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Abstract. The distribution transformer (DT) is crucial 

for connecting utility providers to consumers, and its 

failure can disrupt the distribution network's reliability. 

The Provincial Electricity Authority (PEA) in Thailand 

manages a large number of transformers, necessitating 

efficient maintenance planning to prevent DT failures. This 

paper introduces a method for classifying the condition of 

33 kV DTs without pre-existing cluster data, utilizing the 

K-means clustering algorithm on data from 150 samples.

The dataset includes 7 features from DT annual

maintenance records and the Geographic Information

System (GIS) of PEA Southern Area 3. Key factors

identified are insulation between high voltage and ground,

high-low voltage, and low voltage-ground. The method

categorizes DT conditions into three clusters: "poor,"

requiring urgent action; "risk," requiring close

monitoring; and "normal," requiring routine maintenance.

Validation with K-Nearest Neighbors yields an accuracy of

96.67%, demonstrating the effectiveness of the proposed

classification method.
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1. Introduction

The distribution transformer (DT) serves as the

primary link between utility providers and consumers, and 

its failure significantly impacts the reliability of the 

distribution network. Monitoring the health of transformers 

for external and internal factors can extend their 

operational lifespan and maintain network stability [10]. 

Short-circuits (SC) in transformer windings can lead to 

very high temperatures, resulting in conductor melting 

failures [11]. Additionally, factors such as high 

temperatures, overloads, unbalanced loads, insulation 

issues, and transformer inrush currents contribute to DT 

degradation [12].  

Preventive maintenance plays a crucial role in 

transformer upkeep, aiming to minimize DT failures and 

facilitate effective maintenance planning. This requires 

tools, methods, or expert knowledge for condition 

classification. The Provincial Electricity Authority (PEA), 

Thailand's largest electric power service provider, manages 

the most extensive network of DT installations. Thus, it is 

essential to classify DT conditions to enhance reliability 

and reduce failures. Traditionally, condition classification 

focused on power transformers in substations, while DTs 

typically underwent only preliminary checks, often 

insufficient for accurate condition assessment, leading to 

frequent trans-former breakdowns. 

Efficient and uninterrupted electricity distribution 

within a network requires the effective classification of 

abnormal events in power transformers for maintenance 

planning. Previous research has highlighted the application 

of Machine Learning (ML) models and mathematical 

approaches for analyzing, predicting, and classifying 

transformer abnormalities to optimize maintenance sche-

dules, thereby enhancing electricity distribution efficiency. 

For instance, M. Abdillah et al. [2] introduced a 

Prognostics Health Management (PHM) system utilizing a 

kernel extreme learning machine (K-ELM) to evaluate the 

health of power transformers, employing two distinct 

datasets. The first dataset (Set-1) pertains to parameters 

assessing transformer efficiency, while the second dataset 

(Set-2) focuses on overall health assessment. The PHM 

system demonstrated an assessment accuracy of 68.67% 

with Dataset-1 and 93.61% with Dataset-2. However, the 

system's reliance on K-ELM necessitates a substantial 

amount of comprehensive data for model training, and the 

limited scope of the datasets used for testing constrains the 

ability to fully assess the health of power transformers. A. 

J. Patil et al. [5] proposed a computational algorithm to

develop a Fuzzy Logic model aimed at reducing dep-

endence on experts and enhancing accuracy in transformer

health assessment. The development process of the Fuzzy

Logic model comprises five steps: (1) Fuzzy Logic for

Condition Indicator Score (CIS), utilized for oil turbidity

analysis, power factor analysis, efficiency, and life

expectancy analysis of transformers; (2) Computation of

Primitive Health Index (PHI), which involves general

health analysis of the transformer and decision-making

conditions of the Fuzzy Logic model; (3) Testing the

decision-making conditions of the model; (4) Adjustment
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of PHI, where decision-making conditions are refined post-

testing; and (5) Final Health Index (HI), determining the 

transformer's health status. The HI categorizes transformer 

health into three groups: Good (HI range: 8-10), Fair (HI 

range: 4-7), and Poor (HI range: 0-3). The limitations of 

this model include the necessity for expert involvement in 

the initial step, and the accuracy of the health assessment 

heavily relies on the precision of the input data. Fur-

thermore, the model is not suitable for real-time monitoring 

analysis. D. Granados-Lieberman et al. [1] present a 

system for real-time detection of short-circuits in power 

trans-formers using a Harmonic Phasor Measurement Unit 

(HPMU) and a Fuzzy Logic model. The operation of the 

short-circuit detection system is divided into five steps: (1) 

Data is read from the HPMU, an extension of the PMU, 

which includes magnitude, phase, and frequency infor-

mation; (2) Real-time harmonic data measured in the first 

step is sampled to prepare for classification by the Fuzzy 

Logic model; (3) The sampled harmonic signal data is 

classified to detect short-circuit abnormalities in the power 

transformer; (4) Identification of short-circuit abnor-

malities within the power transformer after classification 

by the Fuzzy Logic model; and (5) Validation of the event 

analysis performed by the Fuzzy Logic model. The 

system's test results show it can detect minor harmonic 

signal changes indicating short-circuit abnormalities more 

effectively than traditional methods and supports real-time 

monitoring of such abnormalities. Limitations include the 

dependency of the Fuzzy Logic model's accuracy on the 

quantity of data used for its decision-making and the 

complexity of developing or customizing the system 

parameters to fit the model. X. Zhao et al. [3] proposed a 

system for real-time analysis of irreversible deformations 

of power transformer internal components caused by 

mechanical and electromotive forces (winding defor-

mations). The analysis method utilizes V-I Lissajous 

Patterns, which describe the relationship between the 

voltage drop across the transformer terminals and the 

current flowing through them. These characteristics enable 

the identification of abnormal winding deformations 

within the transformer. The proposed system demonstrates 

high sensitivity to minor winding deformations and offers 

high repeatability. However, it requires high-precision data 

for accurate internal fault analysis. Additionally, the 

system's effectiveness is limited by the complexity of 

model development, as the accuracy of fault analysis 

depends on the fine-tuning of the V-I Lissajous Patterns 

model, a process that is both complicated and time-

consuming. W. Wattakapaiboon et al. [8] presented the 

Health Index (HI) method for evaluating maintenance 

planning conditions of transformers in the industrial sector 

and power distribution systems. This method was 

developed to reduce the number of parameters used for 

testing and maintenance planning. The results indicate that 

the HI method can reduce the evaluation parameters from 

24 to 15, with a deviation in evaluation scores of 

approximately 7% compared to the original method. 

Additionally, the method is user-friendly for field 

applications. However, by reducing the number of 

evaluation parameters, the method may not cover certain 

conditions and has limited verification of evaluation 

accuracy. 

This study introduces a method for classifying the 

condition of 33 kV distribution transformers (DTs) without 

pre-existing cluster data, employing the K-means 

clustering  

algorithm, a widely-used technique in machine learning. 

The K-means algorithm is favored for its ease of 

application, customization, and efficiency, particularly in 

scenarios involving large datasets. It also requires less 

processing time compared to other clustering algorithms 

[15], [16]. The study is based on 150 samples and 7 

features extracted from the annual maintenance records of 

DTs in PEA, Southern Area 3. Geographic Information 

System (GIS) software, which facilitates data 

management, analysis, and visualization in diagrammatic 

or three-dimensional formats, is utilized to assist in 

maintenance planning and enhance operator 

comprehension [17]. The primary objective is to optimize 

maintenance planning and reduce DT failures. 

2. Comparison of General Methods for Fault

Classification in Transformers

Table 1 presents a comparison of methods used for 

fault classification in power transformers. Previous studies 

have primarily focused on assessing transformer 

conditions or detecting faults using chemical tests such as 

Dissolved Gas Analysis (DGA), Furan testing, breakdown 

voltage (B.V.), and oil quality. While these methods are 

accurate and widely adopted in the industry, they involve 

high costs for sample collection and testing. On the other 

hand, electrical tests, including V-I characteristics and 

insulation tests, offer real-time data crucial for transformer 

failure analysis but require extensive datasets for algorithm 

development and real-time signal detection. Much of the 

existing research has been dedicated to the deterioration 

assessment of power transformers, often through costly 

chemical testing or real-time data collection using signal 

detectors. These methods may not be cost-effective for 

routine transformer condition assessment. Therefore, this 

study explores an alternative approach to assessing or 

classifying distribution trans-formers using annual test 

results, incorporating both chemical and electrical tests. 

This approach is intended to provide a more cost-effective 

solution for maintenance planning by offering a 

comprehensive method for trans-former condition 

assessment. 
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Author Contributions Methods Results Advantages Limitations 

A. J. 
Patil et 

al. [5] 

- Fuzzified approach 
for Health Index

(HI) determination 

in transformer diag-
nostic tests.

- Incorporates
decision logic for 

Tier-2 test selec-

tion and Primitive
Health Index (PHI) 

adjustment.

- Fuzzy logic applied 
for Condition In-

dicator Score (CIS) 

computation and
Health Index (HI) 

determination.

- Decision logic uti-

lized for Tier-2 test

selection based on
Tier-1 results.

- Distinct fuzzy mo-

dels developed for 

each Diagnostic Test
(DT) and Se-verity

Indicator (SI) in HI 

computation.

- Fuzzy model enha-
nces Health Index

(HI) computation us-

ing diagnostic test
results.

- Decision logic se-
lects non-routine

tests based on rou-

tine test outcomes.

- Fuzzy model acco-
unts for mainte-

nance history and ex-

pected lifespan in HI 
computation.

- Fuzzy model reduces
reliance on diagnostic

experts.

- Fuzzy logic effect-

tively manages un-

certainty in condition 
indicators.

- Traditional tech-niques are
limited in computing health

indices.

- Fuzzy models eli-minate

the reliance on diagnostic

ex-perts for assess-ments.

C.-T. 

Lee 
[18] 

- Developed FLCDT

to classify abnormal
defects in castresin

transformers.

- FLCDT

outperforms CART

and See5 in classi-
fication precision.

- Ultrasound, acoustic

emission, UHF ant-
enna, electrical con-

tact, optical, and ra-

dio frequency sen-
sing.

- Fuzzy Logic Clus-
tering Decision Tree

(FLCDT).

- See5 and CART sof-

tware packages for 

classification
comparison.

- FLCDT

outperformed CART
and See5 in classi-

fication precision.

- FLCDT

compared with See5

and CART software
packages.

- Achieves higher clas-

sification accuracy
with lower compu-

tational complexity.

- Integrates hierar-

chical clustering with 

decision tree for en-
hanced classification 

results. 

- Outperforms CART

and See5 in classi-

fication precision.

- Relies on expert judgments

for partial dis-charge (PD) 
classification and defect

level deter-mination.

- Challenges in deter-mining 

the optimal composition 

level for wavelet analysis.

- Clusters of PD patterns

close in fractal map may
lead to misidentification.

M. 
Abdilla

h et al. 

[2] 

- K-ELM method 
applied for power 

transformer health 

assessment in engi-
neering field. 

- Kernel Extreme Lea-
rning Machine (K-

ELM) 

- Support Vector Ma-

chine (SVM)

- Least-Squares

Support Vector Ma-

chine (LS-SVM) 

- Proposed PHM sys-
tem using K-ELM ac-

hieved 100% accu-

racy in transformer 
health assessment.

- Testing phase accu-
racy for K-ELM was

68.67%.

- Set-1 dataset yielded

68.67% accuracy in

transformer health as-
sessment.

- Set-2 dataset achi-
eved 93.61% accu-

racy in transformer 

health assessment.

- K-ELM PHM system
outperforms SVM,

LS-SVM, and ELM

in accuracy.

- Faster learning algo-

rithm with superior 
generalization and ac-

curacy rates.

- Achieves 100%

health assessment ac-

curacy for power tra-
nsformers.

- Limited comparison with
other machine learning 

models for transformer 

health assessment.

Table 1 Comparison of General Methods for Fault Classification in Transformers 
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Author Contributions Methods Results Advantages Limitations 

X. Zhao

et al. [3] 

- New algorithm de-

veloped to eliminate
load dynamics' ef-

fect on transformer 

V-I characteristics.

- Sensitivity and re-

liability of the V-I 
technique assessed

through practical
measurements.

- Assessment con-
ducted on the effect

of substation noise.

- Data acquisition

system developed

for capturing V-I 
characteristics.

- Hardware deve-
loped for real-time

monitoring of trans-

former winding co-
nditions.

- V-I Lissajous pattern

method utilized for 
transformer fault de-

tection.

- Compensation tech-

nique proposed to

eliminate load influ-
ence on the mea-

sured ellipse.

- V-I Lissajous pattern

method validated th-
rough practical mea-

surements.

- New compensation 

approach proposed to 

eliminate transformer 
loading variation eff-

ects. 

- Lissajous graphical 

method validity ver-
ified in a practical en-

vironment.

- Real-time detection

of winding deforma-
tions in power trans-

formers.

- Feasibility of V-I 

Lissajous pattern me-

thod for practical app-
lications.

- Compensation appro-

ach effectively elimi-

nates loading effects
on measured ellipses.

- Perfect alignment of 
ellipses across vary-

ing load magnitudes.

- Load dynamics influence 

V-I characteristics.

- Digital filtering nece-

ssary due to high back-
ground noise.

- Impact of load and vol-
tage imbalance on mea-

sured ellipses.

M. 
Raichur

a et al. 

[20] 

- CNN-XGBoost
proposed for trans-

former fault classi-

fication with high
accuracy.

- Performance com-
parison with RVM

and HE-ELM tech-

niques.

- CNN-XGBoost
integration for class-

ification.

- Relevance Vector 

Machine (RVM) and

hierarchical
ensemble of ELM.

- Proposed technique 
achieves 99.95% acc-

uracy in classifying 

internal faults.

- XGBoost classifier 

demonstrates high 
precision in disting-

uishing transformer 

operational 
conditions. 

- CNN-XGBoost
method attains 100%

accuracy in identi-

fying magnetizing in-
rush conditions.

- Achieves 99.95% 
classification accu-

racy within 22 ms. 

- Efficient feature ex-

traction using 1D 

CNN and XGBoost
combination.

- Validated through 
real-time hardware 

for practical imple-

mentation. 

- RVM method requires
longer computational 

time with larger datasets.

- CNN-XGBoost tech-

nique not compared with

SVM for classification 
accuracy.

A. S. 
Mogos 

[19] 

- Hybrid one-class 
deep SVDD method 

for predicting distri-

bution transformer 
failures. 

- Employs SMOTE
for data preproce-

ssing and mRMR

for feature sele-
ction.

- Reduces costs using
historical main-

tenance data and
risk index.

- Introduction of a
novel hybrid one-

class classification 

method.

- Utilization of 

mRMR for enhan-
cing classification 

accuracy. 

- Application of Syn-

thetic Minority Ov-

ersampling Tech-
nique (SMOTE) to

address data imba-
lance.

- mRMR algorithm 
selects 13 important 

features for classi-

fication. 

- Exclusion of low-

impact features en-
hances model accu-

racy and perfor-

mance metrics.

- Simulation results

demonstrate impro-
ved recall, F1, and F2

scores with mRMR.

- Analysis conducted 

using real-world data
from 15,066 trans-

formers in Colombia.

- Applicable to health
assessment of various

power system equip-

ment.

- Utilizes feature

importance scores in
the selection process.

- Incorporates mutual
feature information

for both continuous

and discrete variables.

- Less important features
impact classification 

accuracy, necessitating 

mRMR feature sele-
ction.

- Synthetic data is 
commonly used in 

research but may not 

accurately represent real-
world scenarios. 

Table 1 Comparison of General Methods for Fault Classification in Transformers (continue) 
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3. Methodology

The data used in the condition classification analysis

comprises numerical values and includes 150 samples with 

7 features derived from the annual maintenance results of 

distribution transformers (DT) and the Geographic 

Information System (GIS) of PEA, Southern Area 3. This 

study employs recursive feature elimination (RFE) for 

feature selection and a K-means clustering algorithm for 

feature classification. A detailed explanation of all features 

is provided in Table 2. The visual inspection feature (F3) 

pertains to the external inspection of DTs conducted with 

the naked eye, encompassing 7 specific items outlined in 

Table 3. The input data, initially unclustered, is classified 

based on the 7 features using the K-means clustering 

algorithm, as illustrated in Fig. 1. From the dataset of 150 

samples and 7 features, correlation analysis is performed 

using the correlation equation, a widely used technique to 

identify relationships between features, offering a highly 

general and flexible data analytic approach [7]. The 

Pearson correlation equation is particularly popular for this 

purpose. This study employs all features to analyze the data 

for relationship values, as shown in equation (1). 

( )( )

0=
( )

2 2( ) ( )

0

− −
=

− − − 
=

n
x x y yi i i i

iρ
x yi i n

i x x i y yi i i i
i

(1) 

Where ρ
(xiyi)

 is Correlation between feature ix and iy

The significance of each feature can be determined 

using Recursive Feature Elimination (RFE). RFE is a 

widely used machine learning technique for feature 

selection due to its ease of configuration and effectiveness. 

It identifies the most or least relevant features in a training 

dataset for predicting the target variable. The method ranks 

features by evaluating the impact of removing one feature 

at a time on the objective function. The iterative procedure 

of RFE involves the following steps [14][13]: 

1. Train the classifier (optimize the weights
iw with 

respect to J ).

2. Compute the ranking criterion for all features

( ( )DJ i  or  2( )iw ). 

3. Remove the feature with the lowest ranking

criterion.

( ( ) ( )) / ( ( ) ( ))wi i i i i   = + − − + + − (2) 

Author Contributions Methods Results Advantages Limitations 

R. M. A.
Velásquez 

et al. [4] 

- Mathematical
modeling and opti-

mization techniques

discussed.

- Mathematical
modeling 

techniques.

- Computational 

simulations

conducted.

- Statistical analysis 

performed.

- Data visualization 

methods applied. 

- Novel algorithm for 
image segmentation

presented.

- Superior accuracy

and efficiency com-

pared to existing
methods.

- Gene identification 
linked to therapeutic

resistance.

- Model training en-

hanced using Open-

VC dataset.

- Limited data avai-
lability.

- Potential bias in anal-
ysis.

- Small sample size 
constraints.

W. 

Wattakap
aiboon et 

al. [8] 

- New HI table for 

transformer condi-
tion assessment fea-

turing simplified 

parameters.

- Visual inspection 

rating incorporated 
into the HI table for 

enhanced clarity. 

- Dissolved Gas

Analysis (DGA) em-
ployed for detecting 

incipient faults in

transformers.

- Health Index (HI) 

method used for tra-
nsformer condition 

assessment and mai-
ntenance planning.

- Visual inspections, 
oil quality tests, and

power factor tests

are also utilized.

- 7% difference in

scores between the
conventional and

new HI tables.

- Similar test result

interpretation obser-

ved in most cases.

- New HI table

requires fewer te-
sting parameters for 

transformer condi-

tion assessment.

- Reduces operational 

costs and is practical 
for transformer mai-

ntenance planning.

- Employs simplified 

testing parameters
for evaluating trans-

former conditions.

- Furanic compound 

testing was dis-
continued for the new 

HI table. 

- Ambiguous para-

meters in the con-

ventional HI table were 
consolidated into 

visual inspec-tion. 

Table 1 Comparison of General Methods for Fault Classification in Transformers (continue) 
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Where i  and i are the mean and standard 

deviation of the gene expression values of gene i  for all 

the patients of class (+) or class (−), i  = 1,... n. 

𝐷𝐽(𝑖) = (1/2)
𝜕2𝐽

𝜕𝑤𝑖
2 (𝐷𝑤𝑖)

2 (3) 

Where 
iDw is iw corresponds to removing feature 

i , J is cost function, which 2
W.XJ yx X= −  for the 

mean squared error and 
2

(1/ 2)J w=  for support vector 

machines (SVMs). 

Fig. 1 Operation of the K-means clustering algorithm. 

Once the important features are identified, the next 

step is to determine the appropriate number of clusters, 

which can be achieved using the Silhouette score. This 

technique helps fine-tune the optimal number of clusters 

by measuring how similar instances are to their own 

cluster compared to other clusters. The Silhouette score 

ranges from -1 to 1, with higher scores indicating that 

instances are more similar to their own cluster and less 

similar to other clusters, as described by Equation (4) [6].  

( ) ( )
( )

max{ ( ), ( )}

b i a i
s i

a i b i

−
= (4) 

Where ( )s i  is silhouette score at i , ( )b i are least 

dissimilarity mean of i with other clusters, ( )a i  are 

dissimilarity mean of i with all instance in the cluster. 

K-means Clustering (K-means) is a method in

unsupervised learning for data mining, aimed at statistical 

classification by creating clusters such that data within the 

same cluster are highly similar, while data in different 

clusters are distinctly different. The computation begins 

with the dataset, where 𝑘 is a hyperparameter specified at 

the start. It represents the number of cluster centroids and 

is determined based on the appropriate number of clusters 

identified using the Silhouette score. 

The center of k points  1 2( , ,..., )( 1,2,..., )rx x x x i ki i i i= =

is defined as 1 2( , ,..., )rc c c c= where 
ic is mean of

1 2, ,..., rx x xi i i This method obtains set M  of k centroids by

the iteration of a starting set 
0M of k points of r-

dimensional Euclidean or 
rR . The method consists of the 

following step [9]: 

1. Start with the initial list of centers

( , ,..., )0 1 2M m m mk= , where im are distinct 

points in an r-dimensional real distance space 
rR . (Initial step) 

2. II. Let  ( , ,..., )1 2X x x xn=  be the dataset. If for a

fixed ix  ( ),d x mi j is minimum for ,j p xi= is 

assigned the value pm . Thus each ix is assigned 

one of the k elements of 
0M . (Assignment step) 

3. Let
1

pS be the set of points of X , which are 

assigned the center pm . Let 
1

pm is the center of 

the points belonging to pS . Where 

1 1 1( , ,..., )1 1 2
M m m m

k
= is the updated list of 

centers and the 1st iterate of 
0M . We repeat the 

steps to get a sequence (
iM ) of iterates which 

converges to the optimal list M of centroids in a 

finite number of steps. (Update step) 

4. Results and Discussion

This research demonstrates the correlation between

each factor, the importance of each factor, the 

quantification of clusters, and the classification of 150 

samples. The results of the feature correlation analysis 

indicate that four factors positively affecting transformer 

condition are oil breakdown voltage (F1), high voltage–

ground insulation (F4), high voltage–low voltage 

insulation (F5), and low voltage–ground insulation (F6). 

Three factors negatively affecting transformer condition 

are age (F2), visual inspection (F3), and load (F7). The 

highest positive correlation is between F5 and F6, and F4, 

while F2 and F6 exhibit the highest negative correlation, as 

shown in Fig. 2. 

Output data with cluster 

Test cluster of Data 

Classification using K-mean 

Number of clusters using 

Silhouette Score 

Feature Selection using RFE 

Input data without cluster 
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Fig. 2 Feature correlation 

Table 2  Feature information 

Table 3  Visual inspection feature 

The silhouette score at 7 features shows the best 

silhouette score is 0.3234 at 2 clusters, and the inferior 

score is 0.2873 at 3 clusters. This paper used 2 clusters due 

to the resolution of the clusters in the data shown in Fig 3. 

The proportion variance explained an increase in features 

affecting the data. This paper used 5 features for data 

explanation, accounting for more than 98%. All features 

are prioritized using RFE, and the 5 most important 

features are selected for determining the number of 

clusters, as shown in Fig. 4.RFE identifies the 5 most 

important features based on the ranking criterion. The 

results indicate that high-low voltage insulation (F5) is the 

most important feature, followed by low voltage–ground 

insulation (F6), high voltage–ground insulation (F4), age 

(F2), and oil breakdown voltage (F1). These features are 

utilized to determine the optimal number of clusters, as 

shown in     Fig. 5. The results from the K-means 

classification, shown in Fig. 7, are divided into three 

clusters as follows: Cluster Poor: This cluster comprises 

distribution transformers (DTs) that have been in operation 

for a very long time. Additionally, the insulation resistance 

of the windings in this cluster has decreased. 

The silhouette score with 5 features is 0.3416, higher than 

the score with 7 features, which is 0.2873. The 150 samples 

are grouped into clusters using the K-means algorithm, as 

shown in Fig. 6. The characteristics of this cluster are as 

follows: oil breakdown voltage (F1) ranges from 15.6 to 

53.3 kV/2.5 mm, age (F2) ranges from 8 to 44 years, high 

voltage–ground insulation (F4) ranges from 250 to 1,200 

MΩ, high voltage–low voltage insulation (F5) ranges from 

210 to 1,080 MΩ, and low voltage–ground insulation (F6) 

ranges from 100 to 600 MΩ. The average values for each 

feature are shown in Table 4.  

Cluster Risk: This cluster includes transformers that 

have been in service for a long time. While the insulation 

test results are satisfactory, the oil quality of these DTs is 

low, placing them at risk of failure. The characteristics of 

this cluster are as follows: oil breakdown voltage (F1) 

ranges from 15.9 to 47 kV/2.5 mm, age (F2) ranges from 

14 to 44  

years, high voltage–ground insulation (F4) ranges 

from 1,000 to 1,600 MΩ, high voltage–low voltage 

insulation (F5) ranges from 1,000 to 1,600 MΩ, and low 

voltage–ground insulation (F6) ranges from 500 to 1,400 

MΩ. The average values for each feature are shown in 

Table 5. 

Cluster Normal: This cluster comprises DTs that have 

not been in service for a long time. The insulation test 

results are favorable, and the oil quality is high. The 

characteristics of this cluster are as follows: oil breakdown 

voltage (F1) ranges from 18.1 to 60.8 kV/2.5 mm, age (F2) 

ranges from 1 to 37 years, high voltage–ground insulation 

(F4) ranges from 1,600 to 2,000 MΩ, high voltage–low 

voltage insulation (F5) ranges from 1,600 to 2,000 MΩ, 

and low voltage–ground insulation (F6) ranges from 1,400 

to 2,000 MΩ. The average values for each feature are 

shown in Table 6. 

Feature Information 

F1 Oil breakdown voltage (kV/2.5 mm.) 

F2 Age (years) 

F3 Visual inspection (Number of  defects) 

F4 High Voltage – ground Insulation (Mohm) 

F5 High – Low Voltage Insulation (Mohm) 

F6 Low Voltage – ground Insulation (Mohm) 

F7 Load (%) 

Feature Information 

1 Gaskets, Seals 

2 Oil leaks 

3 Oil Level 

4 Bushing Condition 

5 Oil Tank Corrosion 

6 Main Tank Corrosion 

7 Grounding 
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Fig. 3 The silhouette score at 7 features 

Fig. 4  Proportion variance explained. 
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Fig. 5 The 5 most important features 

Fig. 6 The silhouette score at 5 features 
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Data defining clusters with K-means can establish 

distances between clusters and ascertain accuracy using K-

Nearest Neighbors (kNN). The dataset is divided into 120 

samples (20%) for training and 30 for testing out of 150 

samples. The mean accuracy of the five randomized tests 

is 96.67%, as depicted in Table 6. 

Each cluster obtained from K-means can be utilized to 

construct a decision tree, facilitating the classification of 

transformer conditions, as depicted in Fig. 8. 

 Fig. 7 The value of each feature in the cluster 
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Table 4 Each feature average (Poor) 

Table 5 Each feature average (Risk) 

Feature average value 

F1 29.44 

F2 28.81 

F4 1,411.13 

F5 1,283.02 

F6 1,077.36 

Table 6 Each feature average (Normal) 

Feature average value 

F1 28.5696 

F2 33.09 

F4 856.20 

F5 680.43 

F6 437.34 

Feature average value 

F1 36.55 

F2 16.30 

F4 1915.09 

F5 1,900.00 

F6 1,800.00 

Fig. 8 Decision tree 
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5. Conclusions and Recommendations

The research on distribution transformer (DT)

condition classification using the proposed method 

elucidated that the most influential factors affecting 

transformer condition are the insulation between high 

voltage and ground (F4), high-low voltage (F5), and low 

voltage and ground (F6) of the DT. This method effectively 

categorizes DT conditions into three clusters. While oil 

breakdown voltage (F1) and age (F2) may exhibit trends 

less pronounced than insulation values (F4, F5, F6), their 

trends still align with the overall pattern. The decrease in 

oil breakdown voltage with increasing age signifies 

deteriorating transformer condition. Consequently, 

maintenance results of DT can be compared with cluster 

classifications for condition assessment. The maintenance 

approach should prioritize repair or maintenance for the 

"poor" cluster, exercise vigilance or perform maintenance 

for the "risk" cluster following the "poor" cluster and 

maintain routine maintenance or perform maintenance for 

the "normal" cluster. 

Despite achieving the research objectives, certain 

limitations persist. Firstly, the study is constrained by the 

limited number of transformer features examined, typical 

of distribution transformers which have fewer monitoring 

factors compared to power transformers. Secondly, the 

distribution transformers in Thailand operate at various 

voltage levels (e.g., 19 kV, 22 kV, and 33 kV), potentially. 

leading to differing classification values. Lastly, the 

geographical location of the transformer installation, 

whether seaside or urban, may also impact classification 

outcomes. 
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