing optimization 

through advanced machine learning methods. Zebari et. 

al [164] In addressing the Multi-Objective Flexible 

JSSP, this research proposes a hybrid approach 

integrating the Hybrid BA and SA. Given the 

complexities involved in optimizing conflicting 

objectives like makespan reduction and production cost 

minimization, conventional approaches often struggle. 

The Hybrid BA and SA approach outperforms 

individual algorithms and other state-of-the-art 

techniques by leveraging the exploration capabilities of 

BA and the exploitation strategies of SA. Through 

comprehensive experimental evaluation, the hybrid 

approach demonstrates superior performance in 

exploring the solution space, balancing exploitation and 

exploration, and generating diverse, high-quality 

solutions across various scenarios.  

Table 2 presents the summary of comparative 

analysis of various metaheuristic algorithms based 

category of algorithm, objective(s), and problem 

addressed. It also highlights the key findings of each 

study reviewed. 

Table 2 Summary of the Comparative analysis of metaheuristic algorithm 

Types Study Objective(s) Problem Addressed Methodology Key findings 

Evolutionary 

Algorithm for JSS 
optimization 

[130] MMCT Dynamic JSSP with extended 

process constraints. 

GA compared with 

WSPT, EDD, FCFS, 
LPT, and CR 

algorithms. 

GA outperforms 

heuristic algorithms in 
minimizing maximum 

completion time. 

[131] MMK Scheduling in the aluminum 
industry 

GA, and FCFS GA reduces makespan 
by 20.13% and shows 

better efficiency 

[132] MMK FJSSP SEJSP Algorithm, 
CRO, and GA. 

SEJSP achieves 
competitive or superior 

performance 

[26] MMK JSSP PSO, AIA, IWO, 
BFO, MBHS 

Hybrid methods show 
improved performance 

[133] ISE, ISQ SRJSSP DEA with uncertainty 

handling techniques 
(hypothesis test 

technique (HTT) and 

optimal computing 
budget allocation 

technique (OCBAT)) 

DEA_UHT is robust 

and effective, 
outperforming 

conventional methods 

Heuristic algorithm 
and real world-

constraints 

[134] MMK Teamwork scheduling with 
job-person constraints 

MILP model, 
heuristics (ASGN, 

ASPT, ALPT, SA) 

SA achieves best 
solution quality; 

ASGN, ASPT, ALPT 
offer faster runtime 

[135] MMCT, MMK Coordinated scheduling of 

parallel machine production 
and transportation 

Nash equilibrium 

genetic algorithm 
(NE-GA) 

NE-GA minimizes 

makespan effectively 

[136] MTD, MEP FJSSP with SDST, due 

windows, uncertainties 

GA with fuzzy logic Reduces 

tardiness/earliness 
penalties by over 30% 

Novel algorithmic 

framework and 
optimization 

[137] RBS, CVS LSFJSP DGWO algorithm DGWO shows strong 

robustness, superior 
convergence speed and 

accuracy 

[138] RBS, CVS, ACC JSSP SB, GA, and PSO GA performs best for 
smaller problems, SB 

is faster but less 

reliable 
[139] MMCT Flexible Job-Shop 

Scheduling Problem (FJSP) 

ABC algorithm ABC algorithm shows 

efficiency and 

effectiveness 

[140] WSQ FJSP with two-level PSO Two-level PSO 

algorithm 

Significant 

improvements in 

convergence and CPU 
time 

[141] MST FJJSP with unrelated parallel 

machines and SDST 

MILP, TS algorithm TS outperforms GA, 

applicable in diverse 
industries 

[142] ISQ, IST Blocking JSSP (BJSS) with 

zero buffer capacity 

Parallelized TS 

algorithm 

Parallel TS methods 

enhance solution 
quality 
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Types Study Objective(s) Problem Addressed Methodology Key findings 

Comparative study 

and Algorithm 

performance 

[143] MMK Scheduling on two identical 

parallel machines with a 

single server 

TS, GPSO TS and GPSO perform 

well for medium- and 

large-scale instances 
[144] ISE JSSP GA, TS, SA advancements and 

practical applications 

of each method 
[145] MMK Scheduling on two parallel 

machines with a single 

server. 

Heuristic algorithms 

minimizing makespan 

with two parallel 
machines and a single 

server. 

Proposed heuristic 

algorithms (Min-idle, 

Min-load gap) perform 
well for larger 

instances (500 jobs and 

above), outperforming 
other methods. 

[146] MMK Scheduling on two parallel 

machines with a single server 

SA and GA Composite 

neighborhood 
approach outperforms 

previous algorithms 

Parallel Genetic 
Algorithm (PGA) for 

JSS optimization 

[147] SDAT, TLR, MRD Flexible JSSP with multiple 
constraints 

PGA PGA improves 
computational 

performance, 

especially for medium-
sized problems 

[148] MPT JSSP, NP-hard nature PGA with adaptive 

operators and 
migration 

Adaptive operators and 

parallelism improve 
results and reduce 

computation time 

Meta-heuristic 
algorithm for 

scheduling problem 

and optimization 

[149] ISE FJSSP Enhanced GA with 
three-layer coding 

and operation 

overlapping strategy 

Significant 
improvements in 

computational 

efficiency and solution 
quality 

[150] MMK JSSP Modified GA Reductions in 

makespan for specific 
problems 

[151] MMK JSSP optimization using GA Manually 
implemented GA 

Emphasizes 
importance of 

population 
initialization and 

coding 

[152] ISE JSSP with PSO algorithm Modified PSO Outperforms standard 
PSO in finding optimal 

schedules 

[153] MMK DJSSP with setup times and 
precedence constraints 

GA Approach GA shows superior 
performance in 

minimizing makespan 

[154] PEF JSSP in brewery production GA, SA, and ACO GA saves 35% in 
production time; SA 

and ACO also improve 

production time 
[155] CSV, MMK JSSP with modified GA 

operations 

GA Achieves reduced 

makespan in short time 

for real-world 

scenarios. 

[156] MMK, MEC JSSP with Machine Speed 

Scaling (JSMS) 

GA GA optimizes 

makespan and energy 
consumption compare 

to the IBM ILOG 

CPLEX CP Optimizer. 
[127] ACC Distributed JSSP (DJSP) Ant System (AS), Ant 

Colony System 

(ACS), MACO 

MACO minimizes 

makespan effectively 

[128] ISQ Flexible JSSP Enhanced PSO 

(EPSO), AIA 

EPSO outperforms 

AIA and Demir's 

model 
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Types Study Objective(s) Problem Addressed Methodology Key findings 

Multi-objective 

optimization and 

advanced algorithmic 
technique 

[157] MMK, MST, MTT FJSP with constraints Improved Genetic 

Algorithm (IGA) 

Experimental studies 

validate the 

effectiveness of the 
proposed approach 

across various datasets, 

demonstrating superior 
performance compared 

to existing algorithms. 

[158] ISE Dynamic JSSP (DJSP) Simulation model 
with SA, EDD, SPT, 

FCFS 

SPT yields the best 
performance; SA 

closely approximates 

SPT with reasonable 
computational burden, 

outperforming EDD 

and FIFO. 
[159] MMK, MFT Multi-objective FJSP Multi-population 

Genetic Algorithm 

Efficiently allocates 

machines, reduces total 

machine load 
Dynamic scheduling 

and rescheduling 

strategy 

[160] ISE Dynamic JSSP (DJSSP) Improved Heuristic 

Kalman Algorithm 

(IHKA) utilizing a 
cellular neighbor 

network 

IHKA outperforms 

HKA and GAM, and 

Quickly generates 
practical solutions for 

real-world factories 

[161] MMK Flexible Job-Shop 
Scheduling Problem (FJJSP) 

Quantum-Behaved 
Particle Swarm 

Optimization (QPSO) 

integrating genetic 
algorithm mutation 

and chaotic numbers 

QPSO shows 
promising results in 

minimizing makespan 

across various datasets 

[162] WSQ DJSSP Mixed-integer 
programming model 

with enhanced 

Particle Swarm 
Optimization (PSO) 

Enhanced PSO shows 
superior performance 

in handling 

rescheduling tasks 
compared to existing 

methods 

Integration of Meta-
heuristic and machine 

learning for 
scheduling problem 

[163] CVS, ISQ FJSSP Learning-based 
Cuckoo Search (LCS) 

integrating machine-
learning techniques 

LCS achieves better 
solutions in less CPU 

time than CPLEX, 
heuristic rules, and 

metaheuristics.  

[164] MMK, CSV Multi-Objective Flexible 
Job-Shop Scheduling 

Problem (MOFJSSP) 

Hybrid Bat Algorithm 
(BA) and SA 

Hybrid BA and SA 
improve convergence 

rates and solution 

quality. Better balance 
between exploitation 

and exploration 

compared to other 
techniques. 

This rigorous comparative analysis provides 

valuable insights into the performance and applicability 

of metaheuristic algorithms for JSS. This analysis 

contribute to the understanding of algorithm behavior 

and guide practitioners and researchers in choosing 

appropriate optimization methods for their scheduling 

tasks. 

5. Challenges and Future Directions

This section discusses challenges faced by current 

metaheuristic algorithms and emerging trends in the 

field of JSS optimization. Identify the key challenges 

and potential avenues for future research and 

development, this aims to stimulate further 

advancements in algorithm design, problem modeling, 

and practical implementation. This section provide 

insights into the unresolved issues and opportunities for 

innovation in the domain of JSS, guiding future research 

efforts and industry practices. 

A. Challenges in Applying Metaheuristic

Algorithms to Job Shop Scheduling

This sub section provide an overview of common 

metaheuristic algorithms used in JSS. Metaheuristic 

algorithms are powerful optimization techniques that 

offer flexible and robust approach to find optimal 

solutions to complex scheduling problems. By exploring 

these common metaheuristic algorithms, this paper aims 

to elucidate their principles, operational characteristics, 

and advantages in addressing various scheduling 

challenges in different environments. Despite their 

effectiveness, applying metaheuristic algorithms to JSS 

encounters several challenges. Understanding and 

addressing these challenges is crucial for further 
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improving the performance and applicability of 

optimization techniques in manufacturing environments. 

Problem Complexity: 

• Description: JSSPs pose inherent complexity

owing to the combinatorial nature of

optimization tasks, the existence of multiple

conflicting objectives, and the presence of

diverse constraints.

• Impact: The complexity of JSS poses

challenges for metaheuristic algorithms,

requiring them to efficiently explore the vast

solution space and balance competing

objectives while respecting constraints.

High-Dimensional Search Space: 

• Description: JSSPs typically entail navigating a

high-dimensional search space, characterized

by a multitude of decision variables

representing machine assignments, operation

sequences, and job schedules.

• Impact: Navigating high-dimensional search

spaces presents challenges for metaheuristic

algorithms in terms of exploration,

exploitation, and convergence speed, as well as

memory and computational resource

requirements.

Dynamic and Uncertain Environments: 

• Description: Manufacturing environments are

dynamic and subject to uncertainties such as

machine breakdowns, unexpected job arrivals,

and changes in demand or resource

availability.

• Impact: Metaheuristic algorithms must adapt to

dynamic and uncertain environments, requiring

robustness, flexibility, and adaptability to

handle changing conditions and maintain high-

quality solutions.

Scalability and Efficiency: 

• Description: As manufacturing systems grow

in complexity and scale, the scalability and

efficiency of metaheuristic algorithms become

increasingly important.

• Impact: Ensuring the scalability and efficiency

of algorithms is essential for handling large-

scale scheduling instances with many jobs,

machines, and production constraints, as well

as meeting real-time or near-real-time

scheduling requirements.

Incorporation of Domain Knowledge: 

• Description: Domain-specific knowledge, such

as production rules, machine capabilities, and

scheduling preferences, can significantly

influence the effectiveness of scheduling 

solutions. 

• Impact: Integrating domain knowledge into

metaheuristic algorithms poses challenges in

terms of knowledge representation,

incorporation methods, and balancing the use

of explicit knowledge with algorithmic

exploration and exploitation.

Multi-Objective Optimization: 

• Description: JSS frequently entails managing

multiple conflicting objectives, including

minimization makespan, reducing tardiness,

and optimizing resource utilization.

• Impact: Metaheuristic algorithms must 

effectively handle multi-objective 

optimization, balancing trade-offs between 

competing objectives and generating Pareto-

optimal solutions that represent meaningful 

compromises. 

These challenges requires interdisciplinary 

research efforts combining expertise in optimization, 

operations research, computer science, and 

manufacturing engineering. By overcome to these 

challenges, researchers and practitioners can further 

advance the capabilities and practical applicability of 

metaheuristic algorithms for JSS, leading to more 

efficient and agile manufacturing systems. 

B. Potential Research Directions and Areas

for Improvement

Identify the potential research directions and areas 

for improvement is essential for advancing the field of 

JSS optimization using metaheuristic algorithms. By 

focus on the key challenges and emerging trends, 

researchers can address current limitations and drive 

innovation in algorithm design, problem modeling, and 

practical implementation. 

Development of Hybrid and Advanced 

Techniques: 

• Explore novel combinations of metaheuristic

algorithms, machine learning techniques, and

optimization paradigms to develop hybrid and

advanced approaches for JSS. Investigate the

integration of reinforcement learning, deep

learning, and other AI-based methods with

metaheuristic algorithms to enhance solution

quality, scalability, and adaptability.

Multi-Objective and Robust Optimization: 

• Develop metaheuristic algorithms capable of

efficiently solving multi-objective JSSPs,

balancing conflicting objectives and generating

Pareto-optimal solutions. Explore robust

optimization techniques that can handle
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uncertainties and dynamic changes in 

manufacturing environments, ensuring the 

resilience and reliability of scheduling 

solutions. 

Scalability and Efficiency Improvements: 

• Develop scalable metaheuristic algorithms

capable of efficiently handling large-scale JSS

instances with thousands of jobs, machines,

and production constraints. Investigate parallel

and distributed optimization techniques,

metaheuristic ensembles, and adaptive search

strategies for improving algorithm efficiency

and reducing computational overhead.

Dynamic and Real-Time Scheduling: 

• Address the challenges of dynamic and real-

time JSS by developing metaheuristic

algorithms that can adaptively respond to

changing production conditions and resource

constraints. Explore online optimization

techniques, predictive modeling approaches,

and reactive scheduling strategies for

optimizing scheduling decisions in real-time

manufacturing environments.

Explainable AI and Decision Support Systems: 

• Develop metaheuristic algorithms with 

enhanced interpretability and explainability, 

enabling stakeholders to understand and trust 

scheduling solutions generated by optimization 

techniques. Investigate visualization tools, 

decision support systems, and interactive 

interfaces for facilitating human-computer 

collaboration in the JSS process.  

These research directions and areas for 

improvement helps the researchers can advance the 

state-of-the-art in metaheuristic optimization for JSS, 

leading to more efficient, agile, and resilient 

manufacturing systems. These efforts contribute to the 

development of innovative solutions that address the 

evolving challenges and requirements of modern 

manufacturing environments. 

C. Application Guidelines for Using 

Metaheuristic Algorithms in Future Work

For future research and practice, these following 

guideline offers a thorough method for applying 

metaheuristic algorithms to JSSPs in an efficient 

manner. To handle the complexity and limitations of job 

shop environments, researchers and practitioners can 

design, implement, and assess metaheuristic algorithms 

by following these steps. 

• Problem Definition and Modelling:

Identify Objectives: The scheduling

problem's objectives (such as minimizing

makespan, reducing tardiness, and maximizing 

resource utilization) should be clearly defined. 

Define Constraints: Determine every relevant 

limitations, such as processing times, resource 

constraints, precedence relationships, and 

machine availability. 

Formulate the Problem: Create a computational 

or mathematical model of the JSS issue, 

making sure that it accurately represent the 

actual situation. 

• Selection of Metaheuristic Algorithm:

Algorithm Choice: Based on the characteristics

of the problem and the goals of the research,

select an appropriate metaheuristic algorithm.

Popular options include TS, PSO, ACO, GA,

and SA.

Hybrid Approaches: To improve performance,

think about combining the chosen

metaheuristic with additional optimization

strategies (such as machine learning, exact

methods, or local search).

• Algorithm Design and Implementation:

Parameter Tuning: Determine the metaheuristic

algorithm's important parameters (population

size, mutation rate, cooling schedule, etc.) and

optimize those using parameter-tuning

strategies (grid search, response surface

methodology, etc.).

Algorithm Customization: Modify the

algorithm to include constraints and knowledge

unique to the problem. This could entail

creating neighborhood structures, encoding

schemes, or specialized operators.

Adaptive Mechanisms: In order to balance

exploration and exploitation, implement

adaptive mechanisms that dynamically adjust

algorithm parameters based on the search

progress.

• Computational Experiments:

Benchmarking: To assess the algorithm's

performance in comparison to current methods,

test it on common benchmark instances of

JSSPs.

Scalability Testing: Assess the algorithm’s

scalability by applying it to problems of

varying sizes and complexities to ensure it can

handle large-scale instances.

• Real-World Application:

Data Collection: Gather real-world information

from workshop settings, such as schedule

restrictions, machine specifications, and job

specifications.
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Customization for Real-World Use: Modify the 

algorithm to accommodate particular real-

world limitations and specifications, such as 

material handling considerations, operator 

availability, and machine maintenance 

schedules. 

Simulation and Validation: Prior to 

implementing the algorithm in real-world 

settings, validate its performance in a 

controlled environment using simulation 

models. 

Researchers and practitioners effectively use the 

metaheuristic algorithms to address the challenges of 

JSS, improve production efficiency, and stimulate 

innovation in manufacturing processes by adhering to 

this application guideline. 

D. Trends in Metaheuristic-Based Approaches

for Job Shop Scheduling

This sub-section explores emerging trends and 

advancements in metaheuristic-based approaches for 

JSS optimization. These trends reflect recent 

developments and innovations that have the potential to 

shape the future of scheduling techniques in 

manufacturing and production environments. 

Hybridization with Machine Learning Techniques: 

• Description: Integration of metaheuristic

algorithms with machine learning techniques

such as reinforcement learning, neural

networks, and deep learning.

• Advantages: Enhances the learning and

adaptation capabilities of metaheuristic

algorithms, enabling them to leverage

historical data, learn from experience, and

improve solution quality over time.

Metaheuristic-Driven Optimization Platforms: 

• Description: Development of optimization

platforms and frameworks that provide a

unified environment for implementing, testing,

and deploying metaheuristic-based scheduling

solutions.

• Advantages: Facilitates rapid prototyping,

experimentation, and deployment of

metaheuristic algorithms for JSS tasks,

fostering collaboration and knowledge sharing

among researchers and practitioners.

Multi-Objective and Pareto-Based Optimization: 

• Description: Focus on multi-objective 

optimization techniques that generate Pareto-

optimal solutions, balancing conflicting 

objectives such as makespan minimization, 

tardiness reduction, and resource utilization 

optimization. 

• Advantages: Enables decision-makers to

explore trade-offs between competing

objectives and make informed decisions based

on the Pareto front, leading to more flexible

and adaptable scheduling solutions.

Explainable AI and Transparent Optimization: 

• Description: Emphasis on explainable AI

techniques and transparent optimization

methods that provide insights into the decision-

making process and rationale behind 

scheduling solutions generated by 

metaheuristic algorithms. 

• Advantages: Enhances trust, understanding,

and acceptance of scheduling solutions among

stakeholders, enabling effective

communication, collaboration, and decision-

making in manufacturing environments.

Real-Time and Adaptive Scheduling Strategies: 

• Description: Creating real-time and adaptive

scheduling strategies involves creating

approaches that dynamically adapt scheduling

decisions to accommodate evolving production

conditions, resource availability, and

fluctuations in demand.

• Advantages: Enables agile, responsive, and

adaptive scheduling in dynamic manufacturing

environments, improving production

efficiency, flexibility, and resilience.

Embracing these emerging trends and 

advancements, researchers and practitioners leverage 

the full potential of metaheuristic-based approaches for 

addressing the evolving challenges and requirements of 

JSS in modern manufacturing environments. These 

trends represent exciting opportunities for innovation 

and improvement in scheduling techniques, paving the 

way for more efficient, flexible, and intelligent 

manufacturing systems. 

6. Conclusion

This review paper provides valuable insights into the 

application of metaheuristic algorithms for addressing 

the complex problem of JSS. Through a comprehensive 

analysis of various metaheuristic approaches such as 

GA, SA, PSO, ACO, and others, the paper highlights 

their working principle, strength and suitability for 

different JSS scenarios. The analysis pertaining to 

efficiency, adaptability, computational complexity and 

robustness of various metaheuristic algorithms like GA, 

PSO, ACO, and SA in JSS is discussed in performance 

evaluation. GA, PSO, ACO, and SA each have unique 

strengths. GA and ACO are known for their high 

solution quality and adaptability. PSO converges 

quickly but is sensitive to parameter settings. SA is 

effective in avoiding local optima but can be 
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computationally intensive. Together, these algorithms 

are versatile for various JSS challenges. In JSS, GA 

have moderate computational complexity and are 

suitable for large problems. PSO has relatively low 

computational overhead. ACO is computationally 

intensive due to pheromone updates. SA is 

straightforward but can be computationally demanding. 

Key findings suggest that no single metaheuristic 

consistently outperforms others across all problem 

instances. Instead, the performance of each algorithm is 

heavily dependent on problem-specific characteristics 

and parameter tuning. Emerging trends in this field 

include the integration of advanced techniques like 

machine learning and real time strategies, as well as the 

exploration of hybrid metaheuristic approaches for 

improved performance. Potential research directions 

encompass the development of novel metaheuristic 

algorithms inspired by hybrid and advanced techniques, 

as well as the investigation of multi-objective JSSPs to 

balance conflicting objectives. Challenges in this 

domain revolve around the scalability, uncertain 

environment, and problem complexity of metaheuristic 

algorithms. Additionally, the lack of standardized 

benchmark datasets and performance evaluation metrics 

poses a challenge to algorithm comparison and 

validation. Addressing these challenges will require 

interdisciplinary collaboration and innovative 

methodologies to advance the efficiency and 

effectiveness of JSS optimization techniques. Thus, this 

review underscores the importance of continued 

research and development in metaheuristic algorithms to 

enhance scheduling practices and optimize 

manufacturing operations. 
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