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Abstract. During industry 4.0, digital technology has been integrated with manufacturing processes to improve operational 
efficiency and hence to enhance organization competitiveness. To this end, computerized methods have been rapidly developed to 
tackle various production and delivery issues. Production planning and scheduling often demand substantial resources, especially 
in terms of manpower and time. Consequently, minimizing the time dedicated to both planning and scheduling can hasten product 
delivery. This paper proposes a novel algorithm that analyzes an unseen process and then predicts a production line by using two-
step similarity measures, used in ensemble within the process. Provided with an unseen product model, it identifies the most 
suitable line, based on the availability of machinery required by the process. In the experiments, eight similarity measures were 
assessed, based on a realistic production plant. The results revealed that Jaccard similarity and Dice similarity coefficients gave 
the most accurate predictions. The proposed method is thus believed to be applicable in dynamic production scenarios. Moreover, 
the developed system also supports incremental production lines. 
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1. Introduction 

The process of designing production lines in response to specialized customer’s designs is known as Engineer-To-Order 
(ETO) manufacturing. The process entails producing the original items using the available resources. To this end, the engineering 
team has to adjust an existing process to fulfill the unique requirements of such items. Therefore, the challenging complexity of 
ETO systems calls for deep understanding of production capability and involving constraints. These insights would enhance the 
production design and the resulting process adjustments [1]. 

When designing a production process, one must consider various constraints to ensure manufacturing efficiency [2]. For 
instance, effective production line arrangement can increase production efficiency and reduce waiting times. Both factors are 
crucial for maintaining competitiveness in today’s markets [3]. Additional techniques such as lean manufacturing can streamline 
the selection and adjustment of the production lines that minimize their downtime [3]. 

Extensive research has addressed the issue of time spent on production planning. A notable study [4], for instance, proposed 
reducing production planning time via lean techniques. They focused on production line balancing, which enhanced customer 
satisfaction and operational efficiency. Another study [5] tackled planning issues by using a nonlinear clearing function model that 
expressed the relationship between production cycles and time. Similarly, in [6], a novel method, which integrated computer 
software into production planning and scheduling was described. It focused on improving overall efficiency, while reducing work 
time. 

The concept of industry 4.0 emphasizes the use of modern technologies such as Artificial Intelligence (AI), the Internet of 
Things (IoT), big data analytics, autonomous robots and cloud computing. Industry 4.0 provides numerous opportunities for 
enhancing efficiency. They include automation and streamline processes that reduce human errors while improving manufacturing 
precision. It also integrates technologies such as IoT and data analytics in predictive maintenance. Such integrations enable early 
issue detection and minimize production downtime, thereby lowering total operational costs. Moreover, the flexibility of Industry 
4.0 enables rapid adaptations of existing production lines in response to real-time market demands, such as customizable products 
and their diverse options. Accordingly, the adoptions of these modern technologies empower an organization to develop new 
products and services that better align with customer needs, hence gaining leverages to enter a new market more competitively. 

Numerous studies have focused on enhancing production pipelines. In fact, the latest advancements in AI and machine 
learning (ML) have made significant progress in computerized production planning and scheduling. The notable transformations 
included increased efficiency and being adaptive to dynamic production environments. A number of recent studies emphasize the 
benefits of reinforcement learning (RL) on the decision-making of production scheduling. Particularly, the ability of RL to address 
complex scheduling challenges was highlighted in a systematic review on this topic [7]. AI techniques were additionally found 
integrated with simulation models. The integration was demonstrated in the case studies using Microsoft™ (MS) Project Bonsai 
and AnyLogic™ and already shown a promising outcome from optimized task scheduling in industrial settings [8]. The increasing 
needs for adaptable solutions in variable batch production called for multilevel scheduling models. In response to the requirements, 
innovations such as attention mechanisms and image recognition [9] could improve the scheduling accuracy by more than 30%. 
Further analysis of this particular study has revealed the roles of scheduling rules and algorithms being essentially shifted toward 
intelligent manufacturing. Therein, emphasis was placed on the robustness that enabled the algorithms to address practical 
scheduling issues more effectively. Several studies on computer-based planning systems underscore the value of data-driven 
decision making for enhancing production efficiency. Such systems driven by AI have proved their effectiveness in real-world 
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applications, based on standard key performance indicators (KPI) [10]. In addition to AI, ML-based and dynamically controlled 
project management algorithm was also introduced [11]. The algorithm was developed to optimize production scheduling in 
environments with unpredictable operation times and complexities. In particular, by leveraging AI and an attention mechanism, 
the algorithm efficiently collected, extracted, and predicted operation times for products not yet produced. Its potential applications 
included mixed production lines and those with variable batch sizes. Another study applied multi-objective linear programming to 
production planning optimization [12]. The method achieved about 16% cost reduction for dynamic planning. Meanwhile, 
production scheduling under the Industrial Internet of Things (IIoT) platform was also explored [13]. The study addressed the 
challenges presented in intelligent scheduling for hybrid flow shop by using deep RL. They reported an improvement of over 6% 
in scheduling efficiency, compared to traditional approaches. Another ML algorithm called M5P was applied to production 
planning in smart factories [14]. It highlighted the vital roles of IoT data in optimizing the production process and in related 
decision supports. Last but not least, flexible IoT architecture and AI models were developed for monitoring labor-intensive 
manufacturing sites [15]. That method facilitated accurate production forecasting and real-time activity recognition. It thereby 
demonstrated that effective planning could be realized through machine utilization analysis and sequential AI learning from data 
acquired by IoT. 

As evident in [4]-[15], various approaches have been proposed to improve production planning and scheduling. Early works 
emphasized lean techniques, mathematical models, and software-based tools to reduce planning time and to improve efficiency. 
With the emergence of Industry 4.0, technologies such as AI, IoT, and big data have enabled automation, predictive maintenance, 
and adaptive production systems. Recent studies have shown that AI can effectively handle complex and dynamic scheduling 
problems. Integration with simulation, attention mechanisms, and IoT-based architectures has demonstrated measurable 
improvements in scheduling accuracy, cost reduction, and real-time decision-making, highlighting the growing role of intelligent, 
data-driven methods in modern manufacturing. While AI can effectively address complex and dynamic production scheduling 
problems, this paper instead presents a novel management strategy based on data science principles. The proposed algorithm does 
not rely on ML and is therefore not affected by learning-related biases. Instead, it utilizes deterministic similarity analysis to 
evaluate the relevant data. A key advantage of our approach is that, although errors exist in the raw data, they only impact on the 
input directly and do not propagate or accumulate throughout the learning process. 

In this paper, a factory that offers a diverse range of products tailored to customer requirements was studied. The factory 
operates a mass production system with several sub-production lines, each featuring unique stages and machinery designed to meet 
specific customer demands. Upon receiving the product design from a customer, engineers develop a customized process, 
comprising of necessary machinery for a given production line. This information is then passed on to the planning department, 
whose members then determine which production line has the most compatible machinery to that specific production. Their 
primary objective is to minimize the time needed for line adjustments due to different compositions. Therefore, this step typically 
involves comparing and choosing a line that closely matches a design. Unfortunately, with a large number of production lines 
available, the step can be tedious and time-consuming, especially for less experienced planners. 

Following the problem statement, this paper presents a novel algorithm for selecting production lines, given new product 
models. Each model may require different machinery according to specifically customized designs. Traditionally, there is no sole 
reliable way to guide such selections or to confirm whether they are optimal. Consequently, adjustments to the machinery within 
selected lines were often inevitable in real-world scenarios. It is thus anticipated that the proposed method could help reduce the 
unnecessary workload imposed on the production planning staffs, thereby enhancing the overall efficiency of the production 
planning and the resulting processes. 

2. Similarity Metrices 
Similarity or measures or metrices were normally utilized to quantify the degree of similarity between two data points, 

vectors, or sets. Each metric has unique characteristics and hence is suitable for different types of data and purposes. Listed below 
are the explanations and corresponding mathematical formulae of similarity metrices employed in this study. 

A. Cosine Similarity 
Cosine similarity measures the cosine of the angle between two non-zero vectors in an inner product space. It is defined as 

the dot product of the vector pair divided by the product of their magnitudes. This measure is particularly useful for assessing the 
similarity between documents or text data [16], as it focuses on the orientation of the vectors rather than their magnitude. 

B. Jaccard Similarity 
Jaccard similarity measures the similarity between two sets by comparing the size of their intersection to the size of their 

union. This measure is effective for comparing binary attributes or sets, such as measuring the similarity between two groups of 
items [17, 18]. 

C. Euclidean Distance 
Euclidean distance represents the straight-line distance between two points in Euclidean space, calculated from their 

coordinates in multiple dimensions. It is typically used in geometry and spatial analysis [19], particularly when the physical 
distance between points is of interest. 

D. Manhattan Distance 
Manhattan distance calculates the distance between two points by summing the absolute differences of their coordinates 

along grid-like paths. This measure is suitable when movement occurs along axes or grids, often used in urban analyses and path-
finding algorithms [20]. 

E. Pearson Correlation Coefficient 
Pearson correlation coefficient quantifies the linear relationship between two variables. The values range from -1 to 1, 

indicating perfect negative and positive correlations, respectively. The closer the coefficient is to 0, the less likely that these 
variables are correlated. This measure is normally found in statistical analysis [21] to assess the strength and direction of the 
relationship between two continuous variables. 
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F. Dice Similarity Coefficient 
Dice similarity coefficient measures the similarity between two sets by considering the size of their intersection relative to 

the total size of both sets. It is particularly useful in image analysis [22] and document comparison [23], where the emphasis is on 
the overlap between sets. 

G. Hamming Distance Measures 
Hamming distance measures the number of positions at which two strings of equal length differ, making it suitable for 

categorical data represented in binary form. This measure is widely used in coding theory and error detection [24], where the 
difference between two binary strings needs to be evaluated. 

H. Jensen-Shannon Divergence 
Jensen-Shannon divergence quantifies the similarity between two probability distributions by measuring the average of the 

Kullback-Leibler divergence of each distribution with respect to the average of both distributions. It is often employed in statistics 
and machine learning to compare probability distributions, particularly in tasks involving generative models [25]. 

The formulae of the above similarity metrices are listed in Table 1, where A and B are the two data sets, whose similarity is 
measured. Therefore, given a product model described by{[Ni]xi}, the proposed method aimed at finding a production line, 
whose{[Mj]yj} sequence was the most similar, with respect to some metric, where N (or M) and x (or y) are, respectively, the 
number and the name of an ith (or jth) machine required in the process. 

Table 1 Formula of the similarity metrices employed in this study 
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3. Data Preparation and Characteristics 
This paper addresses the problem of finding the most suitable production lines for a given new product design, so that the 

adjustments made to the selected lines would be minimal. 
The data considered in the process were collected from a set of 84 product design models. Each model was represented by 

an ordered sequence {[Ni]xi}. Example of two models analyzed in this study are illustrated in Table 2. In this example, Model #1 
can be interpreted as a design requiring two BAS-326H-0 machines, three S-7300A machines, two GC20618-2 machines, one 
invert machine, one metal detector, two table inspection machines, one table set front, one computer monitor, and two barcode 
printers. Likewise, Model #2 was that required four BAS-326H-0 machines, three GC20618-2 machines, one B-8452B-7 
machines, one invert machine, one metal detector, one table inspection machine, one auto stamping (long), one computer monitor, 
and two barcode printers.  

Subsequently, data from the 10 existing production lines were also collected. Each line consisted of a similar sequence 
detailing currently available machines, whose examples are shown in Table 2. It is noted that the quantity and types of machines 
required for Model #1 were available in and thus fully covered by Production Line #2. Similarly, those for Model #2 are also 
covered by Production Line #7. 
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Table 2 Example models and production lines data 
 

Machine Type Model Line 
#1 #2 #2 #7 

BAS-326H-0 2 4 5 4 
BAS-311H - - - 2 
GC20618-2 2 3 2 3 
S-7300A 3 - 3 - 
BAS-342H - - 1 1 
B-8452B-7 - 1 - 1 
INVERT MACHINE 1 1 1 1 
METAL DETECTOR 1 1 1 1 
TABLE INSPECTION 2 1 2 1 
TABLE SET FRONT 1 - 1 - 
TEMPLATE 
BLACKLINE 

- - 1 - 

AUTO STAMPING 
(LONG) 

- 1 - 1 

COMPUTER 
MONITOR 

1 1 1 1 

BARCODE PRINTER 2 2 2 2 

4. Preliminary Experiments 
In the following experiments, the plant studied consisted of 10 lines producing 84 products. Each line may be able to produce 

more than one product model, and vice versa. Table 3 associates these production lines, their eligible products and counts (in 
parenthesis). It may be noted from the table that, for example, model #33 is produced by either line #2 or #3. 

Table 3 Associations between production line and product model 
 

Line 
ID 

Models (Count) Line 
ID 

Models (Count) 

1 1–13 (13) 6 58–62 (5) 
2 14–24, 29, 33, 39, 40, 

45, 46, 49, 53, 56, 57 
(21) 

7 36, 63–68, 81, 82, 
84 (10) 

3 24–33, 37 (11) 8 69–75 (7) 
4 34–36, 38–43 (9) 9 76–79 (4) 
5 32, 35, 39, 40, 44–57 

(18) 
10 80–84 (5) 

 
In the first experiment, each product model was analyzed in turn. Its corresponding design sequence was matched against 

that of each product line, based on CS. The line with the highest CS was considered the most suitable for the model. The resultant 
line was then verified against its eligible models in Table 3, whether such model-line pair was indeed a correct association. The 
matching was repeated but using the remaining similarity metrics in turn (i.e., JS, ED, MD, PC, DS, HD, and JSD). The numbers 
of actual and incorrect associations were noted. For each model, successful case was identified only if every similarity metric gave 
the correctly matched line. Otherwise, it was marked as a failure. Out of 84 models, the number of failed cases found in each 
production line and those given by each similarity metric are shown in Figure 1(a) and 1(b), respectively. The total models 
successfully matched with eligible lines regardless of similarity were 61 cases, accounting for 72.62%. 

 

 
(a) 
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(b) 

Figure 1 Number of incorrect results found in each production line (a) and given by each similarity metric (b) 
 

It is evident from Figure 1(b) that MD gave the highest error rate of 22 incorrect matching. On the contrary, both JS and DS 
performed equally well. They wrongly predicted the pairs for only 4 model instances, i.e., number 11, 21, 30 and 43. Therefore, 
these metrics gave the highest accuracy of about 95.24%.  

Table 4 presents a comparative analysis of the variance and standard deviation (SD) of similarity scores across similarity 
matrices, revealing notable differences in result consistency. HD and JSD exhibited low variability, indicating highly consistent 
outcomes. Conversely, MD and PC showed higher variability, suggesting fewer stable results. Notably, the JS and DS 
demonstrated moderate variance and standard deviation (JS: Variance=0.0249, SD=0.1577, DS: Variance=0.0202, SD=0.1422), 
reflecting a balance between result stability and sensitivity to the differences. 

Table 4 Comparison SD and variance of similarity matrices 
 

Similarity Variance of 
Similarity 

SD of 
Similarity 

CS 0.01477 0.12155 
JS 0.02488 0.15774 
DS 0.02023 0.14222 
ED 0.03521 0.18764 
MD 0.84150 0.91733 
PC 0.04506 0.21228 
HD 0.00692 0.08321 
JSD 0.00989 0.09944 

 
Their balance makes JS and DS particularly suitable for structured data formats, as described in Section 3. Both similarity 

metrics emphasize the proportion of common elements through intersection operations, as shown in Eq. (2) and (3). Their set-
based design makes them particularly well-suited for feature-level comparisons, where the presence or absence of elements holds 
greater significance than their sequential order or frequency. This characteristic contributes to their robustness and effectiveness 
in identifying appropriate model-production line associations in this research. Figure 2 compares the corresponding confusion 
matrices derived from JS and DS (a) and MD (b) predictions.  
 

 
(a) 
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(b) 

Figure 2 Confusion matrix resulted from JS and DS (a) and MD (b) 
 

However, the actual similarity of these models, given by both metrics were different. For model #11, the JS and DS 
similarity were 0.565217 and 0.722222, respectively. Likewise, those for model #21 were 0.611111 and 0.758621, for model #30 
were 0.714286 and 0.833333, and for model #43 were 0.65 and 0.787879, respectively. It can be observed that JS were typically 
lower than DS for the same model, but they were correlated. This observation also applies to the correctly predicted associations. 
Therefore, Figure 3 compares the individual (a) and multivariate (b) distributions between JS and DS across all models. 
 

 
(a) 

 
(b) 

Figure 3 Box-whisker plot of JS and DS across all models (a) and (b) their joint distribution 

 
Detailed analysis of individual models yields further insights into the involved similarity metrics. Take model #13 for 

example. Its similarity measures with respect to individual production lines are listed in Table 5. It can be read from the table that 
both JS and DS found line #1 the most appropriate match. Meanwhile, all the other remaining measures suggested line #2 instead. 
However, in reality, line #2 was not a viable choice, because it had only two GC20618-machines, whereas model #13 required 
three. Moreover, the line also lacked the B-8452B-7 and S-7200C machines required to produce this model. 
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Table 5 Similarity measures obtained from model #13 with respect to 10 production lines 
 

Line (1) CS (2) JS (3) DS  (4) ED (5) MD (6) PC (7) HD (8) JSD 
#1 0.817568 0.692308 0.818182 0.604039 1.920981 0.543634 0.117647 0.301503 
#2 0.887012 0.56 0.717949 0.47537 1.002873 0.754024 0.088235 0.253065 
#3 0.819016 0.535714 0.697674 0.601637 2.052296 0.540635 0.176471 0.329703 
#4 0.654768 0.407407 0.578947 0.830942 2.879903 0.21159 0.294118 0.450348 
#5 0.755996 0.423077 0.594595 0.698575 2.337977 0.446078 0.205882 0.380229 
#6 0.540853 0.37931 0.55 0.958277 3.836308 0.140463 0.264706 0.477375 
#7 0.607052 0.52 0.684211 0.886508 3.276759 0.178281 0.323529 0.47655 
#8 0.771747 0.346154 0.514286 0.675652 2.308089 0.537679 0.176471 0.365979 
#9 0.513829 0.24 0.387097 0.986074 4.209822 0.135614 0.411765 0.563319 

#10 0.554477 0.37037 0.540541 0.943953 3.642498 0.138968 0.333333 0.517191 

 
Therefore, closer inspections on both production sequences were made to determine sources of prediction errors. Table 6 

lists the sequences of model #13, line #1 and line #2. It is evident that line #2 had S-7300A, whereas model #13 demanded S-
7200C. These elements differed by only two characters (positions), i.e., 3 versus 2 and A versus C. In addition, the words count in 
model 13 was more similar to line #2 than to line #1. 
 

Table 6 The sequence required by model #13 compared to those available in lines #1 and #2 

Machine Type 
Mod

el Line 

#13 #1 #2 
BAS-326H-0 4 6 5 
BAS-311H - - - 
GC20618-2 3 3 2 
S-7200C 1 1 - 
S-7300A 1 1 3 
BAS-342H - - 1 
B-8452B-7 1 2 - 
INVERT MACHINE 1 1 1 
METAL DETECTOR 1 1 1 
TABLE INSPECTION 2 2 2 
TABLE SET FRONT 1 1 1 
TEMPLATE 
BLACKLINE 

2 2 1 

AUTO 
STAMPING(CIRCLE) 

- 1 - 

AUTO 
STAMPING(SUB) 

- 1 - 

AUTO STAMPING 
(LONG) 

- - - 

COMPUTER 
MONITOR 

1 1 1 

BARCODE PRINTER 2 2 2 
Words Count 12 14 11 

5. The Proposed Algorithm 
It can be drawn from the above preliminary results that the words count within, and the length of the dataset played important 

roles in predictions. Whilst JS and DS outperformed the others and as such were the preferred choices, none of the metrics alone 
were adequate for this task. Therefore, this paper additionally introduces word segmentation and conditional priority assignments 
to the text data to enhance the prediction accuracy. They are outlined in Table 7. 
 

Table 7 The proposed priority assignment scheme 
 

Priority Description 
1 The machine types for the model must be fully 

included in the production line. 
2 The number of machines in the production line 

must be no less than that required by the model. 
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The proposed system begins with database preparation. The database consisted of production line and product model 
textual data, as outlined in Section 3. These data were then passed to the main algorithm, where their similarity measures were 
calculated, and the proposed heuristically conditional processes were taken. Detailed description of the algorithm is given in the 
next section. The resulting prediction, i.e., a production line that was best suited for the given (unseen) model, was finally reported. 
The diagram describing the proposed line prediction system is shown in Figure 4. 

 

 
Figure 4 Overview of the proposed system 

 
The process of the proposed method was divided into three main steps: 

(1) Word Segmentation 
Firstly, a given textual sequence was segmented by the comma (,) delimiter. A condition was then imposed on an eligible 

pair, i.e., the words count in the product model must be less than or equal to that in the production line. The condition can be 
expressed by B ⊆ A, where A and B were set of elements in the line and model, respectively. Only the segmented machine types 
were considered when measuring the similarities. 

(2) Ensemble Similarity 
For a given line and model pair, JS and DS were computed. For the pair to be admissible to the prediction results, its JS and 

DS must be no less than 0.75 or 0.85, respectively. The thresholds were determined from the preliminaries reported in Figure 3. 
(3) Conditional Priority Assignments 
Cases failing to reach the above JS and DS thresholds were compared. Unlike the previous step, machine types from the 

production line that were not present in the model were removed before the comparison. Then, JS and DS were recomputed for 
the filtered sequences, consisting of the remaining machine types. If similarity values were 1.0, the line was admissible to the 
prediction only if it also satisfied the condition specified in (1), i.e., the number of each machine type in the model must be no 
more than that available on the production line. 

The above process is summarized in a flowchart as depicted in Figure 5. 

6. Results and Discussion 
For the 84 product models and 10 production lines involved in this study. There were 840 cases (i.e., model-line pairs) to be 

considered in total. 
(1) Word Segmentation 
Out of the 840 cases, there were only 654 cases that met the criterion for the word counts set in Section 5 (1). In other words, 

approximately 23% of the total cases were excluded in this step. Presented in Figure 6 are the numbers of cases (i.e., production 
lines) satisfying this condition for each model. It can be noted that initially there were about 3 to 10 candidate lines for a given 
model. 

(2) Ensemble Similarity 

Subsequently, JS and DS for the remaining 645 cases were computed. Within each model, the cases were ranked based on 
these values in descending order. Cases where the JS and DS did not meet the referent thresholds set in the second step were 
excluded. The higher the similarity, the greater the resemblance within the same group (model). As can be seen in Figure 7, there 
are only 48 out of 84 models, whose at least one case passed this criterion. To demonstrate some eligible cases, Figure 8 lists some 
final predictions, e.g., lines #2 and #7 were the most suitable (i.e., with the highest similarity) for models #14 and #65, respectively. 
The remaining 36 models thus required further assessment in the final step. 
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Figure 5 Flowchart of proposed prediction system. 

 

 
Figure 6 The number of production lines that satisfied the condition in the first step (1) 
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Figure 7 JS and DS similarity for all 84 cases and those reaching the threshold set in the second step (2) 

 
Figure 8 Examples of cases whose production lines satisfied the similarity value condition. 

 
(3) Conditional Priority Assignments 

Finally, the prediction results for the remaining 36 models and their associated cases that satisfied the last condition are 
shown in Figure 9. Since the suitable production lines for a given models were known (as shown in Table 4), their confusion matrix 
can be determined from the resultant prediction and shown in Figure 10. It can be noted that all production lines were predicted 
correctly. The accuracy of the proposed method was therefore 100%. 

 
Figure 9 Examples of cases whose production lines satisfied the final condition (3) 

 
Figure 10 Confusion matrix of proposed algorithm 

 
In our experiment, some product models can be produced by more than one production line. For example, model #21 can be 

produced by lines #4, #2, #3, or #1. They were ranked by their similarity measures.  
To demonstrate the merits of the proposed method, the red box in Figure 9 highlights three models initially misclassified in 

the initial prediction. However, the proposed algorithm finally enabled accurate associations for these production lines. For 
example, as shown in Table 8, production line #5 gave the highest similarity value for model #21. However, this line had only two 
BAS-326H-0 machines. The number of this machine is insufficient, because the designated model required three. Therefore, line 
#5 cannot be used to produce model #21.  

With the proposed algorithm, the process is divided into three steps. (1) Word Segmentation: This step verifies whether 
the segmented words from the model are a subset of those from the production line. In this case, all three lines satisfy this condition. 
(2) Ensemble Similarity: The JS and DS values between model #21 and the data from lines #5, #4, and #2 (which are the top three 
candidates with the highest JS and DS scores) are shown in Table 9. It can be observed that JS < 0.75 and DS < 0.85; therefore, 
the process proceeds to (3) Conditional Priority Assignments. In this step, filtering of the candidate lines is performed first (as 
shown in Table 8), and then JS and DS are recalculated. The results show that both JS and DS reach the value of 1.0. Finally, the 
number of machines required by model #21 is compared with those available in the filtered lines. Upon completion of the proposed 
algorithm, lines #4 and #2 satisfied the last condition. They contained four and five BAS-326H-0 machines, respectively. The 
number exceeded that needed by the model. 
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Table 8 The sequence required by model #21 compared to those available in lines #5, #4 and #2 
 

Machine Type 
Mod

el Line Filtering 
Line 

#21 #5 #4 #2 #5 #4 #2 
BAS-326H-0 3 2 4 5 2 4 5 
BAS-311H - - 2 - - - - 
GC20618-2 2 2 2 2 2 2 2 
S-7300A - 2 2 3 - - - 
BAS-342H - - - 1 - - - 
B-8452B-7 - - 2 - - - - 
PQ1500SL - - 2 -  - - 
INVERT MACHINE 1 1 1 1 1 1 1 
METAL DETECTOR 1 1 1 1 1 1 1 
TABLE INSPECTION 2 2 2 2 2 2 2 
TABLE SET FRONT - - - 1 - - - 
TEMPLATE 
BLACKLINE 

- 1 - 1 - - - 

AUTO 
STAMPING(CIRCLE) 

- 1 1 - - - - 

COMPUTER 
MONITOR 

1 1 1 1 1 1 1 

BARCODE PRINTER 2 2 2 2 2 2 2 
Words Count 7 10 12 11 7 7 7 

 

Table 9 The initial prediction results (line #5) and those obtained by the proposed method (lines #4 and #2) for model #21 
 

Line 
Ensemble 
Similarity 

Conditional 
Priority  

Assignments Result 

JS DS JS DS 
#5 0.6111 0.7586 1 1  
#4 0.5789 0.7333 1 1  
#2 0.5500 0.7097 1 1  

7. Conclusions 
This paper proposes a production line prediction method. It aimed at enhancing planner’s efficiency, particularly following 

the design extraction phase of the product drawing. The proposed algorithm utilized a two-step similarity measure, comparing two 
textual datasets, using Jaccard and Dice similarity (JS and DS). A notable advantage of this similarity-based approach is that it is 
consistent across different letter cases, producing identical results for both uppercase and lowercase encoding texts. In the 
experiments conducted on 84 models, a single-step application of JS and DS achieved an accuracy of only 95.24%. With the 
proposed two-step similarity approach, accuracy of 100% could be obtained. Our findings indicate that the proposed method can 
be applied to predict a new product model unseen to the manufacturing plant. 

In future work, focus should be aimed at enhancing the efficiency of the proposed algorithm by enabling it not only to predict 
the most suitable production line, but also to provide specific recommendations regarding the selected alternative line. This 
includes identifying any missing machines within that production line and specifying both the quantity and types of equipment 
required. Such improvements would support practical decision-making in manufacturing environments where resources may vary, 
and ensure a more comprehensive deployment of the algorithm in real-world applications. 
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