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Abstract. CT scans efficiently detect lung cancer. A good
prediction method is crucial. Recently, deep convolutional
neural networks (CNN) have influenced picture
categorization algorithms. This article presents a hybrid
strategy using an upgraded deep transfer learning
EfficientNet and a masked autoencoder for image-based
distribution estimation (MADE). MADE improves feature
acquisition, dimensionality, uncertainty, imbalanced data,
transfer learning, and model interpretability before lung
cancer categorization. These benefits improve classification
accuracy and data use. Mask-EffNet, the proposed model, has
two phases. The initial phase uses MADE to extract features.
Using a pre-trained EfficientNet model, types are classified
next. Mask-EffNet is tested using EfficientNetB7. The study
uses the "1Q-OTH/NCCD™" benchmark dataset, which includes
lung cancer patients classified as benign, malignant, or
normal. Mask-EffNet has 98.98% test set accuracy with ROC
scores of 0.9782-0.9872. We tested the suggested pre-trained
Mask-EffNet against different CNN architectures. The
EfficientNetB7-based Mask-EffNet outperforms various
CNNs in accuracy and efficacy, as expected.
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1. Introduction

According to the World Health Organization [1], cancer
is ranked as the second most common cause of death
worldwide. In the United States, lung cancer is the leading
cause of death, claiming 1.8 million lives each year. Timely
identification with Lung Cancer Detection (LCD) is crucial
for personalized therapies and prognosis. Atrtificial
intelligence assists in surmounting healthcare obstacles,
diminishing the time required for diagnosis, and augmenting
the quality of healthcare [2,3]. This study explores the
application of artificial intelligence (Al) in aiding
conventional lung cancer screening through the use of
biomedical imaging techniques, as opposed to innovative
breath analysis methods [4,5]. Researchers are researching
computer ways to automate the process of lung cancer

categorization and minimize the inherent bias and uncertainty
in traditional visual analysis. This advancement enhances the
precision of lung cancer therapies for different types of the
iliness. This enhances the dependability and accuracy of
determining the stage and type of cancer, while also providing
comprehensive information for patient care [6]. The recent
breakthroughs in artificial intelligence have greatly benefited
the development of automated systems that effectively
process medical imaging data, particularly in the accurate
classification of lung cancer. Furthermore, these strategies
have the potential to enhance the overall efficiency of lung
cancer categorization, while also yielding more unbiased and
accurate outcomes [7, 8].

Traditional diagnostic methods, such as MRI and CT
scans, are essential in the diagnosis of lung cancer. CT scans
are highly efficient in identifying abnormalities, such as
cancer, in the chest, by utilizing X-rays. Machine learning,
specifically Convolutional Neural Networks (CNNs), assist in
visual analysis, albeit a substantial amount of data is necessary
for their effectiveness [9]. Despite challenges in obtaining
datasets, deep learning models demonstrate promise in
accurate cancer classification, offering the potential to
enhance existing diagnostic techniques and reduce human
error.

By augmenting the existing trained models with new
datasets, transfer learning (TL) effectively addresses the
limitations of CNNs. Certain techniques involve augmenting
pre-existing layers or constructing novel ones to enable end-
to-end training [10]. Katsamenis et al. (2020) conducted an
investigation on the utilization of TL for the identification of
COVID-19 pneumonia using X-rays. Transfer Learning (TL)
offers a reliable approach to enhance the performance of
models and adapt them to various medical imaging tasks [11].

Regarding healthcare image analysis, the use of
EfficientNets in TL offers the ability to reduce certain
frequent restrictions. EfficientNets are renowned for their
ability to efficiently extract pertinent and representative
features from photos. EfficientNetB7 models, which have
undergone pretraining on extensive datasets like as ImageNet,
offer superior accuracy and robustness in the classification of
lung cancer through the application of transfer learning [12].
Our method offers superior computational efficiency
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compared to existing deep learning architectures, enabling
speedy and accurate interpretation of medical pictures for the
detection of lung cancer [13]. This enhancement to the
categorization process is anticipated to enhance the
effectiveness and efficiency of medical picture analysis.

The primary objective of this study is to categorize lung
nodules on CT scans as benign, malignant, or normal based on
the identification of cancerous cells. In order to achieve this
categorization, the proposed model, Mask-EffNet, employs a
two-step process. The first phase is extracting features using
the MADE algorithm, while the second step involves
categorizing different classes using a pre-trained
EfficientNetB7 model. The performance of Mask-EffNet is
assessed using several pre-trained models.

The following are the primary contributions of this article:

e Using MADE and EfficientNetB7, we created a unique
masked transfer learning method called Mask-EffNet
for lung cancer categorization.

e To overcome the skewness of the data, we used the
augmentation method to solve the severe imbalance
problem.

e To extract features, we employed a Masked
Autoencoder for The Distribution Estimation (MADE).

e To highlight Mask-EffNet's superiority over other
classification models, we compared it for assessing
methods by execution time, computational complexity
reveals feasibility.

e When compared to existing approaches, our suggested
model Mask-EffNet outperforms them and identifies
lung cancer from CT scan pictures.

The paper's remaining sections are arranged in the
following manner. Section Il describes various literatures,
while Section 11l describes the proposed algorithm.
Conclusion and discussion of Section IV on performance
metrics are presented in Section V. Section VI contains a
comparative analysis, and Section VII will have an outline of
future work after the paper is concluded.

2. Literature Study

Integrating deep learning (DL) and transfer learning (TL)
in survival models for lung cancer is crucial for adapting to
real-world populations' diverse characteristics. Many approach
optimizes model performance across different domains,
addressing variations in variables and enhancing prediction
accuracy for improved patient outcomes. Few of them are
analyzed below.

The article by Raza et al. [14] presents Lung-EffNet, a lung
cancer classification predictor that utilises transfer learning.
Lung-EffNet is developed from the EfficientNet architecture

and is boosted with additional top layers for improved
classification. Lung-EffNet achieves 99.10% accuracy on 1Q-
OTH/NCCD dataset, showcasing high ROC scores. Lung-
EffNet outperforms in terms of accuracy, efficiency, and
scalability, compare to other models in a clinical setting.

Huseiny et al. [15] suggests a method for identifying
cancerous nodules in CT scans of the lungs by employing deep
neural networks (NN). Images are normalised and lung areas
are isolated using basic pre-processing. Then, a modified
GoogLeNet is fed into it using transfer learning. The system
achieves an unprecedented 94.38% accuracy when training on
the 1Q-OTH/NCCD lung cancer dataset, outperforming prior
benchmarks. An example of the usefulness of Deep NNs in
medical image processing, this technique improves nodule
diagnosis in CT images of the lungs.

Dubey et al. [16] investigates how well deep TL and
ensemble deep learning (EDL) work for lung segmentation and
COVID-19 classification. Data for the study came from a wide
variety of Croatian and Italian healthcare facilities. Based on
the premise that EDL is superior, it tests 12,000 CT slices.
Comparing the EDL and TL models using fresh, undiscovered
data shows that the EDL model obtains better accuracy. The
notion is bolstered by this discovery. By proving EDL's
efficacy on balanced and enhanced datasets, the statistical tests
validate its reliability and stability. Both the visible and
invisible perspectives are supported by these findings.

A DL system for lung cancer prediction using
EfficientNetB3, ResNet50, and ResNetl01 with TL is
presented by Jassim et al. [17]. Their research looks at how
well these models can detect lung cancer. Data augmentation
guards against overfitting when trained on a dataset consisting
of one thousand CT lung pictures divided into four categories.
Performance is improved by score-level fusion and ensemble
learning, outperforming current approaches with an accuracy
of 99.44%. High accuracy and resilience in lung cancer
prediction are demonstrated in the study, which underlines the
efficiency of ensemble TL with diverse models. Wu et al. [18]
presented STLF-VA, a self-supervised TL framework that uses
visual attention and entire nodule volumes as features to
improve nodule categorization. By methodically using 3D
unlabeled CT images, it reduces the requirement for labelled
samples. Strengthening interference resistance is the multi-
view aggregative attention module's job. Performance on the
CQUCH-LND and LIDC-IDRI datasets is higher than that of
traditional models, according to the evaluation. Clinical chest
CT scan analysis can be greatly improved with the help of this
paradigm, which offers substantial advancements in nodule
malignancy prediction.

The BERTL-HIALCCD method for efficient identification
of lung and colon cancer (LCC) in histopathological images is
introduced in the publication of AlGhamdi et al. [19]. The
approach combines computer vision with transfer learning,
using a deep convolutional recurrent neural network (DCRNN)
for recognition and an improved ShuffleNet for feature
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extraction. Parameters of DCRNN are fine-tuned by coati
optimisation. Results from experiments conducted on a large
dataset confirm the effectiveness of BERTL-HIALCCD as a
cancer detection model.

For the purpose of classifying CT images of the lung as
cancer, Saleh et al. [20] provide a CNN that combines TL and
random forest. It builds the algorithm, compares its
effectiveness, and preprocesses the data. The results prove that
machine learning is the best tool for healthcare, especially for
identifying and categorizing diseases. The outcomes
demonstrate the promise of cutting-edge methods in enhancing
diagnostic precision and healthcare delivery when contrasted
with traditional CNNs devoid of transfer learning.

In their research, Mammeri et al. [21] suggest a way to use
the LIDR-IDRI dataset to identify and categorise lung nodules.
Bounding boxes are drawn around nodules using YOLO v7 for
object identification. This helps radiologists trace them across
CT slices. We compare different input images and find whole
images yield the best detection results. For classification, we
employ transfer learning with VGG16, achieving good
performance in classifying nodules into benign, suspect, and
malignant categories based on radiologists' assessments of
malignancy. This approach shows promise in enhancing
nodule classification accuracy and improving lung cancer
diagnostics.

CT scans are vital for diagnosing lung cancer, with Al
systems using transfer-learning models showing promise in
improving precision and speed. TL adapts pre-existing models,
aiding medical data analysis. The study by Shouka et al. [22]
examines CNN based TL with RESNET, MobileNetV2,
Xception, and VGG16, with ResNet yielding the highest
testing accuracy at 0.94 and a testing loss of 0.16. This
highlights potential enhancements in healthcare Al accuracy
and efficiency.

A novel framework proposed by Sharma et al. [23] utilizes
a customized Densenet-201 model for precise multi-class lung
cancer categorization, employing TL and a residual structure.
Experiments on the LCS25000 dataset showecase its
remarkable 95% accuracy on the test set, demonstrating its
ability to classify lung cancer types accurately. It also
generalizes well to the TCGA lung cancer dataset, promising
improved diagnostic abilities and patient care in pulmonary
pathology.

Fu et al. [24] crafted a 3D deep transfer learning model,
differentiating between IAC and MIA using CT images of
GGNs. MedicalNet pre-training and a fusion model facilitated
classification, employing TL for predictive modeling,
validated internally and externally across three centers. With
999 lung GGN images, the model achieved high diagnostic
efficacy, with accuracies ranging from 78% to 89% and AUCs
from 82% to 95%, demonstrating its robustness and potential
clinical utility.

Ren et al. [25] introduce LCGANT, a hybrid framework
comprising LCGAN for generating synthetic lung cancer
images and VGG-DF for classification. Achieving 99.84%
accuracy, precision, sensitivity, and F1-score, it surpasses
other methods in lung cancer classification. LCGANT resolves
overfitting, demonstrating superior performance and
promising advancements in lung cancer diagnostic accuracy.

This study by Lague et al. [26] aimed to predict PET results
from contrast-enhanced CT scans using various feature
extraction methods. Machine learning models were trained on
data from 100 lung cancer patients, incorporating traditional
radiomics features, deep features from EfficientNet-CNN, and
a hybrid approach. The random forest model combining both
approaches have achieved the good performance results, with
an AUC of 0.871 and SBS of 35.8%. This demonstrates the
complementary nature of traditional and deep radiomics
features for non-invasive N-staging in lung cancer, enhancing
diagnostic accuracy.

Atiya et al. [27] introduce a dual-state transfer learning
method employing deep CNNs to enhance lung cancer
classification from CT scans. By leveraging pre-trained models
like DCNN, VGG16, Inceptionv3, and RestNet50, the
proposed model achieves 94% training accuracy, with 92.57%
validation and 96.12% testing accuracy. Outperforming
existing models, this approach enhances lung cancer screening
precision and effectiveness, showcasing the potential of dual-
state transfer learning and deep CNNs in medical image
analysis.

In order to diagnose lung cancer, Humayun et al. [28]
proposed an approach that uses a CAD system with a deep
neural network and strong DL algorithms. Data augmentation,
categorization with pre-trained CNN models, and localization
make up the procedure. A method for dealing with data
scarcity, TL generates a diagnostic tool with fewer parameters
and less invasiveness than the state-of-the-art models. At the
20th epoch, VGG 16 achieves an accuracy of 98.83%
according to the performance metrics, which evaluate the
architecture. Integrating with interfaces becomes easier and
faster after preprocessing increases the model's reliability and
prediction capacity. This study demonstrates how well TL
techniques and models perform in medical picture evaluation
when the dataset size is large.

For the purpose of lung cancer detection, Chui et al. [29]
provide the MTL-MGAN method. While MGAN provides
more training data and fills in domain gaps, this method
focuses on making the most of transferability across source and
target domains, making the model more adaptable and
effective across different datasets and clinical contexts. There
is a considerable improvement in accuracy compared to related
efforts, according to evaluation on 10 datasets. Component
effectiveness has been validated using ablation studies, which
emphasize the feasibility of MTL and the bridging potential of
MGAN.
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This study by Saikia et al. [30] categorises lung nodules
based on CT scan pictures into four distinct types: the includes
the types of carcinomas like small-cell carcinoma, squamous-
cell carcinoma, adenocarcinoma, , and large-cell carcinoma.
The suggested hybrid methodology combines VGG networks
with support vector machine and random forest, leading to a
decrease in computational complexity. The hybrid algorithms
surpass current techniques for classifying lung nodules in CT
scans, with an accuracy of 98.70%.

The research by Nigudgi et al. [31] presents a method for
classifying lung CT images and detecting cancer using transfer
learning. A composite model combining the features of
AlexNet, VGG, and GoogleNet is utilised to extract features,
which are then classed using a multi-class SVM. Model trained
on IQ-OTH/NCCD set, achieving 97% accuracy,
outperforming others. Dataset split for training and validation.
Real-time transfer learning for CT lung slice classification. The
procedure entails performing pre-processing and segmentation
through the use of K-means clustering. Additionally, it requires
fine-tuning the weighted VGG deep network and deploying it
using Nvidia tensor-RT for real-time applications. The
suggested model, which was trained on 19,419 CT slices,
demonstrates enhanced classification metrics with statistical
validation.

The paper by Dadgar et al. [32] presents a hybrid
convolutional deep transfer learning model that combines
different architectures, including VGG16, ResNetl52V2,
MobileNetV3. Various model architectures were constructed
and compared after adjusting their hyperparameters. The top-

performing model, InceptionResNetV2 with transfer learning,
achieved an accuracy of 91.1%, precision of 84.9%, AUC of
95.8%, and F1-score of 81.5% in classifying lung tumours
using 1000 pre-processed CT scans.

Mammeri et al. [33] utilized data from 601,480 lung cancer
patients from SEER and 4,512 from GYFY. Their primary
model trained on SEER was internally validated, externally
validated with GYFY through transfer learning. Model
performance was evaluated using C-indexes and explored in
handling missing data and Al prediction certainty. In the SEER
training dataset, DeepSurv outperformed the Cox model with
C-indexes of 0.792 and 0.714, respectively. Testing on GYFY,
DeepSurv yielded C-indexes of 0.727, surpassing the Cox
model's 0.692. DeepSurv exhibited high Al certainty and
improved prediction accuracy with transfer learning and
missing data handling.

This study by Wang et al. [34] presents a new residual
neural network that can accurately classify different forms of
lung cancer based on CT data. In order to deal with the lack of
data, a method called medical-to-medical transfer learning is
being investigated. This involves initially training on the
lunal6 dataset and then refining the model on a private dataset
from Shandong Provincial Hospital. The method achieves an
accuracy of 85.71%, which is higher than models trained with
2054 labels. It outperforms AlexNet, VGG16, and DenseNet,
making it an efficient and non-invasive tool for disease
diagnosis. Table 1 provides a brief comparison of existing
work with the proposed work.

Table 1 Current state of the art model on lung cancer detection

Author Model Methodology dataset Remarks
Raza et al. [14] Lung-EffNet Lung-EffNet  achieves 99.10% IQ-OTH/NCCD Accuracy of 98.10% and
accuracy on lung cancer diagnosis. demonstrates high ROC
scores

Huseiny et al. [3] modified Pre-processed lung images fed into  1Q-OTH/NCCD achieves 94.38%
GoogLeNet modified GoogLeNet DNN achieve accuracy

94.38% accuracy in  nodule
detection, surpassing benchmarks.

Jassim et al. [16] EfficientNetB3, A deep-learning system achieves 1000 CT lung achieving 98.44%
ResNet50, and 99.44% accuracy in lung cancer images accuracy
ResNet101 prediction, employing transfer

learning and ensemble methods.

Wu etal. [17] self-supervised  Utilizes 3D CT images, enhancing CQUCH-LND and Enhances nodule
transfer nodule  malignancy  prediction LIDC-IDRI datasets malignancy prediction
learning accuracy with 3D CT
framework

Mammeri et al. Utilizing YOLO v7 detects lung nodules, LIDR-IDRI Good nodule

[20] YOLO v7 for aiding radiologists, while VGG16 classification
object classifies them accurately performance attained
detection,

VGG16

Shoukaetal. [21] RESNET, Al using transfer-learning improves  1Q-OTH/NCCD accuracy at 0.94 and a

MobileNetV2, lung cancer diagnosis accuracy and testing loss of 0.16

Sharma et al. [22]

Xception, and
VGG16
customized

efficiency in CT scans

Customized Densenet-201 achieves

Densenet-201 95% accuracy in lung cancer
classification.

Proposed Mask-  Mask-EffNet EfficientNetB7  with ~ Masked
EffNet autoencoder

LCS25000, TCGA
lung cancer dataset

IQ-OTH/NCCD

95% accuracy

98.98% accuracy
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3. Materials and Methods

The following section describes the dataset and approach
used to train the suggested algorithm for multi-class lung
cancer categorization from CT scans. Fig. 1 depicts the general
process of the suggested methodology. It begins by loading CT
scan slices, which then undergo several pre-processing steps.
Given the challenge of acquiring annotated medical imaging
data, data augmentation artificially boosts the training
instances. This approach leverages transfer learning, tailored
for lung cancer classification (benign, malignant, and normal).
Following an introduction, subsequent sections delve into pre-
processing, data augmentation, and specifics of the suggested
model. This comprehensive approach tackles the intricate
challenges of medical image analysis and classification
effectively.

Dala Aquisition for IQ-
OTH/NCCD

Data Preprocessing and
Augmentation

‘MAL)I: used for Distribution and

[eature extraction
Classified the extracted features
using EfficientNetB7

v
Performance No Fine-tune and
Evaluation L
Achieved? O
Yes
‘ Benign | | Malignant ‘ ‘ Normal ‘
Fig. 1. Flow diagram of the Proposed work

A. Description of the Dataset

The 1Q-OTH/NCCD dataset is ideal for lung cancer
research due to its high-quality, diverse imaging data, and
extensive expert annotations, ensuring reliable and accurate
models. It includes comprehensive metadata, such as patient
demographics and clinical history, enhancing study depth.
Publicly accessible, it allows for reproducible and comparable
studies. The balanced class distribution and sophisticated
imaging modalities like CT and PET scans strengthen model
practicality. Its robust community support and impressive
features make it a reliable basis for precise and applicable
machine learning models.

The studies are carried relying on lung cancer dataset "Irag-
Oncology Teaching Hospital/National Center for Cancer
Diseases (IQ-OTH/NCCD)" (Alyasriy et al. [12]). It was
gathered for over three months from them in 2019. Fig. 2
represents sample Images from 1Q-OTH/NCCD dataset. The
dataset comprises CT scans from individuals with varying lung
health statuses, annotated by oncologists and radiologists. It
includes 1142 chest CT scan images from 126 patients,

reflecting diverse demographics. Cases were classified into
benign, malignant, or normal categories (Fig. 2), with 42
malignant, 20 benign, and 64 normal cases examined.
Originally in DICOM format with 224 x 224 resolution, later,
scans were converted to JPEG format for easier accessibility.
The collected dataset, accessible through Kaggle, provides
valuable insights into lung cancer classification. Table 2 class
wise categorization of collected dataset facilitating researcher
to do research and analysis in the field of medical imaging,
thereby advancing our understanding of lung cancer detection
and diagnosis.

=

@
ol ol

Fig. 2. Sample Images from 1Q-OTH/NCCD dataset.

Table 2 IQ-OTH/NCCD Dataset of different classes

Type | No. of Patients | No. of Samples
Class of Benign 20 122
Class of Malignant 42 564
Normal Class 64 456
All Total 126 1142

B. Data Pre-processing

This section describes over the pre-processing steps that
were performed on the raw data prior to model training and
testing. Every image in every group are initially shuffled for
impartial training before being split into an 80:20 train-test
ratio, with 80% of the amount of images examined into train
set for training operation and 20% samples used for test set for
the model assessment on undiscovered test instances. Table 3
summarizes the dataset's class-wise distribution following the
train and test split. Undesirable elements like background and
noise in original CT scan images could disrupt training. To
mitigate this, the largest lung contour's peak points were
extracted, eliminating unwanted regions. This process,
depicted in Fig. 3, ensures cleaner data for more effective
model training.

Table 3 Training and Testing split-up of 80:20 ratio

Type of Class | Split-up # Sample Total
Benign Training 97 897
Malignant 450
Normal 360
Benign Testing 25 235
Malignant 114
Normal 96
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Fig. 3. Steps applied for cropping unnecessary regions from lung cancer
CT scans.

C. Data Augmentation

Initially, the dataset of 1142 CT scan segments proved
insufficient to effectively train deep CNN architecture. To
address this, data augmentation techniques were crucially
employed. Six no of different forms of augmentation
techniques, such as horizontal flip, rotation, and brightness

adjustment, were employed, notably augmenting samples in
each class. The innocuous class, initially having the fewest
images, underwent the most substantial enrichment. This
ensured a more balanced and representative dataset, essential
for training the DL model effectively in lung cancer
classification. The total amount of CT scan segments for every
group prior to and following data augmentation is summarized
in Table 4.

Data augmentation technique is exclusively applied to CT
scan segments within the training set. Fig. 4 illustrates
examples of augmented CT scan segments of lung cancer,
showcasing the transformations described earlier. This
augmentation technique enhances the diversity and robustness
of the training data, crucial for effective deep learning model
training.

Table 4 Class wise dataset with and without augmentation

Class Split-up No- Augmen | % per class Total
Augmentation tation
Benign Training 97 1356 335 4058
Malignant 450 1356 335
Normal 360 1346 33.0
Benign Testing 25 235
Malignant 114
Normal 96
(a) (b) (c) (e) (f) (f)

€d ¢d €d

¢ € 6 €

Fig. 4. Original and augmented lung cancer CT scan slices demonstrate the impact of various data augmentation techniques.

Both train and test set images are compressed to 224 x 224
x 3 resolution, aligning with pre-trained EfficientNetB7 model
input requirements. This resizing minimizes computation
during training while retaining essential image context. Image
resizing guarantees input tensor format matches pre-trained
EfficientNetB7 models' requirements, reducing computation
during training. This process preserves image context,
ensuring essential data and characteristics are maintained, thus
optimizing model performance  while  minimizing
computational resources. All the three Class labels are encoded
as 0, 1, and 2, ensuring consistent representation across sets.

D. Methods

This section goes into discussion on the masked transfer
learning methodology and the suggested fine-tuned framework
of the EfficientNetB?7.

1) TRANSFER LEARNING (TL)
TL is the application of a previously learned model for a
new task. Utilizing TL can be trained with a little amount of

data has become common in DL. As most real-world issues
lack a significant amount of categorized data to train
complicated models, it becomes extremely useful in data
science. In TL, the generalization of the second task is
improved by using what was learned in the first task. By
relaxing the requirement, the data can be independent, and
generalization can be accomplished [35]. The general
architecture of transfer learning is shown in Fig. 5. The
elaborate concept is to use the information that the model has
learned through performing a novel job with less labelled data.
According to how much the information from the previously
trained model is applied to the new job, TL may be divided into
several methodologies. Five typical TL categories are listed
below:

e Feature Extraction: The pre-trained model is utilized in
this method as a feature extractor. The output of the
remaining layers is used as a feature instead of the final
classification layers of the pre-trained model. On top of
these collected characteristics, a new classifier is
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subsequently trained for your particular assignment.
This is especially helpful if you just have a little
quantity of data available for the new activity.

e Fine Tuning: In addition to utilizing the characteristics
of the previously trained model as a starting point, fine-
tuning entails enabling some of the layers to be further
trained on the fresh dataset. When the new task and the
original task that the pre-trained model was trained on
are comparable, this strategy works well. Overfitting
must be avoided, though, since too many layers of fine-
tuning might cause the model to lose its initial
expertise.

e Domain Adaptation: When the target domain (new data
for the task) and the source domain (data on which the
pre-trained model was trained) are slightly different,
domain adaptation is applied. By modifying the model's
knowledge to perform well on the target domain, the
aim is to close the gap between these domains. There
are many methods that may be used, including
adversarial training and domain-specific regularization.

e Multitask Learning: A model is trained on several
related tasks at once using multi-task learning. The
theory behind this is that information acquired from one
task might help a person perform better on another one.
In this method, the model has levels that are shared by
several jobs as well as layers that are exclusive to each
activity. When the tasks have certain fundamental
characteristics, this can be especially beneficial.

e Zero-Shot Learning: Zero-shot learning is the process
of training a model for one task and then applying it to
another activity for which it hasn't been given any
practise data. Similar to many-shot learning, few-shot
learning permits a limited number of instances from the
target task during training. These methods can be
facilitated by methods like transfer learning using
language models (using text descriptions).

The "what to transfer" in learning determines the four
settings for the TL process. They include methods for (1)
instance transfers, (2) feature transfers, (3) parameter transfers,
and (4) relational knowledge transfers [36]. For DL, TL starts
with a previously trained stored model.

e
L

Source Domain

ImageNet
Classification

Learning Model —»

Knowledge
Transfer

TR
[~~_Imazes

Disease
Classification

Active Learning
System

Traget Domain

Fig. 5. Architecture of Transfer Learning

This makes it possible to advance quickly and perform well.
It is possible to employ a variety of pre-trained CNN models.
For image categorization, different models are the designs that
were employed in the current study. All categorization studies
use input images that are (100x100x3) (100x100x3) in size.

2) MADE, short for Masked Autoencoder for The
Distribution Estimation
MADE is a neural network model specifically created to model
the probability distribution of data with a large number of
dimensions. The MADE variation of auto encoder neural
networks was introduced in 2015 by Marc'Aurelio andhis
team. It is suitable for applications such as dimensionality
reduction, feature learning, and data production. An organized
pattern is enforced in the connections between the input and
output layers by MADE's use of masks. This pattern
guarantees that each output unit depends on only a subset of
the input units. Because of this, MADE is able to model
complex, high-dimensional probability more efficiently.
Density estimation, anomaly detection, and data generation are
just a few of the successful applications of MADE in fields as
diverse as generative modelling, image modelling, and natural
language processing. All things considered, MADE is an
excellent tool for understanding data's underlying probability
distribution, an essential skill for many statistical modelling
and machine learning jobs. The MADE architecture is
illustrated in Fig. 6.

Autoencoder X MASKS

00
x1 Bk N7 N
y AR

x2 (1) Py T e D)
W DR S
0 AR A

Fig. 6. Architecture of MADE

The MADE algorithm operates by following:

e The structure of an autoencoder, such as MADE, is
composed of an encoder and a decoder, similar to a
regular autoencoder. Nevertheless, in the MADE
model, the encoder and decoder are commonly
implemented as neural networks.

e Masking is the primary innovation of MADE. When
mapping input data to hidden layers, each hidden unit
is independent of the units to its right, given certain
conditions. This is achieved by the implementation of
meticulously crafted masks that are applied to the
weights of the neural network.

e Ordering: In order to guarantee the property of
conditional independence, a pre-established sequence
is enforced on the input dimensions. Each concealed
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unit can only rely on the preceding dimensions in the
ordering.

e Training: MADE acquires the parameters of its encoder
and decoder networks by maximum likelihood
estimation throughout the training process. The goal is
to optimize the log-likelihood of the training data based
on the model parameters.

o Generation: After being trained, MADE can be utilized
to produce samples from the acquired probability
distribution by inputting random noise into the decoder.

MADE has demonstrated efficacy in predicting intricate
probability distributions, encompassing multimodal and
extremely non-linear distributions. It is utilized in diverse
fields such as generative modeling, density estimation, and
anomaly detection. When it comes to modelling data that has a
large number of dimensions and extensive interdependencies,
the architecture of MADE is very useful. Through the
imposition of conditional independence inside each layer,
MADE is able to capture more complicated structures in the
data distribution than conventional auto encoders are able to
do.

E. Classification using Mask-EffNet:

EfficientNetB7 is a larger model in the EfficientNet family,
offering higher accuracy but increased computational
resources. It has more layers, wider layers, and operates on
higher-resolution inputs. EfficientNetB7 employs compound
scaling, a balance between model size and performance, In
order to decrease the quantity of parameters and computations
while still preserving the ability to convey meaning effectively.
In order to reduce the number of parameters and computations
that are necessary, EfficientNetB7 makes use of efficient

architectural components. These components include squeeze-
and-excitation blocks, depthwise separable convolutions, and
Swish activation functions. Neural Architecture Search (NAS),
which automatically examines the space of alternative designs
to find the ones that perform the best, was utilised in order to
uncover the architecture of EfficientNetB7. It is possible to use
EfficientNetB7 for jobs that need a high level of precision,
such as fine-grained picture categorization, medical image
analysis, and satellite image analysis; however, this comes at
the expense of additional processing resources. EfficientNetB7
architecture comprises a stem block, 7 number of blocks, with
a last layer, illustrated in Fig. 7 and Fig. 8.

EfficientNet utilizes even compound scaling for
systematical enlargement of the CNN architecture, employing
fixed scaling coefficients. This method harmonizes the
dimensions of depth (dh), width (wh), and resolution (rl) of the
network by scaling them with a consistent ratio, enhancing
efficiency and performance. This scaling technique is designed
to optimize model performance while ensuring efficient use of
computational resources. The mathematical equation for
compound scaling is provided in (1) to illustrate this concept.

rl = g*phi, wh = b*phi, dh = a*phi (D)
for a.b2.g%=2 where, , g >1,b>1,a>1.

The grid search algorithm determines a, b, and g values.
phi, a user-defined parameter, scales computational resources.
Convolutional operation flops relate directly to dh, wh?, and
ri2: doubling network, while doubling width and resolution
quadruples flops. Scaling the network via Eq. (1) increases
flops by (a.b2.g?)*phi; each phi increment doubles total flops.

1 H Zero Padding H Conv2D ]—b[ Normalization ]—b[ Activation }

Batch

[Conﬂb]—b[ o Ba,t,chi ]—b[ Activation ]
Nor on

Final Layer

Fig. 7. Stem and final layers of EfficientNetB7
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Normalization
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Fig. 8. Modules in EfficientNetB7
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4. Proposed Methodology

The study employs transfer learning on a masked
EfficientNetB7 variant, utilizing lung cancer CT scan images.
Fig. 9 illustrates the masked EfficientNetB7 architecture.
Initialization with ImageNet weights primes the base model,
enabling fine-tuning of the pre-trained EfficientNet. The
Masked Autoencoder for Distribution Estimation (MADE) and
EfficientNetB7 are combined for lung cancer classification.
This method combines the strengths of both techniques,
focusing on data preprocessing, training, feature extraction,
and classification head. Data preprocessing involves obtaining
a dataset of lung cancer images with annotations indicating the
presence or absence of cancerous regions. MADE training is
performed on the preprocessed images to learn the underlying
distribution of the data, while feature extraction with
EfficientNetB7 is used to extract high-level features.
Combining MADE and EfficientNetB7 combines the learned
representations from both models, capturing both high-level
semantic features and fine-grained distribution information.

€3

Input Image K—I,—\
[Grec g g
1O

The addition of a classification head, which consists of
completely connected layers activated by softmax for binary or
multiclass classification, allows for the categorization of lung
cancer. With the use of tagged data and a suitable loss function,
the model is trained comprehensively. Evaluation and
validation are carried out using several evaluation metrics. On
top of that, performance is further improved by optimization
and fine-tuning. If there is a lack of labelled data, other
methods like domain adaptation or transfer learning can be
investigated.

To evaluate how well it performs in real-world situations,
testing and deployment are carried out on a hidden test set.
Prior to deploying the trained model in clinical settings, it must
be tested for regulatory compliance and compatibility with the
intended deployment environment. Improved accuracy and
reliability in identifying malignant regions in lung pictures
may result from this methodology's efforts to strengthen the
lung cancer classification model's discriminative capacity and
resilience.

EfficientNetB7

> Stem

€

B1 B2 B3 B4 BS BE B7

Final Layer

‘ Benign | |Malignant| ‘ Normal

Fig. 9. Proposed Mask-EffNet Model Architecture

5. Results and discussion

The evaluation metrics used to assess the efficacy of the
proposed work are discussed in detail in the next subsection. A
thorough understanding of the underlying software and
hardware is also required before training or evaluating a model.
Various matrices are taken into consideration when the
proposed approach has been accurately evaluated and
implemented. In this part, we also explore the different
hyperparameters and the values that go with them. In addition,
we present a comprehensive analysis of the data collected
using the proposed technique, which sheds light on its efficacy
and its consequences. The performance of the technique and
its alignment with planned objectives can be better understood
with the help of this comprehensive analysis.

A. Performance Metrics

The efficacy of medical image classification into three
groups is assessed using the same performance measures as in
the previous section specificity through accuracy, sensitivity,
and F1 score. To calculate these yield measurements, one uses
the following formula:

Accuracy =
TN+TP
TP +FPSTNAFN @)
Specificity =
TN
FP+TN €)
Sensitivity (Recall) =
TP
“4)

FP+TN
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TP
FP+TP

)

Precision =

Recall+Precision
F1Score =2% ——TECS01 (6)

Recall+Precision

In this context, the abbreviations TN, TP, FN, and FP
represent True Negative, TruePpositive, False Positive, and
True Negative respectively. For the purpose of estimating such
parameters, the confusion matrix is utilized. This matrix
provides information regarding the incorrect and correct
categorization of images across all categories.

e The ROC Curve: The receiver operating characteristic
(ROC) curve is a graphical representation of the ROC
curve's performance at various thresholds. The
approach is dependent on two factors, which are the
True Positive Rate (TPR) and the False Positive Rate
(FPR), which are represented by equations (7) and (8),
respectively. The ability of the model to accurately
detect true positives while also minimizing the number
of false positives over a variety of threshold settings is
illustrated by this visualization, which provides useful

insights.
TPR = ——— (7)
TP+FN
FPR = 22— (8)
FP+TN

B. Experimental setup.

In order to achieve optimal performance, the mask-EffNet
model that has been recommended is constructed using the
Google Colab Pro framework. This framework makes it
possible to train and evaluate the model more quickly, which
is beneficial for the process of developing and testing the
strategy that was presented. The experimental configuration
employed in this research study is outlined below: This work
utilizes Python for model training, explicitly depend on the
Keras package with TensorFlow as its backend tool. Utilizing
Google Colab pro with T4 GPU which has a substantial 25 GB
of RAM that ensures efficient computation and facilitates the
execution of complex tasks in machine learning with optimal
resource utilization.

C. Hyper-parameters Setup

In order to optimize the training of the model and to get the
required results in classifying lung cancer, we performed
empirical tests for adjusting several hyperparameters. This
include a range of elements such as optimizers and batch size.
A decay factor of 0.3 was implemented to enhance learning
rate, and drop connect rate of 0.3 was established to provide

further regularization during the fine-tuning process, while
ensuring that the ImageNet weights remain unaffected.
Throughout training, a mini-batch size of 35 was used, with
EfficientNetB7 trained for 100 epochs. Validation sets,
comprising 20% of training photos per epoch, aided in
assessing model efficacy and detecting overfitting. The
optimal values for hyperparameters, which were determined
after fine-tuning and conducting many test cases which are
shown in Table 5.

Table 5 HyperParameters

Hyper Parameters | Values
Input dimension 224 * 224 * 3
Dropping Rate 0.3
Activation Function for output Softmax
No of Epoch 100
Size of Batch 35
Learning Rate 0.3

D. Analysis of Experimental Results

This study introduces a novel DL approach for lung cancer
categorization, employing the Mask-EffNet architecture on CT
scan images. The dataset, consisting of 1142 CT scan images
sourced from 126 patients, includes 122 benign and 564
malignant cases.

Data augmentation techniques were applied to augment the
dataset. The data was split into training and testing sets,
maintaining a consistent ratio in both augmented and non-
augmented scenarios. This methodology ensures a balanced
representation of benign and malignant cases, facilitating
robust training and evaluation of the proposed classification
model. Prior to being used for training purposes, all of the CT
scan pictures underwent pre-processing.

1) Analysis without Data Augmentation

The model that was suggested achieved average test
accuracy of 98.36%. Table 6 presents the precise outcomes
produced from the Mask-EffNet model with no data
augmentation. Fig. 10 displays the graphical representation of
the model efficacy in the absence of data augmentation.

Table 6 Performance of Mask-EffNet without data augmentation

Typesof Lung  Recall Precision F1- Accuracy
Cancer in In (%) Score in (%)
(%) in (%)
Benign 93.22  96.47 94.68 98.14
Malignant 99.21  98.18 99.53 98.39
Normal 98.27  97.36 98.45 98.56
Average 96.90  97.33 97.53 98.36
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Performance Analysis without Augmentation
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Fig. 10. Performance analysis of the Mask-EffNet without Augmentation of dataset

A confusion matrix is employed to evaluate the ability of a
model of categorization to accurately predict outcomes on
new, unseen test data. The confusion matrix displays the
number of estimated designations on the horizontal x-axis for
each class, together with their corresponding true designations
on the corresponding vertical y-axis. In this method, the initial
step entails comparing the labels predicted by the model with
the true labels. Following this, correct predictions are tallied.
Fig. 11 displays the proposed approach's performance through
a confusion matrix, showing prediction accuracy without data
augmentation. This matrix offers a comprehensive breakdown
of the model's performance, in terms of classification
evaluation.

Benign Malignant  Normal
Benign| 22 0 3
Malignant 1 113 0
Normal 2 2 92

Fig. 11. Confusion matrix without Augmentation

2) Analysis with Data Augmentation

The dataset utilized in the present research incorporated
data augmentation and comprised of 4293 lung CT scan
pictures sourced from the "1Q-OTH/NCCD dataset".

Among these, 1356 images were classified as benign, 1356
as malignant, and 1346 as normal. Prior to being inputted into
the suggested Mask-EffNet model, the photos underwent pre-
processing. The model underwent a fine-tuning process using
a dedicated training dataset and was subsequently assessed
using a separate test dataset. Impressively, it achieved a high
test accuracy of 98.98%. The ROC score, ranging from 0.97 to
0.98, further attests to its robust performance. Mask-EffNet

models were constructed using a compound scaling technique,
ensuring optimal adjustment of depth, width, and resolution
while maintaining accuracy and minimizing complexity.

The Table 7 shows the performance of an EfficientNet
model with data augmentation for classifying lung cancer into
Benign, Malignant, and Normal types. The average metrics
indicate strong overall performance, particularly in classifying
malignant cases.

Table 7 Performance Analysis of EffNet with data augmentation

Types of
Lung
Cancer Recall Precision F1-Score Accuracy
Benign 94.45 96.50 92.96 98.82
Malignant 99.56 98.20 99.29 97.52
Normal 98.88 97.11 95.18 96.40
Average 96.60 96.05 95.03 96.31
With 6 million features, the model demonstrated

exceptional performance on the test dataset. Table 8 presents a
comprehensive overview of the model's outcomes, including
those incorporating data augmentation. Fig. 12 displays the
graphical representation of the model efficacy in the with data
augmentation. Fig. 13 shows the performance comparison on
EffNet without MADE and augmentation versus EffNet with
MADE and augmentation. Fig. 14 displays the proposed
approach's performance through a confusion matrix, showing
prediction accuracy with data augmentation. This matrix offers
a comprehensive breakdown of the model's performance, in

terms of classification evaluation.

Table 8 Performance Analysis of Mask-EffNet with data augmentation

Types of Lung Recall Precision F1-Score  Accuracy
Cancer in (%) In (%) in (%) in (%)
Benign 97.22 99.47 95.65 98.93

Malignant 99.68 99.08 99.53 99.39
Normal 99.25 98.38 98.15 98.63
Average 98.71 98.97 97.77 98.98
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Fig. 12. Performance analysis of the Mask-EffNet with Augmentation of dataset
Performance Comparison
102
100
98
96
94
92
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Recall Precision ~ F1-Score  Accuracy Recall Precision ~ F1-Score  Accuracy
MASK-EFFNET WITH DATA AUGMENTATION EFFNET WITH DATA AUGMENTATION
mBenign = Malignant = Normal = Average
Fig. 13. Performance analysis of the Mask-EffNet and EffNet with Augmentation of dataset
Benign  Malignant  Normal feature representation. This iterative process enables the model
to capture intricate visual details critical for precise
Benign| 24 0 1 categorization. Compared with the existing work, the proposed
Mask-EffNet  architecture has demonstrated superior
effectiveness and versatility in image analysis tasks.

Malignant 1 113 0 The suggested method was evaluated against current
models to determine its accuracy. To provide an accurate
comparison, the train-test split ratio and dataset were kept

Normal e : o consistent. To provide a fair comparison, we will make sure
orma that the ratio of training data to testing data is the same,
specifically 80:20. Table 9 contains a detailed examination of

the Mask-EffNet protocol compared to the most advanced
methods available. The comparison table shows various
methods for achieving high accuracy scores in various
evaluation metrics. Some methods use CNN, while others use
GoogleNet DNN, ShuffleNet with coati optimization, ResNet,
MobileNetV2, Xception, VGG16, EfficientNet, and Random
Forest. The Mask-EffNet method, which introduces

Fig. 14. Confusion matrix with Augmentation

E.Comparison on Lung-EffNet versus previous
state-of-the-art methods.

Mask-EffNet has demonstrated improved analysis in the
classification of lung cancer operations as compared to other

existing models. Mask-EffNet's exceptional performance can
be attributed to its capability to extract characteristics from the
input photos. Mask-EffNet employs convolutional and pooling
layers, progressively extracting image features, enhancing
understanding from preceding layers for comprehensive

EfficientNetB7 with masked autoencoder, achieves the highest
accuracy scores, ranging from 97.77% to 98.98%. Other
methods use EfficientNet, GoogleNet DNN, and ShuffleNet
with coati optimization. The Mask-EffNet method outperforms
others in terms of accuracy with respect to other measure of
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matrices. Fig. 15 depicts an extensive performance assessment
of the suggested work with current state of the art models.

Table 9 Comparison of different state of the art methods

References Methodologies DataSet Recall in Precision F1-Score in Accuracy
(%) In (%) (%) in (%)

Atiya, S [26] CNN Own

Dataset 97.50 97.78 97.69 97.57
AL-Huseiny [3] GoogleNet DNN 1Q-

OTH/NCCD 97.14 97.14 97.39 98.02
AlGhamdi, R. [18] ShuffleNet with coati optimization ~ LC25000 08.39 08.63 97.39 08.88
Shouka et al. [21] ResNet, MobileNetV2, Xception, 1Q-

and VGG16 OTH/NCCD  97.46 97.18 96.02 97.69

Raza et al. [14] EfficientNet 1Q-

OTH/NCCD 98.24 98.18 97.61 97.78
Saleh, A. Y. [19] CNN and Random Forest 1Q-

OTH/NCCD  98.19 97.50 96.09 98.79
Chui, K. T. [28] Modified GAN NSCLC-

Radiomics 97.48 98.16 96.83 95.53
Humayun, M. [27] VGG16 and CNN 10-

OTH/NCCD  97.6 97.5 97.25 97.67
Narin N. [7] AlexNet and ResNet 1Q-

OTH/NCCD 985 96.8 97.32 98.62
Mask-EffNet EfficientNetB7  with  masked 1Q- 98.71 98.97 97.77 98.98
(Proposed) autoencoder OTH/NCCD

Performance Comparison with Existing work

Mask-EffNet (Proposed)

Narin N. [7]

Humayun, M. [27]

Chui, K. T. [28]

Saleh, A. Y. [19]

Raza et al. [14]

Shouka et al. [21]

AlGhamdi, R. [18]

AL-Huseiny [3]

Atiya, S [26]

93 94 95

Accuracy

F1-Score

96 97 98 99 100

Precision mRecall

Fig. 15. Performance Analysis comparison of the Mask-EffNet with different existing work

F. The effect of data splitting

Multiple tests are being carried out to investigate the
influence of various data divisions on the effectiveness of the
suggested Mask-EffNets. To evaluate the model's efficiency,
we varied the proportions of training and testing data and
thoroughly analyzed the results across different splits. These

included the initially suggested 80:20 split, along with 60:40,
70:30 and 90:10 splits, detailed in Table 10. The table presents
the results of a model evaluation on different data splits for a
classification task. The model achieved recall of 97.23%,
precision of 97.43%, F1-Score of 97.99%, and accuracy of
98.19% for the 60:40 data split. For the 70:30 data split, recall
was 97.49%, precision of 98.26%, F1-Score of 97.37%, and



105

ENGINEERING ACCESS, VOL. 11, NO. 1, JANUARY-JUNE 2025

accuracy of 98.35%. For the 80:20 data split, recall was
98.71%, precision of 98.97%, F1-Score of 97.77%, and
accuracy of 98.98%. For the 90:10 data split, recall was
98.93%, precision of 99.15%, F1-Score of 98.83%, and
accuracy of 99.23%. The highest performance was achieved
with the 90:10 data split, indicating the model's benefit from
more training data. Fig. 16 depicts the efficiency assessment of
fine-tuned Mask-EffNets across these splits. Particularly, the
model's performance was affected through the partitioned data
and emphasizing on the significance of training set size in
transfer learning efficiency.

Table 10 Evaluation of Mask-EffNet with different data split-up

Performance Comparison on Split-up

99.5
99
98.5

98

97.5 /

97
96.5
96
60:40:00 70:30:00
e Recall === Precision

Spilt-up Recall in Precision F1-Score Accuracy
(%) In (%) in (%) in (%)
60:40 97.23 97.43 97.99 98.19
70:30 97.49 98.26 97.37 98.35
80:20 98.71 98.97 97.77 98.98
90:10 98.93 99.15 98.83 99.23
80:20:00 90:10:00
F1-Score Accuracy

Fig. 16. Performance analysis with various split-ups

G. Computational Complexity

The study meticulously examines the computational
complexity of EfficientNet models (BO to B4), considering
parameters, FLOPS, network size, training and inference
times, and test accuracy. Following Table 11 the
computational profiles of these models alongside other deep
learning architectures, all trained and assessed under identical
hyper-parameter settings on a shared dataset.

EfficientNetBO initiates with 4.01 million parameters,
progressively  expanding in  complexity  through
EfficientNetB1 (6.41 million), B2 (7.60 million), B3 (10.80
million), and B4 (16.65 million). This progression
underscores how deeper architectures, characterized by
increased convolutional layers, amplify model parameters,
thus affecting computational demands in deep neural network
design and deployment. Following table show the
computational complexity of proposed Mask-EffNet model.
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Table 11 Computational Complexity analysis of the proposed Mask_EffNet

Model FLOPs No. of Training time Testing time Model size acIler:\cy
(G) parameters (hh:mm:ss) (hh:mm:ss) (MB) (%)
EfficientNetBO 0.95 4,021,391 0:03:20 0:00:02 46.2 93.67
EfficientNetB1 142 6,417,027 0:46:40 0:00:01 75.4 97.2
EfficientNetB2 1.64 7,605,221 0:50:50 0:00:02 88 96.5
EfficientNetB3 2.38 10,800,843 1:05:20 0:00:02 123.4 97.4
EfficientNetB4 3.71 16,653,995 1:05:50 0:00:04 202.4 96.6
ResNet50 9.13 23,534,592 0:38:02 0:00:03 - 93.5
MobileNet 1.59 3,210,051 0:20:50 0:00:01 36.4 97.8
MobileNetV2 2.72 2,227,715 0:23:20 0:00:01 25.47 97.5
MobileNetV3Small 1.72 928,739 0:00:00 0:00:01 10.56 97.6
Mask-EffNet(Proposed) 15 46,466,851 1:10:50 0:00:07 534.4 98.98

6. Conclusion And Future Work

For the early diagnosis of lung cancer from CT scan
pictures, the Mask-EffNet hybrid model, which combines a
masked autoencoder for extraction of essential features and a
pre-trained  EfficientNetB7 for essential classifications,
demonstrates  promising  results.  Feature learning,
dimensionality reduction, uncertainty estimates, imbalanced
data management, transfer learning, and model interpretability
are some of the difficulties that are addressed by the model. A
ROC score ranging from 0.9782 to 0.9872 degrees and an
accuracy of 98.98% were some of the impressive results
achieved by Mask-EffNet in trials run on the "IQ-
OTH/NCCD" benchmark dataset. These results shed insight on
the potential for improving medical imaging diagnostic
systems by combining CNN with sophisticated DL techniques.

The benefits of the proposed approach are shown by the
experimental results. When compared to other CNN
architectures, the Mask-EffNet design always comes out on top
in terms of efficiency and accuracy. Moreover, our results have
important consequences for future attempts to diagnose and
classify lung cancer, particularly using TL in conjunction with
EfficientNetB7. New avenues for research and development in
medical image analysis are opened up by this method. By
demonstrating the efficacy of Mask-EffNet, employing an
efficient design model, our work emphasises the possible
influence for improved diagnostic accuracy and efficiency in
lung cancer detection. These insights provide a foundation for
additional research focused on improving and expanding the
use of TL techniques in healthcare imaging, finally by
contributing to enhanced patient care and outcomes.

A.Future Research

Our findings bear significant implications for lung cancer
diagnosis, especially regarding TL with EfficientNets. This
approach opens promising avenues for medical image analysis
advancement. Future research may explore alternative DL
architectures alongside transfer learning, and enhancing model

performance through larger datasets and synthetic data
generation methods like GANS. Integration of clinical data
augments potential research avenues. Expanding datasets to
include diverse cases and demographics enhances model
robustness. Future exploration of TL with EfficientNets on
larger datasets promises deeper insights into model
performance across varied scenarios. Augmenting the dataset's
size would furnish additional evidence of the efficacy of the
proposed methodology in real-world contexts, fortifying its
adaptability and applicability across a myriad of clinical
scenarios. This comprehensive approach promises to improve
the reliability and generalizability of diagnosis of lung cancer
disease along with their classification.
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