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Abstract. The distribution transformer (DT) is crucial
for connecting utility providers to consumers, and its
failure can disrupt the distribution network's reliability.
The Provincial Electricity Authority (PEA) in Thailand
manages a large number of transformers, necessitating
efficient maintenance planning to prevent DT failures. This
paper introduces a method for classifying the condition of
33 kV DTs without pre-existing cluster data, utilizing the
K-means clustering algorithm on data from 150 samples.
The dataset includes 7 features from DT annual
maintenance records and the Geographic Information
System (GIS) of PEA Southern Area 3. Key factors
identified are insulation between high voltage and ground,
high-low voltage, and low voltage-ground. The method
categorizes DT conditions into three clusters: "poor,”
requiring urgent action; "risk,"” requiring close
monitoring; and "normal,"” requiring routine maintenance.
Validation with K-Nearest Neighbors yields an accuracy of
96.67%, demonstrating the effectiveness of the proposed
classification method.
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1. Introduction

The distribution transformer (DT) serves as the
primary link between utility providers and consumers, and
its failure significantly impacts the reliability of the
distribution network. Monitoring the health of transformers
for external and internal factors can extend their
operational lifespan and maintain network stability [10].
Short-circuits (SC) in transformer windings can lead to
very high temperatures, resulting in conductor melting
failures [11]. Additionally, factors such as high
temperatures, overloads, unbalanced loads, insulation
issues, and transformer inrush currents contribute to DT
degradation [12].

Preventive maintenance plays a crucial role in
transformer upkeep, aiming to minimize DT failures and

facilitate effective maintenance planning. This requires
tools, methods, or expert knowledge for condition
classification. The Provincial Electricity Authority (PEA),
Thailand's largest electric power service provider, manages
the most extensive network of DT installations. Thus, it is
essential to classify DT conditions to enhance reliability
and reduce failures. Traditionally, condition classification
focused on power transformers in substations, while DTs
typically underwent only preliminary checks, often
insufficient for accurate condition assessment, leading to
frequent trans-former breakdowns.

Efficient and uninterrupted electricity distribution
within a network requires the effective classification of
abnormal events in power transformers for maintenance
planning. Previous research has highlighted the application
of Machine Learning (ML) models and mathematical
approaches for analyzing, predicting, and classifying
transformer abnormalities to optimize maintenance sche-
dules, thereby enhancing electricity distribution efficiency.
For instance, M. Abdillah et al. [2] introduced a
Prognostics Health Management (PHM) system utilizing a
kernel extreme learning machine (K-ELM) to evaluate the
health of power transformers, employing two distinct
datasets. The first dataset (Set-1) pertains to parameters
assessing transformer efficiency, while the second dataset
(Set-2) focuses on overall health assessment. The PHM
system demonstrated an assessment accuracy of 68.67%
with Dataset-1 and 93.61% with Dataset-2. However, the
system's reliance on K-ELM necessitates a substantial
amount of comprehensive data for model training, and the
limited scope of the datasets used for testing constrains the
ability to fully assess the health of power transformers. A.
J. Patil et al. [5] proposed a computational algorithm to
develop a Fuzzy Logic model aimed at reducing dep-
endence on experts and enhancing accuracy in transformer
health assessment. The development process of the Fuzzy
Logic model comprises five steps: (1) Fuzzy Logic for
Condition Indicator Score (CIS), utilized for oil turbidity
analysis, power factor analysis, efficiency, and life
expectancy analysis of transformers; (2) Computation of
Primitive Health Index (PHI), which involves general
health analysis of the transformer and decision-making
conditions of the Fuzzy Logic model; (3) Testing the
decision-making conditions of the model; (4) Adjustment
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of PHI, where decision-making conditions are refined post-
testing; and (5) Final Health Index (HI), determining the
transformer's health status. The HI categorizes transformer
health into three groups: Good (HI range: 8-10), Fair (HI
range: 4-7), and Poor (HI range: 0-3). The limitations of
this model include the necessity for expert involvement in
the initial step, and the accuracy of the health assessment
heavily relies on the precision of the input data. Fur-
thermore, the model is not suitable for real-time monitoring
analysis. D. Granados-Lieberman et al. [1] present a
system for real-time detection of short-circuits in power
trans-formers using a Harmonic Phasor Measurement Unit
(HPMU) and a Fuzzy Logic model. The operation of the
short-circuit detection system is divided into five steps: (1)
Data is read from the HPMU, an extension of the PMU,
which includes magnitude, phase, and frequency infor-
mation; (2) Real-time harmonic data measured in the first
step is sampled to prepare for classification by the Fuzzy
Logic model; (3) The sampled harmonic signal data is
classified to detect short-circuit abnormalities in the power
transformer; (4) Identification of short-circuit abnor-
malities within the power transformer after classification
by the Fuzzy Logic model; and (5) Validation of the event
analysis performed by the Fuzzy Logic model. The
system's test results show it can detect minor harmonic
signal changes indicating short-circuit abnormalities more
effectively than traditional methods and supports real-time
monitoring of such abnormalities. Limitations include the
dependency of the Fuzzy Logic model's accuracy on the
quantity of data used for its decision-making and the
complexity of developing or customizing the system
parameters to fit the model. X. Zhao et al. [3] proposed a
system for real-time analysis of irreversible deformations
of power transformer internal components caused by
mechanical and electromotive forces (winding defor-
mations). The analysis method utilizes V-l Lissajous
Patterns, which describe the relationship between the
voltage drop across the transformer terminals and the
current flowing through them. These characteristics enable
the identification of abnormal winding deformations
within the transformer. The proposed system demonstrates
high sensitivity to minor winding deformations and offers
high repeatability. However, it requires high-precision data
for accurate internal fault analysis. Additionally, the
system's effectiveness is limited by the complexity of
model development, as the accuracy of fault analysis
depends on the fine-tuning of the V-1 Lissajous Patterns
model, a process that is both complicated and time-
consuming. W. Wattakapaiboon et al. [8] presented the
Health Index (HI) method for evaluating maintenance
planning conditions of transformers in the industrial sector
and power distribution systems. This method was
developed to reduce the number of parameters used for
testing and maintenance planning. The results indicate that
the HI method can reduce the evaluation parameters from
24 to 15, with a deviation in evaluation scores of
approximately 7% compared to the original method.
Additionally, the method is user-friendly for field
applications. However, by reducing the number of
evaluation parameters, the method may not cover certain

conditions and has limited verification of evaluation
accuracy.

This study introduces a method for classifying the
condition of 33 kV distribution transformers (DTs) without
pre-existing cluster data, employing the K-means
clustering

algorithm, a widely-used technigue in machine learning.
The K-means algorithm is favored for its ease of
application, customization, and efficiency, particularly in
scenarios involving large datasets. It also requires less
processing time compared to other clustering algorithms
[15], [16]. The study is based on 150 samples and 7
features extracted from the annual maintenance records of
DTs in PEA, Southern Area 3. Geographic Information
System (GIS) software, which facilitates data
management, analysis, and visualization in diagrammatic
or three-dimensional formats, is utilized to assist in
maintenance  planning and  enhance  operator
comprehension [17]. The primary objective is to optimize
maintenance planning and reduce DT failures.

2. Comparison of General Methods for Fault
Classification in Transformers

Table 1 presents a comparison of methods used for
fault classification in power transformers. Previous studies
have primarily focused on assessing transformer
conditions or detecting faults using chemical tests such as
Dissolved Gas Analysis (DGA), Furan testing, breakdown
voltage (B.V.), and oil quality. While these methods are
accurate and widely adopted in the industry, they involve
high costs for sample collection and testing. On the other
hand, electrical tests, including V-1 characteristics and
insulation tests, offer real-time data crucial for transformer
failure analysis but require extensive datasets for algorithm
development and real-time signal detection. Much of the
existing research has been dedicated to the deterioration
assessment of power transformers, often through costly
chemical testing or real-time data collection using signal
detectors. These methods may not be cost-effective for
routine transformer condition assessment. Therefore, this
study explores an alternative approach to assessing or
classifying distribution trans-formers using annual test
results, incorporating both chemical and electrical tests.
This approach is intended to provide a more cost-effective
solution for maintenance planning by offering a
comprehensive method for trans-former condition
assessment.
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Table 1 Comparison of General Methods for Fault Classification in Transformers

Author

Contributions

Methods

Results

Advantages

Limitations

Al
Patil et
al. [5]

C.-T.
Lee
[18]

M.
Abdilla
hetal.

[2]

- Fuzzified approach
for Health Index
(HI) determination
in transformer diag-
nostic tests.

Incorporates
decision logic for
Tier-2 test selec-
tion and Primitive
Health Index (PHI)
adjustment.

- Developed FLCDT
to classify abnormal
defects in castresin
transformers.

FLCDT
outperforms CART
and See5 in classi-
fication precision.

- K-ELM method
applied for power
transformer health
assessment in engi-
neering field.

Fuzzy logic applied
for Condition In-
dicator Score (CIS)
computation  and
Health Index (HI)
determination.

Decision logic uti-
lized for Tier-2 test
selection based on
Tier-1 results.

Distinct fuzzy mo-
dels developed for
each Diagnostic Test
(DT) and Se-verity
Indicator (SI) in HI
computation.

Ultrasound, acoustic
emission, UHF ant-
enna, electrical con-
tact, optical, and ra-
dio frequency sen-
sing.

Fuzzy Logic Clus-
tering Decision Tree
(FLCDT).

See5 and CART sof-
tware packages for
classification
comparison.

Kernel Extreme Lea-
ring Machine (K-
ELM)

Support Vector Ma-
chine (SVM)

Least-Squares
Support Vector Ma-
chine (LS-SVM)

Fuzzy model enha-
nces Health Index
(HI) computation us-
ing diagnostic test
results.

Decision logic se-
lects non-routine
tests based on rou-
tine test outcomes.

Fuzzy model acco-
unts for mainte-
nance history and ex-
pected lifespan in HI
computation.

FLCDT
outperformed CART
and See5 in classi-
fication precision.

FLCDT

compared with See5
and CART software
packages.

Proposed PHM sys-
tem using K-ELM ac-
hieved 100% accu-
racy in transformer
health assessment.

Testing phase accu-
racy for K-ELM was
68.67%.

Set-1 dataset yielded
68.67% accuracy in
transformer health as-
sessment.

Set-2 dataset achi-
eved 93.61% accu-
racy in transformer
health assessment.

- Fuzzy model reduces

reliance on diagnostic
experts.

Fuzzy logic effect-
tively manages un-
certainty in condition
indicators.

Achieves higher clas-
sification  accuracy
with lower compu-
tational complexity.

Integrates hierar-
chical clustering with
decision tree for en-
hanced classification
results.

Outperforms CART
and See5 in classi-
fication precision.

K-ELM PHM system
outperforms  SVM,
LS-SVM, and ELM
in accuracy.

Faster learning algo-
rithm with superior
generalization and ac-
curacy rates.

Achieves 100%
health assessment ac-
curacy for power tra-
nsformers.

Traditional tech-niques are
limited in computing health
indices.

Fuzzy models eli-minate
the reliance on diagnostic
ex-perts for assess-ments.

Relies on expert judgments
for partial dis-charge (PD)
classification and defect
level deter-mination.

Challenges in deter-mining
the optimal composition
level for wavelet analysis.

Clusters of PD patterns
close in fractal map may
lead to misidentification.

Limited comparison with
other machine learning
models for transformer
health assessment.
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Table 1 Comparison of General Methods for Fault Classification in Transformers (continue)

Author

Contributions

Methods

Results

Advantages

Limitations

X. Zhao
etal. [3]

M.
Raichur
aetal.
[20]

A.S.
Mogos
[19]

New algorithm de-
veloped to eliminate
load dynamics' ef-
fect on transformer
V-I characteristics.

Sensitivity and re-
liability of the V-I
technique assessed
through  practical
measurements.

Assessment  con-
ducted on the effect
of substation noise.

Data  acquisition
system developed
for capturing V-I
characteristics.

Hardware deve-
loped for real-time
monitoring of trans-
former winding co-
nditions.

CNN-XGBoost
proposed for trans-
former fault classi-
fication with high
accuracy.

Performance com-
parison with RVM
and HE-ELM tech-
niques.

Hybrid  one-class
deep SVDD method
for predicting distri-
bution transformer
failures.

Employs SMOTE
for data preproce-
ssing and mRMR
for feature sele-
ction.

Reduces costs using
historical main-
tenance data and
risk index.

V-I Lissajous pattern
method utilized for
transformer fault de-
tection.

Compensation tech-
nique proposed to
eliminate load influ-
ence on the mea-
sured ellipse.

CNN-XGBoost
integration for class-
ification.

Relevance  Vector
Machine (RVM) and
hierarchical
ensemble of ELM.

Introduction of a
novel hybrid one-
class classification
method.

Utilization of
mRMR for enhan-
cing classification
accuracy.

Application of Syn-
thetic Minority Ov-
ersampling  Tech-
nique (SMOTE) to
address data imba-
lance.

- V-l Lissajous pattern

method validated th-
rough practical mea-
surements.

New compensation
approach proposed to
eliminate transformer
loading variation eff-
ects.

Lissajous graphical
method validity ver-
ified in a practical en-
vironment.

Proposed technique
achieves 99.95% acc-
uracy in classifying
internal faults.

XGBoost  classifier
demonstrates  high
precision in disting-
uishing transformer
operational
conditions.

CNN-XGBoost
method attains 100%
accuracy in identi-
fying magnetizing in-
rush conditions.

mRMR algorithm
selects 13 important
features for classi-
fication.

Exclusion of low-
impact features en-
hances model accu-
racy and perfor-
mance metrics.

Simulation results
demonstrate  impro-
ved recall, F1, and F2
scores with mRMR.

Analysis conducted
using real-world data
from 15,066 trans-
formers in Colombia.

Real-time detection
of winding deforma-
tions in power trans-
formers.

Feasibility of V-I
Lissajous pattern me-
thod for practical app-
lications.

Compensation appro-
ach effectively elimi-
nates loading effects
on measured ellipses.

Perfect alignment of
ellipses across vary-
ing load magnitudes.

Achieves 99.95%
classification  accu-
racy within 22 ms.

Efficient feature ex-
traction using 1D
CNN and XGBoost
combination.

Validated  through
real-time  hardware
for practical imple-
mentation.

Applicable to health
assessment of various
power system equip-
ment.

Utilizes feature
importance scores in
the selection process.

Incorporates mutual
feature  information
for both continuous
and discrete variables.

- Load dynamics influence
V-| characteristics.

- Digital filtering nece-
ssary due to high back-
ground noise.

- Impact of load and vol-
tage imbalance on mea-
sured ellipses.

- RVM method requires
longer  computational
time with larger datasets.

- CNN-XGBoost  tech-
nique not compared with
SVM for classification
accuracy.

- Less important features
impact  classification
accuracy, necessitating
mRMR  feature sele-

ction.
- Synthetic data is
commonly used in

research but may not
accurately represent real-
world scenarios.
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Table 1 Comparison of General Methods for Fault Classification in Transformers (continue)

Author Contributions Methods Results Advantages Limitations
R.M.A. - Mathematical Mathematical - Novel algorithm for - Gene identification Limited data avai-
Velasquez modeling and opti- modeling image segmentation linked to therapeutic lability.
etal. [4] mization techniques techniques. presented. resistance.
discussed. Potential bias in anal-
Computational - Superior accuracy - Model training en- ysis.
simulations and efficiency com- hanced using Open-
conducted. pared to existing VC dataset. Small sample size
methods. constraints.
Statistical  analysis
performed.
- Data visualization
methods applied.

W. - New HI table for - Dissolved Gas - 7% difference in - New HI table - Furanic compound
Wattakap transformer  condi- Analysis (DGA) em- scores between the requires fewer te- testing was  dis-
aiboon et tion assessment fea- ployed for detecting conventional  and sting parameters for continued for the new
al. [8] turing  simplified incipient faults in new HI tables. transformer  condi- HI table.

parameters. transformers. tion assessment.
- Similar test result - Ambiguous para-
- Visual inspection - Health Index (HI) interpretation obser- - Reduces operational meters in the con-
rating incorporated method used for tra- ved in most cases. costs and is practical ventional HI table were
into the HI table for nsformer condition for transformer mai- consolidated into

assessment and mai-
ntenance planning.

enhanced clarity.

- Visual inspections,
oil quality tests, and
power factor tests
are also utilized.

ntenance planning. visual inspec-tion.
- Employs simplified

testing parameters

for evaluating trans-

former conditions.

3. Methodology

The data used in the condition classification analysis
comprises numerical values and includes 150 samples with
7 features derived from the annual maintenance results of
distribution transformers (DT) and the Geographic
Information System (GIS) of PEA, Southern Area 3. This
study employs recursive feature elimination (RFE) for
feature selection and a K-means clustering algorithm for
feature classification. A detailed explanation of all features
is provided in Table 2. The visual inspection feature (F3)
pertains to the external inspection of DTs conducted with
the naked eye, encompassing 7 specific items outlined in
Table 3. The input data, initially unclustered, is classified
based on the 7 features using the K-means clustering
algorithm, as illustrated in Fig. 1. From the dataset of 150
samples and 7 features, correlation analysis is performed
using the correlation equation, a widely used technique to
identify relationships between features, offering a highly
general and flexible data analytic approach [7]. The
Pearson correlation equation is particularly popular for this
purpose. This study employs all features to analyze the data
for relationship values, as shown in equation (1).

n _ _
ZO(Xi =Xi)(Yi —Yj)
Poaivi) ~ = €

n — —
X0 - x)% —Silyi - vp)?

i=0

Where p,_ is Correlation between feature X; and Y,
(xiv) i i

The significance of each feature can be determined
using Recursive Feature Elimination (RFE). RFE is a
widely used machine learning technique for feature
selection due to its ease of configuration and effectiveness.
It identifies the most or least relevant features in a training
dataset for predicting the target variable. The method ranks
features by evaluating the impact of removing one feature
at a time on the objective function. The iterative procedure
of RFE involves the following steps [14][13]:

1. Train the classifier (optimize the weights w, with
respectto J).

2. Compute the ranking criterion for all features
(DI (i) or (w,)?).

3. Remove the feature with the lowest ranking
criterion.

Wi = (4 (+H) - () (oi(+H) +0i(-) @
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Where (; and o; are the mean and standard

deviation of the gene expression values of gene i for all
the patients of class (+) or class (-),1 =1,... n.

. 0%]
DJ (i) = (1/2) 5= (Dw,)? ®
ow;
Where Dw, is W; corresponds to removing feature
I, Jis cost function, which j =5, _y [w.x—y|? for the
mean squared error and J = (1/2) ||w||2 for support vector
machines (SVMs).

Input data without cluster

}

Feature Selection using RFE

|

Number of clusters using
Silhouette Score

!

Classification using K-mean

}

Test cluster of Data

|

Output data with cluster

Fig. 1 Operation of the K-means clustering algorithm.

Once the important features are identified, the next
step is to determine the appropriate number of clusters,
which can be achieved using the Silhouette score. This
technique helps fine-tune the optimal number of clusters
by measuring how similar instances are to their own
cluster compared to other clusters. The Silhouette score
ranges from -1 to 1, with higher scores indicating that
instances are more similar to their own cluster and less
similar to other clusters, as described by Equation (4) [6].

s(i) =2l _
max{a(i),b(i)}
Where s(i) is silhouette score at i, b(i) are least
dissimilarity mean of 1 with other clusters, a(i) are
dissimilarity mean of i with all instance in the cluster.

(4)

K-means Clustering (K-means) is a method in
unsupervised learning for data mining, aimed at statistical
classification by creating clusters such that data within the
same cluster are highly similar, while data in different
clusters are distinctly different. The computation begins
with the dataset, where k is a hyperparameter specified at

the start. It represents the number of cluster centroids and
is determined based on the appropriate number of clusters
identified using the Silhouette score.

The center of k points x; = (xil, X|2 xir)(i =12,...,k)

is defined as c:(cl,cz,...,cr) where c'is mean of

xil, X|2 x' This method obtains set M of k centroids by

the iteration of a starting set M, of k points of r-

dimensional Euclidean or R". The method consists of the
following step [9]:
1. Start with the initial list of centers
Mg =(m,mp,...mg), where M, are distinct
points in an r-dimensional real distance space
R". (Initial step)
2. 1. Let X =(x1,X2,...Xn) be the dataset. If for a
fixed X; d(xi7mj) is minimum for j=p,xj is
assigned the value m, . Thus each X; is assigned

one of the k elements of M|, . (Assignment step)

3. Let St be the set of points of X , which are

assigned the center m, . Let mt is the center of

the points belonging to S Where

.
Mlz(mi,m%,...,mﬁ) is the updated list of
centers and the 1% iterate of M. We repeat the

steps to get a sequence (M,) of iterates which

converges to the optimal list M of centroids in a
finite number of steps. (Update step)

4. Results and Discussion

This research demonstrates the correlation between
each factor, the importance of each factor, the
quantification of clusters, and the classification of 150
samples. The results of the feature correlation analysis
indicate that four factors positively affecting transformer
condition are oil breakdown voltage (F1), high voltage—
ground insulation (F4), high voltage-low voltage
insulation (F5), and low voltage—ground insulation (F6).
Three factors negatively affecting transformer condition
are age (F2), visual inspection (F3), and load (F7). The
highest positive correlation is between F5 and F6, and F4,
while F2 and F6 exhibit the highest negative correlation, as
shown in Fig. 2.
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0.0
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RO ORTY 0.94 0.96
0.19 -0.21 -0.21 -0.22 —0.8
FlL F2 F3 F4 F5 F6 F7
Fig. 2 Feature correlation
Table 2 Feature information
Feature Information
F1 Oil breakdown voltage (kV/2.5 mm.)
F2 Age (years)
F3 Visual inspection (Number of defects)
F4 High Voltage — ground Insulation (Mohm)
F5 High — Low Voltage Insulation (Mohm)
F6 Low Voltage — ground Insulation (Mohm)
F7 Load (%)
Table 3 Visual inspection feature
Feature Information
1 Gaskets, Seals
2 Oil leaks
3 Oil Level
4 Bushing Condition
5 Oil Tank Corrosion
6 Main Tank Corrosion
7 Grounding

The silhouette score at 7 features shows the best
silhouette score is 0.3234 at 2 clusters, and the inferior
score is 0.2873 at 3 clusters. This paper used 2 clusters due

to the resolution of the clusters in the data shown in Fig 3.
The proportion variance explained an increase in features
affecting the data. This paper used 5 features for data
explanation, accounting for more than 98%. All features
are prioritized using RFE, and the 5 most important
features are selected for determining the number of
clusters, as shown in Fig. 4.RFE identifies the 5 most
important features based on the ranking criterion. The
results indicate that high-low voltage insulation (F5) is the
most important feature, followed by low voltage—ground
insulation (F6), high voltage—ground insulation (F4), age
(F2), and oil breakdown voltage (F1). These features are
utilized to determine the optimal number of clusters, as
shown in Fig. 5. The results from the K-means
classification, shown in Fig. 7, are divided into three
clusters as follows: Cluster Poor: This cluster comprises
distribution transformers (DTs) that have been in operation
for a very long time. Additionally, the insulation resistance
of the windings in this cluster has decreased.

The silhouette score with 5 features is 0.3416, higher than
the score with 7 features, which is 0.2873. The 150 samples
are grouped into clusters using the K-means algorithm, as
shown in Fig. 6. The characteristics of this cluster are as
follows: oil breakdown voltage (F1) ranges from 15.6 to
53.3 kV/2.5 mm, age (F2) ranges from 8 to 44 years, high
voltage—ground insulation (F4) ranges from 250 to 1,200
MQ, high voltage—low voltage insulation (F5) ranges from
210 to 1,080 MQ, and low voltage—ground insulation (F6)
ranges from 100 to 600 MQ. The average values for each
feature are shown in Table 4.

Cluster Risk: This cluster includes transformers that
have been in service for a long time. While the insulation
test results are satisfactory, the oil quality of these DTs is
low, placing them at risk of failure. The characteristics of
this cluster are as follows: oil breakdown voltage (F1)
ranges from 15.9 to 47 kV/2.5 mm, age (F2) ranges from
14 to 44

years, high voltage—ground insulation (F4) ranges
from 1,000 to 1,600 MQ, high voltage-low voltage
insulation (F5) ranges from 1,000 to 1,600 MQ, and low
voltage—ground insulation (F6) ranges from 500 to 1,400
MQ. The average values for each feature are shown in
Table 5.

Cluster Normal: This cluster comprises DTs that have
not been in service for a long time. The insulation test
results are favorable, and the oil quality is high. The
characteristics of this cluster are as follows: oil breakdown
voltage (F1) ranges from 18.1 to 60.8 k\//2.5 mm, age (F2)
ranges from 1 to 37 years, high voltage—ground insulation
(F4) ranges from 1,600 to 2,000 MQ, high voltage—low
voltage insulation (F5) ranges from 1,600 to 2,000 MQ,
and low voltage—ground insulation (F6) ranges from 1,400
to 2,000 MQ. The average values for each feature are
shown in Table 6.
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Silhouette Plot of KMeans Clustering for 150 Samples in 3 Centers
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Silhouette Plot of KMeans Clustering for 150 Samples in 3 Centers

== Average Silhouette Score

cluster label
—

-0.1 0.0 0.1 0.2 0.3 04 0.5 0.6 0.7
silhouette coefficient values

Fia. 6 The silhouette score at 5 features
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Data defining clusters with K-means can establish Each cluster obtained from K-means can be utilized to
distances between clusters and ascertain accuracy using K- construct a decision tree, facilitating the classification of
Nearest Neighbors (kNN). The dataset is divided into 120 transformer conditions, as depicted in Fig. 8.

samples (20%) for training and 30 for testing out of 150

samples. The mean accuracy of the five randomized tests

is 96.67%, as depicted in Table 6.

Fiv s0
60 1 40
S0
30 =
o 407 & 20
30
1y
20
0 -
10 4
—10
Mormal Poor Risk Normal Poor Risk
cluster clusker
2000 4 2000 -
1500 4 1500 -
T 1000 - & 1000 -
500 A 500 -
0 oA
Al T Al T T T
MNormal Poor Risk Normal Poor Risk
cluster clusker
2000 4
1500 4
w
== 1000
500 A
0 -
Marrmal Poor Risk
cluster

Fia. 7 The value of each feature in the cluster
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F6=678.125
entropy = 1,585
samples = 147

value = [49.0, 49.0, 49.0)
class = Normal

False

F4=1471586
entropy = 1.0
samples = 102
value = [49.0, 0.0, 47.115)
class = Normal

F5<1060.104
entropy = 0.939

samples =5
value = [0.0, 3419, 1.885)
class = Poor

Fia. 8 Decision tree

Table 4 Each feature average (Poor) Table 6 Each feature average (Normal)
Feature average value Feature average value
F1 28.5696 F1 36.55
F2 33.09
Fa 856.20 F2 16.30
F5 680.43 F4 1915.09
F6 437.34
F5 1,900.00
Table 5 Each feature average (Risk) F6 1,800.00
Feature average value
F1 29.44
F2 28.81
Fa 1,411.13
F5 1,283.02

F6 1,077.36
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Table 7 Accuracyv results
Test1 Test 2 Test 3 Test4 Test5 Average
100% 96.67% 96.67% 93.33% 96.67% 96.67%

5. Conclusions and Recommendations

The research on distribution transformer (DT)
condition classification using the proposed method
elucidated that the most influential factors affecting
transformer condition are the insulation between high
voltage and ground (F4), high-low voltage (F5), and low
voltage and ground (F6) of the DT. This method effectively
categorizes DT conditions into three clusters. While oil
breakdown voltage (F1) and age (F2) may exhibit trends
less pronounced than insulation values (F4, F5, F6), their
trends still align with the overall pattern. The decrease in
oil breakdown voltage with increasing age signifies
deteriorating  transformer  condition.  Consequently,
maintenance results of DT can be compared with cluster
classifications for condition assessment. The maintenance
approach should prioritize repair or maintenance for the
"poor" cluster, exercise vigilance or perform maintenance
for the "risk™ cluster following the "poor” cluster and
maintain routine maintenance or perform maintenance for
the "normal” cluster.

Despite achieving the research objectives, certain
limitations persist. Firstly, the study is constrained by the
limited number of transformer features examined, typical
of distribution transformers which have fewer monitoring
factors compared to power transformers. Secondly, the
distribution transformers in Thailand operate at various
voltage levels (e.g., 19 kV, 22 kV, and 33 kV), potentially.
leading to differing classification values. Lastly, the
geographical location of the transformer installation,
whether seaside or urban, may also impact classification
outcomes.
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