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Abstract. In recent years, the rise in mass shootings in 

Thailand has highlighted the need for more comprehensive 

and cost-effective security solutions. One approach is using 

artificial intelligence to assist human security personnel, 

particularly for weapon detection through security 

cameras. Although advancements in deep learning and 

computer vision have made it possible to deploy such 

systems on edge computing devices, real-time weapon 

detection still faces challenges like accuracy and latency. 

This study addresses the gap in weapon detection research 

specific to Thailand by utilizing a dataset featuring local 

environments and weapons, which differ from those in 

existing datasets. We compare the performance of YOLO 

versions 5 through 8, focusing on their mean average 

precision (mAP) in detecting guns and knives. Since each 

YOLO version is developed by different research teams and 

may perform differently under specific conditions, our 

evaluation considers these variations. The findings indicate 

that YOLOv8 achieves the highest mAP, with scores of 

0.874 on the validation set and 0.848 on the test set, 

demonstrating its effectiveness in the Thai context. 
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1. Introduction

Recent advancements in deep learning techniques

have significantly accelerated many computer vision 

research areas, such as face identification and object 

detection [1]. Deep learning and transfer learning have 

shifted the computer vision paradigm from manually 

crafted features to learning features directly from data. The 

progress in object detection, particularly through deep 

convolutional neural networks (CNNs), can largely be 

attributed to these deep learning advancements [2]. 

In recent years, there has been an increase in firearm 

violence incidents in Thailand, such as the tragic event at a 

child development center in Nong Bua Lamphu province, 

which was the deadliest mass shooting in Southeast Asia. 

Thailand has the second-highest rate of firearm-related 

homicides in Southeast Asia. Budi suggested that this may 

be due to the high rate of firearm ownership in Thailand, 

which ranks first in Southeast Asia with around 10.3 

million firearms owned by civilians, equating to 

approximately 15 guns per 100 people. However, only 6.2 

million of these firearms are registered [3]. 

The application of artificial vision algorithms to 

images from video surveillance systems can enhance 

security [4]. Consequently, our research team plans to use 

computer vision algorithms to automatically detect 

weapons such as knives and firearms from surveillance 

cameras, aiming to reduce the severity of firearm-related 

incidents in public areas in Thailand. 

A real-time weapon detection system can significantly 

reduce the likelihood of mass shooting tragedies. While 

other object detection models like Mask R-CNN could 

potentially be applied to weapon detection, their multi-

stage architecture typically requires more computational 

resources, leading to slower processing speeds [5]. As a 

result, they may be less suitable for real-time applications, 

such as the weapon detection system explored in this study. 

This research utilizes the YOLO architecture, known 

for its compact size and rapid processing speed. YOLO's 

straightforward design enables the neural network to 

immediately output bounding box positions and categories. 

Its efficiency in real-time video detection comes from the 

direct use of the entire image, which helps minimize errors 

in distinguishing background objects [6]. Our research aims 

to compare several versions of YOLO—specifically 

YOLOv5, YOLOv6, YOLOv7, and YOLOv8—for weapon 

detection, establishing baselines for future research on 

automatic weapon detection in Thailand. 
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It is important to note that newer versions of YOLO 

should not be assumed to be universally superior to earlier 

versions. Each version may have been developed by 

different research teams with varying goals and 

optimizations. For instance, YOLOv6 was developed by 

Meituan, while YOLOv8 was developed by Ultralytics. In 

some cases, an earlier version may demonstrate better 

accuracy than a later version, depending on the specific 

experimental setup [7]. This comparison helps to clarify the 

strengths and weaknesses of each version in the context of 

weapon detection.Previous studies on weapon detection, 

such as the one in [8], often rely on datasets sourced from 

the internet, which may not accurately represent the 

characteristics of real-world images captured by 

surveillance systems in Thailand. For example, Figure 1 (e) 

and (f) show knives with shapes that are locally specific to 

Thailand, highlighting the differences in weapon design. 

Additionally, environmental factors, such as background 

complexity, can affect detection performance. This study 

aims to bridge these gaps by using real-world weapons and 

locations within Thailand, combined with YOLOv8, to 

develop a weapon detection system specifically tailored to 

the Thai context. 

2. Related Work

Recent deep learning research in object detection,

specifically in convolutional neural networks (CNNs), 

emphasizes various technologies. A study introduced an 

ensemble approach, combining multiple CNN models for 

plant classification across mulberry leaves, tomato leaf 

diseases, and corn leaf diseases datasets. Experiments 

investigated parameters like data augmentation, the number 

of models, and voting methods. Results revealed the 

weighted average approach in CNN voting methods as the 

most effective, with performance variations across datasets 

and ensemble methods [9]. 

In reference [10], the authors combined explainable 

AI techniques and convolutional neural networks (CNNs) 

to identify helmetless motorcycle riders. Employing the 

GRAD-CAM method for insight into the CNN's decision-

making, they benchmarked performance against three 

baseline classifiers. Model evaluation, based on accuracy 

and F1-Score metrics, revealed that the CNN outperformed 

all models, achieving the highest F1-Score of 0.8326. 

Introducing the YOLOv5-Aircraft model, an enhanced 

version of YOLOv5, with improvements in calibration, loss 

function, and feature extraction. Experiments, using images 

from Google Earth and the Vaihingen dataset, showcased 

the model's effectiveness in aircraft detection, achieving a 

higher mean Average Precision (mAP) value of 85.25% 

compared to the original YOLOv5's 81.51%, demonstrating 

significant performance enhancement [11]. 

A modified version of YOLOv4, known as YOLO-SA 

(You Only Look Once-Small Attention), was introduced by 

the authors in reference [12]. This version, YOLO-SA, was 

used for landslide detection in satellite remote sensing 

images. A comparative analysis against 11 other object 

detectors showed that YOLO-SA outperformed its 

counterparts with the highest Average Precision (AP) of 

0.9408 and a superior frame rate of 42. In contrast, the 

standard YOLOv4 exhibited an AP of 0.6560 and a frame 

rate of 10. 

In [13], YOLOv8 is applied for rip current 

segmentation, with practical implications for real-world 

applications, especially in developing beach safety systems. 

The dataset includes 2,466 images from 17 videos. 

Experimenting with scaled versions (n, s, m, l, x), the 

unexpected finding was that the nano (n) version 

outperformed, contrary to expectations. This outcome is 

attributed to the dataset's specific characteristics.  

In [14], the authors conducted experiments using 

YOLOv5, YOLOv7, and YOLOv8 to detect forest fires 

from images captured by UAVs. They reported that 

YOLOv8, specifically the scaled nano (n) version, achieved 

the highest mAP50-95. 

Weapon detection remains a critical issue in modern 

surveillance and security systems. Shah et al. conducted a 

comprehensive review of various weapon detection 

methodologies in their study [15]. They highlighted 

multiple approaches to detecting weapons in images but 

noted that most of these studies relied on datasets sourced 

from the internet. This reliance raises concerns about the 

dataset’s ability to represent the challenging scenarios 

encountered in real-world situations. 

Narejo et al. [16] explored the effectiveness of 

traditional Convolutional Neural Networks (CNNs), 

YOLOv2, and YOLOv3 in weapon detection tasks. Their 

dataset was also compiled from Google Images. Their 

findings revealed that YOLOv3 achieved the highest 

accuracy among the methods tested. 

Grega et al. [17] identified the limitations of CCTV 

surveillance systems, which often suffer from poor quality, 

blurriness, and low resolution. They observed that weapons 

carried by perpetrators are typically visible only for a 

limited time within a scene. To address this, they designed 

an alarm system to assist human operators rather than fully 

replace them. Their primary objective was to minimize 

false alarms (achieve high precision), even at the expense 

of potentially missing some weapon-carrying events (low 

recall). They reasoned that an excess of false alarms would 

lead operators to ignore the alerts, rendering the system 

ineffective. Their proposed system combined various image 

processing techniques to extract features from CCTV 

frames and used a Support Vector Machine (SVM) 

classifier to determine whether a weapon was present. The 

system triggered an alarm only if a weapon was detected in 

consecutive frames surpassing a predefined temporal 

threshold. 

Bhatti et al. [18] compared different techniques for 

detecting pistols, specifically in CCTV footage and public 

datasets, excluding knives. Their evaluation included 

sliding window techniques paired with CNN classifiers and 

object detection methods such as YOLOv3. Their results 
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indicated that YOLOv4 outperformed the other methods in 

terms of both accuracy and inference time.

Pullakandam et al. [8] focused on weapon detection 

using YOLOv8, incorporating quantization techniques to 

reduce inference time. Their dataset was sourced from the 

internet, including platforms like Google and YouTube. 

They reported an inference time of 7.6ms for the quantized 

YOLOv8 model and 9ms for the non-quantized version. 

However, they did not specify the sub-versions of YOLOv8 

(n, s, m, l, x) used, nor did they provide examples of the 

images collected from the internet. 

3. YOLO Architectures

Redmon et al. introduced the You Only Look Once

(YOLO) model in 2015 [19]. YOLO is a one-stage object 

detection model, in contrast to two-stage object detection 

models like Faster R-CNN. A one-stage object detector 

simultaneously performs classification and object 

localization within a single stage, while two-stage object 

detection models first propose regions of interest in the 

initial stage and then classify these regions in the 

subsequent stage [20]. 

YOLO can quickly identify objects in an image, 

including their types and locations [6]. It uses GoogleNet 

as its base network rather than VGG-16, as GoogleNet 

offers significantly faster processing with comparable 

accuracy. This design choice enables YOLO to perform 

real-time detection while maintaining high accuracy [21]. 

Subsequent versions of YOLO, including YOLOv2, 

YOLOv3, YOLOv4, YOLOv5, YOLOv6, YOLOv7, and 

YOLOv8, have built upon the original model. A summary 

of the key characteristics of YOLOv5 to YOLOv8 is 

provided in Table 1. 

The YOLO framework excels due to simplicity, few 

parameters, and fast inference, ideal for real-time 

applications. It starts by dividing the input image into a grid, 

often 7x7, following the original YOLO paper. YOLO 

predicts class confidence scores and attributes for multiple 

bounding boxes in each grid cell. In the original YOLO 

setup, there are 2 bounding boxes per grid cell, each with 

coordinates (x, y), width, height, and a confidence score 

indicating object presence [6]. 

In mathematical terms, the dimension of YOLO's 

output tensor is formulated as S × S × (B × 5 + C), where S 

× S represents the number of grid cells, B denotes the 

number of bounding boxes per grid cell, and C signifies the 

number of distinct object classes [22]. 

The YOLO architecture consists of three main 

components: the backbone for feature extraction, the neck 

for feature aggregation, and the head for object detection. 

The head includes subnetworks for tasks such as 

localization and classification, sometimes incorporating 

auxiliary objectives like segmentation or pose estimation 

Table 1 Summary of YOLOv5, v6, v7 and v8 architectures [22] 

Version Date Backbone Framework Anchor 

YOLOv5 2020 YOLOv5CSPDarknet PyTorch Yes 
YOLOv6 2022 EfficientRep Pytorch No 

YOLOv7 2022 YOLOv7Backbone Pytorch No 

YOLOv8 2023 YOLOv8CSPDarknet PyTorch No 

A. YOLOv5

YOLOv5, introduced in 2020 and implemented in

PyTorch by Ultralytics, embodies a three-tiered 

architecture, comprising the backbone, neck, and head 

components, as discussed earlier. Ultralytics has introduced 

the AutoAnchor algorithm for the dynamic adjustment of 

anchor boxes, which is integrated into the YOLOv5 model. 

YOLOv5 can perform tasks beyond object detection 

such as instance segmentation. YOLOv5 incorporates data 

augmentation techniques such as Mosaic. The 

benchmarking of YOLOv5 is performed against the MS 

COCO dataset, achieving an Average Precision (AP) score 

of 50.7% [22]. YOLOv5 is also user-friendly and flexible 

to use [23]. 

B. YOLOv6

Li et al. presented their technical report on YOLOv6,

which follows an architectural structure consisting of three 

primary components, namely the backbone, neck, and head, 

akin to the YOLOv5 framework. The backbone of 

YOLOv6 is the EfficientRep, a modified version of 

RepVGG [22].  

Beyond architectural modifications, YOLOv6 

introduces several enhancements, encompassing label 

assignments, loss functions, distillation strategies, and a 

quantization scheme. Li et al. provide eight scaled models 

offering a balance between speed and accuracy, suitable for 

diverse industrial applications across different scenarios 

[22][23]. The model's performance is evaluated against the 

MS COCO Dataset, where it achieves an Average Precision 

(AP) score of 57.2% at a framerate of 29 FPS. YOLOv6 

surpasses previous state-of-the-art models in terms of both 

accuracy and speed metrics [22]. 

C. YOLOv7

YOLOv7 was introduced in the year 2022. The

authors of YOLOv7 are the same as YOLOv4. YOLOv7 

introduces two significant modifications, focusing on 

network architecture and the integration of novel bag-of-

freebies techniques [24]. The architectural adjustments in 

YOLOv7 encompass the implementation of the Extended 

efficient layer aggregation network (E-ELAN) and a model 

scaling approach for concatenation-based models. The E-

ELAN strategy enhances the model's efficiency in learning, 

while the model scaling technique adapts the architecture to 

the computational resources available [22] [23]. In an 

evaluation against the MS COCO dataset, the YOLOv7-E6 

attains an Average Precision (AP) score of 55.9% while 

operating at a framerate of 50 frames per second [22]. 
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D. YOLOv8

In 2023, Ultralytics, the same company responsible

for the development of YOLOv5, introduced YOLOv8 

[22], representing the latest version within the YOLO 

algorithm series [13]. YOLOv8, akin to its predecessor, 

offers a range of five scaled versions, commencing with the 

nano (n) to the extra-large (x) model. YOLOv8 can perform 

tasks beyond object detection such as pose estimation, 

segmentation, and object detection. In an evaluation against 

the MS COCO dataset, the YOLOv8x model attains an 

Average Precision (AP) score of 53.9% while achieving a 

framerate of 280 frames per second [22]. 

E. Performance Evaluation

The right metrics must be used for each issue in order

to assess an object detector's performance. Drawing a 

bounding box around each thing that is detected in a picture 

makes object detection a particularly difficult problem. 

Equations (1) through (3) display some of the most popular 

measures for assessing detection performance, including 

precision, recall, and mAP [25]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
(1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁 
(2) 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁
𝑖=1 (3) 

A true positive (TP) is when an object is correctly 

identified, while a false positive (FP) occurs when the 

network wrongly identifies an object. False negatives (FN) 

are objects missed by the network. The IoU method 

calculates overlap between predicted and ground truth 

bounding boxes, and detection correctness is determined by 

comparing IoU with a threshold. Specifying this threshold 

is crucial, as different IoU values yield various average 

precision (AP) metrics.  

mAP serves as a concise measure of accuracy in object 

detection tasks. It's obtained by averaging AP values across 

all classes in the dataset, as depicted in (3). AP is calculated 

by computing the area under these precision-recall curves 

[26]. Precision-Recall curves are plotted by varying 

confidence thresholds for each class.  

4. Experimental Setup and Results

A. Schematic Framework

Data collection precedes preprocessing with

RoboFlow. Annotators label weapon locations, and the 

dataset is split into training, validation, and test sets. 

YOLOv5, 6, 7, and 8 train on the first two sets, and their 

performances are evaluated on the test set. The study 

assesses deep learning models in weapon detection 

systems. 

B. Data Collection

The raw data consists of 1920x1080 video recordings

from five standard webcams connected to USB ports. The 

actors comprised five individuals. To ensure processing 

consistency, both training set images and CCTV footage 

were standardized to 640x640 before inputting into the 

YOLO model. This resizing minimizes the impact of 

resolution differences between webcams and CCTV 

cameras. The footage includes actors simulating weapon 

handling, capturing gestures and movements associated 

with knives, handguns, and shotguns. Additionally, to 

provide negative examples for object detection algorithms, 

the actors occasionally carried unrelated objects or simply 

nothing, diversifying the dataset for better machine learning 

results. Data collection occurred on July 22, 2023, at the 

Child Development Center in Salaya, Phutthamonthon 

District, Nakhon Pathom Province, Thailand. To avoid 

misinterpretation of the acting as a real threat, 

precautionary measures were taken by informing the local 

police and municipality through a letter, seeking approval. 

The collected dataset presents several challenges for 

object detection. One significant challenge is the detection 

of weapons that are far from the camera, making them small 

and difficult to identify, as illustrated in Figure 1 (d) 

Additionally, some weapons, such as knives, are naturally 

small, which further complicates detection when they are 

distant from the camera, as shown in Figure 1 (b). These 

challenges emphasize the need for robust detection 

algorithms capable of identifying small and distant objects 

within the surveillance footage.

C. Data Preprocessing

This study utilized videos from a single camera, with

data preprocessing managed by the RoboFlow platform. 

From uploaded videos, 1,468 sampled images were 

extracted at a frame rate of 5 images per second. Data 

annotators labeled each image, identifying three classes of 

bounding boxes: class 0 for handguns, class 1 for knives, 

and class 2 for shotguns, as shown in Figure 1 (a), (b) and 

(c).  

a b 

c d 
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Fig. 1 Examples of labeling knives, handguns, and shotguns in images. 

After labeling, Roboflow randomly divided the 

dataset into training (70%), validation (20%), and test 

(10%) sets. The specific numbers are 1027 images for 

training, 294 for validation, and 147 for testing. Each set 

includes .jpg images and accompanying text files in YOLO 

object annotation format, specifying bounding box details 

for each object. 

D. Experimental Setup

Our study experimented with six YOLO models:

YOLOv5n, YOLOv6_lite_s, YOLOv6n, YOLOv7_tiny, 

YOLOv7, and YOLOv8n, training and evaluating them 

using respective command-line interface tools from their 

GitHub repositories. Some YOLO version has sub-versions 

('n', 's', 'm', 'l', 'x'). We chose the smallest sub-version, 'n', 

for real surveillance deployment prioritizing processing 

speed. For edge computing environments, we used 

optimized sub-versions (YOLOv6 lite and YOLOv7 tiny), 

along with the smallest general-use sub-versions 

(YOLOv6n and YOLOv7). While larger versions (such as 

'x') may increase accuracy, they do so at the expense of 

longer inference times, as shown in [8] which may be less 

suitable for real-time applications, such as the weapon 

detection system examined in this study.   

In our experiments, we employed the following 

hardware specifications: CPU - Intel(R) Core(TM) 

i9-10980XE 3.00 GHz, RAM - 64.0 GB, and the graphics 

card - Nvidia Geforce RTX 2080 Ti with 11GB of memory. 

All models were trained with default 

hyperparameters, except for setting 300 epochs and a batch 

size of 4. The image size for training and evaluation was 

640 x 640. Our reporting of training hyperparameters 

follows the format described in reference [27]. 

E. Model Evaluations

We assessed object detection models on validation

and test sets using command-line interface tools from their 

GitHub repositories. For consistency, Intersection Over 

Union (IoU) threshold for Non-Maximum Suppression 

(NMS), and confidence threshold hyperparameters were set 

to 0.65 across all models during evaluation.  Results are 

presented similarly to the reference format. [13], with 

additional details on parameters and inference time shown 

in the Table 2. 

In this study, we evaluated all versions of YOLO and 

summarized their performance metrics, including mAP, 

precision, recall, and inference time, as shown in Table 2. 

Among the versions tested, YOLOv8n demonstrated the 

highest overall performance, achieving an mAP50 of 0.848 

and an mAP50-95 of 0.503 on the test set. It also 

outperformed the other models on the validation set. Due to 

its superior results, we have chosen to provide additional 

details specifically for YOLOv8n, including its confusion 

matrix (Table 3) and mAP for each class (Table 4). 

Additionally, we present the loss and performance metric 

curves (training and validation classification loss, 

precision, recall, etc.) in Figure 2. The learning curves 

behave as expected, with the training classification loss 

decreasing rapidly during the first 100 epochs and then 

gradually slowing down. This focus allows for a deeper 

analysis of the model that shows the greatest potential for 

our application. 

Table 2 Results obtained from experiments on the validation and test dataset 

#parameters mAP@.5 mAP@.5:.95 Precision Recall Inference time (CPU) Inference time (GPU) 

Results obtained from experiments on the validation dataset 

yolov5n 2.5M 0.857 0.5 0.955 0.746 75.0ms 2.4ms 
yolov6_lite_s 0.52M 0.39 0.221 0.323 0.66 96.26ms 3.16ms 

yolov6n 4.63M 0.705 0.377 0.975 0.55 45.10 ms 2.72ms 

yolov7_tiny 6M 0.839 0.461 0.919 0.729 89.6ms 2.8ms 
yolov7 36M 0.841 0.468 0.928 0.723 356.5ms 7.2ms 

yolov8n 3M 0.874 0.527 0.947 0.777 75.0ms 2.7ms 

Results obtained from experiments on the test dataset 
yolov5n 2.5M 0.83 0.512 0.934 0.703 74.3 ms 3.4ms 

yolov6_lite_s 0.52M 0.292 0.192 0.323 0.5 95.69 ms 4.87ms 

yolov6n 4.63M 0.678 0.378 0.642 0.74 45.70 ms 4.41ms 
yolov7_tiny 6M 0.81 0.453 0.874 0.725 81.6 ms 4.3ms 

yolov7 36M 0.807 0.443 0.875 0.683 392.0 ms 7.5ms 

yolov8n 3M 0.848 0.503 0.936 0.741 75.8 ms 3.5ms 
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Fig. 2 Training and Validation Losses and Performance Metrics of 

YOLOv8n for Weapon Detection (Handgun, Knife, Shotgun) over 300 

Epochs 

Table 3 Experimental results of YOLOv8n on both the validation 
and test sets. 

class #images #instances Precision Recall mAP50 mAP50..95 

Results (Validation Set) 

All 294 428 0.947 0.777 0.874 0.527 
Handgun 294 126 0.951 0.77 0.874 0.452 

Knife 294 161 0.954 0.64 0.807 0.449 

Shotgun 294 141 0.935 0.922 0.941 0.679 
Results (Test Set) 

All 147 207 0.936 0.741 0.848 0.503 

Handgun 147 74 0.966 0.77 0.875 0.469 
Knife 147 73 0.898 0.603 0.762 0.419 

Shotgun 147 60 0.944 0.85 0.907 0.622 

Table 4 Confusion Matrix of YOLOv8n on both the validation and 
test sets. 

True Label 
Handgun Knife Shotgun Background 

p
re

d
ic

te
d
 

Validation 
Handgun 95 0 0 2 

Knife 1 101 0 4 
Shotgun 0 0 123 4 

Background 30 60 18 0 

Test 
Handgun 57 1 0 1 

Knife 1 45 0 2 

Shotgun 0 0 51 1 
Background 16 27 9 0 

The Confusion Matrix (Table 4) highlights greater 

difficulty in detecting knives, aligning with expectations 

due to their smaller size. Our experiments involve various 

weapon types, including short and long knives. Detection 

accuracy is influenced by size, with larger weapons being 

easier to detect, especially at a distance. In the test set, 

mAP50 values indicate shotgun detection is the most 

accurate, followed by handguns, with knives being the least 

accurate. YOLOv8n shows the highest mAP50 accuracy, 

but distinctions from YOLOv5n and YOLOv7 are not 

substantial. Discrepancies with YOLOv8's COCO dataset 

results may stem from our dataset's characteristics. Our 

system prioritizes recall over precision to minimize false 

negatives, crucial in preventing potential catastrophic 

incidents. 

F. YOLOv8 Gun and Knife Detection Results and

Discussion 

a b 

c d 

e f 

g h 

Fig. 3 YOLOv8n Gun and Knife Detection Results and Discussion. 

As shown in Figure 3, our system exhibits some 

misclassifications, particularly with the 'knife' class. In the 

validation set's confusion matrix, 161 knife objects are 

present, with 101 correctly identified (True Positives) and 

60 misclassified as 'background' (False Negatives). The 

scenarios depicted in Figure 3 (a) and (b) provide insight 

into the nature of these misclassifications. 

In scenario (a), the person is holding knives in both 

hands, but due to the distance from the camera and the small 

size of the knives in the image, the system failed to detect 

them, classifying the entire scene as 'background'. This 

scenario would be challenging even for a human observer. 

In scenario (b), the system partially corrected itself by 

detecting a knife in the person's left hand, though it still 

failed to identify the knife in the right hand. 
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These misclassifications are often due to the size and 

distance of the objects from the camera, which reduces the 

detector's ability to identify them correctly. Although the 

system struggles with such cases, subsequent frames (e.g., 

(c) in Figure 3) show successful detection as the object

becomes more prominent in the frame. When considering

these frames as a single incident, our system demonstrates

the potential for accurate detection in dynamic scenes. We

plan to address these misclassifications more rigorously in

future work by quantifying the system's alert accuracy and

improving its performance in challenging scenarios

5. Conclusions

In this study, we focused on identifying the most

effective YOLO version in terms of accuracy (mAP) and 

inference time for weapon detection, specifically within our 

dataset. Challenges such as small weapon size and distance 

from the camera contributed to misclassifications and lower 

mAP scores. Our comparison of the smallest sub-versions 

of each YOLO iteration revealed that YOLOv8 achieved 

the highest mAP, with scores of 0.874 on the validation set 

and 0.848 on the test set. 

Previous studies on weapon detection, particularly 

those using YOLOv8, such as [11], often rely on weapon 

images sourced from the internet, which may not accurately 

represent real-world environments in Thailand, where 

factors like angles, lighting conditions, and background 

complexity can vary significantly. Additionally, some 

weapons may be unique to Thailand, such as the local 

knives shown in Figure 3 (f) and (g). This study addresses 

these gaps by utilizing weapons and locations from real-

world environments in Thailand, combined with YOLOv8, 

to develop a weapon detection system tailored specifically 

for Thailand. 

For future work, we plan to explore the deployment of 

our system in real-world environments and integrate it into 

existing surveillance systems. A preliminary study 

deploying the system on an edge computing device (Jetson 

Nano Developer Kit (4GB)), as shown in Figure 3 (h), 

demonstrated that it could process video streams at 5-6 

frames per second. We also intend to evaluate our system 

using additional metrics beyond the standard object 

detection metric, such as mAP. metrics like alert accuracy 

may offer a more comprehensive assessment of the system's 

effectiveness in real-world surveillance applications. 

In real-world environments, where factors such as 

different angles, lighting conditions, and backgrounds can 

vary significantly, we expect the system to encounter 

challenges and make errors. To address this, we plan to 

record video footage of these scenarios, particularly 

focusing on frames where incorrect detections occur. This 

data will be used to retrain the models, enhancing their 

performance and long-term reliability over time. 
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