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Abstract. Effective reservoir management is critical for
addressing water scarcity and ensuring water security,
especially in drought-prone regions. However, traditional
reservoir operation methods, such as the Standard
Operating Procedure (SOP), often fail to adequately
balance water deficits and surpluses under changing
climatic and demand conditions. This study addresses these
limitations by integrating the Harris Hawks Optimization
(HHO) algorithm with a reservoir simulation model,
aiming to enhance operational efficiency at Ubolratana
Dam in northeastern Thailand. The research evaluates the
Hedging Rule (HR) against SOP benchmarks, highlighting
its ability to reduce average water shortages and excessive
water releases. Using historical management data, monthly
inflow patterns, and current water demand, the proposed
HR framework demonstrates a 53% reduction in water
shortages and a 19% decrease in excessive releases
compared to existing practices. These results underscore
the significant potential of optimization-based approaches
in improving reservoir resilience and reliability. This study
fills a critical gap in sustainable water management by
offering a robust and adaptable framework for optimizing
reservoir operations in regions vulnerable to climate
variability.
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1. Introduction

Water, a vital but limited natural resource, is crucial
for human and ecological well-being. Rapid climate
changes are disrupting the water cycle, leading to floods,
droughts, and societal conflicts over water usage [1-3].
Effective water resources management, which balances
economic efficiency, social justice, and environmental
sustainability, is essential. Strategies for better water

management include optimizing supply and demand
management and implementing non-structural measures to
cut costs and reduce impacts. Improving reservoir
operations is a key approach to enhance water resource
management [4-6].

Reservoir management faces significant hydrological
challenges, such as those seen at the Ubolratana reservoir
in Thailand, necessitating adaptations to both droughts and
floods. [7-9] Management must balance natural
uncertainties with fluctuating water demands, employing
tools like the rule curve for effective water balance analysis.
Critical data, including downstream demand, reservoir
levels, and rainfall-induced inflows, are essential, though
often limited by inadequate historical records. Improved
timing and scaling of water releases, tailored to current
needs, can enhance operational efficiency and emphasize
the necessity for customized strategies in water resource
management [10-11].

Reservoir rule curves, comprising upper and lower
thresholds, provide a framework for optimal water level
control. However, while they offer long-term management
benefits, their efficacy in reservoir operations may diminish
over time. [12-15] Consequently, diverse rule curves have
been developed, including release criteria to guide water
discharge decisions [16-18].

Effective reservoir management relies heavily on the
establishment of precise release criteria to balance water
storage and release, ensuring a sustainable supply while
minimizing risks of shortages and floods. The Standard
Operating Procedure (SOP) has long been the prevailing
approach in reservoir operations, offering a straightforward
framework for water allocation. SOPs are typically
designed based on static rule curves, which assume fixed
conditions and uniform water release rates. While these
methods are practical for routine operations, they are often
insufficient in addressing dynamic inflow variability,
particularly under conditions of climate change and
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growing water demand [19-21]. One of the most significant
limitations of SOP is its inability to adapt to single-period
water shortages caused by erratic inflows, resulting in
frequent over-releases during wet periods and insufficient
supply during droughts. This gap highlights the need for
more adaptive policies that can mitigate these risks
effectively.

To address these shortcomings, the hedging rule (HR)
policy has been proposed as an alternative framework.
Unlike SOP, HR introduces a more flexible and adaptive
mechanism by prioritizing water allocation based on the
severity of water scarcity. During periods of low inflow,
HR strategically reduces water releases to conserve storage,
thereby ensuring availability for critical demands in
subsequent periods [22-25]. This proactive approach allows
HR to mitigate the impact of droughts, particularly in dry
seasons, which are common in regions like northeastern
Thailand. While SOP relies on a fixed release schedule, HR
dynamically adjusts its release strategy based on real-time
conditions, making it a more robust solution for reservoirs
facing high variability in inflow and demand.

Simulation models and advanced methods have
significantly  enhanced reservoir management by
introducing data-driven decision-making frameworks.
Dynamic programming (DP) [31], while effective for
multi-stage optimization, faces computational limitations in
complex systems. Heuristic and metaheuristic approaches,
such as genetic algorithms (GAs) [32] and particle swarm
optimization (PSO) [33], offer flexibility and efficiency in
solving non-linear problems. However, these methods often
require extensive parameter tuning and may struggle with
adaptability to real-time inflow variability.

Other techniques, such as ant colony optimization
(ACO) [34] and hybrid approaches combining simulation
with optimization, have demonstrated potential in
addressing uncertainties. Machine learning (ML), Artificial
neural network, extreme learning machine (ANNS), has
been employed for inflow prediction and optimization [35-
36], but its dependency on large datasets and lack of
interpretability remain challenges.

Despite these advancements, many existing methods
are constrained by computational demands, static
assumptions, or limited adaptability, particularly in multi-
purpose reservoirs facing dynamic conditions. This study
addresses these gaps by introducing the Harris Hawks
Optimization (HHO) algorithm, a robust and flexible
approach designed to optimize release rules effectively
under uncertain and complex scenarios.

In this context, the quest for a more robust and
versatile optimization method led to the emergence of the
Harris Hawks Optimization (HHO) approach [37]. Inspired
by the collaborative hunting strategies of Harris Hawks,
HHO offers a novel solution that transcends the limitations
of previous optimization techniques. Unlike its
predecessors, HHO requires minimal parameterization and
exhibits a remarkable balance between exploration and

exploitation, thereby enhancing its adaptability and
effectiveness in deriving optimal rule curves [38-41].

The literature review indicates that the HHO method
outperforms other techniques under similar conditions and
is highly effective when applied to various problems.
Consequently, this study aims to identify optimal reservoir
rule curves by integrating the HHO approach with the HR
and SOP release criteria of the Ubolratana reservoir in
Khon Kaen, Thailand. Additionally, the research will assess
the effectiveness of the HHO-derived rule curves in
minimizing water shortages and excesses, considering both
HR and SOP criteria.

2. Material and Methodology

2.1 Study Area

The Ubolratana reservoir, located in Khon Kaen
province in northeastern Thailand at a longitude of
102°37'06.0"E and latitude of 16°46'31.4"N, as shown in “Fig.
1” is a vital water resource. It boasts a normal storage capacity
of 2,431 million cubic meters (MCM) and a dead storage
capacity of 581.67 MCM. The water surface area at normal
storage is 137.90 square kilometres.

As depicted in “Fig. 2” the reservoir supports a wide
range of downstream water requirements, including power
generation, agricultural irrigation, flood management,
industrial processes, municipal water supply, and conservation
efforts.
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Fig. 1 The Location of Ubolratana Reservoir.
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The hydroelectric power plant at the reservoir plays a
crucial role in meeting local energy requirements.
Additionally, the reservoir's irrigation system boosts
agricultural productivity and supports local farmers. It is also
vital for flood control, helping to manage water flow and
prevent flooding in downstream areas.

Furthermore, the Ubolratana reservoir meets the water
demand of various industries and provides a reliable domestic
water supply, ensuring access to clean and safe drinking water
for the local population. It also supports environmental
conservation efforts, maintaining ecological balance and
supporting diverse habitats.

2.2 Inflow Data

The Ubolratana reservoir, situated in Khon Kaen
province in northeastern Thailand, spans an upper
watershed area of 11,960 square kilometers across Nong
Bua Lamphu, Chaiyaphum, and Khon Kaen provinces.
Historical inflow data from 1972 to 2023, as illustrated in
“Fig. 3,” reveals an average annual inflow of 2,465 MCM.
The highest recorded inflow was 5,884 MCM in 1978,
while the lowest was 387 MCM in 2019.These inflows play
a critical role in managing water resources for flood and
drought control and are vital for supporting regional needs
such as irrigation, power generation, and environmental
conservation.
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Fig. 2 Schematic Diagram of the Ubolratana Reservoir [9].

2.3 Reservoir Simulation Model

The management of the Ubolratana reservoir relies on an
advanced simulation model that incorporates a water balance
equation, along with reservoir rule curves and defined release
criteria. The model begins by calculating the aaccessible water
using the water balance approach, which takes into account
monthly inflow and downstream water requirements. The
estimated monthly water release is then determined by applying
the release criteria and the established rule curves for the
reservoir.
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Fig. 3 The annual historical inflow into the Ubolratana reservoir, as
reported by EGAT of Thailand.

2.3 Reservoir Simulation Model

The operation of the Ubolratana reservoir is governed by
an advanced simulation model that utilizes a water balance
equation, integrating reservoir rule curves and specific release
criteria. The model begins by calculating the available water
using the water balance approach, which takes into account
monthly inflow and downstream water requirements. The
estimated monthly water release is then determined by applying
the release criteria and the established rule curves for the
reservoir.

In this study, the reservoir operation model was developed
based on the water balance principle and includes both HR and
SOP as the criteria for release. The HR and SOP differ
significantly in their approach to water release management. HR
aims to conserve water by restricting discharge during dry
seasons, ensuring sufficient water availability during low inflow
periods. In contrast, SOP focuses on meeting target water
demands throughout the year, often resulting in less
conservative water management compared to HR. Both the HR
and SOP criteria were evaluated for performance, with their one-
point representations illustrated in “Fig. 4,” with their
formulations presented in “Egs. (1) — (2).” equation, detailed in
these equations, considers stored water from the previous
month, current inflow, and average evaporation loss to
determine the available water each month.

The HR constraints are as follows:
When 0<(1-DDIt).Dt < SWAt

WA it WA, < SWA,
D +(swA -0 )VATEWA e g cwa <Ewa
. SWAL — EWA
« 71D, it Ewa <wA <D, +c (1)
WA -C if WA >D, +C
0, otherwise

Here, R,. represents the total release from the
aggregated reservoir at time z; SWA.and EWA, denote the
starting and ending water availability of the aggregated
reservoir at time z, respectively; and D; indicates the water
demand for the supply system at time .

The SOP constraints are as follows:
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D, +W, -D. +C, forW, >D, +C+D,
o Dr, forD, <W,, <D, +C+D, )
"] D,+W,, -D,forD,-D, <W, <D, @
0, otherwise

In this context, R,,. denotes the water release during
year v and month t (where t ranges from 1 to 12,
corresponding to January through December). D,
represents the net water demand for month z; Di+Cindicates
the upper rule curve for month z; Dy is the lower rule curve
for month rand W, refers to the available water, calculated
using the water balance concept for year v and month t, as
outlined in “Eq. (3)” [15].

Wv,r: SV,TFQV,I' RV,‘(' Er (3)

Here, S, represents the volume of water stored at the
end of month z; Q,,. is the monthly inflow to the reservoir;
and E; denotes the average evaporation loss. The operating
policy typically allocates the available water W,,. to manage
the risk of future water shortages, particularly when when 0
< Wv,t<Dt- Drin the context of long-term operations.
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Fig. 4 The HR and SOP. [9]

2.4 Objective Functions for Optimizing Rule
Curves

In this study, the objective functions employed for
identifying optimal rule curves were to minimize the
average water shortage, as outlined in “Eq. (4)”, and to
reduce the frequency of water shortages, as described in
“Eq. (5)”. These functions were utilized in the calculations
performed using the HHO method.

The minimal average water shortage per year
MinH ..., = %Zczl Sh, @)
The minimal average excess water per year
Min P(aw)=£2v”_1 Spv ®)

Here, H (avr) represents the average annual water
shortage, \(n\) denotes the total number of years examined, and

ShV indicates the minimized average water shortage in year v
(the year when releases fall short of the target demand). P(avr)
refers to the average annual excess water to be minimized, while
Spv denotes the excess release of water during year v (the year
when releases exceed the target demand).

2.5 Utilizing HHO and Reservoir Simulation
Models to Identify Optimal Rule Curves

The HHO algorithm is a swarm-based optimization
technique that does not rely on gradient information, drawing
inspiration from the collaborative hunting behaviours of Harris
hawks. It mimics the surprise pounce strategy, where hawks
coordinate attacks on their prey from various angles. By
dynamically adjusting its parameters, HHO effectively balances
exploration and exploitation, making it highly efficient for
solving complex optimization challenges [10].

o Initialization: In this step, the reservoir simulation
model parameters and HHO algorithm settings are
defined. The population size (N) represents the
number of hawks (solutions) in the search space. The
boundaries (Xu, XI) set the limits within which the
solutions can vary. The total number of iterations (T)
determines how many times the algorithm will update
the solutions to find the new optimal rule curves.

e Reservoir simulation: Using the initial parameters,
the reservoir simulation model calculates the initial
fitness of each hawk based on the water releases
computed from the HR and SOP rule curves. This
simulation considers monthly inflow data, water
demands, and the rule curves to estimate how much
water should be released each month.

e Evaluation: The suitability of each solution is
determined through objective functions that gauge
performance indicators, such as reducing the average
water deficit and surplus. The Elite Matrix is
constructed from the best-performing solutions,
guiding the optimization process in subsequent
iterations.

e Optimization: The HHO performs optimization in
three phases: exploration (searching for new
solutions), transition (balancing between exploration
and exploitation), and exploitation (refining solutions).
Hawks adjust their positions based on their fitness,
with the goal of converging on the best rule curves.

o Obijective Function: The objective functions evaluate
the fitness of solutions by minimizing water shortages
and excesses (Egs. (4) — (5)). These functions ensure
that the reservoir management goals are achieved,
balancing the need to supply water while preventing
shortages and excessive releases.

e [|teration and Convergence: During each iteration,
the HHO algorithm updates the rule curves, refining
the solutions based on the fitness evaluations.
Convergence occurs when the algorithm reaches a
state where further iterations do not significantly
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improve the solutions, meeting the predefined stop criteria.
This indicates that the optimal rule curves for the reservoir
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have been found, ensuring efficient and effective water
management
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Fig. 5 The application of the HHO method with the reservoir simulation model for determining the optimal rule curves. [10]

3. Results and Discussion

3.1 Efficiency of HHO Rule Curves Considering
HR and SOP

Figure 6 displays the optimal rule curves obtained
through the HHOmethod, applied with the reservoir
simulation model under both HR and SOP conditions. The
rule curves derived using the HHO technique under HR
conditions (RC1-HR-Avs, RC3-HR-Fgs) demonstrate
higher levels compared to those obtained under SOP
conditions (RC2-SOP-Avs, RC4-SOP-Fgs) and the existing
rule curves.

Notably, the lower rule curves determined by HR
criteria are elevated in comparison to those determined by
SOP criteria, particularly during the dry season (April-

May). This suggests that the HR-based optimal rule curves
are designed to conserve water by restricting water
discharge during the dry season, aligning with the
principles of HR [7]. This approach aims to enhance water
retention within the reservoir, ensuring sufficient water
availability during periods of low inflow. The higher levels
of the lower rule curves under HR criteria indicate a
proactive strategy to prevent reservoir depletion, which is
critical for sustaining water supply and maintaining
ecological balance during dry spells.

Additionally, the upper rule curves under HR criteria
are higher than those under SOP criteria at the end of the
rainy season (October—November). This indicates a more
conservative approach to water release, allowing for greater
storage capacity as the wet season concludes. By
maintaining higher upper rule curves, the HR-based
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strategy ensures that the reservoir can store more water,
which is vital for reducing the risk of water shortages in the
subsequent dry season. This increased storage capacity at
the end of the rainy season provides a buffer against
potential drought conditions, thereby enhancing the
resilience of the water management system.

As aresult, the storage capacity at the end of the rainy
season is higher with HR criteria compared to SOP criteria
and the existing rule curves, which helps in alleviating

3,000

Storage capacity (MOCM)

Jan Feb Mar Apr May

Existing @ RC1-HR-Avs

A ROZ-[0P-Avs

severe water shortages during the following dry season.
This highlights the main goal of using HR criteria along
with rule curves for optimizing reservoir operations [16].
The implementation of HR criteria seeks to optimize the
balance between water conservation and supply, ensuring
that the reservoir can meet water demands even during
prolonged dry periods. This approach not only enhances
water security but also supports sustainable water
management practices.

Max cap. 2431000 VIO M

Jul Aug Sep et Mov Dec

hWanth

@ - ROS0P-Fxr —— RC4-AR-Fxr

Fig. 6 The optimal rule curves for the Ubolratana reservoir, taking into account both the HR and the SOP.

Tables 1 and 2 present the scenarios of water shortages
and excess releases resulting from the new rule curves
developed using the HHO method with HR and SOP
criteria. It is noted that, using historic inflow data and
applying the HR criteria with the fitness functions of
minimal average water shortage (RC1-HR-Avs), the
average annual water shortage is minimized to 115.769
MCM, while the maximum water shortage reaches
742.00 MCM per year. However, the frequency of water
shortages is highest at 0.654 occurrences per year, as
detailed in Table 1. This suggests that although HR
criteria effectively reduce the magnitude of shortages,
they do not completely eliminate their frequency.
Similarly, the use of historic inflow data with HR criteria
and the objective functions of minimal average water
shortage (RC1-HR-Avs) also minimizes excess water
situations. The average annual excess water is reduced
t0 1,107.54 MCM, with the maximum excess water being
4,113.159 MCM per year, as shown in Table 2. This
highlights the HR criteria's effectiveness in managing

excess water releases, thus minimizing wastage and
improving water conservation within the reservoir
system.

In conclusion, the HR criteria provide a more
controlled approach to water release, aiming to save
water for the subsequent dry season and alleviate
potential water deficits [22]. Conversely, SOP criteria
focus on meeting target demand across all considered
durations, as highlighted in numerous previous studies
[33]. As a result, SOP criteria might be less effective
compared to HR criteria for reservoirs that frequently
experience drought conditions. The findings suggest that
adopting HR criteria in the rule curves developed
through HHO can lead to more efficient reservoir
operations, particularly in regions prone to frequent
droughts. This aligns with the broader goals of
sustainable water management, emphasizing the need for
adaptive strategies to address varying hydrological
conditions effectively.
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Table 1 The scenarios of water shortages and excess water, based on 52 years of historical inflow data, using HR criteria.

Situations Rule curves F_requency Volume (MCM.) ) Time period (yealt)
(times/year) Average Maximum Average Maximum
Existing 0.673 204.308 865.000 3.889 8.000
RC1-HR-Avs 0.654 115.769 742.000 3.778 7.000
Shortage RC2-SOP-Avs 0.692 126.865 832.000 3.600 7.000
RC3-HR-Exr 0.615 124.692 772.000 3.556 7.000
RC4-SOP-Exr 0.592 140.577 813.000 4.000 7.000
Existing 0.923 1,230.310 4,126.736 9.600 21.000
RC1-HR-Avs 0.865 1,107.549 4,113.159 6.143 10.000
Excess water RC2-SOP-Avs 0.808 1,118.634 4,152.957 5.250 9.000
RC3-HR-Exr 0.865 1,119.433 4,155.656 9.000 13.000
RC4-SOP-Exr 0.808 1,118.634 4,152.957 5.250 9.000
Table. 2 The scenarios of water shortages and excess water, based on 52 years of historical inflow data, using SOP criteria.
Situations Rule curves Frequency Volume (MCM.) ) Time period (year_)
(times/year) Average Maximum Average Maximum
Existing 0.865 349.654 870.000 7.500 19.000
RC1-HR-Avs 0.752 203.558 766.000 4.000 7.000
Shortage RC2-SOP-Avs 0.673 247.962 900.000 4111 7.000
RC3-HR-Exr 0.768 220.941 834.000 3.924 7.000
RC4-SOP-Exr 0.655 258.364 813.000 4.910 8.000
Existing 0.962 1,189.589 4,150.361 16.667 25.000
RC1-HR-Avs 0.942 1,191.718 4,113.159 16.000 25.000
Excess water ~ RC2-SOP-Avs 0.902 1,220.490 4,152.957 25.000 25.000
RC3-HR-Exr 0.941 1,210.420 4,161.760 16.035 25.000
RC4-SOP-Exr 0.923 1,253.280 4,164.330 25.035 25.000
4. Conclusion Nevertheless, this study recognizes certain

This study demonstrated that the proposed model,
utilizing two objective functions and the Harris Hawks
Optimization (HHO) technique, successfully generated
optimal rule curves that consistently outperformed existing
rule curves under various reservoir conditions. Inspired by
the cooperative hunting behavior of Harris hawks, the HHO
algorithm efficiently explored and exploited the solution
space, resulting in rule curves that significantly improved
reservoir performance.

The findings revealed that while the rule curves based
on the Hedging Rule (HR) criteria exhibited a higher
frequency of water shortages compared to those based on
the Standard Operating Policy (SOP), the average duration
of shortages was notably shorter under the HR criteria. This
outcome aligns with the primary goal of HR, which aims to
mitigate the overall impact of water shortages by
conserving water during critical periods. Furthermore, HR-
based rule curves provided more accurate and realistic
simulations of reservoir behavior across all historical
inflow samples. This level of accuracy, often unattainable
with static approaches like SOP, underscores the
adaptability of HR when combined with advanced
optimization techniques like HHO.

The dual functionality of the HHO-derived HR rule
curves, effectively mitigating both excessive flooding and
water scarcity, highlights their value in sustainable water
management. By balancing the competing objectives of
flood control and water conservation, particularly during
the rainy season, this approach ensures reservoirs are
optimally prepared to handle variable inflows while
minimizing risks.

limitations. The reliance on historical inflow data may not
fully capture future hydrological variability influenced by
climate change. To address this, future research should
integrate predictive climate models for better inflow
forecasting. Additionally, engaging local stakeholders in
the development process could enhance the practical
applicability of the proposed approach. Expanding the
application of this method to a variety of reservoir systems
will also help validate its broader applicability. Finally,
leveraging advancements in heuristic and hybrid
optimization methods presents opportunities to further
improve rule curve development and reservoir operation
strategies.

In conclusion, the integration of HHO with HR
criteria offers a robust and adaptive framework for
optimizing reservoir management. This approach not only
enhances water allocation efficiency but also contributes to
the sustainable management of water resources, making it
a valuable tool for addressing complex hydrological
challenges and increasing climate variability.
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