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Abstract. CT scans efficiently detect lung cancer. A good 

prediction method is crucial. Recently, deep convolutional 

neural networks (CNN) have influenced picture 

categorization algorithms. This article presents a hybrid 

strategy using an upgraded deep transfer learning 

EfficientNet and a masked autoencoder for image-based 

distribution estimation (MADE). MADE improves feature 

acquisition, dimensionality, uncertainty, imbalanced data, 

transfer learning, and model interpretability before lung 

cancer categorization. These benefits improve classification 

accuracy and data use. Mask-EffNet, the proposed model, has 

two phases. The initial phase uses MADE to extract features. 

Using a pre-trained EfficientNet model, types are classified 

next. Mask-EffNet is tested using EfficientNetB7. The study 

uses the "IQ-OTH/NCCD" benchmark dataset, which includes 

lung cancer patients classified as benign, malignant, or 

normal. Mask-EffNet has 98.98% test set accuracy with ROC 

scores of 0.9782–0.9872. We tested the suggested pre-trained 

Mask-EffNet against different CNN architectures. The 

EfficientNetB7-based Mask-EffNet outperforms various 

CNNs in accuracy and efficacy, as expected. 
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1. Introduction

According to the World Health Organization [1], cancer 

is ranked as the second most common cause of death 

worldwide. In the United States, lung cancer is the leading 

cause of death, claiming 1.8 million lives each year. Timely 

identification with Lung Cancer Detection (LCD) is crucial 

for personalized therapies and prognosis. Artificial 

intelligence assists in surmounting healthcare obstacles, 

diminishing the time required for diagnosis, and augmenting 

the quality of healthcare [2,3]. This study explores the 

application of artificial intelligence (AI) in aiding 

conventional lung cancer screening through the use of 

biomedical imaging techniques, as opposed to innovative 

breath analysis methods [4,5]. Researchers are researching 

computer ways to automate the process of lung cancer 

categorization and minimize the inherent bias and uncertainty 

in traditional visual analysis. This advancement enhances the 

precision of lung cancer therapies for different types of the 

illness. This enhances the dependability and accuracy of 

determining the stage and type of cancer, while also providing 

comprehensive information for patient care [6]. The recent 

breakthroughs in artificial intelligence have greatly benefited 

the development of automated systems that effectively 

process medical imaging data, particularly in the accurate 

classification of lung cancer. Furthermore, these strategies 

have the potential to enhance the overall efficiency of lung 

cancer categorization, while also yielding more unbiased and 

accurate outcomes [7, 8]. 

Traditional diagnostic methods, such as MRI and CT 

scans, are essential in the diagnosis of lung cancer. CT scans 

are highly efficient in identifying abnormalities, such as 

cancer, in the chest, by utilizing X-rays. Machine learning, 

specifically Convolutional Neural Networks (CNNs), assist in 

visual analysis, albeit a substantial amount of data is necessary 

for their effectiveness [9]. Despite challenges in obtaining 

datasets, deep learning models demonstrate promise in 

accurate cancer classification, offering the potential to 

enhance existing diagnostic techniques and reduce human 

error. 

By augmenting the existing trained models with new 

datasets, transfer learning (TL) effectively addresses the 

limitations of CNNs. Certain techniques involve augmenting 

pre-existing layers or constructing novel ones to enable end-

to-end training [10]. Katsamenis et al. (2020) conducted an 

investigation on the utilization of TL for the identification of 

COVID-19 pneumonia using X-rays. Transfer Learning (TL) 

offers a reliable approach to enhance the performance of 

models and adapt them to various medical imaging tasks [11]. 

Regarding healthcare image analysis, the use of 

EfficientNets in TL offers the ability to reduce certain 

frequent restrictions. EfficientNets are renowned for their 

ability to efficiently extract pertinent and representative 

features from photos. EfficientNetB7 models, which have 

undergone pretraining on extensive datasets like as ImageNet, 

offer superior accuracy and robustness in the classification of 

lung cancer through the application of transfer learning [12]. 

Our method offers superior computational efficiency 
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compared to existing deep learning architectures, enabling 

speedy and accurate interpretation of medical pictures for the 

detection of lung cancer [13]. This enhancement to the 

categorization process is anticipated to enhance the 

effectiveness and efficiency of medical picture analysis.  

The primary objective of this study is to categorize lung 

nodules on CT scans as benign, malignant, or normal based on 

the identification of cancerous cells. In order to achieve this 

categorization, the proposed model, Mask-EffNet, employs a 

two-step process. The first phase is extracting features using 

the MADE algorithm, while the second step involves 

categorizing different classes using a pre-trained 

EfficientNetB7 model. The performance of Mask-EffNet is 

assessed using several pre-trained models. 

The following are the primary contributions of this article: 

• Using MADE and EfficientNetB7, we created a unique

masked transfer learning method called Mask-EffNet

for lung cancer categorization.

• To overcome the skewness of the data, we used the

augmentation method to solve the severe imbalance

problem.

• To extract features, we employed a Masked

Autoencoder for The Distribution Estimation (MADE).

• To highlight Mask-EffNet's superiority over other

classification models, we compared it for assessing

methods by execution time, computational complexity

reveals feasibility.

• When compared to existing approaches, our suggested

model Mask-EffNet outperforms them and identifies

lung cancer from CT scan pictures.

The paper's remaining sections are arranged in the 

following manner. Section II describes various literatures, 

while Section III describes the proposed algorithm. 

Conclusion and discussion of Section IV on performance 

metrics are presented in Section V. Section VI contains a 

comparative analysis, and Section VII will have an outline of 

future work after the paper is concluded. 

2. Literature  Study

Integrating deep learning (DL) and transfer learning (TL) 

in survival models for lung cancer is crucial for adapting to 

real-world populations' diverse characteristics. Many approach 

optimizes model performance across different domains, 

addressing variations in variables and enhancing prediction 

accuracy for improved patient outcomes. Few of them are 

analyzed below. 

The article by Raza et al. [14] presents Lung-EffNet, a lung 

cancer classification predictor that utilises transfer learning. 

Lung-EffNet is developed from the EfficientNet architecture 

and is boosted with additional top layers for improved 

classification. Lung-EffNet achieves 99.10% accuracy on IQ-

OTH/NCCD dataset, showcasing high ROC scores. Lung-

EffNet outperforms in terms of accuracy, efficiency, and 

scalability, compare to other models in a clinical setting. 

Huseiny et al. [15] suggests a method for identifying 

cancerous nodules in CT scans of the lungs by employing deep 

neural networks (NN). Images are normalised and lung areas 

are isolated using basic pre-processing. Then, a modified 

GoogLeNet is fed into it using transfer learning. The system 

achieves an unprecedented 94.38% accuracy when training on 

the IQ-OTH/NCCD lung cancer dataset, outperforming prior 

benchmarks. An example of the usefulness of Deep NNs in 

medical image processing, this technique improves nodule 

diagnosis in CT images of the lungs. 

Dubey et al. [16] investigates how well deep TL and 

ensemble deep learning (EDL) work for lung segmentation and 

COVID-19 classification. Data for the study came from a wide 

variety of Croatian and Italian healthcare facilities. Based on 

the premise that EDL is superior, it tests 12,000 CT slices. 

Comparing the EDL and TL models using fresh, undiscovered 

data shows that the EDL model obtains better accuracy. The 

notion is bolstered by this discovery. By proving EDL's 

efficacy on balanced and enhanced datasets, the statistical tests 

validate its reliability and stability. Both the visible and 

invisible perspectives are supported by these findings. 

A DL system for lung cancer prediction using 

EfficientNetB3, ResNet50, and ResNet101 with TL is 

presented by Jassim et al. [17]. Their research looks at how 

well these models can detect lung cancer. Data augmentation 

guards against overfitting when trained on a dataset consisting 

of one thousand CT lung pictures divided into four categories. 

Performance is improved by score-level fusion and ensemble 

learning, outperforming current approaches with an accuracy 

of 99.44%. High accuracy and resilience in lung cancer 

prediction are demonstrated in the study, which underlines the 

efficiency of ensemble TL with diverse models. Wu et al. [18] 

presented STLF-VA, a self-supervised TL framework that uses 

visual attention and entire nodule volumes as features to 

improve nodule categorization. By methodically using 3D 

unlabeled CT images, it reduces the requirement for labelled 

samples. Strengthening interference resistance is the multi-

view aggregative attention module's job. Performance on the 

CQUCH-LND and LIDC-IDRI datasets is higher than that of 

traditional models, according to the evaluation. Clinical chest 

CT scan analysis can be greatly improved with the help of this 

paradigm, which offers substantial advancements in nodule 

malignancy prediction. 

The BERTL-HIALCCD method for efficient identification 

of lung and colon cancer (LCC) in histopathological images is 

introduced in the publication of AlGhamdi et al. [19]. The 

approach combines computer vision with transfer learning, 

using a deep convolutional recurrent neural network (DCRNN) 

for recognition and an improved ShuffleNet for feature 
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extraction. Parameters of DCRNN are fine-tuned by coati 

optimisation. Results from experiments conducted on a large 

dataset confirm the effectiveness of BERTL-HIALCCD as a 

cancer detection model. 

For the purpose of classifying CT images of the lung as 

cancer, Saleh et al. [20] provide a CNN that combines TL and 

random forest. It builds the algorithm, compares its 

effectiveness, and preprocesses the data. The results prove that 

machine learning is the best tool for healthcare, especially for 

identifying and categorizing diseases. The outcomes 

demonstrate the promise of cutting-edge methods in enhancing 

diagnostic precision and healthcare delivery when contrasted 

with traditional CNNs devoid of transfer learning. 

In their research, Mammeri et al. [21] suggest a way to use 

the LIDR-IDRI dataset to identify and categorise lung nodules. 

Bounding boxes are drawn around nodules using YOLO v7 for 

object identification. This helps radiologists trace them across 

CT slices. We compare different input images and find whole 

images yield the best detection results. For classification, we 

employ transfer learning with VGG16, achieving good 

performance in classifying nodules into benign, suspect, and 

malignant categories based on radiologists' assessments of 

malignancy. This approach shows promise in enhancing 

nodule classification accuracy and improving lung cancer 

diagnostics. 

CT scans are vital for diagnosing lung cancer, with AI 

systems using transfer-learning models showing promise in 

improving precision and speed. TL adapts pre-existing models, 

aiding medical data analysis. The study by Shouka et al. [22] 

examines CNN based TL with RESNET, MobileNetV2, 

Xception, and VGG16, with ResNet yielding the highest 

testing accuracy at 0.94 and a testing loss of 0.16. This 

highlights potential enhancements in healthcare AI accuracy 

and efficiency. 

A novel framework proposed by Sharma et al. [23] utilizes 

a customized Densenet-201 model for precise multi-class lung 

cancer categorization, employing TL and a residual structure. 

Experiments on the LCS25000 dataset showcase its 

remarkable 95% accuracy on the test set, demonstrating its 

ability to classify lung cancer types accurately. It also 

generalizes well to the TCGA lung cancer dataset, promising 

improved diagnostic abilities and patient care in pulmonary 

pathology. 

Fu et al. [24] crafted a 3D deep transfer learning model, 

differentiating between IAC and MIA using CT images of 

GGNs. MedicalNet pre-training and a fusion model facilitated 

classification, employing TL for predictive modeling, 

validated internally and externally across three centers. With 

999 lung GGN images, the model achieved high diagnostic 

efficacy, with accuracies ranging from 78% to 89% and AUCs 

from 82% to 95%, demonstrating its robustness and potential 

clinical utility. 

 Ren et al. [25] introduce LCGANT, a hybrid framework 

comprising LCGAN for generating synthetic lung cancer 

images and VGG-DF for classification. Achieving 99.84% 

accuracy, precision, sensitivity, and F1-score, it surpasses 

other methods in lung cancer classification. LCGANT resolves 

overfitting, demonstrating superior performance and 

promising advancements in lung cancer diagnostic accuracy. 

This study by Lague et al. [26] aimed to predict PET results 

from contrast-enhanced CT scans using various feature 

extraction methods. Machine learning models were trained on 

data from 100 lung cancer patients, incorporating traditional 

radiomics features, deep features from EfficientNet-CNN, and 

a hybrid approach. The random forest model combining both 

approaches have achieved the good performance results, with 

an AUC of 0.871 and SBS of 35.8%. This demonstrates the 

complementary nature of traditional and deep radiomics 

features for non-invasive N-staging in lung cancer, enhancing 

diagnostic accuracy. 

Atiya et al. [27] introduce a dual-state transfer learning 

method employing deep CNNs to enhance lung cancer 

classification from CT scans. By leveraging pre-trained models 

like DCNN, VGG16, Inceptionv3, and RestNet50, the 

proposed model achieves 94% training accuracy, with 92.57% 

validation and 96.12% testing accuracy. Outperforming 

existing models, this approach enhances lung cancer screening 

precision and effectiveness, showcasing the potential of dual-

state transfer learning and deep CNNs in medical image 

analysis. 

In order to diagnose lung cancer, Humayun et al. [28] 

proposed an approach that uses a CAD system with a deep 

neural network and strong DL algorithms. Data augmentation, 

categorization with pre-trained CNN models, and localization 

make up the procedure. A method for dealing with data 

scarcity, TL generates a diagnostic tool with fewer parameters 

and less invasiveness than the state-of-the-art models. At the 

20th epoch, VGG 16 achieves an accuracy of 98.83% 

according to the performance metrics, which evaluate the 

architecture. Integrating with interfaces becomes easier and 

faster after preprocessing increases the model's reliability and 

prediction capacity. This study demonstrates how well TL 

techniques and models perform in medical picture evaluation 

when the dataset size is large. 

For the purpose of lung cancer detection, Chui et al. [29] 

provide the MTL-MGAN method. While MGAN provides 

more training data and fills in domain gaps, this method 

focuses on making the most of transferability across source and 

target domains, making the model more adaptable and 

effective across different datasets and clinical contexts. There 

is a considerable improvement in accuracy compared to related 

efforts, according to evaluation on 10 datasets. Component 

effectiveness has been validated using ablation studies, which 

emphasize the feasibility of MTL and the bridging potential of 

MGAN. 
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This study by Saikia et al. [30] categorises lung nodules 

based on CT scan pictures into four distinct types: the includes 

the types of carcinomas like small-cell carcinoma, squamous-

cell carcinoma, adenocarcinoma, , and large-cell carcinoma. 

The suggested hybrid methodology combines VGG networks 

with support vector machine and random forest, leading to a 

decrease in computational complexity. The hybrid algorithms 

surpass current techniques for classifying lung nodules in CT 

scans, with an accuracy of 98.70%. 

The research by Nigudgi et al. [31] presents a method for 

classifying lung CT images and detecting cancer using transfer 

learning. A composite model combining the features of 

AlexNet, VGG, and GoogleNet is utilised to extract features, 

which are then classed using a multi-class SVM. Model trained 

on IQ-OTH/NCCD set, achieving 97% accuracy, 

outperforming others. Dataset split for training and validation. 

Real-time transfer learning for CT lung slice classification. The 

procedure entails performing pre-processing and segmentation 

through the use of K-means clustering. Additionally, it requires 

fine-tuning the weighted VGG deep network and deploying it 

using Nvidia tensor-RT for real-time applications. The 

suggested model, which was trained on 19,419 CT slices, 

demonstrates enhanced classification metrics with statistical 

validation.  

The paper by Dadgar et al. [32] presents a hybrid 

convolutional deep transfer learning model that combines 

different architectures, including VGG16, ResNet152V2, 

MobileNetV3. Various model architectures were constructed 

and compared after adjusting their hyperparameters. The top-

performing model, InceptionResNetV2 with transfer learning, 

achieved an accuracy of 91.1%, precision of 84.9%, AUC of 

95.8%, and F1-score of 81.5% in classifying lung tumours 

using 1000 pre-processed CT scans. 

Mammeri et al. [33] utilized data from 601,480 lung cancer 

patients from SEER and 4,512 from GYFY. Their primary 

model trained on SEER was internally validated, externally 

validated with GYFY through transfer learning. Model 

performance was evaluated using C-indexes and explored in 

handling missing data and AI prediction certainty. In the SEER 

training dataset, DeepSurv outperformed the Cox model with 

C-indexes of 0.792 and 0.714, respectively. Testing on GYFY,

DeepSurv yielded C-indexes of 0.727, surpassing the Cox

model's 0.692. DeepSurv exhibited high AI certainty and

improved prediction accuracy with transfer learning and

missing data handling.

This study by Wang et al. [34] presents a new residual 

neural network that can accurately classify different forms of 

lung cancer based on CT data. In order to deal with the lack of 

data, a method called medical-to-medical transfer learning is 

being investigated. This involves initially training on the 

luna16 dataset and then refining the model on a private dataset 

from Shandong Provincial Hospital. The method achieves an 

accuracy of 85.71%, which is higher than models trained with 

2054 labels. It outperforms AlexNet, VGG16, and DenseNet, 

making it an efficient and non-invasive tool for disease 

diagnosis. Table 1 provides a brief comparison of existing 

work with the proposed work. 

Table 1 Current state of the art model on lung cancer detection 

Author Model Methodology dataset Remarks 

Raza et al. [14] Lung-EffNet Lung-EffNet achieves 99.10% 

accuracy on lung cancer diagnosis. 

IQ-OTH/NCCD Accuracy of 98.10% and 

demonstrates high ROC 
scores 

Huseiny et al. [3] modified 

GoogLeNet 

Pre-processed lung images fed into 

modified GoogLeNet DNN achieve 
94.38% accuracy in nodule 

detection, surpassing benchmarks. 

IQ-OTH/NCCD achieves 94.38% 

accuracy 

Jassim et al. [16] EfficientNetB3, 
ResNet50, and 

ResNet101 

A deep-learning system achieves 
99.44% accuracy in lung cancer 

prediction, employing transfer 

learning and ensemble methods. 

1000 CT lung 
images 

achieving 98.44% 
accuracy 

Wu et al. [17] self-supervised 

transfer 

learning 
framework 

Utilizes 3D CT images, enhancing 

nodule malignancy prediction 

accuracy 

CQUCH-LND and 

LIDC-IDRI datasets 

Enhances nodule 

malignancy prediction 

with 3D CT 

Mammeri et al. 

[20] 

Utilizing 

YOLO v7 for 
object 

detection, 

VGG16 

YOLO v7 detects lung nodules, 

aiding radiologists, while VGG16 
classifies them accurately 

LIDR-IDRI Good nodule 

classification 
performance attained 

Shouka et al. [21] RESNET, 

MobileNetV2, 

Xception, and 
VGG16 

AI using transfer-learning improves 

lung cancer diagnosis accuracy and 

efficiency in CT scans 

IQ-OTH/NCCD accuracy at 0.94 and a 

testing loss of 0.16 

Sharma et al. [22] customized 

Densenet-201 

Customized Densenet-201 achieves 

95% accuracy in lung cancer 
classification. 

LCS25000, TCGA 

lung cancer dataset 

95% accuracy 

Proposed Mask-

EffNet 

Mask-EffNet EfficientNetB7 with Masked 

autoencoder 

IQ-OTH/NCCD 98.98% accuracy 
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3. Materials and Methods

The following section describes the dataset and approach 

used to train the suggested algorithm for multi-class lung 

cancer categorization from CT scans. Fig. 1 depicts the general 

process of the suggested methodology. It begins by loading CT 

scan slices, which then undergo several pre-processing steps. 

Given the challenge of acquiring annotated medical imaging 

data, data augmentation artificially boosts the training 

instances. This approach leverages transfer learning, tailored 

for lung cancer classification (benign, malignant, and normal). 

Following an introduction, subsequent sections delve into pre-

processing, data augmentation, and specifics of the suggested 

model. This comprehensive approach tackles the intricate 

challenges of medical image analysis and classification 

effectively.  

Fig. 1.  Flow diagram of the Proposed work 

A. Description of the Dataset

The IQ-OTH/NCCD dataset is ideal for lung cancer

research due to its high-quality, diverse imaging data, and 

extensive expert annotations, ensuring reliable and accurate 

models. It includes comprehensive metadata, such as patient 

demographics and clinical history, enhancing study depth. 

Publicly accessible, it allows for reproducible and comparable 

studies. The balanced class distribution and sophisticated 

imaging modalities like CT and PET scans strengthen model 

practicality. Its robust community support and impressive 

features make it a reliable basis for precise and applicable 

machine learning models. 

The studies are carried relying on lung cancer dataset "Iraq-

Oncology Teaching Hospital/National Center for Cancer 

Diseases (IQ-OTH/NCCD)" (Alyasriy et al. [12]). It was 

gathered for over three months from them in 2019. Fig. 2 

represents sample Images from IQ-OTH/NCCD dataset. The 

dataset comprises CT scans from individuals with varying lung 

health statuses, annotated by oncologists and radiologists. It 

includes 1142 chest CT scan images from 126 patients, 

reflecting diverse demographics. Cases were classified into 

benign, malignant, or normal categories (Fig. 2), with 42 

malignant, 20 benign, and 64 normal cases examined. 

Originally in DICOM format with 224 x 224 resolution, later, 

scans were converted to JPEG format for easier accessibility. 

The collected dataset, accessible through Kaggle, provides 

valuable insights into lung cancer classification. Table 2 class 

wise categorization of collected dataset facilitating researcher 

to do research and analysis in the field of medical imaging, 

thereby advancing our understanding of lung cancer detection 

and diagnosis.   

Fig. 2. Sample Images from IQ-OTH/NCCD dataset. 

Table 2 IQ-OTH/NCCD Dataset of different classes 

Type No. of Patients No. of Samples 

Class of Benign 20 122 

Class of Malignant 42 564 

Normal Class 64 456 

All Total  126 1142 

B. Data Pre-processing

This section describes over the pre-processing steps that

were performed on the raw data prior to model training and 

testing. Every image in every group are initially shuffled for 

impartial training before being split into an 80:20 train-test 

ratio, with 80% of the amount of images examined into train 

set for training operation and 20% samples used for test set for 

the model assessment on undiscovered test instances. Table 3 

summarizes the dataset's class-wise distribution following the 

train and test split. Undesirable elements like background and 

noise in original CT scan images could disrupt training. To 

mitigate this, the largest lung contour's peak points were 

extracted, eliminating unwanted regions. This process, 

depicted in Fig. 3, ensures cleaner data for more effective 

model training. 

Table 3 Training and Testing split-up of 80:20 ratio 

Type of Class Split-up # Sample Total 

Benign Training 97 897 

Malignant 450 

Normal 360 

Benign Testing 25 235 

Malignant 114 

Normal 96 
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(a) (b) (c ) 

Fig. 3. Steps applied for cropping unnecessary regions from lung cancer 

CT scans.   

C. Data Augmentation

Initially, the dataset of 1142 CT scan segments proved

insufficient to effectively train deep CNN architecture. To 

address this, data augmentation techniques were crucially 

employed. Six no of different forms of augmentation 

techniques, such as horizontal flip, rotation, and brightness 

adjustment, were employed, notably augmenting samples in 

each class. The innocuous class, initially having the fewest 

images, underwent the most substantial enrichment. This 

ensured a more balanced and representative dataset, essential 

for training the DL model effectively in lung cancer 

classification. The total amount of CT scan segments for every 

group prior to and following data augmentation is summarized 

in Table 4.  

Data augmentation technique is exclusively applied to CT 

scan segments within the training set. Fig. 4 illustrates 

examples of augmented CT scan segments of lung cancer, 

showcasing the transformations described earlier. This 

augmentation technique enhances the diversity and robustness 

of the training data, crucial for effective deep learning model 

training.   

Table 4 Class wise dataset with and without augmentation 

Class Split-up No-

Augmentation 

Augmen

tation 

% per class Total 

Benign Training 97 1356 33.5 4058 

Malignant 450 1356 33.5 
Normal 360 1346 33.0 

Benign Testing 25 235 

Malignant 114 
Normal 96 

(a) (b) (c) (d) (e) (f) (f) 

Fig. 4. Original and augmented lung cancer CT scan slices demonstrate the impact of various data augmentation techniques.  

Both train and test set images are compressed to 224 × 224 

× 3 resolution, aligning with pre-trained EfficientNetB7 model 

input requirements. This resizing minimizes computation 

during training while retaining essential image context. Image 

resizing guarantees input tensor format matches pre-trained 

EfficientNetB7 models' requirements, reducing computation 

during training. This process preserves image context, 

ensuring essential data and characteristics are maintained, thus 

optimizing model performance while minimizing 

computational resources. All the three Class labels are encoded 

as 0, 1, and 2, ensuring consistent representation across sets. 

D. Methods

This section goes into discussion on the masked transfer

learning methodology and the suggested fine-tuned framework 

of the EfficientNetB7.  

1) TRANSFER LEARNING (TL)

TL is the application of a previously learned model for a

new task. Utilizing TL can be trained with a little amount of 

data has become common in DL. As most real-world issues 

lack a significant amount of categorized data to train 

complicated models, it becomes extremely useful in data 

science. In TL, the generalization of the second task is 

improved by using what was learned in the first task. By 

relaxing the requirement, the data can be independent, and 

generalization can be accomplished [35]. The general 

architecture of transfer learning is shown in Fig. 5. The 

elaborate concept is to use the information that the model has 

learned through performing a novel job with less labelled data. 

According to how much the information from the previously 

trained model is applied to the new job, TL may be divided into 

several methodologies. Five typical TL categories are listed 

below: 

• Feature Extraction: The pre-trained model is utilized in

this method as a feature extractor. The output of the

remaining layers is used as a feature instead of the final

classification layers of the pre-trained model. On top of

these collected characteristics, a new classifier is
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subsequently trained for your particular assignment. 

This is especially helpful if you just have a little 

quantity of data available for the new activity. 

• Fine Tuning: In addition to utilizing the characteristics

of the previously trained model as a starting point, fine-

tuning entails enabling some of the layers to be further

trained on the fresh dataset. When the new task and the

original task that the pre-trained model was trained on

are comparable, this strategy works well. Overfitting

must be avoided, though, since too many layers of fine-

tuning might cause the model to lose its initial

expertise.

• Domain Adaptation: When the target domain (new data

for the task) and the source domain (data on which the

pre-trained model was trained) are slightly different,

domain adaptation is applied. By modifying the model's

knowledge to perform well on the target domain, the

aim is to close the gap between these domains. There

are many methods that may be used, including

adversarial training and domain-specific regularization.

• Multitask Learning: A model is trained on several

related tasks at once using multi-task learning. The

theory behind this is that information acquired from one

task might help a person perform better on another one.

In this method, the model has levels that are shared by

several jobs as well as layers that are exclusive to each

activity. When the tasks have certain fundamental

characteristics, this can be especially beneficial.

• Zero-Shot Learning: Zero-shot learning is the process

of training a model for one task and then applying it to

another activity for which it hasn't been given any

practise data. Similar to many-shot learning, few-shot

learning permits a limited number of instances from the

target task during training. These methods can be

facilitated by methods like transfer learning using

language models (using text descriptions).

The "what to transfer" in learning determines the four 

settings for the TL process. They include methods for (1) 

instance transfers, (2) feature transfers, (3) parameter transfers, 

and (4) relational knowledge transfers [36]. For DL, TL starts 

with a previously trained stored model.  

Fig. 5. Architecture of Transfer Learning 

This makes it possible to advance quickly and perform well. 

It is possible to employ a variety of pre-trained CNN models. 

For image categorization, different models are the designs that 

were employed in the current study. All categorization studies 

use input images that are (100x100x3) (100x100x3) in size. 

2) MADE, short for Masked Autoencoder for The

Distribution Estimation 

MADE is a neural network model specifically created to model 

the probability distribution of data with a large number of 

dimensions. The MADE variation of auto encoder neural 

networks was introduced in 2015 by Marc'Aurelio andhis 

team. It is suitable for applications such as dimensionality 

reduction, feature learning, and data production. An organized 

pattern is enforced in the connections between the input and 

output layers by MADE's use of masks. This pattern 

guarantees that each output unit depends on only a subset of 

the input units. Because of this, MADE is able to model 

complex, high-dimensional probability more efficiently. 

Density estimation, anomaly detection, and data generation are 

just a few of the successful applications of MADE in fields as 

diverse as generative modelling, image modelling, and natural 

language processing. All things considered, MADE is an 

excellent tool for understanding data's underlying probability 

distribution, an essential skill for many statistical modelling 

and machine learning jobs. The MADE architecture is 

illustrated in Fig. 6. 

Fig. 6. Architecture of MADE 

The MADE algorithm operates by following: 

• The structure of an autoencoder, such as MADE, is

composed of an encoder and a decoder, similar to a

regular autoencoder. Nevertheless, in the MADE

model, the encoder and decoder are commonly

implemented as neural networks.

• Masking is the primary innovation of MADE. When

mapping input data to hidden layers, each hidden unit

is independent of the units to its right, given certain

conditions. This is achieved by the implementation of

meticulously crafted masks that are applied to the

weights of the neural network.

• Ordering: In order to guarantee the property of

conditional independence, a pre-established sequence

is enforced on the input dimensions. Each concealed
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unit can only rely on the preceding dimensions in the 

ordering.  

• Training: MADE acquires the parameters of its encoder

and decoder networks by maximum likelihood

estimation throughout the training process. The goal is

to optimize the log-likelihood of the training data based

on the model parameters.

• Generation: After being trained, MADE can be utilized

to produce samples from the acquired probability

distribution by inputting random noise into the decoder.

MADE has demonstrated efficacy in predicting intricate 

probability distributions, encompassing multimodal and 

extremely non-linear distributions. It is utilized in diverse 

fields such as generative modeling, density estimation, and 

anomaly detection. When it comes to modelling data that has a 

large number of dimensions and extensive interdependencies, 

the architecture of MADE is very useful. Through the 

imposition of conditional independence inside each layer, 

MADE is able to capture more complicated structures in the 

data distribution than conventional auto encoders are able to 

do. 

E. Classification using Mask-EffNet:

EfficientNetB7 is a larger model in the EfficientNet family,

offering higher accuracy but increased computational 

resources. It has more layers, wider layers, and operates on 

higher-resolution inputs. EfficientNetB7 employs compound 

scaling, a balance between model size and performance, In 

order to decrease the quantity of parameters and computations 

while still preserving the ability to convey meaning effectively. 

In order to reduce the number of parameters and computations 

that are necessary, EfficientNetB7 makes use of efficient 

architectural components. These components include squeeze-

and-excitation blocks, depthwise separable convolutions, and 

Swish activation functions. Neural Architecture Search (NAS), 

which automatically examines the space of alternative designs 

to find the ones that perform the best, was utilised in order to 

uncover the architecture of EfficientNetB7. It is possible to use 

EfficientNetB7 for jobs that need a high level of precision, 

such as fine-grained picture categorization, medical image 

analysis, and satellite image analysis; however, this comes at 

the expense of additional processing resources. EfficientNetB7 

architecture comprises a stem block, 7 number of blocks, with 

a last layer, illustrated in Fig. 7 and Fig. 8. 

EfficientNet utilizes even compound scaling for 

systematical enlargement of the CNN architecture, employing 

fixed scaling coefficients. This method harmonizes the 

dimensions of depth (dh), width (wh), and resolution (rl) of the 

network by scaling them with a consistent ratio, enhancing 

efficiency and performance. This scaling technique is designed 

to optimize model performance while ensuring efficient use of 

computational resources. The mathematical equation for 

compound scaling is provided in (1) to illustrate this concept. 

rl = g*phi, wh = b*phi, dh = a*phi       (1) 

for a.b².g²≈2 where, , g ≥1, b ≥1, a ≥1. 

The grid search algorithm determines a, b, and g values. 

phi, a user-defined parameter, scales computational resources. 

Convolutional operation flops relate directly to dh, wh², and 

rl²: doubling network, while doubling width and resolution 

quadruples flops. Scaling the network via Eq. (1) increases 

flops by (a.b².g²)*phi; each phi increment doubles total flops. 

Fig. 7. Stem and final layers of EfficientNetB7 

Fig. 8. Modules in EfficientNetB7 
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4. Proposed Methodology

The study employs transfer learning on a masked 

EfficientNetB7 variant, utilizing lung cancer CT scan images. 

Fig. 9 illustrates the masked EfficientNetB7 architecture. 

Initialization with ImageNet weights primes the base model, 

enabling fine-tuning of the pre-trained EfficientNet. The 

Masked Autoencoder for Distribution Estimation (MADE) and 

EfficientNetB7 are combined for lung cancer classification. 

This method combines the strengths of both techniques, 

focusing on data preprocessing, training, feature extraction, 

and classification head. Data preprocessing involves obtaining 

a dataset of lung cancer images with annotations indicating the 

presence or absence of cancerous regions. MADE training is 

performed on the preprocessed images to learn the underlying 

distribution of the data, while feature extraction with 

EfficientNetB7 is used to extract high-level features. 

Combining MADE and EfficientNetB7 combines the learned 

representations from both models, capturing both high-level 

semantic features and fine-grained distribution information. 

The addition of a classification head, which consists of 

completely connected layers activated by softmax for binary or 

multiclass classification, allows for the categorization of lung 

cancer. With the use of tagged data and a suitable loss function, 

the model is trained comprehensively. Evaluation and 

validation are carried out using several evaluation metrics. On 

top of that, performance is further improved by optimization 

and fine-tuning. If there is a lack of labelled data, other 

methods like domain adaptation or transfer learning can be 

investigated. 

To evaluate how well it performs in real-world situations, 

testing and deployment are carried out on a hidden test set. 

Prior to deploying the trained model in clinical settings, it must 

be tested for regulatory compliance and compatibility with the 

intended deployment environment. Improved accuracy and 

reliability in identifying malignant regions in lung pictures 

may result from this methodology's efforts to strengthen the 

lung cancer classification model's discriminative capacity and 

resilience. 

Fig. 9. Proposed Mask-EffNet Model Architecture 

5. Results and discussion

The evaluation metrics used to assess the efficacy of the 

proposed work are discussed in detail in the next subsection. A 

thorough understanding of the underlying software and 

hardware is also required before training or evaluating a model. 

Various matrices are taken into consideration when the 

proposed approach has been accurately evaluated and 

implemented. In this part, we also explore the different 

hyperparameters and the values that go with them. In addition, 

we present a comprehensive analysis of the data collected 

using the proposed technique, which sheds light on its efficacy 

and its consequences. The performance of the technique and 

its alignment with planned objectives can be better understood 

with the help of this comprehensive analysis. 

A. Performance Metrics

The efficacy of medical image classification into three 

groups is assessed using the same performance measures as in 

the previous section specificity through accuracy, sensitivity, 

and F1 score. To calculate these yield measurements, one uses 

the following formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑃++𝐹𝑃+𝑇𝑁+𝐹𝑁
 () 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
 () 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑅𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃

𝐹𝑃+𝑇𝑁
 () 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  =  
𝑇𝑃

𝐹𝑃+𝑇𝑃

 () 

𝐹1 𝑆𝑐𝑜𝑟𝑒  = 2 ∗ 
𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 () 

In this context, the abbreviations TN, TP, FN, and FP 

represent True Negative, TruePpositive, False Positive, and 

True Negative respectively. For the purpose of estimating such 

parameters, the confusion matrix is utilized. This matrix 

provides information regarding the incorrect and correct 

categorization of images across all categories. 

• The ROC Curve: The receiver operating characteristic

(ROC) curve is a graphical representation of the ROC

curve's performance at various thresholds. The

approach is dependent on two factors, which are the

True Positive Rate (TPR) and the False Positive Rate

(FPR), which are represented by equations (7) and (8),

respectively. The ability of the model to accurately

detect true positives while also minimizing the number

of false positives over a variety of threshold settings is

illustrated by this visualization, which provides useful

insights.

𝑇𝑃𝑅  =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (7) 

𝐹𝑃𝑅  =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (8) 

B. Experimental setup.

In order to achieve optimal performance, the mask-EffNet 

model that has been recommended is constructed using the 

Google Colab Pro framework. This framework makes it 

possible to train and evaluate the model more quickly, which 

is beneficial for the process of developing and testing the 

strategy that was presented. The experimental configuration 

employed in this research study is outlined below: This work 

utilizes Python for model training, explicitly depend on the 

Keras package with TensorFlow as its backend tool. Utilizing 

Google Colab pro with T4 GPU which has a substantial 25 GB 

of RAM that ensures efficient computation and facilitates the 

execution of complex tasks in machine learning with optimal 

resource utilization. 

C. Hyper-parameters Setup

In order to optimize the training of the model and to get the 

required results in classifying lung cancer, we performed 

empirical tests for adjusting several hyperparameters. This 

include a range of elements such as optimizers and batch size. 

A decay factor of 0.3 was implemented to enhance learning 

rate, and drop connect rate of 0.3 was established to provide 

further regularization during the fine-tuning process, while 

ensuring that the ImageNet weights remain unaffected. 

Throughout training, a mini-batch size of 35 was used, with 

EfficientNetB7 trained for 100 epochs. Validation sets, 

comprising 20% of training photos per epoch, aided in 

assessing model efficacy and detecting overfitting. The 

optimal values for hyperparameters, which were determined 

after fine-tuning and conducting many test cases which are 

shown in Table 5. 

Table 5 HyperParameters 

Hyper Parameters Values 

Input dimension 224 * 224 * 3 

Dropping Rate 0.3 

Activation Function for output Softmax 

No of Epoch 100 

Size of Batch 35 

Learning Rate 0.3 

D. Analysis of Experimental Results

This study introduces a novel DL approach for lung cancer 

categorization, employing the Mask-EffNet architecture on CT 

scan images. The dataset, consisting of 1142 CT scan images 

sourced from 126 patients, includes 122 benign and 564 

malignant cases.  

Data augmentation techniques were applied to augment the 

dataset. The data was split into training and testing sets, 

maintaining a consistent ratio in both augmented and non-

augmented scenarios. This methodology ensures a balanced 

representation of benign and malignant cases, facilitating 

robust training and evaluation of the proposed classification 

model. Prior to being used for training purposes, all of the CT 

scan pictures underwent pre-processing.  

1) Analysis without Data Augmentation

The model that was suggested achieved average test

accuracy of 98.36%. Table 6 presents the precise outcomes 

produced from the Mask-EffNet model with no data 

augmentation. Fig. 10 displays the graphical representation of 

the model efficacy in the absence of data augmentation. 

Table 6 Performance of Mask-EffNet without data augmentation 

Types of Lung 

Cancer 

Recall 

in 

(%) 

Precision 

In (%) 

F1-

Score 

in (%) 

Accuracy  

in (%) 

Benign 93.22 96.47 94.68 98.14 

Malignant 99.21 98.18 99.53 98.39 
Normal 98.27 97.36 98.45 98.56 

Average 96.90 97.33 97.53 98.36 
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Fig. 10. Performance analysis of the Mask-EffNet without Augmentation of dataset

A confusion matrix is employed to evaluate the ability of a 

model of categorization to accurately predict outcomes on 

new, unseen test data. The confusion matrix displays the 

number of estimated designations on the horizontal x-axis for 

each class, together with their corresponding true designations 

on the corresponding vertical y-axis. In this method, the initial 

step entails comparing the labels predicted by the model with 

the true labels. Following this, correct predictions are tallied. 

Fig. 11 displays the proposed approach's performance through 

a confusion matrix, showing prediction accuracy without data 

augmentation. This matrix offers a comprehensive breakdown 

of the model's performance, in terms of classification 

evaluation. 

Fig. 11. Confusion matrix without Augmentation 

2) Analysis with Data Augmentation

The dataset utilized in the present research incorporated

data augmentation and comprised of 4293 lung CT scan 

pictures sourced from the "IQ-OTH/NCCD dataset".  

Among these, 1356 images were classified as benign, 1356 

as malignant, and 1346 as normal. Prior to being inputted into 

the suggested Mask-EffNet model, the photos underwent pre-

processing. The model underwent a fine-tuning process using 

a dedicated training dataset and was subsequently assessed 

using a separate test dataset. Impressively, it achieved a high 

test accuracy of 98.98%. The ROC score, ranging from 0.97 to 

0.98, further attests to its robust performance. Mask-EffNet 

models were constructed using a compound scaling technique, 

ensuring optimal adjustment of depth, width, and resolution 

while maintaining accuracy and minimizing complexity.  

The Table 7 shows the performance of an EfficientNet 

model with data augmentation for classifying lung cancer into 

Benign, Malignant, and Normal types. The average metrics 

indicate strong overall performance, particularly in classifying 

malignant cases. 

Table 7 Performance Analysis of EffNet with data augmentation 

Types of 

Lung 

Cancer Recall Precision F1-Score Accuracy 

Benign 94.45 96.50 92.96 98.82 

Malignant 99.56 98.20 99.29 97.52 

Normal 98.88 97.11 95.18 96.40 

Average 96.60 96.05 95.03 96.31 

With 6 million features, the model demonstrated 

exceptional performance on the test dataset. Table 8 presents a 

comprehensive overview of the model's outcomes, including 

those incorporating data augmentation. Fig. 12 displays the 

graphical representation of the model efficacy in the with data 

augmentation. Fig. 13 shows the performance comparison on 

EffNet without MADE and augmentation versus EffNet with 

MADE and augmentation. Fig. 14 displays the proposed 

approach's performance through a confusion matrix, showing 

prediction accuracy with data augmentation. This matrix offers 

a comprehensive breakdown of the model's performance, in 

terms of classification evaluation. 

Table 8 Performance Analysis of Mask-EffNet with data augmentation 

Types of Lung 

Cancer 

Recall 

in (%) 

Precision 

In (%) 

F1-Score 

in (%) 

Accuracy 

in (%) 

Benign 97.22 99.47 95.65 98.93 

Malignant 99.68 99.08 99.53 99.39 

Normal 99.25 98.38 98.15 98.63 

Average 98.71 98.97 97.77 98.98 
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Fig. 12. Performance analysis of the Mask-EffNet with Augmentation of dataset 

Fig. 13. Performance analysis of the Mask-EffNet and EffNet with Augmentation of dataset 

Fig. 14. Confusion matrix with Augmentation 

E.Comparison on Lung-EffNet versus previous

state-of-the-art methods.

Mask-EffNet has demonstrated improved analysis in the 

classification of lung cancer operations as compared to other 

existing models. Mask-EffNet's exceptional performance can 

be attributed to its capability to extract characteristics from the 

input photos. Mask-EffNet employs convolutional and pooling 

layers, progressively extracting image features, enhancing 

understanding from preceding layers for comprehensive 

feature representation. This iterative process enables the model 

to capture intricate visual details critical for precise 

categorization. Compared with the existing work, the proposed 

Mask-EffNet architecture has demonstrated superior 

effectiveness and versatility in image analysis tasks.  

The suggested method was evaluated against current 

models to determine its accuracy. To provide an accurate 

comparison, the train-test split ratio and dataset were kept 

consistent. To provide a fair comparison, we will make sure 

that the ratio of training data to testing data is the same, 

specifically 80:20. Table 9 contains a detailed examination of 

the Mask-EffNet protocol compared to the most advanced 

methods available. The comparison table shows various 

methods for achieving high accuracy scores in various 

evaluation metrics. Some methods use CNN, while others use 

GoogleNet DNN, ShuffleNet with coati optimization, ResNet, 

MobileNetV2, Xception, VGG16, EfficientNet, and Random 

Forest. The Mask-EffNet method, which introduces 

EfficientNetB7 with masked autoencoder, achieves the highest 

accuracy scores, ranging from 97.77% to 98.98%. Other 

methods use EfficientNet, GoogleNet DNN, and ShuffleNet 

with coati optimization. The Mask-EffNet method outperforms 

others in terms of accuracy with respect to other measure of 
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100

Recall Precision F1-Score Accuracy

Performance Analysis with Augmentation

Benign Malignant Normal Average
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matrices. Fig. 15 depicts an extensive performance assessment 

of the suggested work with current state of the art models. 

Table 9 Comparison of different state of the art methods 

References Methodologies DataSet Recall in 

(%) 

Precision 

In (%) 

F1-Score in 

(%) 

Accuracy 

in (%) 

Atiya, S [26] CNN Own 

Dataset 97.50 97.78 97.69 97.57 
AL-Huseiny [3] GoogleNet DNN IQ-

OTH/NCCD 97.14 97.14 97.39 98.02 

AlGhamdi, R. [18] ShuffleNet with coati optimization LC25000 
98.39 98.63 97.39 98.88 

Shouka et al. [21] ResNet, MobileNetV2, Xception, 

and VGG16 

IQ-

OTH/NCCD 97.46 97.18 96.02 97.69 

Raza et al. [14] EfficientNet IQ-
OTH/NCCD 98.24 98.18 97.61 97.78 

Saleh, A. Y. [19] CNN and Random Forest IQ-

OTH/NCCD 98.19 97.50 96.09 98.79 
Chui, K. T. [28] Modified GAN NSCLC-

Radiomics 97.48 98.16 96.83 95.53 

Humayun, M. [27] VGG16 and CNN IQ-
OTH/NCCD 97.6 97.5 97.25 97.67 

Narin N. [7] AlexNet and ResNet IQ-

OTH/NCCD 98.5 96.8 97.32 98.62 
Mask-EffNet 

(Proposed) 

EfficientNetB7 with masked 

autoencoder 

IQ-

OTH/NCCD 

98.71 98.97 97.77 98.98 

Fig. 15. Performance Analysis comparison of the Mask-EffNet with different existing  work

F. The effect of data splitting

Multiple tests are being carried out to investigate the

influence of various data divisions on the effectiveness of the 

suggested Mask-EffNets. To evaluate the model's efficiency, 

we varied the proportions of training and testing data and 

thoroughly analyzed the results across different splits. These 

included the initially suggested 80:20 split, along with 60:40, 

70:30 and 90:10 splits, detailed in Table 10. The table presents 

the results of a model evaluation on different data splits for a 

classification task. The model achieved recall of 97.23%, 

precision of 97.43%, F1-Score of 97.99%, and accuracy of 

98.19% for the 60:40 data split. For the 70:30 data split, recall 

was 97.49%, precision of 98.26%, F1-Score of 97.37%, and 

93 94 95 96 97 98 99 100
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Mask-EffNet (Proposed)

Performance Comparison with Existing work

Accuracy F1-Score Precision Recall
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accuracy of 98.35%. For the 80:20 data split, recall was 

98.71%, precision of 98.97%, F1-Score of 97.77%, and 

accuracy of 98.98%. For the 90:10 data split, recall was 

98.93%, precision of 99.15%, F1-Score of 98.83%, and 

accuracy of 99.23%. The highest performance was achieved 

with the 90:10 data split, indicating the model's benefit from 

more training data. Fig. 16 depicts the efficiency assessment of 

fine-tuned Mask-EffNets across these splits. Particularly, the 

model's performance was affected through the partitioned data 

and emphasizing on the significance of training set size in 

transfer learning efficiency. 

Table 10 Evaluation of Mask-EffNet with different data split-up 

Spilt-up Recall in 

(%) 

Precision 

In (%) 

F1-Score 

in (%) 

Accuracy 

in (%) 

60:40 97.23 97.43 97.99 98.19 

70:30 97.49 98.26 97.37 98.35 

80:20 98.71 98.97 97.77 98.98 

90:10 98.93 99.15 98.83 99.23 

Fig. 16. Performance analysis with various split-ups 

G. Computational Complexity

The study meticulously examines the computational 

complexity of EfficientNet models (B0 to B4), considering 

parameters, FLOPS, network size, training and inference 

times, and test accuracy. Following Table 11 the 

computational profiles of these models alongside other deep 

learning architectures, all trained and assessed under identical 

hyper-parameter settings on a shared dataset.  

EfficientNetB0 initiates with 4.01 million parameters, 

progressively expanding in complexity through 

EfficientNetB1 (6.41 million), B2 (7.60 million), B3 (10.80 

million), and B4 (16.65 million). This progression 

underscores how deeper architectures, characterized by 

increased convolutional layers, amplify model parameters, 

thus affecting computational demands in deep neural network 

design and deployment. Following table show the 

computational complexity of proposed Mask-EffNet model. 
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Table 11 Computational Complexity analysis of the proposed Mask_EffNet 

6. Conclusion And Future Work

For the early diagnosis of lung cancer from CT scan 

pictures, the Mask-EffNet hybrid model, which combines a 

masked autoencoder for extraction of essential features and a 

pre-trained EfficientNetB7 for essential classifications, 

demonstrates promising results. Feature learning, 

dimensionality reduction, uncertainty estimates, imbalanced 

data management, transfer learning, and model interpretability 

are some of the difficulties that are addressed by the model. A 

ROC score ranging from 0.9782 to 0.9872 degrees and an 

accuracy of 98.98% were some of the impressive results 

achieved by Mask-EffNet in trials run on the "IQ-

OTH/NCCD" benchmark dataset. These results shed insight on 

the potential for improving medical imaging diagnostic 

systems by combining CNN with sophisticated DL techniques. 

The benefits of the proposed approach are shown by the 

experimental results. When compared to other CNN 

architectures, the Mask-EffNet design always comes out on top 

in terms of efficiency and accuracy. Moreover, our results have 

important consequences for future attempts to diagnose and 

classify lung cancer, particularly using TL in conjunction with 

EfficientNetB7. New avenues for research and development in 

medical image analysis are opened up by this method. By 

demonstrating the efficacy of Mask-EffNet, employing an 

efficient design model, our work emphasises the possible 

influence for improved diagnostic accuracy and efficiency in 

lung cancer detection. These insights provide a foundation for 

additional research focused on improving and expanding the 

use of TL techniques in healthcare imaging, finally by 

contributing to enhanced patient care and outcomes. 

A.Future Research

Our findings bear significant implications for lung cancer

diagnosis, especially regarding TL with EfficientNets. This 

approach opens promising avenues for medical image analysis 

advancement. Future research may explore alternative DL 

architectures alongside transfer learning, and enhancing model 

performance through larger datasets and synthetic data 

generation methods like GANs. Integration of clinical data 

augments potential research avenues. Expanding datasets to 

include diverse cases and demographics enhances model 

robustness. Future exploration of TL with EfficientNets on 

larger datasets promises deeper insights into model 

performance across varied scenarios. Augmenting the dataset's 

size would furnish additional evidence of the efficacy of the 

proposed methodology in real-world contexts, fortifying its 

adaptability and applicability across a myriad of clinical 

scenarios. This comprehensive approach promises to improve 

the reliability and generalizability of diagnosis of lung cancer 

disease along with their classification.  
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Model 
FLOPs 

(G) 

No. of 

parameters 

Training time 

(hh:mm:ss) 

Testing time 

(hh:mm:ss) 

Model size 

(MB) 

Test 

accuracy 

(%) 

EfficientNetB0 0.95 4,021,391 0:03:20 0:00:02 46.2 93.67 

EfficientNetB1 1.42 6,417,027 0:46:40 0:00:01 75.4 97.2 
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