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Abstract. Effective reservoir management is critical for 

addressing water scarcity and ensuring water security, 

especially in drought-prone regions. However, traditional 

reservoir operation methods, such as the Standard 

Operating Procedure (SOP), often fail to adequately 

balance water deficits and surpluses under changing 

climatic and demand conditions. This study addresses these 

limitations by integrating the Harris Hawks Optimization 

(HHO) algorithm with a reservoir simulation model, 

aiming to enhance operational efficiency at Ubolratana 

Dam in northeastern Thailand. The research evaluates the 

Hedging Rule (HR) against SOP benchmarks, highlighting 

its ability to reduce average water shortages and excessive 

water releases. Using historical management data, monthly 

inflow patterns, and current water demand, the proposed 

HR framework demonstrates a 53% reduction in water 

shortages and a 19% decrease in excessive releases 

compared to existing practices. These results underscore 

the significant potential of optimization-based approaches 

in improving reservoir resilience and reliability. This study 

fills a critical gap in sustainable water management by 

offering a robust and adaptable framework for optimizing 

reservoir operations in regions vulnerable to climate 

variability. 
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1. Introduction

Water, a vital but limited natural resource, is crucial

for human and ecological well-being. Rapid climate 

changes are disrupting the water cycle, leading to floods, 

droughts, and societal conflicts over water usage [1-3]. 

Effective water resources management, which balances 

economic efficiency, social justice, and environmental 

sustainability, is essential. Strategies for better water 

management include optimizing supply and demand 

management and implementing non-structural measures to 

cut costs and reduce impacts. Improving reservoir 

operations is a key approach to enhance water resource 

management [4-6]. 

Reservoir management faces significant hydrological 

challenges, such as those seen at the Ubolratana reservoir 

in Thailand, necessitating adaptations to both droughts and 

floods. [7-9] Management must balance natural 

uncertainties with fluctuating water demands, employing 

tools like the rule curve for effective water balance analysis. 

Critical data, including downstream demand, reservoir 

levels, and rainfall-induced inflows, are essential, though 

often limited by inadequate historical records. Improved 

timing and scaling of water releases, tailored to current 

needs, can enhance operational efficiency and emphasize 

the necessity for customized strategies in water resource 

management [10-11]. 

Reservoir rule curves, comprising upper and lower 

thresholds, provide a framework for optimal water level 

control. However, while they offer long-term management 

benefits, their efficacy in reservoir operations may diminish 

over time. [12-15] Consequently, diverse rule curves have 

been developed, including release criteria to guide water 

discharge decisions [16-18]. 

Effective reservoir management relies heavily on the 

establishment of precise release criteria to balance water 

storage and release, ensuring a sustainable supply while 

minimizing risks of shortages and floods. The Standard 

Operating Procedure (SOP) has long been the prevailing 

approach in reservoir operations, offering a straightforward 

framework for water allocation. SOPs are typically 

designed based on static rule curves, which assume fixed 

conditions and uniform water release rates. While these 

methods are practical for routine operations, they are often 

insufficient in addressing dynamic inflow variability, 

particularly under conditions of climate change and 
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growing water demand [19-21]. One of the most significant 

limitations of SOP is its inability to adapt to single-period 

water shortages caused by erratic inflows, resulting in 

frequent over-releases during wet periods and insufficient 

supply during droughts. This gap highlights the need for 

more adaptive policies that can mitigate these risks 

effectively.

To address these shortcomings, the hedging rule (HR) 

policy has been proposed as an alternative framework. 

Unlike SOP, HR introduces a more flexible and adaptive 

mechanism by prioritizing water allocation based on the 

severity of water scarcity. During periods of low inflow, 

HR strategically reduces water releases to conserve storage, 

thereby ensuring availability for critical demands in 

subsequent periods [22-25]. This proactive approach allows 

HR to mitigate the impact of droughts, particularly in dry 

seasons, which are common in regions like northeastern 

Thailand. While SOP relies on a fixed release schedule, HR 

dynamically adjusts its release strategy based on real-time 

conditions, making it a more robust solution for reservoirs 

facing high variability in inflow and demand. 

Simulation models and advanced methods have 

significantly enhanced reservoir management by 

introducing data-driven decision-making frameworks. 

Dynamic programming (DP) [31], while effective for 

multi-stage optimization, faces computational limitations in 

complex systems. Heuristic and metaheuristic approaches, 

such as genetic algorithms (GAs) [32] and particle swarm 

optimization (PSO) [33], offer flexibility and efficiency in 

solving non-linear problems. However, these methods often 

require extensive parameter tuning and may struggle with 

adaptability to real-time inflow variability.

Other techniques, such as ant colony optimization 

(ACO) [34] and hybrid approaches combining simulation 

with optimization, have demonstrated potential in 

addressing uncertainties. Machine learning (ML), Artificial 

neural network, extreme learning machine (ANNs), has 

been employed for inflow prediction and optimization [35-

36], but its dependency on large datasets and lack of 

interpretability remain challenges.

Despite these advancements, many existing methods 

are constrained by computational demands, static 

assumptions, or limited adaptability, particularly in multi-

purpose reservoirs facing dynamic conditions. This study 

addresses these gaps by introducing the Harris Hawks 

Optimization (HHO) algorithm, a robust and flexible 

approach designed to optimize release rules effectively 

under uncertain and complex scenarios. 

In this context, the quest for a more robust and 

versatile optimization method led to the emergence of the 

Harris Hawks Optimization (HHO) approach [37]. Inspired 

by the collaborative hunting strategies of Harris Hawks, 

HHO offers a novel solution that transcends the limitations 

of previous optimization techniques. Unlike its 

predecessors, HHO requires minimal parameterization and 

exhibits a remarkable balance between exploration and 

exploitation, thereby enhancing its adaptability and 

effectiveness in deriving optimal rule curves [38-41]. 

The literature review indicates that the HHO method 

outperforms other techniques under similar conditions and 

is highly effective when applied to various problems. 

Consequently, this study aims to identify optimal reservoir 

rule curves by integrating the HHO approach with the HR 

and SOP release criteria of the Ubolratana reservoir in 

Khon Kaen, Thailand. Additionally, the research will assess 

the effectiveness of the HHO-derived rule curves in 

minimizing water shortages and excesses, considering both 

HR and SOP criteria. 

2. Material and Methodology

2.1 Study Area 

The Ubolratana reservoir, located in Khon Kaen 

province in northeastern Thailand at a longitude of 

102°37'06.0"E and latitude of 16°46'31.4"N, as shown in “Fig. 

1” is a vital water resource. It boasts a normal storage capacity 

of 2,431 million cubic meters (MCM) and a dead storage 

capacity of 581.67 MCM. The water surface area at normal 

storage is 137.90 square kilometres. 

As depicted in “Fig. 2” the reservoir supports a wide 

range of downstream water requirements, including power 

generation, agricultural irrigation, flood management, 

industrial processes, municipal water supply, and conservation 

efforts. 

Fig. 1 The Location of Ubolratana Reservoir. 
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The hydroelectric power plant at the reservoir plays a 

crucial role in meeting local energy requirements. 

Additionally, the reservoir's irrigation system boosts 

agricultural productivity and supports local farmers. It is also 

vital for flood control, helping to manage water flow and 

prevent flooding in downstream areas. 

Furthermore, the Ubolratana reservoir meets the water 

demand of various industries and provides a reliable domestic 

water supply, ensuring access to clean and safe drinking water 

for the local population. It also supports environmental 

conservation efforts, maintaining ecological balance and 

supporting diverse habitats. 

2.2 Inflow Data 

The Ubolratana reservoir, situated in Khon Kaen 

province in northeastern Thailand, spans an upper 

watershed area of 11,960 square kilometers across Nong 

Bua Lamphu, Chaiyaphum, and Khon Kaen provinces. 

Historical inflow data from 1972 to 2023, as illustrated in 

“Fig. 3,” reveals an average annual inflow of 2,465 MCM. 

The highest recorded inflow was 5,884 MCM in 1978, 

while the lowest was 387 MCM in 2019.These inflows play 

a critical role in managing water resources for flood and 

drought control and are vital for supporting regional needs 

such as irrigation, power generation, and environmental 

conservation.

supporting various regional needs including irrigation, power generation, and envirconservation.

 Fig. 2 Schematic Diagram of the Ubolratana Reservoir [9]. 

2.3 Reservoir Simulation Model 

The management of the Ubolratana reservoir relies on an 

advanced simulation model that incorporates a water balance 

equation, along with reservoir rule curves and defined release 

criteria. The model begins by calculating the aaccessible water 

using the water balance approach, which takes into account 

monthly inflow and downstream water requirements. The 

estimated monthly water release is then determined by applying 

the release criteria and the established rule curves for the 

reservoir. 

Fig. 3 The annual historical inflow into the Ubolratana reservoir, as 

reported by EGAT of Thailand. 

2.3 Reservoir Simulation Model 

The operation of the Ubolratana reservoir is governed by 

an advanced simulation model that utilizes a water balance 

equation, integrating reservoir rule curves and specific release 

criteria. The model begins by calculating the available water 

using the water balance approach, which takes into account 

monthly inflow and downstream water requirements. The 

estimated monthly water release is then determined by applying 

the release criteria and the established rule curves for the 

reservoir. 

In this study, the reservoir operation model was developed 

based on the water balance principle and includes both HR and 

SOP as the criteria for release. The HR and SOP differ 

significantly in their approach to water release management. HR 

aims to conserve water by restricting discharge during dry 

seasons, ensuring sufficient water availability during low inflow 

periods. In contrast, SOP focuses on meeting target water 

demands throughout the year, often resulting in less 

conservative water management compared to HR. Both the HR 

and SOP criteria were evaluated for performance, with their one-

point representations illustrated in “Fig. 4,” with their 

formulations presented in “Eqs. (1) – (2).” equation, detailed in 

these equations, considers stored water from the previous 

month, current inflow, and average evaporation loss to 

determine the available water each month. 

 The HR constraints are as follows: 

When 0 (1-DDIt).Dt  SWAt 

(1) 

Here, Rν,τ represents the total release from the 

aggregated reservoir at time τ; SWAτ and EWAτ denote the 

starting and ending water availability of the aggregated 

reservoir at time τ, respectively; and Dt  indicates the water 

demand for the supply system at time τ. 

The SOP constraints are as follows: 
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(2) 

In this context, Rν,τ denotes the water release during 

year ν and month τ (where τ ranges from 1 to 12, 

corresponding to January through December). Dτ  

represents the net water demand for month τ; Dt+C indicates 

the upper rule curve for month τ; Dt  is the lower rule curve 

for month τ and Wν,τ  refers to the available water, calculated 

using the water balance concept for year ν and month τ, as 

outlined in “Eq. (3)” [15]. 

Wv,τ=Sv,τ+Qv,τ-Rv,τ-Eτ (3) 

Here, Sν,τ represents the volume of water stored at the 

end of month τ; Qν,τ  is the monthly inflow to the reservoir; 

and Eτ  denotes the average evaporation loss. The operating 

policy typically allocates the available water Wν,τ  to manage 

the risk of future water shortages, particularly when when 0 

≤ Wν,τ < Dt - Dτ in the context of long-term operations. 

Fig. 4 The HR and SOP. [9] 

2.4 Objective Functions for Optimizing Rule 

Curves 

In this study, the objective functions employed for 

identifying optimal rule curves were to minimize the 

average water shortage, as outlined in “Eq. (4)”, and to 

reduce the frequency of water shortages, as described in 

“Eq. (5)”. These functions were utilized in the calculations 

performed using the HHO method. 

The minimal average water shortage per year

(4) 

The minimal average excess water per year 

Min P(avr)=
1

n
∑ Spv n

v-1  (5)  

 Here, H (avr) represents the average annual water 

shortage, \(n\) denotes the total number of years examined, and 

ShV indicates the minimized average water shortage in year v 

(the year when releases fall short of the target demand). P(avr) 

refers to the average annual excess water to be minimized, while 

Spv denotes the excess release of water during year v (the year 

when releases exceed the target demand). 

2.5 Utilizing HHO and Reservoir Simulation 

Models to Identify Optimal Rule Curves 

The HHO algorithm is a swarm-based optimization 

technique that does not rely on gradient information, drawing 

inspiration from the collaborative hunting behaviours of Harris 

hawks. It mimics the surprise pounce strategy, where hawks 

coordinate attacks on their prey from various angles. By 

dynamically adjusting its parameters, HHO effectively balances 

exploration and exploitation, making it highly efficient for 

solving complex optimization challenges [10]. 

• Initialization: In this step, the reservoir simulation

model parameters and HHO algorithm settings are

defined. The population size (N) represents the

number of hawks (solutions) in the search space. The

boundaries (Xu, Xl) set the limits within which the

solutions can vary. The total number of iterations (T)

determines how many times the algorithm will update

the solutions to find the new optimal rule curves.

• Reservoir simulation: Using the initial parameters,

the reservoir simulation model calculates the initial

fitness of each hawk based on the water releases

computed from the HR and SOP rule curves. This

simulation considers monthly inflow data, water

demands, and the rule curves to estimate how much

water should be released each month.

• Evaluation: The suitability of each solution is

determined through objective functions that gauge

performance indicators, such as reducing the average

water deficit and surplus. The Elite Matrix is

constructed from the best-performing solutions,

guiding the optimization process in subsequent

iterations.

• Optimization: The HHO performs optimization in

three phases: exploration (searching for new

solutions), transition (balancing between exploration

and exploitation), and exploitation (refining solutions).

Hawks adjust their positions based on their fitness,

with the goal of converging on the best rule curves.

• Objective Function: The objective functions evaluate

the fitness of solutions by minimizing water shortages

and excesses (Eqs. (4) – (5)). These functions ensure

that the reservoir management goals are achieved,

balancing the need to supply water while preventing

shortages and excessive releases.

• Iteration and Convergence: During each iteration,

the HHO algorithm updates the rule curves, refining

the solutions based on the fitness evaluations.

Convergence occurs when the algorithm reaches a

state where further iterations do not significantly
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improve the solutions, meeting the predefined stop criteria. 

This indicates that the optimal rule curves for the reservoir 

have been found, ensuring efficient and effective water 

management

Fig. 5 The application of the HHO method with the reservoir simulation model for determining the optimal rule curves. [10] 

3. Results and Discussion

3.1 Efficiency of HHO Rule Curves Considering 

HR and SOP 

Figure 6 displays the optimal rule curves obtained 

through the HHOmethod, applied with the reservoir 

simulation model under both HR and SOP conditions. The 

rule curves derived using the HHO technique under HR 

conditions (RC1-HR-Avs, RC3-HR-Fqs) demonstrate 

higher levels compared to those obtained under SOP 

conditions (RC2-SOP-Avs, RC4-SOP-Fqs) and the existing 

rule curves. 

Notably, the lower rule curves determined by HR 

criteria are elevated in comparison to those determined by 

SOP criteria, particularly during the dry season (April–

May). This suggests that the HR-based optimal rule curves 

are designed to conserve water by restricting water 

discharge during the dry season, aligning with the 

principles of HR [7]. This approach aims to enhance water 

retention within the reservoir, ensuring sufficient water 

availability during periods of low inflow. The higher levels 

of the lower rule curves under HR criteria indicate a 

proactive strategy to prevent reservoir depletion, which is 

critical for sustaining water supply and maintaining 

ecological balance during dry spells. 

Additionally, the upper rule curves under HR criteria 

are higher than those under SOP criteria at the end of the 

rainy season (October–November). This indicates a more 

conservative approach to water release, allowing for greater 

storage capacity as the wet season concludes. By 

maintaining higher upper rule curves, the HR-based 
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strategy ensures that the reservoir can store more water, 

which is vital for reducing the risk of water shortages in the 

subsequent dry season. This increased storage capacity at 

the end of the rainy season provides a buffer against 

potential drought conditions, thereby enhancing the 

resilience of the water management system. 

As a result, the storage capacity at the end of the rainy 

season is higher with HR criteria compared to SOP criteria 

and the existing rule curves, which helps in alleviating 

severe water shortages during the following dry season. 

This highlights the main goal of using HR criteria along 

with rule curves for optimizing reservoir operations [16]. 

The implementation of HR criteria seeks to optimize the 

balance between water conservation and supply, ensuring 

that the reservoir can meet water demands even during 

prolonged dry periods. This approach not only enhances 

water security but also supports sustainable water 

management practices. 

Fig. 6 The optimal rule curves for the Ubolratana reservoir, taking into account both the HR and the SOP. 

Tables 1 and 2 present the scenarios of water shortages 

and excess releases resulting from the new rule curves 

developed using the HHO method with HR and SOP 

criteria. It is noted that, using historic inflow data and 

applying the HR criteria with the fitness functions of 

minimal average water shortage (RC1-HR-Avs), the 

average annual water shortage is minimized to 115.769 

MCM, while the maximum water shortage reaches 

742.00 MCM per year. However, the frequency of water 

shortages is highest at 0.654 occurrences per year, as 

detailed in Table 1. This suggests that although HR 

criteria effectively reduce the magnitude of shortages, 

they do not completely eliminate their frequency. 

Similarly, the use of historic inflow data with HR criteria 

and the objective functions of minimal average water  

shortage (RC1-HR-Avs) also minimizes excess water 

situations. The average annual excess water is reduced 

to 1,107.54 MCM, with the maximum excess water being 

4,113.159 MCM per year, as shown in Table 2. This 

highlights the HR criteria's effectiveness in managing 

excess water releases, thus minimizing wastage and 

improving water conservation within the reservoir 

system. 

In conclusion, the HR criteria provide a more 

controlled approach to water release, aiming to save 

water for the subsequent dry season and alleviate 

potential water deficits [22]. Conversely, SOP criteria 

focus on meeting target demand across all considered 

durations, as highlighted in numerous previous studies 

[33]. As a result, SOP criteria might be less effective 

compared to HR criteria for reservoirs that frequently 

experience drought conditions. The findings suggest that 

adopting HR criteria in the rule curves developed 

through HHO can lead to more efficient reservoir 

operations, particularly in regions prone to frequent 

droughts. This aligns with the broader goals of 

sustainable water management, emphasizing the need for 

adaptive strategies to address varying hydrological 

conditions effectively. 
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Table 1 The scenarios of water shortages and excess water, based on 52 years of historical inflow data, using HR criteria. 

Situations Rule curves 
Frequency 

(times/year) 

Volume (MCM.) Time period (year) 

Average Maximum Average Maximum 

Shortage 

Existing 0.673 204.308 865.000 3.889 8.000 
RC1-HR-Avs 0.654 115.769 742.000 3.778 7.000 

RC2-SOP-Avs 0.692 126.865 832.000 3.600 7.000 

RC3-HR-Exr 0.615 124.692 772.000 3.556 7.000 
RC4-SOP-Exr 0.592 140.577 813.000 4.000 7.000 

Excess water 

Existing 0.923 1,230.310 4,126.736 9.600 21.000 

RC1-HR-Avs 0.865 1,107.549 4,113.159 6.143 10.000 
RC2-SOP-Avs 0.808 1,118.634 4,152.957 5.250 9.000 

RC3-HR-Exr 0.865 1,119.433 4,155.656 9.000 13.000 

RC4-SOP-Exr 0.808 1,118.634 4,152.957 5.250 9.000 

Table. 2 The scenarios of water shortages and excess water, based on 52 years of historical inflow data, using SOP criteria. 

Situations Rule curves 
Frequency 

(times/year) 

Volume (MCM.) Time period (year) 

Average Maximum Average Maximum 

Shortage 

Existing 0.865 349.654 870.000 7.500 19.000 

RC1-HR-Avs 0.752 203.558 766.000 4.000 7.000 
RC2-SOP-Avs 0.673 247.962 900.000 4.111 7.000 

RC3-HR-Exr 0.768 220.941 834.000 3.924 7.000 
RC4-SOP-Exr 0.655 258.364 813.000 4.910 8.000 

Excess water 

Existing 0.962 1,189.589 4,150.361 16.667 25.000 

RC1-HR-Avs 0.942 1,191.718 4,113.159 16.000 25.000 
RC2-SOP-Avs 0.902 1,220.490 4,152.957 25.000 25.000 

RC3-HR-Exr 0.941 1,210.420 4,161.760 16.035 25.000 

RC4-SOP-Exr 0.923 1,253.280 4,164.330 25.035 25.000 

4. Conclusion

This study demonstrated that the proposed model,

utilizing two objective functions and the Harris Hawks 

Optimization (HHO) technique, successfully generated 

optimal rule curves that consistently outperformed existing 

rule curves under various reservoir conditions. Inspired by 

the cooperative hunting behavior of Harris hawks, the HHO 

algorithm efficiently explored and exploited the solution 

space, resulting in rule curves that significantly improved 

reservoir performance.

The findings revealed that while the rule curves based 

on the Hedging Rule (HR) criteria exhibited a higher 

frequency of water shortages compared to those based on 

the Standard Operating Policy (SOP), the average duration 

of shortages was notably shorter under the HR criteria. This 

outcome aligns with the primary goal of HR, which aims to 

mitigate the overall impact of water shortages by 

conserving water during critical periods. Furthermore, HR-

based rule curves provided more accurate and realistic 

simulations of reservoir behavior across all historical 

inflow samples. This level of accuracy, often unattainable 

with static approaches like SOP, underscores the 

adaptability of HR when combined with advanced 

optimization techniques like HHO.

The dual functionality of the HHO-derived HR rule 

curves, effectively mitigating both excessive flooding and 

water scarcity, highlights their value in sustainable water 

management. By balancing the competing objectives of 

flood control and water conservation, particularly during 

the rainy season, this approach ensures reservoirs are 

optimally prepared to handle variable inflows while 

minimizing risks.

Nevertheless, this study recognizes certain 

limitations. The reliance on historical inflow data may not 

fully capture future hydrological variability influenced by 

climate change. To address this, future research should 

integrate predictive climate models for better inflow 

forecasting. Additionally, engaging local stakeholders in 

the development process could enhance the practical 

applicability of the proposed approach. Expanding the 

application of this method to a variety of reservoir systems 

will also help validate its broader applicability. Finally, 

leveraging advancements in heuristic and hybrid 

optimization methods presents opportunities to further 

improve rule curve development and reservoir operation 

strategies.

In conclusion, the integration of HHO with HR 

criteria offers a robust and adaptive framework for 

optimizing reservoir management. This approach not only 

enhances water allocation efficiency but also contributes to 

the sustainable management of water resources, making it 

a valuable tool for addressing complex hydrological 

challenges and increasing climate variability. 
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