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Abstract. In recent years, the rise in mass shootings in
Thailand has highlighted the need for more comprehensive
and cost-effective security solutions. One approach is using
artificial intelligence to assist human security personnel,
particularly for weapon detection through security
cameras. Although advancements in deep learning and
computer vision have made it possible to deploy such
systems on edge computing devices, real-time weapon
detection still faces challenges like accuracy and latency.
This study addresses the gap in weapon detection research
specific to Thailand by utilizing a dataset featuring local
environments and weapons, which differ from those in
existing datasets. We compare the performance of YOLO
versions 5 through 8, focusing on their mean average
precision (mAP) in detecting guns and knives. Since each
YOLO version is developed by different research teams and
may perform differently under specific conditions, our
evaluation considers these variations. The findings indicate
that YOLOV8 achieves the highest mAP, with scores of
0.874 on the validation set and 0.848 on the test set,
demonstrating its effectiveness in the Thai context.
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1. Introduction

Recent advancements in deep learning techniques
have significantly accelerated many computer vision
research areas, such as face identification and object
detection [1]. Deep learning and transfer learning have
shifted the computer vision paradigm from manually
crafted features to learning features directly from data. The
progress in object detection, particularly through deep
convolutional neural networks (CNNSs), can largely be
attributed to these deep learning advancements [2].

In recent years, there has been an increase in firearm
violence incidents in Thailand, such as the tragic event at a
child development center in Nong Bua Lamphu province,
which was the deadliest mass shooting in Southeast Asia.
Thailand has the second-highest rate of firearm-related
homicides in Southeast Asia. Budi suggested that this may
be due to the high rate of firearm ownership in Thailand,
which ranks first in Southeast Asia with around 10.3
million firearms owned by civilians, equating to
approximately 15 guns per 100 people. However, only 6.2
million of these firearms are registered [3].

The application of artificial vision algorithms to
images from video surveillance systems can enhance
security [4]. Consequently, our research team plans to use
computer vision algorithms to automatically detect
weapons such as knives and firearms from surveillance
cameras, aiming to reduce the severity of firearm-related
incidents in public areas in Thailand.

A real-time weapon detection system can significantly
reduce the likelihood of mass shooting tragedies. While
other object detection models like Mask R-CNN could
potentially be applied to weapon detection, their multi-
stage architecture typically requires more computational
resources, leading to slower processing speeds [5]. As a
result, they may be less suitable for real-time applications,
such as the weapon detection system explored in this study.

This research utilizes the YOLO architecture, known
for its compact size and rapid processing speed. YOLO's
straightforward design enables the neural network to
immediately output bounding box positions and categories.
Its efficiency in real-time video detection comes from the
direct use of the entire image, which helps minimize errors
in distinguishing background objects [6]. Our research aims
to compare several versions of YOLO—specifically
YOLOV5, YOLOvV6, YOLOv7, and YOLOv8—for weapon
detection, establishing baselines for future research on
automatic weapon detection in Thailand.
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It is important to note that newer versions of YOLO
should not be assumed to be universally superior to earlier
versions. Each version may have been developed by
different research teams with varying goals and
optimizations. For instance, YOLOvV6 was developed by
Meituan, while YOLOvV8 was developed by Ultralytics. In
some cases, an earlier version may demonstrate better
accuracy than a later version, depending on the specific
experimental setup [7]. This comparison helps to clarify the
strengths and weaknesses of each version in the context of
weapon detection.Previous studies on weapon detection,
such as the one in [8], often rely on datasets sourced from
the internet, which may not accurately represent the
characteristics of real-world images captured by
surveillance systems in Thailand. For example, Figure 1 (e)
and (f) show knives with shapes that are locally specific to
Thailand, highlighting the differences in weapon design.
Additionally, environmental factors, such as background
complexity, can affect detection performance. This study
aims to bridge these gaps by using real-world weapons and
locations within Thailand, combined with YOLOVS, to
develop a weapon detection system specifically tailored to
the Thai context.

2. Related Work

Recent deep learning research in object detection,
specifically in convolutional neural networks (CNNSs),
emphasizes various technologies. A study introduced an
ensemble approach, combining multiple CNN models for
plant classification across mulberry leaves, tomato leaf
diseases, and corn leaf diseases datasets. Experiments
investigated parameters like data augmentation, the number
of models, and voting methods. Results revealed the
weighted average approach in CNN voting methods as the
most effective, with performance variations across datasets
and ensemble methods [9].

In reference [10], the authors combined explainable
Al techniques and convolutional neural networks (CNNs)
to identify helmetless motorcycle riders. Employing the
GRAD-CAM method for insight into the CNN's decision-
making, they benchmarked performance against three
baseline classifiers. Model evaluation, based on accuracy
and F1-Score metrics, revealed that the CNN outperformed
all models, achieving the highest F1-Score of 0.8326.
Introducing the YOLOV5-Aircraft model, an enhanced
version of YOLOVS5, with improvements in calibration, loss
function, and feature extraction. Experiments, using images
from Google Earth and the Vaihingen dataset, showcased
the model's effectiveness in aircraft detection, achieving a
higher mean Average Precision (mAP) value of 85.25%
compared to the original YOLOV5's 81.51%, demonstrating
significant performance enhancement [11].

A modified version of YOLOv4, known as YOLO-SA
(You Only Look Once-Small Attention), was introduced by
the authors in reference [12]. This version, YOLO-SA, was
used for landslide detection in satellite remote sensing
images. A comparative analysis against 11 other object

detectors showed that YOLO-SA outperformed its
counterparts with the highest Average Precision (AP) of
0.9408 and a superior frame rate of 42. In contrast, the
standard YOLOvV4 exhibited an AP of 0.6560 and a frame
rate of 10.

In [13], YOLOvV8 is applied for rip current
segmentation, with practical implications for real-world
applications, especially in developing beach safety systems.
The dataset includes 2,466 images from 17 videos.
Experimenting with scaled versions (n, s, m, I, x), the
unexpected finding was that the nano (n) version
outperformed, contrary to expectations. This outcome is
attributed to the dataset's specific characteristics.

In [14], the authors conducted experiments using
YOLOV5, YOLOv7, and YOLOVS to detect forest fires
from images captured by UAVs. They reported that
YOLOVS, specifically the scaled nano (n) version, achieved
the highest mAP50-95.

Weapon detection remains a critical issue in modern
surveillance and security systems. Shah et al. conducted a
comprehensive review of various weapon detection
methodologies in their study [15]. They highlighted
multiple approaches to detecting weapons in images but
noted that most of these studies relied on datasets sourced
from the internet. This reliance raises concerns about the
dataset’s ability to represent the challenging scenarios
encountered in real-world situations.

Narejo et al. [16] explored the effectiveness of
traditional Convolutional Neural Networks (CNNSs),
YOLOV2, and YOLOV3 in weapon detection tasks. Their
dataset was also compiled from Google Images. Their
findings revealed that YOLOv3 achieved the highest
accuracy among the methods tested.

Grega et al. [17] identified the limitations of CCTV
surveillance systems, which often suffer from poor quality,
blurriness, and low resolution. They observed that weapons
carried by perpetrators are typically visible only for a
limited time within a scene. To address this, they designed
an alarm system to assist human operators rather than fully
replace them. Their primary objective was to minimize
false alarms (achieve high precision), even at the expense
of potentially missing some weapon-carrying events (low
recall). They reasoned that an excess of false alarms would
lead operators to ignore the alerts, rendering the system
ineffective. Their proposed system combined various image
processing techniques to extract features from CCTV
frames and used a Support Vector Machine (SVM)
classifier to determine whether a weapon was present. The
system triggered an alarm only if a weapon was detected in
consecutive frames surpassing a predefined temporal
threshold.

Bhatti et al. [18] compared different techniques for
detecting pistols, specifically in CCTV footage and public
datasets, excluding knives. Their evaluation included
sliding window techniques paired with CNN classifiers and
object detection methods such as YOLOv3. Their results
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indicated that YOLOv4 outperformed the other methods in
terms of both accuracy and inference time.

Pullakandam et al. [8] focused on weapon detection
using YOLOVS, incorporating quantization techniques to
reduce inference time. Their dataset was sourced from the
internet, including platforms like Google and YouTube.
They reported an inference time of 7.6ms for the quantized
YOLOvV8 model and 9ms for the non-quantized version.
However, they did not specify the sub-versions of YOLOv8
(n, s, m, I, x) used, nor did they provide examples of the
images collected from the internet.

3. YOLO Architectures

Redmon et al. introduced the You Only Look Once
(YOLO) model in 2015 [19]. YOLO is a one-stage object
detection model, in contrast to two-stage object detection
models like Faster R-CNN. A one-stage object detector
simultaneously  performs classification and object
localization within a single stage, while two-stage object
detection models first propose regions of interest in the
initial stage and then classify these regions in the
subsequent stage [20].

YOLO can quickly identify objects in an image,
including their types and locations [6]. It uses GoogleNet
as its base network rather than VGG-16, as GoogleNet
offers significantly faster processing with comparable
accuracy. This design choice enables YOLO to perform
real-time detection while maintaining high accuracy [21].
Subsequent versions of YOLO, including YOLOV2,
YOLOV3, YOLOv4, YOLOvV5, YOLOvV6, YOLOvV7?, and
YOLOVS8, have built upon the original model. A summary
of the key characteristics of YOLOv5 to YOLOVS is
provided in Table 1.

The YOLO framework excels due to simplicity, few
parameters, and fast inference, ideal for real-time
applications. It starts by dividing the input image into a grid,
often 7x7, following the original YOLO paper. YOLO
predicts class confidence scores and attributes for multiple
bounding boxes in each grid cell. In the original YOLO
setup, there are 2 bounding boxes per grid cell, each with
coordinates (X, y), width, height, and a confidence score
indicating object presence [6].

In mathematical terms, the dimension of YOLO's
output tensor is formulated as S x S x (B x 5 + C), where S
x S represents the number of grid cells, B denotes the
number of bounding boxes per grid cell, and C signifies the
number of distinct object classes [22].

The YOLO architecture consists of three main
components: the backbone for feature extraction, the neck
for feature aggregation, and the head for object detection.
The head includes subnetworks for tasks such as
localization and classification, sometimes incorporating
auxiliary objectives like segmentation or pose estimation

Table 1 Summary of YOLOVS, v6, v7 and v8 architectures [22]

Version Date Backbone Framework  Anchor
YOLOvV5 2020 YOLOvV5CSPDarknet  PyTorch Yes
YOLOv6 2022 EfficientRep Pytorch No
YOLOv7 2022 YOLOv7Backbone Pytorch No
YOLOvV8 2023  YOLOv8CSPDarknet  PyTorch No

A. YOLOvVS

YOLOV5, introduced in 2020 and implemented in
PyTorch by Ultralytics, embodies a three-tiered
architecture, comprising the backbone, neck, and head
components, as discussed earlier. Ultralytics has introduced
the AutoAnchor algorithm for the dynamic adjustment of
anchor boxes, which is integrated into the YOLOvV5 model.

YOLOV5 can perform tasks beyond object detection
such as instance segmentation. YOLOV5 incorporates data
augmentation techniques such as Mosaic. The
benchmarking of YOLOV5 is performed against the MS
COCO dataset, achieving an Average Precision (AP) score
of 50.7% [22]. YOLOVS5 is also user-friendly and flexible
to use [23].

B. YOLOv6

Li et al. presented their technical report on YOLOVG,
which follows an architectural structure consisting of three
primary components, namely the backbone, neck, and head,
akin to the YOLOv5 framework. The backbone of
YOLOv6 is the EfficientRep, a modified version of
RepVGG [22].

Beyond architectural modifications, YOLOv6
introduces several enhancements, encompassing label
assignments, loss functions, distillation strategies, and a
quantization scheme. Li et al. provide eight scaled models
offering a balance between speed and accuracy, suitable for
diverse industrial applications across different scenarios
[22][23]. The model's performance is evaluated against the
MS COCO Dataset, where it achieves an Average Precision
(AP) score of 57.2% at a framerate of 29 FPS. YOLOV6
surpasses previous state-of-the-art models in terms of both
accuracy and speed metrics [22].

C. YOLOv7

YOLOv7 was introduced in the year 2022. The
authors of YOLOV7 are the same as YOLOv4. YOLOv7
introduces two significant modifications, focusing on
network architecture and the integration of novel bag-of-
freebies techniques [24]. The architectural adjustments in
YOLOvV7 encompass the implementation of the Extended
efficient layer aggregation network (E-ELAN) and a model
scaling approach for concatenation-based models. The E-
ELAN strategy enhances the model's efficiency in learning,
while the model scaling technique adapts the architecture to
the computational resources available [22] [23]. In an
evaluation against the MS COCO dataset, the YOLOV7-E6
attains an Average Precision (AP) score of 55.9% while
operating at a framerate of 50 frames per second [22].
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D. YOLOv8

In 2023, Ultralytics, the same company responsible
for the development of YOLOVS5, introduced YOLOVS
[22], representing the latest version within the YOLO
algorithm series [13]. YOLOVS, akin to its predecessor,
offers a range of five scaled versions, commencing with the
nano (n) to the extra-large (x) model. YOLOV8 can perform
tasks beyond object detection such as pose estimation,
segmentation, and object detection. In an evaluation against
the MS COCO dataset, the YOLOv8Xx model attains an
Average Precision (AP) score of 53.9% while achieving a
framerate of 280 frames per second [22].

E. Performance Evaluation

The right metrics must be used for each issue in order
to assess an object detector's performance. Drawing a
bounding box around each thing that is detected in a picture
makes object detection a particularly difficult problem.
Equations (1) through (3) display some of the most popular
measures for assessing detection performance, including
precision, recall, and mAP [25].

Precision = L )
TP+FP
Recall = —2— (2)
TP+FN
mAP = ~%, AP, 3)

A true positive (TP) is when an object is correctly
identified, while a false positive (FP) occurs when the
network wrongly identifies an object. False negatives (FN)
are objects missed by the network. The loU method
calculates overlap between predicted and ground truth
bounding boxes, and detection correctness is determined by
comparing loU with a threshold. Specifying this threshold
is crucial, as different loU values yield various average
precision (AP) metrics.

mMAP serves as a concise measure of accuracy in object
detection tasks. It's obtained by averaging AP values across
all classes in the dataset, as depicted in (3). AP is calculated
by computing the area under these precision-recall curves
[26]. Precision-Recall curves are plotted by varying
confidence thresholds for each class.

4. Experimental Setup and Results

A. Schematic Framework

Data collection precedes preprocessing with
RoboFlow. Annotators label weapon locations, and the
dataset is split into training, validation, and test sets.
YOLOV5, 6, 7, and 8 train on the first two sets, and their
performances are evaluated on the test set. The study
assesses deep learning models in weapon detection
systems.

B. Data Collection

The raw data consists of 1920x1080 video recordings
from five standard webcams connected to USB ports. The
actors comprised five individuals. To ensure processing
consistency, both training set images and CCTV footage
were standardized to 640x640 before inputting into the
YOLO model. This resizing minimizes the impact of
resolution differences between webcams and CCTV
cameras. The footage includes actors simulating weapon
handling, capturing gestures and movements associated
with knives, handguns, and shotguns. Additionally, to
provide negative examples for object detection algorithms,
the actors occasionally carried unrelated objects or simply
nothing, diversifying the dataset for better machine learning
results. Data collection occurred on July 22, 2023, at the
Child Development Center in Salaya, Phutthamonthon
District, Nakhon Pathom Province, Thailand. To avoid
misinterpretation of the acting as a real threat,
precautionary measures were taken by informing the local
police and municipality through a letter, seeking approval.

The collected dataset presents several challenges for
object detection. One significant challenge is the detection
of weapons that are far from the camera, making them small
and difficult to identify, as illustrated in Figure 1 (d)
Additionally, some weapons, such as knives, are naturally
small, which further complicates detection when they are
distant from the camera, as shown in Figure 1 (b). These
challenges emphasize the need for robust detection
algorithms capable of identifying small and distant objects
within the surveillance footage.

C. Data Preprocessing

This study utilized videos from a single camera, with
data preprocessing managed by the RoboFlow platform.
From uploaded videos, 1,468 sampled images were
extracted at a frame rate of 5 images per second. Data
annotators labeled each image, identifying three classes of
bounding boxes: class 0 for handguns, class 1 for knives,
and class 2 for shotguns, as shown in Figure 1 (a), (b) and

(c).
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Fig.1 Examples of labeling knives, handguns, and shotguns in images.

After labeling, Roboflow randomly divided the
dataset into training (70%), validation (20%), and test
(10%) sets. The specific numbers are 1027 images for
training, 294 for validation, and 147 for testing. Each set
includes .jpg images and accompanying text files in YOLO
object annotation format, specifying bounding box details
for each object.

D. Experimental Setup

Our study experimented with six YOLO models:
YOLOvV5n, YOLOvV6_lite_s, YOLOv6n, YOLOV7_tiny,
YOLOv7, and YOLOvV8n, training and evaluating them
using respective command-line interface tools from their
GitHub repositories. Some YOLO version has sub-versions
(n','s', 'm', 'I', 'x'). We chose the smallest sub-version, 'n',
for real surveillance deployment prioritizing processing
speed. For edge computing environments, we used
optimized sub-versions (YOLOV®6 lite and YOLOV7 tiny),
along with the smallest general-use sub-versions
(YOLOv6Nn and YOLOvV7). While larger versions (such as
'X") may increase accuracy, they do so at the expense of
longer inference times, as shown in [8] which may be less
suitable for real-time applications, such as the weapon
detection system examined in this study.

In our experiments, we employed the following
hardware specifications: CPU - Intel(R) Core(TM)
i9-10980XE 3.00 GHz, RAM - 64.0 GB, and the graphics
card - Nvidia Geforce RTX 2080 Ti with 11GB of memory.

All models were trained with  default
hyperparameters, except for setting 300 epochs and a batch
size of 4. The image size for training and evaluation was
640 x 640. Our reporting of training hyperparameters
follows the format described in reference [27].

E. Model Evaluations

We assessed object detection models on validation
and test sets using command-line interface tools from their
GitHub repositories. For consistency, Intersection Over
Union (loU) threshold for Non-Maximum Suppression
(NMS), and confidence threshold hyperparameters were set
to 0.65 across all models during evaluation. Results are
presented similarly to the reference format. [13], with
additional details on parameters and inference time shown
in the Table 2.

In this study, we evaluated all versions of YOLO and
summarized their performance metrics, including mAP,
precision, recall, and inference time, as shown in Table 2.
Among the versions tested, YOLOv8n demonstrated the
highest overall performance, achieving an mAP50 of 0.848
and an mAP50-95 of 0.503 on the test set. It also
outperformed the other models on the validation set. Due to
its superior results, we have chosen to provide additional
details specifically for YOLOv8n, including its confusion
matrix (Table 3) and mAP for each class (Table 4).
Additionally, we present the loss and performance metric
curves (training and validation classification loss,
precision, recall, etc.) in Figure 2. The learning curves
behave as expected, with the training classification loss
decreasing rapidly during the first 100 epochs and then
gradually slowing down. This focus allows for a deeper
analysis of the model that shows the greatest potential for
our application.

Table 2 Results obtained from experiments on the validation and test dataset

#parameters mAP@.5 mAP@.5:.95 Precision Recall Inference time (CPU)  Inference time (GPU)

Results obtained from experiments on the validation dataset
yolov5n 2.5M 0.857 0.5 0.955 0.746 75.0ms 2.4ms
yolov6_lite_s 0.52M 0.39 0.221 0.323 0.66 96.26ms 3.16ms
yolovén 4.63M 0.705 0.377 0.975 0.55 45.10 ms 2.72ms
yolov7_tiny 6M 0.839 0.461 0.919 0.729 89.6ms 2.8ms
yolov7 36M 0.841 0.468 0.928 0.723 356.5ms 7.2ms
yolov8n 3M 0.874 0.527 0.947 0.777 75.0ms 2.7ms

Results obtained from experiments on the test dataset

yolovsn 2.5M 0.83 0.512 0.934 0.703 74.3 ms 3.4ms
yolové_lite_s 0.52M 0.292 0.192 0.323 05 95.69 ms 4.87ms
yolov6n 4.63M 0.678 0.378 0.642 0.74 45.70 ms 4.41ms
yolov7_tiny 6M 0.81 0.453 0.874 0.725 81.6 ms 4.3ms
yolov7 36M 0.807 0.443 0.875 0.683 392.0 ms 7.5ms
yolov8n 3M 0.848 0.503 0.936 0.741 75.8 ms 3.5ms
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Fig. 2 Training and Validation Losses and Performance Metrics of
YOLOv8n for Weapon Detection (Handgun, Knife, Shotgun) over 300
Epochs

Table 3 Experimental results of YOLOvV8n on both the validation
and test sets.

class  #images #instances Precision Recall mAP50 mAP50..95

Results (Validation Set)

All 294 428 0.947 0.777 0.874 0.527
Handgun 294 126 0951 0.77 0.874 0.452
Knife 294 161 0.954 0.64  0.807 0.449
Shotgun 294 141 0935 0.922 0.941 0.679
Results (Test Set)
All 147 207 0936 0.741 0.848 0.503
Handgun 147 74 0966 0.77 0.875 0.469
Knife 147 73 0.898 0.603 0.762 0.419
Shotgun 147 60 0.944 0.85 0.907 0.622
Table 4 Confusion Matrix of YOLOv8n on both the validation and
test sets.
True Label
Handgun Knife Shotgun  Background
Validation
Handgun 95 0 0 2
Knife 1 101 0 4
= Shotgun 0 0 123 4
& Background 30 60 18 0
B Test
2 Handgun 57 1 0 1
Knife 1 45 0 2
Shotgun 0 0 51 1
Background 16 27 9 0

The Confusion Matrix (Table 4) highlights greater
difficulty in detecting knives, aligning with expectations
due to their smaller size. Our experiments involve various
weapon types, including short and long knives. Detection
accuracy is influenced by size, with larger weapons being
easier to detect, especially at a distance. In the test set,
mAP50 values indicate shotgun detection is the most
accurate, followed by handguns, with knives being the least
accurate. YOLOvV8Nn shows the highest mAP50 accuracy,
but distinctions from YOLOv5n and YOLOvV7 are not
substantial. Discrepancies with YOLOv8's COCO dataset
results may stem from our dataset's characteristics. Our
system prioritizes recall over precision to minimize false
negatives, crucial in preventing potential catastrophic
incidents.

F. YOLOvV8 Gun and Knife Detection Results and
Discussion

handgun 0.80

Fig. 3 YOLOvV8n Gun and Knife Detection Results and Discussion.

As shown in Figure 3, our system exhibits some
misclassifications, particularly with the 'knife' class. In the
validation set's confusion matrix, 161 knife objects are
present, with 101 correctly identified (True Positives) and
60 misclassified as 'background' (False Negatives). The
scenarios depicted in Figure 3 (a) and (b) provide insight
into the nature of these misclassifications.

In scenario (a), the person is holding knives in both
hands, but due to the distance from the camera and the small
size of the knives in the image, the system failed to detect
them, classifying the entire scene as 'background'. This
scenario would be challenging even for a human observer.
In scenario (b), the system partially corrected itself by
detecting a knife in the person's left hand, though it still
failed to identify the knife in the right hand.
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These misclassifications are often due to the size and
distance of the objects from the camera, which reduces the
detector's ability to identify them correctly. Although the
system struggles with such cases, subsequent frames (e.g.,
(c) in Figure 3) show successful detection as the object
becomes more prominent in the frame. When considering
these frames as a single incident, our system demonstrates
the potential for accurate detection in dynamic scenes. We
plan to address these misclassifications more rigorously in
future work by quantifying the system's alert accuracy and
improving its performance in challenging scenarios

5. Conclusions

In this study, we focused on identifying the most
effective YOLO version in terms of accuracy (mAP) and
inference time for weapon detection, specifically within our
dataset. Challenges such as small weapon size and distance
from the camera contributed to misclassifications and lower
MAP scores. Our comparison of the smallest sub-versions
of each YOLO iteration revealed that YOLOV8 achieved
the highest mAP, with scores of 0.874 on the validation set
and 0.848 on the test set.

Previous studies on weapon detection, particularly
those using YOLOVS, such as [11], often rely on weapon
images sourced from the internet, which may not accurately
represent real-world environments in Thailand, where
factors like angles, lighting conditions, and background
complexity can vary significantly. Additionally, some
weapons may be unique to Thailand, such as the local
knives shown in Figure 3 (f) and (g). This study addresses
these gaps by utilizing weapons and locations from real-
world environments in Thailand, combined with YOLOVS,
to develop a weapon detection system tailored specifically
for Thailand.

For future work, we plan to explore the deployment of
our system in real-world environments and integrate it into
existing surveillance systems. A preliminary study
deploying the system on an edge computing device (Jetson
Nano Developer Kit (4GB)), as shown in Figure 3 (h),
demonstrated that it could process video streams at 5-6
frames per second. We also intend to evaluate our system
using additional metrics beyond the standard object
detection metric, such as mAP. metrics like alert accuracy
may offer a more comprehensive assessment of the system's
effectiveness in real-world surveillance applications.

In real-world environments, where factors such as
different angles, lighting conditions, and backgrounds can
vary significantly, we expect the system to encounter
challenges and make errors. To address this, we plan to
record video footage of these scenarios, particularly
focusing on frames where incorrect detections occur. This
data will be used to retrain the models, enhancing their
performance and long-term reliability over time.
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