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Abstract. The inclusion of distributed energy resources (DERs) in the power distribution network (DN) encountered rapid growth
across the countries due to technological and environmental advantages. Moreover, this inclusion not only enhances diversity in
resources but can improve the quality of service to users as well. However, the unplanned integration of DERs and their
deployment in non-optimal locations can adversely affect the performance of DN. Hence, optimal positioning and sizing of DERs
is very important aspects. Further, few studies have focused on DER and shunt capacitors (SCs) allocation in combination with
the presence or absence of OLTC infrastructure. Therefore, in this paper, the recently developed Mountain Gazelle Optimizer
(MGO) algorithm suitable for solving complex problem and addressing global optimization issues, is applied for optimal
positioning of the DERs along with existent distribution infrastructure. In this work, considered objective is decreasing the cost of
annual energy loss (CAEL). In order to showcase the usefulness of MGO algorithm in solving DER allocation problem this has
been implemented on IEEE 33 bus and Indian 108 bus radial DN (real-life practical DN). The comparative analysis between MGO
and other applied methods in the literature on same problem has also been presented. The obtained results indicate that
simultaneous consideration of DERs, SCs and existing OLTC not only offers improved utilization of existing DN infrastructure but
also minimizes the overall cost. The considerable improvement in results pertaining to CAEL for different scenarios, for an
example around 10.6 % better compared to best reported results (IEEE-33 bus system, scenario-5), confirm the suitability of MGO
algorithm.
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1. Introduction

Technological advancements drive a rapidly evolving business environment, where maintaining a competitive edge requires
the ability to respond swiftly and efficiently to consumer demands. In particular, the online retail or e-commerce market in Thailand
is expected to grow by 19% in 2023, reflecting consumer trends that favor online shopping [1]. This trend has compelled
entrepreneurs across various industries, including the mattress and bedding sector, to continuously expand online marketing
platforms to remain competitive.

In recent years, there is significant rise in electricity demand. The escalation of world’s population, economic and
technological development are some of the critical factors responsible for this electricity demand hike. To manage the demand,
countries across the globe are utilizing conventional (coal, diesel, gas)-power generation systems. However, conventional energy
resources are limited and also harmful to environment [1]. Therefore, integration of renewable based generation has turned up as
a probable alternate option to conventional power generation [2]. The global renewable-based generation capacity is rising
considerably after each passing year. In the year 2014, global renewable generation capacity was 1829 GW which rises nearly
86.34 % and reached to 3382 GW in 2022 [3]. Furthermore, the addition of renewable-based distributed generation (DG) in power
DN is also rising worldwide due to environmental advantages, diversification of energy resources, lower transmission and
distribution costs, reduced losses, probably improvement in quality of service [4]. In 2017, worldwide addition of Total DERs
Power Capacity were 132.4 GW, which is likely to rise to 528.4 GW in 2026 [5]. However, addition of DERs in unplanned manner
and at non-optimal locations may result in higher losses and thereby higher costs. Therefore, in order to exploit maximum benefit
of DERs, optimal positioning and sizing of DERs is very important aspects [6]. The optimal DER integration problem, in single
or multi-objective frameworks, has attracted many researchers.

For the above-mentioned allocation problem, researchers have considered objectives such as real power loss [7,8], voltage
profile improvement [9,10], energy loss [11], voltage stability [12], power quality [13], and reliability [14]. Out of these,
minimizing power loss is widely adopted objective function. It is known that electricity demand varies with time as a consequence
the associated power loss also varies and further price of electricity is also time-dependent. Therefore, in [15,16], the considered
objective function is CAEL instead of annual energy loss (AEL) which is considered by various researchers. Multi-objective
framework has also been adopted to enhance the performance of DNs in the literature [17-19].

In [17], authors modified the salp swarm optimizer (SSO) based approach to make it suitable for multi-objective problems
and applied this approach for improving the DN performance. In [18], authors presented adaptive fuzzy-based technique to solve
single and multi-objective problems. They applied the same to integrate DER, DSTATCOM and BESS optimally. In [19], authors
proposed multi-objective framework that considers different technical and non-technical objectives. They evaluated different cases
on standard test system at different load models. In [20], two-stage ANN based approach has been employed to optimally integrate
DERs in DN. They presented that in the first stage, suitable location is determined, whereas in the second stage, optimal size is
found.

An analytical approach has been proposed in [21] to enhance DN performance by minimizing losses and improving voltage
profile. In [22], authors applied dynamic programming for allocating DG in DNs to enhance reliability and decrease the loss of the
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system. In [23], authors suggested that allotment of DGs and SCs in parallel is a useful way to strengthen the performance of DNs
as SCs offer comparatively cheaper voltage support in comparison to DGs. Further, OLTC and voltage regulators are also available
in DN to support voltage controlling and their deliberation can minimize penetration of DG that in-turn can minimize CAEL. In
[15], a new multi-agent based sine-cosine algorithm (MA-SCA) is applied to optimally integrate DERs with consideration of
existent DN infrastructure. In [24] A new oppositional-based optimization named OARO is introduced for achieving optimal
allocation and sizing of nonlinear DG in DNs. A novel bi-level multi-objective framework for the planning of solar photovoltaic-
battery storage-based DERs within smart DN is delineated in [25]. In [26], an advanced algorithm is elaborated upon for the
incorporation of DER and solid-state transformers (SSTs) within forthcoming distribution networks. The objective is to enhance
the economic operations of DERs in conjunction with the SST to augment system efficiency and voltage profiles. In [27], the Non-
dominated Sorting Genetic Algorithm (NSGA-II) was utilized to ascertain the optimal sites for the installation of electric vehicle
(EV) charging stations, taking into account target functions such as total energy loss, voltage unbalance factor (VUF), and central
load distance. In [28], a metaheuristic algorithm designated as the student psychology-based optimization (SPBO) algorithm, has
been employed for the strategic placement of various categories of DGs and distribution static compensators (DSTATCOMs)
within DN. Also, different indices have been integrated to tackle diverse technical, economic, and environmental aspects.

Additionally, it is important to mention that metaheuristic techniques have been widely employed for complex problem of
optimal DERs integration. Some of the adopted techniques are water cycle algorithm (WCA) [29], teaching learning based
optimization (TLBO) [23], hiking optimization algorithm (HOA) [30], dynamic node priority list genetic algorithm (DNPL-GA)
[31], corrected moth search optimization (CMSO) [16], ant lion optimization algorithm (ALOA) [32], honey badger optimization
[33].

However, sometimes algorithms suffer from premature convergence to local optima, sensitivity to parameter settings, and
limited adaptability to mixed-variable or real-world constraints. Therefore, there is quest for developing and applying new
optimization algorithms to solve or improve these issues. Further, from the literature review, it is observed that, few studies have
focused on DER and SCs allocation in combination with the presence or absence of OLTC infrastructure.

The main contributions of the proposed work are as follows:

e A recently developed MGO algorithm is being utilized, for integration of the DERs and SCs optimally into power DNs
with inclusion and exclusion of existent OLTC, in this presented work.

e  More realistic objective of minimizing CAEL is considered under multiple loading conditions in place of minimizing
active power loss.

e Demonstrated the practical value of the proposed MGO-based optimization approach by validating it on both a benchmark
test system (IEEE 33-bus) and a realistic Indian 108-bus network, highlighting its scalability and real-world applicability.

e The comparative analysis between MGO and other applied methods in the literature on same problem has also been
presented and results pertaining to CAEL confirms the suitability of MGO algorithm.

The organization of this paper is as per the following: Section 2 describes the mathematical modelling of objective function
and formulation of considered problem. The discussion on the applied MGO algorithm has been carried out in section 3. The
discussion about used test systems, different considered cases, obtained results and its analysis has been provided in section 4 and
conclusion in the last section.

2. Mathematical Formulation

This section describes the mathematical formulation of considered optimization problem, which is optimal positioning of
DERs in DN. The modelling of objective function and related constraints have been presented. The mathematical formulations
proposed in many articles have not considered presence of existing OLTC in their formulation. Nonetheless, consideration of
existing OLTC not only offers improved utilization of existing DN infrastructure but also minimizes the overall cost [16,31].
Therefore, in this work, the presence of existing OLTC while optimizing DERs has been included.

The discussion on objective function and their associated constraints have been presented in following subsections.

A. Cost Minimization

It is well-known that energy losses vary with variation in load demand and further electricity prices are also load dependent
thereby time-varying as well. Hence, minimization of CAEL is the main objective in this work. Several cases with distinct scenarios
have been presented for accommodating different loading patterns and corresponding price effects. The objective function of

minimizing CAEL can be expressed as:
NI Nb
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B. Constraints
The considered constraints are as per the following

P = X1 Vi Yej cos(8ij + 81 — 6ia) Yk, 1 3)
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Here, constraints in Eq. (3)-(4) ensure power balancing of nodal real and reactive power respectively. Pu, Qu, and du signify
the real power supplied, reactive power supplied, and voltage angle at the kth bus in the course of the Ith loading scenario.
Furthermore, Y\ and 0y are picked up from bus impedance matrix. Py, Qu¢ , are representing the demand of real and reactive
power at k™ bus during the 1" loading level.

P and QiS¢ implies the real power offered by DER and reactive power offered by SC at k™ bus at the 1™ loading level. Eq.
(5) puts a limit on voltages magnitude and Eq. (6) puts a limit on maximum penetration at individual nodes, wherein Eq. (7)
restricts the overall penetration of DERs. Ly*" and Li! are the recommended DERSs sizing and normal loading condition at bus-k.
Lumax® represents the maximum permissible penetration of DER on individual node and at the peak loading level the multiplying
factor is considered as a.

In the above-discussed formulation, variables like DG sizes are continuous variables, whereas discrete variables like OLTC tap
settings, location and size of SCs, and location of DERs. Further the primary objective of this study is to demonstrate how current
VR schemes affect DER planning. As a result, OLTC will only engage in VR if the DER sites and sizes recommended during the
optimization process are unable to sustain the necessary voltage levels. Consequently, the secondary voltage regulation will be
provided by the OLTC.

3. MGO Algorithm

MGO algorithm [34] is recently included meta-heuristic algorithm which is created on the way of living and social conduct of
mountain gazelles. This algorithm executes optimization considering number of important factors of gazelle’s life and discussion
on these factors have been presented in sub-sections. In the course of optimization operation in MGO method, every single gazelle
(Xi) can turn out to be a member to herds of maternity herds, bachelor male herds or solitary, territorial male. Any of these
mentioned herds can give birth to a new gazelle.

The overall best obtained solution in MGO is adult male gazelle in the herd territory. Furthermore, other available solutions
represent the gazelles which have been considered in maternity herds. The strong gazelles having superior solutions are conserved
while sick/old gazelles with weaker cost are eliminated from the total population. In this technique, exploitation and exploration
are carried out parallelly by applying four mechanisms. It means that a solution can move in the direction of the best solution and
at the same time can also perform the exploration, as accordance with mechanisms of MGO algorithm. The mathematical
formulation of MGO algorithm for performing optimization is explained in the following section.

A. Territorial Solitary Males (TSM)

Once male gazelles attain maturity and becomes stronger, they form individual territory and exhibit territorial behavior. Also,
the territories are separated by considerable distances. The male gazelles fight for the territorial command or ownership of the
female. Gazelles which are young, they put efforts for the possession of territory or female whereas the adult gazelles strive hard
for the protection of territory. Eq. (8) is employed for modelling the territory of the adult male.

TSM: Mg_l(VIXCVYMH_TZ XX(t) XF)lXCVT- (8)

where M;, signifies the position vector of optimal global solution. The variables r; and r, are the randomly generated integers
which can have values either 1 or 2. Eq. (9) is used to calculate the coefficient vector of the young male herd (CVyuyy) and to
compute ‘F’ Eq. (10) is used. Eq. (11) is used to calculate ‘CV,” which represents coefficient vector and updated in every single
iteration for improving the searching ability.

N
Vs = Xy X [rvg] + My, X [rvg ], { ;

N} )

In Eq. (9), X, denotes a random solution (young male) in the interval of ra. Rv; and rv, are randomly generated values in the
range of 0 and 1. M, is the average count of search agents selected at random [N/3] and N indicates overall count of herd gazelles.

2
F = N;(D)x exp (2 — Iter X (Hermax)) (10)

In Eq. (10), N; is a random number derived from a standard distribution. /ter and Itermax are the ongoing iterations’ number
and the total iterations’ number, respectively. The coefficient vector ‘CV,’ is selected initially randomly and then in each iteration
updated using Eq. (11) to improve the search capability.




ENGINEERING ACCESS, VOL. 12, NO. 1, JANUARY-JUNE 2026 117

(a+1)+rvg,
a X N,(D),
Cy, = (D), (11)
N3 (D) x N, (D)* X cos((rv, x2) x N5 (D)),
Here, rv;, and rv, are randomly selected number in interval [0, 1]. Also, the numbers N>, N3, and Ny are fixed at random as
per the normal range and the problem dimensions. Eq. (12), is used to express ‘a’.
-1

Itermax

a= —1+ Iterx (

) (12)

B. Maternity Herds (MH)

Similar to life cycle of all animals, maternity herds play very important role in of mountain gazelle’s life cycle because these
ensure continuity and produces strong male gazelles and they can also play a part in producing new gazelles and young males
endeavoring for acquiring female gazelles in accordance with Eq. (13).

MH = (CVyyg + C%) + | (75 X My = 13 X X )| X Y, (13)

In Eq. (13), CVywmn signifies the young males’ impact factor vector which is computed by Eq. (8). M indicates best global
solution (adult male) in the ongoing iteration. Xrnd indicates the vector position of a arbitrarily picked gazelle from the whole
population.

C. Bachelor Male Herds (BMH)

When the male gazelles attain adulthood, they not only make an attempt to build own territory and but also aspire to
attract females and compete for their control. In this phase of life, violent behavior rises within the male groups and this behavior
is formulated mathematically in Eq. (14).

BMH = (X(t) = D) + |(rs x M, — 1 X CVyypey )| X CV, (14)

In Eq. (14), X(t) signifies the position vector of the gazelle in the ongoing iteration. As discussed earlier, r5 and rs are
randomly picked to be 1 or 2, M, represents the best obtained solution. CVyyy and CV, are determined using Eq. (9) and Eq. (11)
respectively. D is computed using Eq. (15) wherein, rve is random value between 0 and 1.

D= (IX(®O] + |My|) x (2% 7115 —1) (15)

D. Migration to Search for Food (MSF)

Generally, MGs travel great distances in quest of food source and explore wider horizon in search for food, taking
advantage of their natural ability, faster speed of running, sprinting, and jumping. This behavior of gazelles is formulated
mathematically using Eq. (16).

MSF = (ub —1b) X r» +1b (16)

In Eq. (16), ub and Ib represents the upper and lower bounds of the problem respectively and r7 is randomly generated
integer in-between 0 and 1.

All above mentioned mechanisms have been adapted to all gazelles in order to create next era of gazelle which is included
into total population and new era is also taken into consideration to classify gazelles. After each of the era, the ranking of gazelles
is performed based on quality of the solutions in increasing order. The best gazelles (superior solutions indicating adult gazelles
who dominates the territory) are kept while the weak gazelles (inferior solutions) are excluded from the population.

E. Computational complexity analysis

To assess the applicability of the algorithm, it is important to understand the computational complexity, which indicates
execution time. In literature, it generally uses Big-O (O) notation, and it depends on the number of dimensions (D), maximum
iteration (T_max), and number of gazelles (N). For MGO, the computational complexity is mathematically expressed as follows:

O(MGO) = O(problem defination) + O(population initialization)
+ O(fitness evaluation) + O(solution update) 17
OMGO) = O(1) + O(N x D) 4+ O(4 % Ty X N) + O(4 X Tpyp X N x D) (18)

4. Results and Discussion

This section presents discussion on results attained by applying the MGA algorithm on considered optimization problem.
Further, several loading patterns have been assessed while achieving the minimized cost of AEL. The details about load levels and
other related parameters have been taken from [16]. The IEEE 33 bus radial DN as well as practical Indian 108 bus DN have been
used to validate the usefulness of adopted algorithm in order to achieve the minimized CAEL. Moreover, in order to compare the
obtained results, similar scenarios as considered in literature [16] have been realized which are as per the following:
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Scenario DERs SCs Existent
Number OLTC
1 B R R
2 N - -
3 N - N
4 N N -
5 7 7 7

IEEE 33 bus radial test system:- This test system has operating voltage of 12.66 kV and the value of reactive and active power
are 2.300 MV Ar and 3.715 MW respectively. The information with regard to node and branch data is acquired from [35]. For the
purpose of fair comparison, the number of DERs which can be deployed in the distribution system is considered same as in [16,31].

In Table 1, the results obtained for all considered scenarios through MGO algorithm have been shown. These tabulated results
provide information, for all the cases, about DERs (location, size and penetration) and other important data like OLTC tap
positions, minimum voltage, power loss, AEL and CAEL. The DER penetration has been calculated by taking the ratio of
summation of maximum power by all DERSs to the apparent demand of the system during peak load.

In scenario-1, as revealed in Table 1, AEL and CAEL values are at higher side and voltage profile at various load levels is also
poor. The reason is DERs support not included and energy requirements are satisfied by the substation only. On the other hand,
due to consideration of DERs penetration in scenarion-2, significant decrement in CAEL values have been achieved.

In scenario-3, in order to effectively utilize the existing infrastructure, optimal positioning of DERs is obtained by considering
existent OLTC. The examination of results reveals that OLTC tapings gets altered depending upon loading level in order to control
the voltage. For the reason that voltage support is also contributed by OLTC, therefore as compared to scenario-2, almost 7.9 %
decrement in CAEL values have been achieved.

In scenario-4, simultaneous optimization of DERs and SCs have been carried out. For this, the capacitor size of 100 kVAr is
considered. Since, reactive power support is provided by SCs, significant decrement in AEL and CAEL have been achieved
compared to previously discussed two scenarios. Furthermore, with simultaneous allocation of SCs with DERs, the decrement in
penetration of DERSs in to the system is observed.

In scenario-5, the consideration of the existent OLTC is added compared to previous scenario. From the obtained results, it

can be seen that with consideration of the existent OLTCs, more decrement in AEL and associated CAEL can be attained, even
with comparatively less penetration of DERs. Further, it can be observed that in comparison to scenario-3, lesser tap settings are
required because the reactive power support is being obtained by means of SCs.
Table 2 demonstrate that applied MGO algorithm provides better results as compared to other adopted approaches in the literature
for all the case. Further, the comparison of results obtained using adopted approaches for different scenarios is also illustrated in
Figure 1 wherein the most inferior result is selected as 100 percentage, other results show percentage change in CAEL in
comparison to this.

Figure 2 presents a comparative analysis of the AEL values obtained using various optimization techniques. The results
clearly demonstrate that the MGO outperforms the other methods in terms of minimizing AEL. Figure 3 illustrates the voltage
profiles under different scenarios (scenario 1 to 5) across peak load conditions. It is evident that Scenario 1, which involves no
optimization or corrective action, results in a suboptimal voltage profile. In contrast, Scenario 5, which incorporates existing
OLTC, DERs, and SCs, achieves a significantly improved voltage profile—highlighting the effectiveness of coordinated
optimization strategies.

CAEL Compariosn
95
i I D
75 I
65 | [
Scenario-2 Scenario-3 Scenario-4 Scenario-5

B DNPL-GA mCMSO MA-SCA ® MGO

Figure 1. Comparison of CAEL obtained for the different scenarios (IEEE 33-bus system)
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Table 1 Simulation results obtained by MGO algorithm for IEEE 33 bus radial test system
Scenario Optimal Optimized capacities OLTC DER Minimu Active AEL CAEL
s sites of [DERs in kW] tap Penetra- m power (MWh) (USD)
[DERs] {SCs in kVAr} position tion % Voltage losses in
and {SCs} in pu kW
Scenario - - - - 0.96 L 47.07L 2023.32 185507
-1 091N 202.68N
0.85P 575.39P
Scenario [24, 14, 30] [543, 373,527] L - 67.99 0.98 L 17.3L 695.81 63203
-2 [1099, 753,1071] N 0.97N 71.45N
[1787, 1219, 17471 P 0.95P 190.18P
Scenario [14, 24, 30] [374, 543, 528] L 1L 67.73 IL 16.88 L 645.55 58204
-3 [595, 1063, 1024] N 3N IN 67.59 N
[1216, 1780, 1739] P 4P 1P 170.81 P
Scenario [14, 24, 30] [372,539,523]L - 66.03 0.99 L 523L 141.01 12570
-4 {30, 26, {300, 100, 100} L 0.99 N 1454 N
14} [746, 1080, 1049] N 0.99 P 36.04 P
{700, 600, 200} N
[1198, 1731, 1687] P
{1600, 400, 400} P
Scenario [24, 14, 30] [541,373,522] L OL 66.05 0.99 L 5.09L 135.52 12031
-5 {24, 12, {600, 200, 300} L IN IN 14.14 N
30} [1080, 748, 1047] N 1P 1P 3398P
{600, 400, 700} N
[1731, 1206, 1680] P
{700, 800, 1200} P
Table 2 Results comparison for IEEE 33 bus radial test system
Scenario-2 Scenario-3 Scenario-4 Scenario-5
Optimization AEL CAEL AEL CAEL AEL CAEL AEL CAEL
Methods (MWh) (USD) (MWh) (USD) (MWh) (USD) (MWh) (USD)
DNPL-GA [31] 742.05 68753 711.41 65659 178.15 18033 172.73 17350
CMSO [16] 71220 64820  666.72 60372 177.40 16906 165.60 15960
MA-SCA[15] 702.17 63965 656.15 59412 144.21 13961 140.56 13462
MGO 695.81 63203  645.55 58204 141.01 12570  135.52 12031
695.81  g4555
702 17 0l 656.15
e 2 666.72
800 742.05 711.41
141.01 135.52
g o0 144 21 [l 140.56 P
S 400 177.4 165 6
= 178 15 172 73 MA-SCA [15]
<< 200 CMSO [16]
0 DNPL-GA [31]

Scenario-2 Scenario-3 Scenario-4 Scenario-5

EDNPL-GA[31] = CMSO[16] = MA-SCA[15] mMGO

Figure 2. Comparison of AEL obtained for the different scenarios (IEEE 33-bus system)
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Figure 3. Voltage profile during peak loading for the different scenarios (IEEE 33-bus system)

Indian 108 bus radial system:- To demonstrate the performance of the MGO algorithm in solving real world optimization
problem, it is executed on a larger practical DN. This system consists of 29.099 MV Ar and 12.132 MW reactive and real power
demand respectively and operates at the 11 kV voltage. The information with regard to node and branch data is acquired from
[26]. Once again for the fair comparison with results reported in [16,26], the same number of DERs which can be installed in the
DN is considered. The results attained, for all considered scenarios, with the application of MGO algorithm are presented in Table
3. Additionally, the values for the key parameters like OLTC tap settings, power loss and minimum voltage in each load level etc.
are presented in the same table. It can be observed from results presented in Table 3, similar to IEEE 33-bus system, here also
AEL and CAEL values are at higher side due to accomplishment of entire energy requirements from substation only in scenario-
1.

The voltage profile during various load levels is also poor. In scenario-2, due to consideration of DERs penetration, significant
decrement in AEL as well as in CAEL has been observed in comparison to previous scenario.

In scenario-3, for better utilization of existing distribution infrastructure, the optimal deployment of DERs is decided in
conjunction with OLTC tap settings. The examination of results reveals that OLTC tap position gets altered depending upon
loading to control the voltage.

For the reason that voltage support is also contributed by OLTC, therefore as compared to scenario-2, almost 5.82 % decrement
in CAEL values have been achieved. In scenario-4, along with deployment of DERs, the simultaneous allocation of SCs with the
rating in step of 100 kVAr is explored. Due to additional support of SCs in terms of reactive power, the combination of DERs and
SCs are able to achieve a significant decrement in terms of AEL and CAEL compared to all previously discussed scenarios.
Additionally, the decrement in power loss in each load level is achieved and compared to scenario-1 and scenario-2 the better
voltage profile is also observed.

In scenario-5, already existent OLTC has been taken into account while simultaneously deciding the optimal location and size
of SCs and DERs. From the obtained results, it can be seen that with consideration of the existent OLTCs, more decrement in AEL
and associated CAEL can be attained, even with comparatively less penetration of DERs. This confirms that scenario-5
(consideration of DERs, SCs and existing OLTC) offers better solution in comparison to all other considered cases and
consequently greater utilization of existing infrastructure. The observation of Table 4 reveals that the applied MGO algorithm
provides better results as compared to other adopted approaches in the literature for all the case. Further, the comparison of results
obtained using adopted approaches for the different scenarios is also illustrated in Figure 4.

As depicted in Figure 5, the MGO method outperforms the other approaches in minimizing the AEL. Figure 6 illustrates the voltage
profiles across different scenarios under peak load conditions. The results highlight the effectiveness of coordinated optimization
strategies in maintaining voltage and enhancing overall system performance.

It is important to note that the real-world implementation of optimized DER and SC placements may necessitate infrastructure
upgrades and could encounter grid integration challenges. Nevertheless, the significant improvements observed in the results
validate the effectiveness of the applied technique in addressing the DER integration problem. Furthermore, the analysis
demonstrates that leveraging existing infrastructure (OLTC) alongside the optimal placement of SCs during DER allocation not
only enhances technical performance but also leads to more economically efficient solutions.

CAEL Comparison
100
95
90
85
80
e [] L
Scenario-2 Scenario-3 Scenario-4 Scenario-5

B DNPL-GA mCMSO MA-SCA mMGO

Figure 4. Comparison of CAEL obtained for the different scenarios (Indian 108 bus system)
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Table 3 Simulation results obtained by MGO algorithm for Indian 108 bus radial system

Optimal Optimized capacities OLTC DER Minimu Active AEL CAEL
Scenario sites of [DERs in kW] tap Penet- m power (MWh) (USD)
s [DERSs] {SCs in kVAr} position ation Voltage losses
and {SCs} % (in pu) (in KW)
Scenario - - - - 0.95L 151.53L 6400 585454
-1 0.89N 645.02N
0.82P 1802.8P
Scenario [21,31,85, [1339, 443,379, 496, 561, - 62.32 0.99 L 62.05L 2484 225954
-2 67,108,63, 1207,776] L 0.97 N 253.68 N
60] [2707, 891, 765, 1004, 0.95P 683.62 P
1147, 2429, 15711 N
[3000, 1802, 1236, 1631,
1889, 3000, 2561] P
Scenario [63, 108, [1207, 561, 496, 379, 767, 1L 61.33 1L 62.32 L 2358 212795
-3 67, 85, 45, 776, 653] L 4N IN 24570 N
60, 29] [2426, 754, 1002, 764, 4P 1P 627.14 P
1548, 1570, 1315] N
[3000, 1838, 1625, 1233,
2508,2551,2124] P
Scenario [108, 85, [556,379, 1258, 362, 767, - 60.09 0.99 L 1643 L 684.74 62401
-4 23,32, 60, 1200, 494] L 0.98 N
63, 67] [1123, 761, 2524, 726, 0.97P 69.84 N
1537, 2400, 9971 N
{21, 108, [1819, 1223, 3000, 1467, 189.69 P
77, 85, 28, 2462,3000, 1614] P
63, 60}
{800, 400, 200, 400, 600,
1100, 600} L
{1000, 800, 100, 700, 1300,
1600, 1000} N
{2900, 1200, 100, 1000,
1200, 2800, 1700} P
Scenario [108, 85, [1228, 767, 1200, 364,550, 1L 6591 1L 17.67L 656.46 59134
-5 23,32, 60, 461, 838] L 2N IN 68.70 N
63, 67] [2458, 1537, 2400, 731, 3P 1P 173.18 P
1103, 926, 1703] N
{21, 108, [3000, 2462, 3000, 1173,
77, 85, 28, 2118, 1476, 2764] P
63, 60}

{400, 200, 900, 500, 300,
900, 600} L

{900, 400, 1300, 1200, 400,
1700, 900} N

{1000, 900, 2000, 1800,
1200, 2600, 1100} P
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Table 4 Results comparison for Indian 108 bus radial system

Scenario-2 Scenario-3 Scenario-4 Scenario-5
Optimization AEL CAEL AEL CAEL AEL CAEL AEL CAEL
Methods (MWh) (USD) (MWh) (USD) (MWh) (USD) (MWh) (USD)
DNPL-GA 2585.54 238313 2489.59 228701 788.96 77819 780.19 76367
[31]
MA-SCA [15] 253479 232177  2425.65 220909 752.33 73680 717.38 69771
HBO [33] 2510.73 227287  2399.58 215863 765.38 66324 679.82 60928
MGO 2484 225954 2358 212795 684.74 62401 656.46 59134
2484 2358
2510.73 . 2399.58
2534.79 B 242565
3000 2585.54 [ 489.59
684.74 656.46
= 765.38 [l 679.82
< 2000
@ 1000 : : HBO [33]
< MA-SCA [15]
0 DNPL-GA [31]

Scenario-2 Scenario-3 Scenario-4 Scenario-5
B DNPL-GA[31] mMA-SCA[15] mHBO[33] mMGO

Figure 5. Comparison of AEL obtained for the different scenarios (Indian 108 bus system)
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Figure 6. Voltage profile during peak loading for the different scenarios (Indian 108-bus system)

5. Conclusion

This paper attempts to solve the complex engineering problem of optimal integration of both DERs and SCs placement
with and without OLTC coordination, which is addressed in limited prior research. The use of the Mountain Gazelle Optimizer
(MGO) for this application is also a novel contribution. The objective of the presented work is reduction of CAEL under multiple
loading conditions with different electricity price. The different cases have been simulated and implemented on standard IEEE-33
bus and real life practical Indian 108 bus radial DN. The obtained results indicate that simultaneous consideration of DERs, SCs
and existing OLTC not only offers improved utilization of existing DN infrastructure but also minimizes the overall cost.
Comparison of obtained results with well-established optimization algorithms has been presented which clearly indicates the
solutions provided by MGO algorithm offer more economic advantages and also results in better technical performance. The
results of the present investigation may be limited by the magnitude and intricacy of the examined networks, as well as the
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dependence on static load models. In future work, consideration of uncertainties associated with renewables and coordinated
planning can be investigated. Furthermore, the proposed method could be adapted for larger, urban distribution networks, and
extended to include dynamic load models, demand response strategies, and real-time optimization in smart grids.
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