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Abstract. The inclusion of distributed energy resources (DERs) in the power distribution network (DN) encountered rapid growth 
across the countries due to technological and environmental advantages. Moreover, this inclusion not only enhances diversity in 
resources but can improve the quality of service to users as well. However, the unplanned integration of DERs and their 
deployment in non-optimal locations can adversely affect the performance of DN. Hence, optimal positioning and sizing of DERs 
is very important aspects. Further, few studies have focused on DER and shunt capacitors (SCs) allocation in combination with 
the presence or absence of OLTC infrastructure. Therefore, in this paper, the recently developed Mountain Gazelle Optimizer 
(MGO) algorithm suitable for solving complex problem and addressing global optimization issues, is applied for optimal 
positioning of the DERs along with existent distribution infrastructure. In this work, considered objective is decreasing the cost of 
annual energy loss (CAEL). In order to showcase the usefulness of MGO algorithm in solving DER allocation problem this has 
been implemented on IEEE 33 bus and Indian 108 bus radial DN (real-life practical DN). The comparative analysis between MGO 
and other applied methods in the literature on same problem has also been presented. The obtained results indicate that 
simultaneous consideration of DERs, SCs and existing OLTC not only offers improved utilization of existing DN infrastructure but 
also minimizes the overall cost. The considerable improvement in results pertaining to CAEL for different scenarios, for an 
example around 10.6 % better compared to best reported results (IEEE-33 bus system, scenario-5), confirm the suitability of MGO 
algorithm. 
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1. Introduction 

Technological advancements drive a rapidly evolving business environment, where maintaining a competitive edge requires 
the ability to respond swiftly and efficiently to consumer demands. In particular, the online retail or e-commerce market in Thailand 
is expected to grow by 19% in 2023, reflecting consumer trends that favor online shopping [1]. This trend has compelled 
entrepreneurs across various industries, including the mattress and bedding sector, to continuously expand online marketing 
platforms to remain competitive. 

In recent years, there is significant rise in electricity demand. The escalation of world’s population, economic and 
technological development are some of the critical factors responsible for this electricity demand hike. To manage the demand, 
countries across the globe are utilizing conventional (coal, diesel, gas)-power generation systems. However, conventional energy 
resources are limited and also harmful to environment [1]. Therefore, integration of renewable based generation has turned up as 
a probable alternate option to conventional power generation [2]. The global renewable-based generation capacity is rising 
considerably after each passing year. In the year 2014, global renewable generation capacity was 1829 GW which rises nearly 
86.34 % and reached to 3382 GW in 2022 [3]. Furthermore, the addition of renewable-based distributed generation (DG) in power 
DN is also rising worldwide due to environmental advantages, diversification of energy resources, lower transmission and 
distribution costs, reduced losses, probably improvement in quality of service [4]. In 2017, worldwide addition of Total DERs 
Power Capacity were 132.4 GW, which is likely to rise to 528.4 GW in 2026 [5]. However, addition of DERs in unplanned manner 
and at non-optimal locations may result in higher losses and thereby higher costs. Therefore, in order to exploit maximum benefit 
of DERs, optimal positioning and sizing of DERs is very important aspects [6]. The optimal DER integration problem, in single 
or multi-objective frameworks, has attracted many researchers. 

For the above-mentioned allocation problem, researchers have considered objectives such as real power loss [7,8], voltage 
profile improvement [9,10], energy loss [11], voltage stability [12], power quality [13], and reliability [14]. Out of these, 
minimizing power loss is widely adopted objective function. It is known that electricity demand varies with time as a consequence 
the associated power loss also varies and further price of electricity is also time-dependent. Therefore, in [15,16], the considered 
objective function is CAEL instead of annual energy loss (AEL) which is considered by various researchers. Multi-objective 
framework has also been adopted to enhance the performance of DNs in the literature [17-19].  

In [17], authors modified the salp swarm optimizer (SSO) based approach to make it suitable for multi-objective problems 
and applied this approach for improving the DN performance. In [18], authors presented adaptive fuzzy-based technique to solve 
single and multi-objective problems. They applied the same to integrate DER, DSTATCOM and BESS optimally. In [19], authors 
proposed multi-objective framework that considers different technical and non-technical objectives. They evaluated different cases 
on standard test system at different load models. In [20], two-stage ANN based approach has been employed to optimally integrate 
DERs in DN. They presented that in the first stage, suitable location is determined, whereas in the second stage, optimal size is 
found. 

An analytical approach has been proposed in [21] to enhance DN performance by minimizing losses and improving voltage 
profile. In [22], authors applied dynamic programming for allocating DG in DNs to enhance reliability and decrease the loss of the 
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system. In [23], authors suggested that allotment of DGs and SCs in parallel is a useful way to strengthen the performance of DNs 
as SCs offer comparatively cheaper voltage support in comparison to DGs. Further, OLTC and voltage regulators are also available 
in DN to support voltage controlling and their deliberation can minimize penetration of DG that in-turn can minimize CAEL. In 
[15], a new multi-agent based sine-cosine algorithm (MA-SCA) is applied to optimally integrate DERs with consideration of 
existent DN infrastructure. In [24] A new oppositional-based optimization named OARO is introduced for achieving optimal 
allocation and sizing of nonlinear DG in DNs. A novel bi-level multi-objective framework for the planning of solar photovoltaic-
battery storage-based DERs within smart DN is delineated in [25]. In [26], an advanced algorithm is elaborated upon for the 
incorporation of DER and solid-state transformers (SSTs) within forthcoming distribution networks. The objective is to enhance 
the economic operations of DERs in conjunction with the SST to augment system efficiency and voltage profiles. In [27], the Non-
dominated Sorting Genetic Algorithm (NSGA-II) was utilized to ascertain the optimal sites for the installation of electric vehicle 
(EV) charging stations, taking into account target functions such as total energy loss, voltage unbalance factor (VUF), and central 
load distance. In [28], a metaheuristic algorithm designated as the student psychology-based optimization (SPBO) algorithm, has 
been employed for the strategic placement of various categories of DGs and distribution static compensators (DSTATCOMs) 
within DN. Also, different indices have been integrated to tackle diverse technical, economic, and environmental aspects. 

Additionally, it is important to mention that metaheuristic techniques have been widely employed for complex problem of 
optimal DERs integration. Some of the adopted techniques are water cycle algorithm (WCA) [29], teaching learning based 
optimization (TLBO) [23], hiking optimization algorithm (HOA) [30], dynamic node priority list genetic algorithm (DNPL-GA) 
[31], corrected moth search optimization (CMSO) [16], ant lion optimization algorithm (ALOA) [32], honey badger optimization 
[33].  

However, sometimes algorithms suffer from premature convergence to local optima, sensitivity to parameter settings, and 
limited adaptability to mixed-variable or real-world constraints. Therefore, there is quest for developing and applying new 
optimization algorithms to solve or improve these issues. Further, from the literature review, it is observed that, few studies have 
focused on DER and SCs allocation in combination with the presence or absence of OLTC infrastructure. 

The main contributions of the proposed work are as follows: 

• A recently developed MGO algorithm is being utilized, for integration of the DERs and SCs optimally into power DNs 
with inclusion and exclusion of existent OLTC, in this presented work.  

• More realistic objective of minimizing CAEL is considered under multiple loading conditions in place of minimizing 
active power loss.  

• Demonstrated the practical value of the proposed MGO-based optimization approach by validating it on both a benchmark 
test system (IEEE 33-bus) and a realistic Indian 108-bus network, highlighting its scalability and real-world applicability. 

• The comparative analysis between MGO and other applied methods in the literature on same problem has also been 
presented and results pertaining to CAEL confirms the suitability of MGO algorithm. 

The organization of this paper is as per the following: Section 2 describes the mathematical modelling of objective function 
and formulation of considered problem. The discussion on the applied MGO algorithm has been carried out in section 3. The 
discussion about used test systems, different considered cases, obtained results and its analysis has been provided in section 4 and 
conclusion in the last section. 

2. Mathematical Formulation 
This section describes the mathematical formulation of considered optimization problem, which is optimal positioning of 

DERs in DN. The modelling of objective function and related constraints have been presented. The mathematical formulations 
proposed in many articles have not considered presence of existing OLTC in their formulation. Nonetheless, consideration of 
existing OLTC not only offers improved utilization of existing DN infrastructure but also minimizes the overall cost [16,31]. 
Therefore, in this work, the presence of existing OLTC while optimizing DERs has been included.  

The discussion on objective function and their associated constraints have been presented in following subsections. 
 
A. Cost Minimization 

       It is well-known that energy losses vary with variation in load demand and further electricity prices are also load dependent 
thereby time-varying as well. Hence, minimization of CAEL is the main objective in this work. Several cases with distinct scenarios 
have been presented for accommodating different loading patterns and corresponding price effects. The objective function of 
minimizing CAEL can be expressed as: 

      (1) 
 

                                   (2) 
B. Constraints 
The considered constraints are as per the following 

                                      (3) 
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    (4) 
 

where  and  

                                                           (5) 

                                                             (6) 

                                                    (7) 

 
Here, constraints in Eq. (3)-(4) ensure power balancing of nodal real and reactive power respectively. Pkl, Qkl, and δkl signify 

the real power supplied, reactive power supplied, and voltage angle at the kth bus in the course of the lth loading scenario. 
Furthermore, Ykj and θkj are picked up from bus impedance matrix. Pkl

d, Qkl
d  , are representing the demand of real and reactive 

power at kth bus during the lth loading level. 
Pkl

der and Qkl
SC implies the real power offered by DER and reactive power offered by SC at kth bus at the lth loading level. Eq. 

(5) puts a limit on voltages magnitude and Eq. (6) puts a limit on maximum penetration at individual nodes, wherein Eq. (7) 
restricts the overall penetration of DERs. Lk

der and Lk
d are the recommended DERs sizing and normal loading condition at bus-k. 

Lmax
der represents the maximum permissible penetration of DER on individual node and at the peak loading level the multiplying 

factor is considered as α. 
In the above-discussed formulation, variables like DG sizes are continuous variables, whereas discrete variables like OLTC tap 

settings, location and size of SCs, and location of DERs. Further the primary objective of this study is to demonstrate how current 
VR schemes affect DER planning. As a result, OLTC will only engage in VR if the DER sites and sizes recommended during the 
optimization process are unable to sustain the necessary voltage levels. Consequently, the secondary voltage regulation will be 
provided by the OLTC. 

3. MGO Algorithm 
MGO algorithm [34] is recently included meta-heuristic algorithm which is created on the way of living and social conduct of 

mountain gazelles. This algorithm executes optimization considering number of important factors of gazelle’s life and discussion 
on these factors have been presented in sub-sections. In the course of optimization operation in MGO method, every single gazelle 
(Xi) can turn out to be a member to herds of maternity herds, bachelor male herds or solitary, territorial male. Any of these 
mentioned herds can give birth to a new gazelle.   

The overall best obtained solution in MGO is adult male gazelle in the herd territory.  Furthermore, other available solutions 
represent the gazelles which have been considered in maternity herds. The strong gazelles having superior solutions are conserved 
while sick/old gazelles with weaker cost are eliminated from the total population. In this technique, exploitation and exploration 
are carried out parallelly by applying four mechanisms. It means that a solution can move in the direction of the best solution and 
at the same time can also perform the exploration, as accordance with mechanisms of MGO algorithm. The mathematical 
formulation of MGO algorithm for performing optimization is explained in the following section.  

 
A. Territorial Solitary Males (TSM) 
Once male gazelles attain maturity and becomes stronger, they form individual territory and exhibit territorial behavior. Also, 

the territories are separated by considerable distances. The male gazelles fight for the territorial command or ownership of the 
female. Gazelles which are young, they put efforts for the possession of territory or female whereas the adult gazelles strive hard 
for the protection of territory. Eq. (8) is employed for modelling the territory of the adult male. 

               (8) 
where Mg signifies the position vector of optimal global solution. The variables r1 and r2 are the randomly generated integers 

which can have values either 1 or 2. Eq. (9) is used to calculate the coefficient vector of the young male herd (CVYMH) and to 
compute ‘F’ Eq. (10) is used. Eq. (11) is used to calculate ‘CVr’ which represents coefficient vector and updated in every single 
iteration for improving the searching ability. 

         (9) 

In Eq. (9), Xra denotes a random solution (young male) in the interval of ra.  Rv1 and rv2 are randomly generated values in the 
range of 0 and 1.  Mpr is the average count of search agents selected at random ⌈N/3⌉ and N indicates overall count of herd gazelles. 

                   (10) 

In Eq. (10), 𝑁𝑁1 is a random number derived from a standard distribution. Iter and Itermax  are the ongoing iterations’ number 
and the total iterations’ number, respectively. The coefficient vector ‘CVr’ is selected initially randomly and then in each iteration 
updated using Eq. (11) to improve the search capability. 
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                     (11) 

Here, rv3, and rv4 are randomly selected number in interval [0, 1]. Also, the numbers N2, N3, and N4 are fixed at random as 
per the normal range and the problem dimensions. Eq. (12), is used to express ‘a’. 

                                    (12) 

B. Maternity Herds (MH) 
Similar to life cycle of all animals, maternity herds play very important role in of mountain gazelle’s life cycle because these 

ensure continuity and produces strong male gazelles and they can also play a part in producing new gazelles and young males 
endeavoring for acquiring female gazelles in accordance with Eq. (13).  

        (13) 
  In Eq. (13), CVYMH signifies the young males’ impact factor vector which is computed by Eq. (8). Mg indicates best global 
solution (adult male) in the ongoing iteration. 𝑋𝑋rand indicates the vector position of a arbitrarily picked gazelle from the whole 
population. 
 

C. Bachelor Male Herds (BMH) 
When the male gazelles attain adulthood, they not only make an attempt to build own territory and but also aspire to 

attract females and compete for their control. In this phase of life, violent behavior rises within the male groups and this behavior 
is formulated mathematically in Eq. (14). 

     (14) 
In Eq. (14), X(t) signifies the position vector of the gazelle in the ongoing iteration. As discussed earlier, r5 and r6 are 

randomly picked to be 1 or 2, Mg represents the best obtained solution. CVYMH and CVr are determined using Eq. (9) and Eq. (11) 
respectively. D is computed using Eq. (15) wherein, rv6 is random value between 0 and 1. 

           D = �|𝑋𝑋(𝑡𝑡)| + �𝑀𝑀𝑔𝑔�� ×  (2 × 𝑟𝑟𝑟𝑟6 − 1)                     (15) 
D. Migration to Search for Food (MSF) 
Generally, MGs travel great distances in quest of food source and explore wider horizon in search for food, taking 

advantage of their natural ability, faster speed of running, sprinting, and jumping. This behavior of gazelles is formulated 
mathematically using Eq. (16). 

                                     (16) 
In Eq. (16), ub and lb represents the upper and lower bounds of the problem respectively and r7 is randomly generated 

integer in-between 0 and 1. 
All above mentioned mechanisms have been adapted to all gazelles in order to create next era of gazelle which is included 

into total population and new era is also taken into consideration to classify gazelles. After each of the era, the ranking of gazelles 
is performed based on quality of the solutions in increasing order. The best gazelles (superior solutions indicating adult gazelles 
who dominates the territory) are kept while the weak gazelles (inferior solutions) are excluded from the population. 

E. Computational complexity analysis 
To assess the applicability of the algorithm, it is important to understand the computational complexity, which indicates 

execution time. In literature, it generally uses Big-O (O) notation, and it depends on the number of dimensions (D), maximum 
iteration (T_max), and number of gazelles (N). For MGO, the computational complexity is mathematically expressed as follows: 
 

𝒪𝒪(𝑀𝑀𝑀𝑀𝑀𝑀) = 𝒪𝒪(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) +  𝒪𝒪(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 

+ 𝒪𝒪(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) + 𝒪𝒪(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)        (17) 

𝒪𝒪(𝑀𝑀𝑀𝑀𝑀𝑀) =  𝒪𝒪(1) + 𝒪𝒪(𝑁𝑁 ⨯ 𝐷𝐷) + 𝒪𝒪(4 ⨯ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 ⨯ 𝑁𝑁) + 𝒪𝒪(4 ⨯ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 ⨯ 𝑁𝑁 ⨯ 𝐷𝐷)                              (18)                      

4. Results and Discussion 
This section presents discussion on results attained by applying the MGA algorithm on considered optimization problem. 

Further, several loading patterns have been assessed while achieving the minimized cost of AEL. The details about load levels and 
other related parameters have been taken from [16]. The IEEE 33 bus radial DN as well as practical Indian 108 bus DN have been 
used to validate the usefulness of adopted algorithm in order to achieve the minimized CAEL. Moreover, in order to compare the 
obtained results, similar scenarios as considered in literature [16] have been realized which are as per the following:  
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Scenario 
Number 

DERs SCs Existent 
OLTC 

1 - - - 
2 √ - - 
3 √ - √ 
4 √ √ - 
5 √ √ √ 

 
IEEE 33 bus radial test system:- This test system has operating voltage of 12.66 kV and the value of reactive and active power 

are 2.300 MVAr and 3.715 MW respectively. The information with regard to node and branch data is acquired from [35]. For the 
purpose of fair comparison, the number of DERs which can be deployed in the distribution system is considered same as in [16,31].   

In Table 1, the results obtained for all considered scenarios through MGO algorithm have been shown. These tabulated results 
provide information, for all the cases, about DERs (location, size and penetration) and other important data like OLTC tap 
positions, minimum voltage, power loss, AEL and CAEL. The DER penetration has been calculated by taking the ratio of 
summation of maximum power by all DERs to the apparent demand of the system during peak load. 
In scenario-1, as revealed in Table 1, AEL and CAEL values are at higher side and voltage profile at various load levels is also 
poor. The reason is DERs support not included and energy requirements are satisfied by the substation only. On the other hand, 
due to consideration of DERs penetration in scenarion-2, significant decrement in CAEL values have been achieved.  
In scenario-3, in order to effectively utilize the existing infrastructure, optimal positioning of DERs is obtained by considering 
existent OLTC. The examination of results reveals that OLTC tapings gets altered depending upon loading level in order to control 
the voltage. For the reason that voltage support is also contributed by OLTC, therefore as compared to scenario-2, almost 7.9 % 
decrement in CAEL values have been achieved. 
In scenario-4, simultaneous optimization of DERs and SCs have been carried out.  For this, the capacitor size of 100 kVAr is 
considered. Since, reactive power support is provided by SCs, significant decrement in AEL and CAEL have been achieved 
compared to previously discussed two scenarios. Furthermore, with simultaneous allocation of SCs with DERs, the decrement in 
penetration of DERs in to the system is observed.  

In scenario-5, the consideration of the existent OLTC is added compared to previous scenario. From the obtained results, it 
can be seen that with consideration of the existent OLTCs, more decrement in AEL and associated CAEL can be attained, even 
with comparatively less penetration of DERs.  Further, it can be observed that in comparison to scenario-3, lesser tap settings are 
required because the reactive power support is being obtained by means of SCs.  
Table 2 demonstrate that applied MGO algorithm provides better results as compared to other adopted approaches in the literature 
for all the case. Further, the comparison of results obtained using adopted approaches for different scenarios is also illustrated in 
Figure 1 wherein the most inferior result is selected as 100 percentage, other results show percentage change in CAEL in 
comparison to this. 

Figure 2 presents a comparative analysis of the AEL values obtained using various optimization techniques. The results 
clearly demonstrate that the MGO outperforms the other methods in terms of minimizing AEL. Figure 3 illustrates the voltage 
profiles under different scenarios (scenario 1 to 5) across peak load conditions. It is evident that Scenario 1, which involves no 
optimization or corrective action, results in a suboptimal voltage profile. In contrast, Scenario 5, which incorporates existing 
OLTC, DERs, and SCs, achieves a significantly improved voltage profile—highlighting the effectiveness of coordinated 
optimization strategies. 

 

 
Figure 1. Comparison of CAEL obtained for the different scenarios (IEEE 33-bus system) 
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Table 1 Simulation results obtained by MGO algorithm for IEEE 33 bus radial test system 

Scenario
s 

Optimal 
sites of 
[DERs] 

and {SCs} 

Optimized capacities  
[DERs in kW] 
 {SCs in kVAr} 

OLTC 
tap 

position 

DER 
Penetra-
tion % 

Minimu
m 

Voltage 
in pu 

Active 
power 

losses in 
kW 

AEL 
(MWh) 

CAEL 
(USD) 

Scenario
-1 

- - - - 0.96 L 
0.91 N 
0.85 P 

47.07L 
202.68N 
575.39P 

 

2023.32 185507 

Scenario
-2 

[24, 14, 30] [543, 373, 527] L  
[1099, 753,1071] N  

[1787, 1219, 1747] P 
 

- 67.99 0.98 L 
0.97 N 
0.95 P 

17.3L 
71.45N 
190.18P 

695.81 63203 

Scenario
-3 

[14, 24, 30] [374, 543, 528] L 
[595, 1063, 1024] N 
[1216, 1780, 1739] P 

 

1 L  
3 N  
4 P 

67.73 1 L 
1 N 
1 P 

16.88 L 
67.59 N 
170.81 P 

645.55 58204 

Scenario
-4 

[14, 24, 30]  
{30, 26, 

14} 

[372, 539, 523] L 
{300, 100, 100} L 

[746, 1080, 1049] N 
{700, 600, 200} N 

[1198, 1731, 1687] P 
{1600, 400, 400} P 

 

- 66.03 0.99 L 
0.99 N 
0.99 P 

5.23 L 
14.54 N 
36.04 P 

141.01 12570 

Scenario
-5 

[24, 14, 30]  
{24, 12, 

30} 

[541, 373, 522] L 
{600, 200, 300} L 

[1080, 748, 1047] N 
{600, 400, 700} N 

[1731, 1206, 1680] P 
{700, 800, 1200} P 

0 L  
1 N  
1 P 

66.05 0.99 L 
1 N 
1 P 

5.09 L 
14.14 N 
33.98 P 

135.52 12031 

 
Table 2 Results comparison for IEEE 33 bus radial test system 

 Scenario-2 Scenario-3 Scenario-4 Scenario-5 
Optimization 

Methods 
AEL 

(MWh) 
CAEL 
(USD) 

AEL 
(MWh) 

CAEL 
(USD) 

AEL 
(MWh) 

CAEL 
(USD) 

AEL 
(MWh) 

CAEL 
(USD) 

DNPL-GA [31] 742.05 68753 711.41 65659 178.15 18033 172.73 17350 
CMSO [16] 712.20 64820 666.72 60372 177.40 16906 165.60 15960 

MA-SCA [15] 702.17 63965 656.15 59412 144.21 13961 140.56 13462 
MGO  695.81 63203 645.55 58204 141.01 12570 135.52 12031 

         
 

 
Figure 2. Comparison of AEL obtained for the different scenarios (IEEE 33-bus system) 
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Figure 3. Voltage profile during peak loading for the different scenarios (IEEE 33-bus system) 

 
Indian 108 bus radial system:- To demonstrate the performance of the MGO algorithm in solving real world optimization 

problem, it is executed on a larger practical DN. This system consists of 29.099 MVAr and 12.132 MW reactive and real power 
demand respectively and operates at the 11 kV voltage. The information with regard to node and branch data is acquired from 
[26]. Once again for the fair comparison with results reported in [16,26], the same number of DERs which can be installed in the 
DN is considered. The results attained, for all considered scenarios, with the application of MGO algorithm are presented in Table 
3. Additionally, the values for the key parameters like OLTC tap settings, power loss and minimum voltage in each load level etc. 
are presented in the same table. It can be observed from results presented in Table 3, similar to IEEE 33-bus system, here also 
AEL and CAEL values are at higher side due to accomplishment of entire energy requirements from substation only in scenario-
1. 

The voltage profile during various load levels is also poor. In scenario-2, due to consideration of DERs penetration, significant 
decrement in AEL as well as in CAEL has been observed in comparison to previous scenario. 

In scenario-3, for better utilization of existing distribution infrastructure, the optimal deployment of DERs is decided in 
conjunction with OLTC tap settings. The examination of results reveals that OLTC tap position gets altered depending upon 
loading to control the voltage.  

For the reason that voltage support is also contributed by OLTC, therefore as compared to scenario-2, almost 5.82 % decrement 
in CAEL values have been achieved. In scenario-4, along with deployment of DERs, the simultaneous allocation of SCs with the 
rating in step of 100 kVAr is explored. Due to additional support of SCs in terms of reactive power, the combination of DERs and 
SCs are able to achieve a significant decrement in terms of AEL and CAEL compared to all previously discussed scenarios. 
Additionally, the decrement in power loss in each load level is achieved and compared to scenario-1 and scenario-2 the better 
voltage profile is also observed. 

In scenario-5, already existent OLTC has been taken into account while simultaneously deciding the optimal location and size 
of SCs and DERs. From the obtained results, it can be seen that with consideration of the existent OLTCs, more decrement in AEL 
and associated CAEL can be attained, even with comparatively less penetration of DERs.  This confirms that scenario-5 
(consideration of DERs, SCs and existing OLTC) offers better solution in comparison to all other considered cases and 
consequently greater utilization of existing infrastructure. The observation of Table 4 reveals that the applied MGO algorithm 
provides better results as compared to other adopted approaches in the literature for all the case. Further, the comparison of results 
obtained using adopted approaches for the different scenarios is also illustrated in Figure 4.  
As depicted in Figure 5, the MGO method outperforms the other approaches in minimizing the AEL. Figure 6 illustrates the voltage 
profiles across different scenarios under peak load conditions. The results highlight the effectiveness of coordinated optimization 
strategies in maintaining voltage and enhancing overall system performance. 
It is important to note that the real-world implementation of optimized DER and SC placements may necessitate infrastructure 
upgrades and could encounter grid integration challenges. Nevertheless, the significant improvements observed in the results 
validate the effectiveness of the applied technique in addressing the DER integration problem. Furthermore, the analysis 
demonstrates that leveraging existing infrastructure (OLTC) alongside the optimal placement of SCs during DER allocation not 
only enhances technical performance but also leads to more economically efficient solutions. 

 
Figure 4. Comparison of CAEL obtained for the different scenarios (Indian 108 bus system) 
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Table 3 Simulation results obtained by MGO algorithm for Indian 108 bus radial system 

 
 
 
 
 
 
 
 
 
 
 

 
Scenario

s 

Optimal 
sites of 
[DERs] 

and {SCs} 

Optimized capacities 
[DERs in kW] 
{SCs in kVAr} 

OLTC 
tap 

position 

DER 
Penet-
ation 

% 

Minimu
m 

Voltage 
(in pu) 

Active 
power 
losses 

(in kW) 

AEL 
(MWh) 

CAEL 
(USD) 

Scenario
-1 

- - - - 0.95L 
0.89N 
0.82P 

151.53L 
645.02N 
1802.8P 
 

6400 585454 

Scenario
-2 

[21, 31, 85, 
67, 108, 63, 
60] 

[1339, 443, 379, 496, 561, 
1207, 776] L 
[2707, 891, 765, 1004, 
1147, 2429, 1571] N 
[3000, 1802, 1236, 1631, 
1889, 3000, 2561] P 

- 62.32 0.99 L 
0.97 N 
0.95 P 

62.05 L 
253.68 N  
683.62 P 

2484 225954 

Scenario
-3 

[63, 108, 
67, 85, 45, 
60, 29] 

[1207, 561, 496, 379, 767, 
776, 653] L 
[2426, 754, 1002, 764, 
1548, 1570, 1315] N 
[3000, 1838, 1625, 1233, 
2508, 2551, 2124] P 

1 L 
4 N 
4 P 

61.33 1 L 
1 N 
1 P 

62.32 L 
245.70 N  
627.14 P 

2358 212795 

Scenario
-4 

[108, 85, 
23, 32, 60, 
63, 67] 
 
{21, 108, 
77, 85, 28, 
63, 60} 

[556, 379, 1258, 362, 767, 
1200, 494] L 
[1123, 761, 2524, 726, 
1537, 2400, 997] N 
[1819, 1223, 3000, 1467, 
2462, 3000, 1614] P 
 
{800, 400, 200, 400, 600, 
1100, 600} L 
{1000, 800, 100, 700, 1300, 
1600, 1000} N 
{2900, 1200, 100, 1000, 
1200, 2800, 1700} P 

- 60.09 0.99 L 
0.98 N 
0.97 P 

16.43 L 
 
69.84 N  
 
189.69 P 

684.74 62401 

Scenario
-5 

[108, 85, 
23, 32, 60, 
63, 67] 
 
{21, 108, 
77, 85, 28, 
63, 60} 

[1228, 767, 1200, 364, 550, 
461, 838] L 
[2458, 1537, 2400, 731, 
1103, 926, 1703] N 
[3000, 2462, 3000, 1173, 
2118, 1476, 2764] P 
 
{400, 200, 900, 500, 300, 
900, 600} L 
{900, 400, 1300, 1200, 400, 
1700, 900} N 
{1000, 900, 2000, 1800, 
1200, 2600, 1100} P 

1 L 
2 N 
3 P 

65.91 1 L 
1 N 
1 P 

17.67 L 
68.70 N  
173.18 P 

656.46 59134 
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Table 4 Results comparison for Indian 108 bus radial system 

 Scenario-2 Scenario-3 Scenario-4 Scenario-5 
Optimization 

Methods 
AEL 

(MWh) 
CAEL 
(USD) 

AEL 
(MWh) 

CAEL 
(USD) 

AEL 
(MWh) 

CAEL 
(USD) 

AEL 
(MWh) 

CAEL 
(USD) 

 
     DNPL-GA 
[31]  

2585.54 238313 2489.59 228701 788.96 77819 780.19 76367 

MA-SCA [15] 2534.79 232177 2425.65 220909 752.33 73680 717.38 69771 
HBO [33] 2510.73  227287 2399.58  215863 765.38  66324 679.82  60928 

MGO  2484 225954 2358 212795 684.74 62401 656.46 59134 
 
 

 
Figure 5. Comparison of AEL obtained for the different scenarios (Indian 108 bus system) 

 

 
Figure 6. Voltage profile during peak loading for the different scenarios (Indian 108-bus system) 
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and existing OLTC not only offers improved utilization of existing DN infrastructure but also minimizes the overall cost.  
Comparison of obtained results with well-established optimization algorithms has been presented which clearly indicates the 
solutions provided by MGO algorithm offer more economic advantages and also results in better technical performance. The 
results of the present investigation may be limited by the magnitude and intricacy of the examined networks, as well as the 
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dependence on static load models. In future work, consideration of uncertainties associated with renewables and coordinated 
planning can be investigated. Furthermore, the proposed method could be adapted for larger, urban distribution networks, and 
extended to include dynamic load models, demand response strategies, and real-time optimization in smart grids. 

References 
[1] S. Islam and N. K. Roy, “Renewables integration into power systems through intelligent techniques: Implementation 

procedures, key features, and performance evaluation,” Energy Reports, vol. 9, pp. 6063–6087, Dec. 2023, doi: 
10.1016/j.egyr.2023.05.063. 

[2] C. Cadena-Zarate, J. Caballero-Peña, and G. Osma-Pinto, “Simulation-based probabilistic-harmonic load flow for the study 
of DERs integration in a low-voltage distribution network,” AIMS electronics and electrical engineering, vol. 8, no. 1, pp. 
53–70, Jan. 2024, doi: 10.3934/electreng.2024003. 

[3] International Renewable Energy Agency. Renewable Energy Statistics, Available online: 
https://www.irena.org/Publications/2023/Jul/Renewable-energy-statistics-2023.  

[4] P. S. Georgilakis and N. Hatziargyriou, “Optimal Distributed Generation Placement in Power Distribution Networks: Models, 
Methods, and Future Research,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 3420–3428, Jan. 2013, doi: 
10.1109/TPWRS.2012.2237043. 

[5] Navigant research, white paper on distributed energy resourcemanagement systems. Available online : 
https://plma.memberclicks.net/assets/resources/Navigant%20Research%20%20AutoGrid%20DERMS%20White%20Paper.
pdf 

  [6]  K. Seepromting, “Feed-in Tariff Premium for Optimal Solar PV Allocation Case of Phitsanulok 1st Substation:”, Engineering 
Access, vol. 4, no. 2, pp. 50–55, Dec. 2018.  doi: 10.14456/mijet.2018.9 

 [7]   M. Esmaili, “Placement of minimum distributed generation units observing power losses and voltage stability with network 
constraints,” Iet Generation Transmission & Distribution, vol. 7, no. 8, pp. 813–821, Jul. 2013, doi: 10.1049/IET-
GTD.2013.0140. 

[8]     N. K. Meena, A. Swarnkar, N. Gupta and K. R. Niazi, "A Taguchi-based approach for optimal placement of distributed 
generations for power loss minimization in distribution system," 2015 IEEE Power & Energy Society General Meeting, 
Denver, CO, USA, 2015, pp. 1-5, doi: 10.1109/PESGM.2015.7286180. 

[9]    S. Sultana and P. Roy, “Multi-objective quasi-oppositional teaching learning based optimization for optimal location of 
distributed generator in radial distribution systems,” International Journal of Electrical Power & Energy Systems, vol. 63, 
no. 63, pp. 534–545, Dec. 2014, doi: 10.1016/J.IJEPES.2014.06.031. 

[10]    D. R. Prabha and T. Jayabarathi, “Optimal placement and sizing of multiple distributed generating units in distribution 
networks by invasive weed optimization algorithm,” Ain Shams Engineering Journal, vol. 7, no. 2, pp. 683–694, Jun. 2016, 
doi: 10.1016/J.ASEJ.2015.05.014. 

[11]  J. Y. Park, J. -M. Sohn and J. -K. Park, "Optimal Capacitor Allocation in a Distribution System Considering Operation Costs," 
in IEEE Transactions on Power Systems, vol. 24, no. 1, pp. 462-468, Feb. 2009, doi: 10.1109/TPWRS.2008.2009489. 

[12]  M. H. Moradi and M. Abedini, “A combination of genetic algorithm and particle swarm optimization for optimal DG location 
and sizing in distribution systems,” International Journal of Electrical Power & Energy Systems, vol. 34, no. 1, pp. 66–74, 
Jan. 2012, doi: 10.1016/J.IJEPES.2011.08.023. 

[13]   H. Hamedi and M. Gandomkar, “A straightforward approach to minimizing unsupplied energy and power loss through DG 
placement and evaluating power quality in relation to load variations over time,” International Journal of Electrical Power 
& Energy Systems, vol. 35, no. 1, pp. 93–96, Nov. 2011, doi: 10.1016/J.IJEPES.2011.10.001. 

[14]    A. S. Awad, T. H. M. EL-Fouly, and M. M. A. Salama, “Optimal Distributed Generation Allocation and Load Shedding for 
Improving Distribution System Reliability,” Electric Power Components and Systems, vol. 42, no. 6, pp. 576–584, Mar. 
2014, doi: 10.1080/15325008.2014.880962. 

[15]   C. Patel and T. Tailor, “Multi-agent based sine-cosine algorithm for optimal integration of DERs with consideration of 
existing OLTC in distribution networks,” Applied Soft Computing, vol. 117, p. 108387, Jan. 2022, doi: 
10.1016/j.asoc.2021.108387. 

[16] P. Singh, S. K. Bishnoi and N. K. Meena, "Moth Search Optimization for Optimal DERs Integration in Conjunction to OLTC 
Tap Operations in Distribution Systems," in IEEE Systems Journal, vol. 14, no. 1, pp. 880-888, March 2020, doi: 
10.1109/JSYST.2019.2911534. 

[17] A. M. Shaheen and R. A. El-Sehiemy, "A Multiobjective Salp Optimization Algorithm for Techno-Economic-Based 
Performance Enhancement of Distribution Networks," in IEEE Systems Journal, vol. 15, no. 1, pp. 1458-1466, March 2021, 
doi: 10.1109/JSYST.2020.2964743. 

[18] A. Sunil and C. Venkaiah, “Multi-objective Adaptive Fuzzy Campus Placement based Optimization Algorithm for optimal 
integration of DERs and DSTATCOMs,” Journal of energy storage, Jan. 2024, doi: 10.1016/j.est.2023.109682. 

[19] M. Z. Iftikhar, K. Imran, M. I. Akbar, and S. Ghafoor, “Optimal distributed generators allocation with various load models 
under load growth using a meta-heuristic technique,” Renewable Energy Focus, Feb. 2024, doi: 10.1016/j.ref.2024.100550. 

[20] K. Sandhya and K. Chatterjee, “Two-stage ANN based intelligent technique for optimal positioning and sizing of DERs in 
distribution system,” Engineering Applications of Artificial Intelligence, vol. 121, p. 105932, May 2023, doi: 
10.1016/j.engappai.2023.105932. 

[21] H. Khan and M. A. Choudhry, “Implementation of Distributed Generation (IDG) algorithm for performance enhancement of 
distribution feeder under extreme load growth,” International Journal of Electrical Power & Energy Systems, vol. 32, no. 9, 
pp. 985–997, Nov. 2010, doi: 10.1016/J.IJEPES.2010.02.006. 

[22] N. Khalesi, N. Rezaei, and M.-R. Haghifam, “DG allocation with application of dynamic programming for loss reduction and 

https://plma.memberclicks.net/assets/resources/Navigant%20Research%20%20AutoGrid%20DERMS%20White%20Paper.pdf
https://plma.memberclicks.net/assets/resources/Navigant%20Research%20%20AutoGrid%20DERMS%20White%20Paper.pdf


ENGINEERING ACCESS, VOL. 12, NO. 1, JANUARY-JUNE 2026 124 
 

reliability improvement,” International Journal of Electrical Power & Energy Systems, vol. 33, no. 2, pp. 288–295, Feb. 2011, 
doi: 10.1016/J.IJEPES.2010.08.024. 

[23] N. Kanwar, N. Gupta, K. R. Niazi, and A. Swarnkar, “Simultaneous allocation of distributed resources using improved 
teaching learning based optimization,” Energy Conversion and Management, vol. 103, pp. 387–400, Oct. 2015, doi: 
10.1016/J.ENCONMAN.2015.06.057. 

[24] A. Ghorai, B. Mandal, P. K. Roy, and C. Paul, "Oppositional based artificial rabbits optimization applied for optimal allocation 
of nonlinear DG in distribution networks considering total harmonic distortion limit," Electric Power Systems Research, vol. 
231, p. 110334, 2024. https://doi.org/10.1016/j.epsr.2024.110334 

[25] S. K. Wankhede, P. Paliwal and M. K. Kirar, "Bi-Level Multi-Objective Planning Model of Solar PV-Battery Storage-Based 
DERs in Smart Grid Distribution System," in IEEE Access, vol. 10, pp. 14897-14913, 2022, doi: 
10.1109/ACCESS.2022.3148253.  

 
[26]  F. Meng, B. Chowdhury, and M. S. Hossan, "Optimal integration of DER and SST in active distribution networks," 

International Journal of Electrical Power & Energy Systems, vol. 104, pp. 626-634, 2019. 
https://doi.org/10.1016/j.ijepes.2018.07.035 

[27] N. Chitgreeyan, "Multi-Period Optimization of Energy Demand Control for Electric Vehicles in Unbalanced Electrical 
Power Systems Considering the Center Load Distance of Charging Station Areas," Engineering Access, vol. 10, no. 2, pp. 
90–102, Jun. 2024.  doi:10.14456/mijet.2024.12 

[28] S. K. Dash, S. Mishra, A. Y. Abdelaziz, J. Hong, and Z. W. Geem, "Optimal planning of multitype DGs and D-STATCOMs 
in power distribution network using an efficient parameter-free metaheuristic algorithm," Energies, vol. 15, no. 9, p. 3433, 
2022. [Online]. Available: https://doi.org/10.3390/en15093433. 

[29] A. A. A. El-Ela, R. A. El-Sehiemy and A. S. Abbas, "Optimal Placement and Sizing of Distributed Generation and 
Capacitor Banks in Distribution Systems Using Water Cycle Algorithm," in IEEE Systems Journal, vol. 12, no. 4, pp. 3629-
3636, Dec. 2018, doi: 10.1109/JSYST.2018.2796847. 

[30] C. D. Patel, T. K. Tailor, S. S. Shah, G. Sharma, and P. N. Bokoro, "Techno-Economic Enhancement of Distribution 
Network by Optimal DG Allocation Along with Network Reconfiguration Considering Different Load Models and Levels," 
Energies, vol. 18, no. 12, p. 3005, 2025. https://doi.org/10.3390/en18123005 

[31] N. K. Meena, A. Swarnkar, N. Gupta, and K. R. Niazi, “Optimal integration of DERs in coordination with existing VRs in 
distribution networks,” Iet Generation Transmission & Distribution, vol. 12, no. 11, pp. 2520–2529, Jun. 2018, doi: 
10.1049/IET-GTD.2017.1403. 

[32] E. S. Ali, E. S. Ali, S. M. Abd Elazim, and A. Y. Abdelaziz, “Ant Lion Optimization Algorithm for optimal location and 
sizing of renewable distributed generations,” Renewable Energy, vol. 101, pp. 1311–1324, Feb. 2017, doi: 
10.1016/J.RENENE.2016.09.023. 

[33] A. A. Iyer and C. D. Patel, "Optimal Placement of Distributed Energy Resources and Shunt Capacitors with Consideration 
of Existing On-line tap changer using Honey Badger Optimization," 2023 Third International Conference on Advances in 
Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 2023, pp. 1-6, doi: 
10.1109/ICAECT57570.2023.10117805. 

[34] B. Abdollahzadeh, F. Soleimanian Gharehchopogh, N. Khodadadi, and S. Mirjalili, “Mountain Gazelle Optimizer: A new 
Nature-inspired Metaheuristic Algorithm for Global Optimization Problems,” Advances in engineering software, vol. 174, p. 
103282, Dec. 2022, doi: 10.1016/j.advengsoft.2022.103282. 

[35] M. E. Baran and F. F. Wu, "Network reconfiguration in distribution systems for loss reduction and load balancing," in IEEE 
Transactions on Power Delivery, vol. 4, no. 2, pp. 1401-1407, April 1989, doi: 10.1109/61.25627. 

 
 

https://doi.org/10.1016/j.epsr.2024.110334

	Optimal Allocation of DERs Considering Existing Distribution Infrastructure Using Mountain Gazelle Optimizer: Practical Case Study
	Chintan D Patel1 and Tarun Kumar Tailor1,*
	Received January 2, 2025, Revised June 23, 2025, Accepted September 10, 2025, Published December 30, 2025
	1. Introduction
	2. Mathematical Formulation
	A. Cost Minimization
	B. Constraints

	3. MGO Algorithm
	A. Territorial Solitary Males (TSM)
	B. Maternity Herds (MH)
	C. Bachelor Male Herds (BMH)
	D. Migration to Search for Food (MSF)
	E. Computational complexity analysis

	4. Results and Discussion
	Table 2 Results comparison for IEEE 33 bus radial test system
	Figure 4. Comparison of CAEL obtained for the different scenarios (Indian 108 bus system)
	Table 4 Results comparison for Indian 108 bus radial system
	5. Conclusion

