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Abstract. The integration of distributed energy 

resources (DERs), such as photovoltaic (PV) systems, into 

power distribution networks is critical for enhancing grid 

reliability, reducing power losses, and promoting 

renewable energy adoption. Fast charging stations 

(FCSs), due to their high energy demand, further 

complicate grid operation, particularly in maintaining 

voltage stability and coordinating power supply. While 

previous studies often address DERs placement or control 

strategies in isolation, this study proposes a unified 

framework that optimizes both the placement and sizing of 

DERs in combination with advanced grid control 

mechanisms. The proposed approach uses a hybrid of 

three metaheuristic algorithms: Grey Wolf Optimization 

(GWO), Particle Swarm Optimization (PSO), and Whale 

Optimization Algorithm (WOA). The multi-objective 

formulation focuses on minimizing power loss and cost, 

improving voltage profiles, and reducing the L-index. A 

notable contribution of this work is the integration of 

Volt/Var and power factor (PF) management into the 

optimization process, which enables practical grid 

stabilization under steady-state conditions. The 

methodology is applied to the IEEE 33-bus distribution 

network and validated through simulation. Results 

indicate that the hybrid method performs better than 

traditional single-algorithm approaches, achieving 

significant power loss reductions and voltage 

improvements. These findings provide a practical 

roadmap for distribution system planning under high 

DERs and FCS penetration.  
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1. Introduction

The transformation of power distribution systems

through the integration of electric vehicles (EVs) and 

distributed generation (DG) sources has introduced 

significant challenges in network management, 

optimization, and infrastructure planning. This evolution 

necessitates advanced strategies for network 

reconfiguration, distributed energy resource (DER) 

coordination, and charging infrastructure integration to 

ensure efficient, reliable, and sustainable operation. 

Modern distribution networks must satisfy multiple 

objectives, including power loss reduction, voltage profile 

enhancement, and optimal EV charging station (EVCS) 

placement, while maintaining overall system stability. 

Network reconfiguration (NR) and DG allocation 

have emerged as key strategies to address these objectives. 

Recent advances in meta-heuristic optimization methods 

have shown strong potential in enhancing distribution 

network performance. Samman et al. [1] developed a two-

stage Firefly Algorithm (FA) that simplifies complex 

networks using simplified network graphs (SNG), 
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significantly improving computational efficiency. Salau et 

al. [2] extended this work by proposing a modified 

Selective Particle Swarm Optimization (SPSO) algorithm, 

effectively minimizing voltage deviation and power 

losses. Other developments include a sine-cosine 

algorithm with Lévy flights for simultaneous NR and DG 

allocation [3], and the Antlion Optimizer (ALO), which 

incorporates power quality indices into optimization 

objectives [4]. To manage the increasing complexity of 

modern distribution systems, researchers have proposed 

various multi-objective frameworks. Fast heuristic 

methods for harmonic minimization [5] have 

demonstrated effectiveness in improving power quality 

with low computational overhead. Cloud theory-based 

approaches [6] have been applied to model uncertainty in 

feeder reconfiguration, particularly in systems integrating 

renewable energy sources. Integrated strategies for DG 

and capacitor placement have also been introduced to 

optimize reactive power support [7]. Fu et al. [8] proposed 

phase demand balancing models to improve dispatch 

capabilities in active distribution networks. Planning for 

EVCS deployment introduces additional complexity in 

distribution network operation. Wang et al. [9] presented a 

unified framework for crew dispatch and restoration 

planning, highlighting the importance of coordinated 

infrastructure development. Pal et al. [10] examined 

EVCS expansion planning based on user behavior and 

charging demand patterns. Yenchamchalit et al. [11] 

addressed the joint optimization of photovoltaic (PV) 

systems and EVCS placement, while Mazumder et al. [12] 

introduced reactive power compensation techniques for 

EV charging infrastructure. These studies emphasize the 

importance of integrated planning approaches that 

consider both grid performance and user-centric factors. 

Advanced strategies for EVCS planning continue to 

evolve. Lima et al. [13] incorporated locational 

transmission tariffs into NR strategies, while Fukui et al. 

[14] developed placement models that account for

randomly distributed rooftop PV. Zeb et al. [15]

investigated optimal siting of multiple types of charging

stations in both commercial and residential settings. Gan

et al. [16] and Chitgreeyan et al. [17] explored elastic

demand models for fast-charging station (FCS)

deployment, introducing capacity planning strategies

aligned with temporal demand variations. More recently,

hybrid and enhanced meta-heuristic algorithms have been

applied to address complex optimization problems in

distribution networks. An improved equilibrium

optimization algorithm was proposed in [18] for

simultaneous NR and DG allocation. Enhanced versions

of the Marine Predator Algorithm have shown improved

performance across varying load scenarios. Shaheen et al.

[19] introduced a chaotic search group algorithm for joint

optimization of network configuration and DER

integration.

However, many existing studies focus on isolated 

components of distribution system optimization typically 

addressing either DER placement or EVCS planning 

without considering their combined impacts on network 

reconfiguration and voltage regulation. Moreover, few 

frameworks integrate steady-state operational control 

strategies such as Volt/Var and power factor (PF) 

regulation, which are essential for maintaining voltage 

stability under high DER penetration. Challenges related 

to scalability and practical implementation in large-scale 

distribution networks also remain underexplored. This 

study addresses these research gaps through the following 

key contributions: 

1. A hybrid meta-heuristic framework integrating

GWO, PSO, and WOA is developed for simultaneous FCS 

placement, DER allocation, and network reconfiguration 

to minimize power losses and improve voltage profiles. 

2. To improve voltage stability and reactive power

management under steady-state operating conditions, we 

incorporate Volt/Var control and power factor regulation 

3. The proposed approach is validated on the IEEE

33-bus test system across various loading scenarios,

demonstrating scalability and operational effectiveness.

4. Environmental impacts, including DER 

penetration and CO₂ emissions, are evaluated under 

optimized and conventional control strategies. 

2. Problem Formulation and Mathematical

Models

The mathematical model system used for solving 

optimal power flow under the fast-charging stations 

(FCSs) and distributed energy resources (DERs) interface 

that is related by the power flow equation, photovoltaic 

power plant, fast charging station, evaluation indices and 

optimization techniques can be presented as follows: 

A. Power Flow Equations

This research is integrating the power flow equations

of propose that combining with power balance of the grid 

and apparatus are follows [20]: 

𝑃𝑖
𝑔𝑟𝑖𝑑

+ 𝑃𝑖
𝑃𝑉 − 𝑃𝑖

𝐹𝐶𝑆 − 𝑃𝑖
𝑙𝑜𝑎𝑑 = ∑ |𝑁

𝑗=1 𝑉𝑖||𝑉𝑗| 

(𝐺𝑖𝑗 𝑐𝑜𝑠 𝜃𝑖𝑗 + 𝐵𝑖𝑗 𝑠𝑖𝑛 𝜃𝑖𝑗)
(1) 

𝑄𝑖
grid

+ 𝑄𝑖
PV − 𝑄𝑖

FCS − 𝑄𝑖
load = ∑ |𝑁

𝑗=1 𝑉𝑖||𝑉𝑗| 

(𝐺𝑖𝑗 𝑠𝑖𝑛 𝜃𝑖𝑗 − 𝐵𝑖𝑗 𝑐𝑜𝑠 𝜃𝑖𝑗)

(2) 

Where: 𝑃𝑖
grid

, 𝑄𝑖
grid

 : Active and reactive power from

the grid at bus𝑖,𝑃𝑖
𝑃𝑉 , 𝑄𝑖

𝑃𝑉: Active and reactive power

generated by DG at bus𝑖,Active and reactive power 

consumed by FCS at bus𝑖, 𝑃𝑖
load, 𝑄𝑖

load: Active and reactive

power consumed by loads at bus 𝑖  

B. Photovoltaic (PV) Power Generation

The DERs are represented by the PV power plant.

The active power output of a solar PV system is 
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determined by solar irradiance, temperature and system 

efficiency: 

 𝑃PV(𝑡) = 𝐺(𝑡) ⋅ 𝐴PV ⋅ 𝜂PV (3) 

Where: 𝑃PV(𝑡): PV system's active power output (in

MW) at time 𝑡, 𝐺(𝑡): Solar irradiance (in kW /m2) at 

time𝑡, 𝐴PV: Total area of PV panels (in m2), 𝜂PV : Overall

efficiency of the PV system, including panel, inverter, and 

system losses. The module efficiency 𝜂module is
temperature-dependent: 

𝜂module = 𝜂module,STC[1 ⋅ 𝛽 ⋅ (𝑇𝑐 − 𝑇STC)] (4) 

Where: 𝜂module : Module efficiency at Standard Test

Conditions (STC), 𝛽:Temperature coefficient of power 

(%/°C),𝑇𝐶:Cell temperature (°C),𝑇STC: Standard Test

Condition temperature (25°C). 

The cell temperature 𝑇𝐶can be approximated as:

Tc=Ta+ (
G(t)

Gref
) ⋅NOCT (5) 

Where: Ta : Ambient temperature (0C)., Gref
 

: 

Reference irradiance (typically 1000 W/m2)., NOCT : 

Nominal operating cell temperature (°C). 

Reactive Power Control of PV power plant is used to 

control the power and voltage of the point of common 

coupling (PCC). The PV can be controlled by Volt/Var 

and PF control that related by the reactive power output 

can be defined as: 

Q
PV
=√SPV

2 -PPV
2 (6) 

1. Reactive Power (Q) Calculation (PF Control):

𝑄 = 𝑃 ⋅ 𝑡𝑎𝑛( 𝑐𝑜𝑠−1(PF)) (7) 

2. Volt/Var Control Linear interpolation based on

voltage: 

Q
mvar

=Q
max
+
(Vpu-Vlow)⋅(Qmin-Qmax)

(Vhigh-Vlow)
(8) 

Where:  𝑄PV: Reactive power generated by the PV

system (in MVar),  𝑆PV
2 : Apparent power capacity of the

PV system (in MVA),  𝑃PV: Active power generated by the

PV system (in MW).  

C. Electric Vehicle Charging Station (EVCS)

Main of these devices are related by power electronic

conversion from AC to DC or called by rectifier circuits 

and connected thought by wire conductor to the battery 

system on the electric vehicles. The EVCS can be 

categorized by many types of charging system and 

application of the charging rate as fast charging, flash 

charging, slow charging etc. So, many researchers are 

studying the characteristics of EVCS for using to find and 

analyze the impact of electric vehicles to the grid. This 

research used the constant power model of the EVCS as 

follows [21]: 

Pi
FCS=Pi

fixed
, Q

i

FCS ≈ 0.05⋅Pi
FCS (9)  

D. Technical Performance Indices

These indices assess the technical benefits of the

proposed optimization and control strategies. 

1) Total power loss reduction is used to evaluate the

reduction in total active power losses (Ploss) in the 

system: 

𝑃loss = ∑ 𝑃(line,i)
𝑁
𝑖=1 = ∑ (𝐼line,i

2 ⋅ 𝑅line,i)
𝑁
𝑖=1 (10) 

Where 𝑃line,𝑖   is the active power loss in line 𝑖.
2) Voltage profile improvement is used to analyze

the voltage magnitude (Vi) across all buses. The voltage 

deviation index (VDI) is selected to analyze this problem 

and can be expressed as: 

VDI = ∑ |𝑁
𝑖=1 𝑉𝑖 − 𝑉nom| (11)

Where: 𝑉nom  is the nominal voltage (e.g., 1.0 p.u.)

[21]. 

3) Line Loading is used to evaluate the loading

percentage of each line to ensure no thermal violations. 

𝐿𝑜𝑎𝑑𝑖𝑛𝑔 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝑆𝑙𝑖𝑛𝑒

𝑆(𝑙𝑖𝑛𝑒,𝑚𝑎𝑥)
⋅ 100    (12) 

Where: 𝑆(line,max) is the line's thermal capacity.

4) Voltage Stability Index (L- Index) is delivered by

computing the L-index for each line to assess voltage 

stability [22]: 

𝐿 − 𝑖𝑛𝑑𝑒𝑥𝑖 = 1 − |
𝑌𝑖𝑗.𝑉𝑗

|𝑉𝑖|
2 |    (13) 

Where:𝑍𝑖𝑗 :Impedance a the line between buses 𝑖 and

𝑗, 𝑄𝑖: Reactive power at bus 𝑖,|𝑉𝑖|
2:Voltage magnitude at

bus 𝑖.  

E. Environmental Performance Indices

Environmental performance indices (EPIs) are

related to the power generation reduced from using green 

energy. This research focuses on PV power generation that 

can be generated in a solar time on average of 4.5 hr. per 

day. The EPIs are represented as follows [23]: 

1) CO2 emission reduction Estimate the reduction in

emissions due to PV integration with 4.5 hr. per day. 

𝐶𝑂2
saved = 𝑃PV ⋅ 𝑇 ⋅ 𝐸𝑓𝑎𝑐𝑡𝑜𝑟 ⋅ 8760 hr/y (14) 

Where: : 𝐶𝑂2
savedReduction in CO2 emissions (in kg).

𝑇 is operational time (in 4.5 hours per day). 𝐸𝑓𝑎𝑐𝑡𝑜𝑟 is Grid

emission factor (in kg CO2/MWh). 

2) Renewable energy penetration is used to measure

the quantify the percentage of renewable energy in total 

power generation as follows: 

%𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 =
𝑃𝑃𝑉

𝑃𝑡𝑜𝑡𝑎𝑙
⋅ 100    (15)
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F. The Multi-Optimization Techniques (MOTs)

The MOTs are used to solve the optimal control of 

the propose. Many methodologies of optimization 

techniques are developed in the word of research, this 

research is focused on popularly used to solve the problem 

of the electrical power system as follows: 

1) Gray Wolf Optimization (GWO)

The GWO algorithm is a metaheuristic

optimization technique inspired by the leadership 

hierarchy and hunting behavior of gray wolves in nature. 

It can be an important equation as follows [24,29]: 

1.1 Key Concepts of GWO: 

Gray Wolf Hierarchy: 

- Alpha (α): The leader of the pack, responsible for

decision-making and guiding the hunt. Represents

the best solution in the optimization process.

- Beta (β): The second-in-command, assisting the

alpha. Represents the second-best solution.

- Delta (δ): The subordinate wolves helping α and β.

Represents the third-best solution.

- Omega (ω): The lowest-ranked wolves, following

the higher-ranked wolves. These represent the rest

of the solutions

1.2   Hunting behavior: 

The algorithm mimics the gray wolves' hunting 

process, which consists of encircling the prey, 

attacking the prey, searching for prey, 

respectively. 

1.3 Mathematical model 

1.3.1 Encircling prey as follows: 

𝐷⃗⃗ = |𝐶 ⋅ 𝑋𝑝
⃗⃗ ⃗⃗  (𝑡) − 𝑋𝑝

⃗⃗ ⃗⃗  (𝑡)| (16) 

𝑋𝑝
⃗⃗ ⃗⃗  (𝑡 + 1) = 𝑋𝑝

⃗⃗ ⃗⃗  (𝑡) − 𝐴 ⋅⃗⃗ ⃗⃗  𝐷⃗⃗ (17) 

Where: 𝑋 (𝑡) is current position of the wolf. 𝑋𝑝
⃗⃗ ⃗⃗  (𝑡) is

position of the prey (or best solution).  𝐴  is a coefficient 

vector to control exploration/exploitation. 𝐶  is random 

coefficient vector.  

1.3.2 Updating the positions of the wolves based 

on the α, β, and δ wolves: 

𝑋𝑝
⃗⃗ ⃗⃗  (𝑡 + 1) =

𝑋1⃗⃗⃗⃗  ⃗+𝑋2⃗⃗⃗⃗  ⃗+𝑋3⃗⃗⃗⃗  ⃗

3
(18) 

Where 𝑋1
⃗⃗⃗⃗ , 𝑋2

⃗⃗⃗⃗  and 𝑋3
⃗⃗⃗⃗ are computed based on 𝛼, 𝛽 and

𝛿. 

1.3.3 Control Parameters are related by using 

parameter as follows: 

A⃗⃗=2a⃗ ⋅r1⃗⃗⃗  -a⃗  is balances exploration exploitation 

(gradually decreases a a from 2 to 0). 

C⃗⃗ =2r 2 is enhances randomness.

𝑟1⃗⃗⃗   and 𝑟2⃗⃗  ⃗ is random vectors in the range [0, 1].

2) Particle Swarm Optimization (PSO)

The PSO is an optimization method inspired by the 

movement behavior of animal swarms, such as flocks of 

birds or schools of fish. The main idea of PSO is to use a 

group of particles to explore the search space to find the 

best solution, where each particle represents a possible 

solution to the problem. 

The main equations of Particle Swarm Optimization 

(PSO) are as follows [25]: 

Velocity Update: 

𝑣𝑖(𝑡 + 1) = 𝑤 ⋅ 𝑣𝑖(𝑡) + 𝑐1 ⋅ 𝑟1 ⋅ (𝑝𝑏𝑒𝑠𝑡𝑖 −
𝑥𝑖(𝑡)) + 𝑐2 ⋅ 𝑟2 ⋅ (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡))

(19) 

Position Update: 

𝑥𝑖(t+1) = 𝑥𝑖(𝑡) + 𝑣𝑖(t+1) (20) 

Where: 

𝑣𝑖(𝑡) is the velocity of particle 𝑖 at time 𝑡. 𝑥𝑖(𝑡) is

the position of particle𝑖at time 𝑡.𝑤 is inertia weight𝑐1, 𝑐2 is

cognitive and social learning coefficients. 𝑟1, 𝑟2 are

random values between 0 and 1. 𝑝𝑏𝑒𝑠𝑡𝑖:The best position

of particle.𝑔𝑏𝑒𝑠𝑡 The global best position (best position of 

the entire swarm). 

3) Whale Optimization Algorithm (WOA)

WOA is a metaheuristic optimization technique

inspired by the bubble-net hunting strategy of humpback 

whales. 

3.1 The modelling of WOA 

This behavior is modeled through two key 

mechanisms are Exploitation: represented by encircling 

and spiraling toward prey and Exploration: achieved by 

searching for new prey in the search space. 

3.2 Mathematical Modeling of WOA [26]: 

• Encircling Prey:

Whales estimate the position of the prey (optimal 

solution) and adjust their position toward it: 

    D
→

=∣C
→

⋅X*(t)
→

-X(t)
→

∣    (21) 

X
→

(t+1)=X*(t)

→

-A
→

⋅D
→

∣ (22) 

Where: 𝑋∗
→

(𝑡) is best-known solution (position of 

prey). 𝑋
→

(𝑡) is the current position of the whale. 𝐴
→

⋅

𝐷
→

∣coefficients controlling exploration and exploitation. 

• Spiral Updating Position:

Whales swim around the prey in a spiral path: 

X
→

(t+1)=D
→

'⋅ebl⋅cos(2πl)+X*
→

(t) (23)

Where: 𝑏is Shape constant of the spiral. 𝑙 is Random 

number in search space. 𝐷
→

′ is the distance between whale 

and prey. 

• Search for Prey:

Whales randomly explore the search space by

moving away from the best-known solution:
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𝑋
→

(𝑡 + 1) = 𝑋
→

𝑟𝑎𝑛𝑑 − 𝐴
→

⋅ 𝐷
→

(24) 

Where 𝑋
→

𝑟𝑎𝑛𝑑 is a randomly chosen solution. 

3. Methodology

This section is to present the research step for

preparing the simulation case. Static state power flow is 

applied to solve and explore the purpose based on 

pandapower [27] as follows: 

A. Hybrid - Objective Function

A hybrid-objective function is formulated to

minimize power losses, L-index and VDI. Penalty factors 

are included to address voltage violations, reverse power 

flow, line overloading, constraints. 

 The optimization aims to minimize a hybrid-objective 

function 𝐹combining several goals: 

𝐹 = 𝜔1 ⋅ 𝑃loss + 𝜔2 ⋅ 𝑚𝑎𝑥(𝐿 − 𝑖𝑛𝑑𝑒𝑥) +  𝜔3 ⋅ 𝑉𝐷𝐼
+ 𝑃penalty (25) 

Where: 𝑃loss is total power losses in the network.𝐿 −
𝑖𝑛𝑑𝑒𝑥 is maximum voltage stability index. 𝑉𝐷𝐼 is voltage 

deviation index from nominal values. 𝑃penalty: Penalty for

constraint violations.,𝜔1, 𝜔2, 𝜔3: Weights assigned to each

objective are set up 0.333.  

B. Constraint and Limits

1. Voltage magnitude at each bus must remain

within permissible limits:

𝑉  |𝑉𝑖|𝐵uses𝑚𝑎𝑥𝑚𝑖𝑛 (26) 

2. Line Thermal Limits

The loading on each line must not exceed its

thermal capacity:

Sij=√Pij
2+Q

ij

2≤Sij
max, ∀(i,j)∈Lines (27) 

3. The FCS grid connection:

The grid supplies active and reactive power to

balance the system:

𝑃𝑖
FCS,  𝑄𝑖

grid
≥ 0 (28) 

4. Power Balance of Bus

The PV contributes to the overall power balance

at its bus:

𝑃bus = 𝑃load − 𝑃𝑃𝑉 + 𝑃𝐹𝐶𝑆 (29) 

5. Power Factor (PF) Constraints

The PF of DG must remain within its operational

limits:

𝑃𝐹min ≤ 𝑃𝐹𝑁 ≤ 𝑃𝐹max,  ∀𝑁; number of DG (30) 

6. Renewable Power Output Constraints

Power generated by PV systems must respect

resource availability:

0 ≤ 𝑃PV ≤ 𝑃PV
max (31) 

Penalty Terms 

The penalty for constraint violations is expressed as: 

𝑃penalty = 𝑃𝑣 + 𝑃𝑟 + 𝑃𝑙 (32) 

Where: 𝑃𝑣: Penalty for voltage violations |𝑉| <
0.95p.u. or|𝑉| > 1.05p.u.,𝑃𝑟: Penalty for reverse power

flow.,𝑃𝑙: Penalty for line loading exceeding 100%.

C. Primary Distribution Power Systems

The IEEE 33-bus system is selected to evaluate the

impact of FCS integration on the power grid. It operates 

with a total load of 3.72 MW and 2.30 MVar, consisting 

of 32 radial transmission lines [28]. This study categorizes 

the system into six zones based on load type: industrial 

plants (1,020 kW) have the highest demand, followed by 

department Stores (740 kW) and tourist areas (625 kW). 

Other zones, including housing, Theme Parks, and 

miscellaneous loads, range between 420-460 kW. This 

classification supports efficient power distribution and 

resource management as shown in Table 1 and Figure 1. 

The FCSs are defined by using passive conceptual of the 

sizing and location by Table 4.  

Table 1 The Load categories zone 

Zone 

(No.) 
Categories Bus (No.) 

Total Load 

(kW) 

1 Housing estate 2, 19, 20, 21, 22 460 

2 Industrials

Plant 
3, 23, 24, 25 1,020 

3 Theme Parks 4, 5, 6, 26, 27, 28 420 

4 Tourist Area 7, 8, 9, 10, 11, 12 625 

5 Department 

store 
29, 30, 31, 32, 33 740 

6 Other 13, 14, 15, 16, 17,18 450 

Table 2 Parameter of the multi-optimization techniques 

Parameters Description Value/Range 

Objective Hybrid of the total power 

loss, VDI, max L-index 

with p.u. base. 

- 

Method Optimal solution for line 

control, PVs placement 

Multi-

optimization 

techniques 

FCS Cap. Fast charging station 

capacity 

50 kW 

FCS Number Fast charging station 
number 

6 (Fix Position) 

PV Cap. PV power plant capacity 0.1 - 3.0 MW 
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Table 2 Parameter of the multi-optimization techniques  (Cont.) 

Parameters Description Value/Range 

Tie-switch 
number 

The number of Tie-
switch 

6 (Variables)/Loop 

PF. Control Power factor control 

limit 

0.85 - 1.00 

Volt/Var 

control 

Volt/var control limit -2 Mvar to 2 MVar 

Voltage Limits Acceptable voltage 
range 

0.95–1.05 p.u. 

Line loading 

limit 

Acceptable line 

loading range 

Thermal limit of line 

each section 

Iteration 
Solving the problem 

limit range 
100 

GWO: 

N Number of Wolves 100 

PSO: 

N Number of particles 100 

c1 
Coefficient of Local 

acceleration 
2.5 

c2 
Coefficient of global 

acceleration 
2.5 

w Weight inertia 1 

WOA: 

Number of Whales 100 

Table 2 shows the parameters of the multi-

optimization techniques for using to find optimal 

conditions. So that, all basic parameters of each 

optimization needed to equip for comparing the 

performance. 

Table 3. defines optimization variables across cases. Tie-

switch control (X1-X5) starts from Case 3, while PVs 

Position & Sizing (X6-X11) are introduced in Case 4 

onward. PF Control (X8-X14) is applied in Cases 4-6, 

while Volt/Var control (X10-X14) is used in Cases 7-9 

for voltage regulation. Cases 6 and 9 implement the most 

comprehensive optimization strategy. However, the 

limitation of the tie switch controller is constrained by the 

number of operations allowed per day. Therefore, optimal 

control must be managed accordingly in real power 

systems. 

Table 4. compares FCSs, Tie-Line Control, and PV 

placement strategies. Case 1 is the base scenario, while 

Cases 2-3 add FCSs and tie-line control. Cases 4-6 

integrate 1-3 PV units with PF control, optimizing power 

flow. Cases 7-9 apply Volt/Var control for better voltage 

regulation. Cases 6 and 9 (Multi-PVs with 3 units) achieve 

the best power balance and voltage stability, confirming 

optimal tie-line and PV placement effectiveness. 

4. Simulation and Results

The result of this research is divided into 3 main

sections that are based by the multi-optimization 

techniques of the purpose. The case study from Table 1 is 

used to solve the problem and results in evaluating the 

power system improving under optimal conditions. The 

FCSs are installed by fixing location and sizing which is 

the electrical power system needed to manage the system 

for supporting the demand from the FCSs. However, this 

study focuses on the photovoltaic power generation  

system and network reconfiguration control for managing 

the power generation and transmission line control. 

Network control is defined by using radial system, does 

not islanding mode and loop system.  The comparison of 

each case can be presented by the table, network graph 

and voltage magnitude profiles and line loading. Power 

system analysis tool is applied by network graph and 

combined with heat map of voltage magnitude and line 

loading. The best case of each optimization technique is 

selected to present the graph for benchmarking the 

performance and analysis.  

Table 5. highlights the effectiveness of GWO in 

optimizing PV placement and tie-switching. Baseline 

cases (1 & 2) exhibit high power losses (202.677 kW and 

225.295 kW) with poor voltage deviation (1.700 p.u. and 

1.830 p.u.). Tie-switching alone (Case 3) reduces power 

loss to 167.019 kW (25.81% improvement), while adding 

PVs (Case 4) further lowers losses to 84.687 kW, 

improving voltage deviation to 0.467 p.u.. The most 

optimized scenario, Case 5, with 1,353 kW and 1,403 kW  

PVs at Buses 9, 31 and tie-switching at 9, 6, 13, 30, 23, 

achieves the lowest power loss (50.776 kW, 77.45% 

reduction) and the best voltage stability (0.224 p.u.) with 

optimal PF control (0.850, 0.850). Cases 6-9, despite 

larger PVs, do not surpass Case 5, underscoring the 

importance of strategic PV placement and switching. 

These results confirm GWO’s effectiveness in enhancing 

distribution network performance. 
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Fig.1 The IEEE 33 bus testing system for solving the optimal Tie -switch control, PVs placement of the propose 

Table 3 Definition of variables for using optimal control from the propose. 

Case 

Variable No. X1 to Xn 

Tie-Switch Control PVs Position PVs Sizing PF. Control Volt/Var Control 

1 - - - - - - - - - - - - - - - - - 

2 - - - - - - - - - - - - - - - - - 
3 X1 X2 X3 X4 X5 - - - - - - - - - - - - 

4 X1 X2 X3 X4 X5 X6 - - X7 - - X8 - - - - - 

5 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 - - - - 
6 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 - - - 

7 X1 X2 X3 X4 X5 X6 - - X7 - - - - - X8 - - 

8 X1 X2 X3 X4 X5 X6 X7 X8 X9 - - - - X10 X11 - 
9 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 - - - X12 X13 X14 
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Table 4 The study case of the Optimal Line Control and Distributed Energy Resources Placement 

Table 5 Simulation Results of the GWO 

Case 

PVs 
Tie Switch 

(No.) 

Total power loss Voltage Deviation 

PF Control  Before After Before After 

(kW) (Bus No.) (kW) (kW)   (p.u.) (p.u.) 

1 - - - 202.677 - 1.700 - - 

2 - - - 225.295 - 1.830 - - 

3 - - 8, 5, 13, 16, 27 225.295 167.019 1.830 1.262 - 

4 1,164 18 7, 6, 12, 29, 27 225.295 84.687 1.830 0.467 0.891 

5 
1353, 

1403 
9, 31 9, 6, 13, 30, 23 225.295 50.776 1.830 0.224 0.850, 0.850 

6 
1506, 

715, 1212 
30,10,25 10, 4, 12, 14, 27 225.295 52.566 1.830 0.328 0.999,0.856,0.884 

7 2,909 29 10, 4, 13, 35, 22 225.295 208.895 1.830 1.597 0.997 

8 100, 2777 8, 30 10, 3, 11, 15, 21 225.295 246.559 1.830 2.243 0.997, 0.856 

9 

1570, 

1092, 

1080 

29, 21, 31 
32, 18, 11, 28, 

26 
225.295 148.67 1.830 0.874 0.977, 0.856, 0.884 

Case 

Study 

FCS Location Tie Line/PVs 

FCS PVs 

Sizing 

Number 

of 

Station 

Total 

Capacity 

of FCS 

Location Sizing 
Number 

of PVs 

Total 

Capacity 

of PVs 

Control 

Type 

(Bus No.) (Line No.) (kW) (Unit) (kW) 
(Bus 
No.) 

(kW) Unit (kW) (kW) 

1 Base Case 
Disable = 

33,34,35,36,37  
- - - - - - - - 

2 6,9,15,20,23,31 
Disable = 

33,34,35,36,37 
50 6 300 - - - - - 

3 6,9,15,20,23,31 Optimal Tie-Line 
Control 

50 6 300 - - - - - 

4 6,9,15,20,23,31 Optimal Tie-Line 
Control +PV 

50 6 300 OPT OPT 1 OPT PF 

5 6,9,15,20,23,31 

Optimal Tie-Line 
Control and 

Multi-PVs (2 

PVs) 

50 6 300 OPT OPT 2 OPT PF 

6 6,9,15,20,23,31 

Optimal Tie-Line 

Control and 

Optimal Multi-
PVs (3 PVs) 

50 6 300 OPT OPT 3 OPT PF 

7 6,9,15,20,23,31 Optimal Tie-Line 

Control + PV 
50 6 300 OPT OPT 1 OPT Volt/Var 

8 6,9,15,20,23,31 

Optimal Tie-Line 

Control and 
Optimal Multi-

PVs (2 PVs) 

50 6 300 OPT OPT 2 OPT Volt/Var 

9 6,9,15,20,23,31 

Optimal Tie-Line 
Control and 

Optimal Multi-

PVs (3 PVs) 

50 6 300 OPT OPT 3 OPT Volt/Var 
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Fig. 2 The bus voltage magnitudes of Case 2 

Figure. 2 visualizes bus voltage magnitudes in the 

IEEE 33-bus system for Case 2, showing voltage 

distribution under FCS integration. Higher voltages (~1.0 

p.u.) appear near the substation, while lower voltages

(0.91 p.u.) occur in distant buses, indicating weak voltage

regulation. The voltage drop worsens with increased

distance, highlighting the impact of FCS on system

stability and the need for tie-switching or PV integration 

to improve voltage profiles. In deep details, the color red 

represents higher voltages, and blue indicates lower 

voltages which is minimum voltage: 0.907 p.u. maximum 

voltage: 0.100 p.u. average voltage: 0.945 p.u. 

Fig. 3 The transmission lines power flow of Case 2 

Figure. 3 visualizes power flow in the IEEE 33-bus 

system under FCS integration and network control. Red 

zones near the source indicate high power flows, while 

blue regions show weaker distribution in distant buses.  

The sharp variations highlight network congestion, 

confirming the need for tie-switching and PV integration 

to enhance stability and reduce losses. 
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  Fig. 4 The bus voltage magnitudes of Case 3 

Figure.4 shows the bus voltage magnitudes for Case 

3 with tie-switch control. Compared to Case 2, voltage 

stability improves, with fewer low-voltage areas. Higher 

voltages (0.99-1.0 p.u.) dominate, while voltage drops 

(0.95 p.u.) are minimized. This confirms that tie-

switching enhances voltage regulation and  

system stability. The voltage profile with a colour 

gradient, where red represents higher voltages and 

blue indicates lower voltages which is minimum 

voltage: 0.931 p.u. maximum voltage: 1.000 p.u. 

average voltage: 0.963 p.u. 

Fig. 5 The transmission lines power flow of Case 3 

Figure. 5 shows power flow in the IEEE 33-bus system 

with tie-switch control. Compared to Case 2, congestion is 

reduced, flow is more balanced, and losses are minimized. 

Smaller red zones indicate improved network stability and 

efficiency. These  

results demonstrate that effectively manages power 

flow, reducing losses and enhancing network 

performance.in: min: 0.000 p.u., max: 0.022 p.u., Avg: 

0.003 p.u. 
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Fig.6 The bus voltage magnitudes of Case 5 using the GWO 

Figure.6 shows bus voltage magnitudes for Case5 

(GWO) in the IEEE 33-bus system. Higher voltages (0.98-

1.0 p.u.) and reduced voltage drops (~0.88-0.92 p.u.) 

indicate improved stability and power distribution due to 

optimized tie- switching and PV placement that result 

revealed the voltage magnitude with minimize 0.983 p.u. 

and maximum 1.015 p.u. average 0.996 p.u.. 

.

Fig. 7 The transmission lines power flow of Case 5 using the GWO 

Figure. 7 shows optimized power flow in the IEEE 33-

bus system with GWO. Balanced load distribution, 

reduced losses (blue regions), and minimized congestion  

(smaller red zones) confirm that tie-switching and PV 

placement enhance efficiency and stability. 
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Case 

PVs 

Tie Switch (No.) 

Total power loss Voltage Deviation 

PF Control  Before After Before After 

(kW) (Bus No.) (kW) (kW)   (p.u.) (p.u.) 

1 - - - 202.677 - 1.700 - - 

2 - - - 225.295 - 1.801 - - 

3 - - 8, 6, 13, 35, 27 225.295 156.205 1.830 1.125 - 

4 3000 28 10, 19,11,14,23 225.295 68.428 1.830 0.308 0.85 

5 1883, 1465 30,8 34, 18, 12, 14, 27 225.295 20.124 1.830 0.099 0.85, 0.85 

6 
984, 2196, 

223 
9,29,18 32, 19, 12, 35, 21 225.295 19.059 1.830 0.123 0.85, 0.85,1 

7 3,000 8 8, 19, 13, 30, 36 225.295 115.859 1.830 0.729 - 

8 2367, 1335 8,31 34, 19, 12, 14, 35 225.295 107.332 1.830 0.468 - 

9 
1119, 779, 

2099 
3, 12, 30 32, 19, 33, 14, 23 225.295 101.076 1.830 0.627 - 

Table. 6 highlights the effectiveness of PSO in 

optimizing PV placement and tie-switching. Baseline 

cases (1 & 2) exhibit high power losses (202.677 kW and 

225.295 kW) with poor voltage deviation (1.700 p.u. and 

1.830 p.u.). Tie-switching alone (Case 3) reduces power 

loss to 156.205 kW, (30.66% improvement), while adding 

PVs (Case 4) further lowers it to 68.428 kW. while adding 

PVs (Case 4)  

further lowers losses to 68.428 kW, improving voltage 

deviation to 0.308p.u. The most optimized scenario, Case 

5, with 1,883 kW and 1,465 kW PVs at Buses 30, 8 and 

tie-switching at 34,18,12,14,27 achieves the lowest power 

loss (20.124 kW, 91.06% reduction) and the best voltage 

stability (0.099 p.u.) with optimal PF control (0.850, 

0.850). Cases 6-9, despite larger PVs, do not surpass Case 

5, underscoring the importance of strategic PV placement 

and switching. These results confirm PSO’s effectiveness 

in enhancing distribution network performance. 

Fig. 8 The bus voltage magnitudes of Case 5 using the PSO 

Figure. 8 shows bus voltage magnitudes for Case 5 

(PSO) in the IEEE 33-bus system. Higher voltages (0.98-

1.0 p.u.) and fewer voltage drops (0.93-0.95 p.u.) The 

voltage profile across the IEEE 33-bus system is shown 

with a color gradient, where red represents higher voltages  

Table 6 SIMULATION RESULTS OF PSO 
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and blue indicates lower voltages which is minimum 

voltage: 0.992 p.u. maximum voltage: 1.005 p.u. average 

voltage: 0.997 p.u. confirm PSO’s effectiveness in 

stabilizing voltage and optimizing power distribution.

Fig. 9 The transmission lines power flow of Case 5 using the PSO 

Figure. 9 shows optimized power flow in the IEEE 

33-bus system with PSO. Balanced distribution, reduced

losses (blue regions), and minimized congestion (smaller

red zones) confirm PSO’s effectiveness in improving 

efficiency and stability. 

Table 7 Simulation Results of the WOA 

Case 

PVs 
Tie Switch 

(No.) 

Total power loss Voltage Deviation 

PF Control  Before After Before After 

(kW) (Bus No.) (kW) (kW)   (p.u.) (p.u.) 

1 - - - 202.677 - 1.700 - - 

2 - - - 225.295 - 1.801 - - 

3 - - 8,6,13,35,27 225.295 160.311 1.830 1.129 - 

4 2,745 15 20,19,12,29,27 225.295 153.339 1.830 0.355 1 

5 
2119, 

1525 
30, 8 20, 18, 13,15,22 225.295 28.191 1.830 0.135 0.913, 0.850 

6 
1205, 

1245, 432 
18,6,13 9, 4, 12,28,23 225.295 199.601 1.830 0.199 0.850,0.850,0.850 

7 1748 17 10,5,11,28,27 225.295 165.926 1.830 1.213 - 

8 
1388 

,1468 
15, 25 20,6,11,29,27 225.295 70.566 1.830 0.708 - 

9 
1281, 

1089, 781 
29, 15, 30 20,6,12,35,22 225.295 90.159 1.830 0.585 - 

Table 7. highlights the effectiveness of WOA in 

optimizing PV placement and tie-switching. Baseline 

cases (1 & 2) exhibit high power losses (202.677 kW and 

225.295 kW) with poor voltage deviation (1.700 p.u. and 

1.830 p.u.). Tie-switching alone (Case 3) reduces power 

loss to 160.311 kW, (28.84% improvement) while adding 

PVs (Case 4) further lowers it to 153.339 kW. while 

adding PVs (Case 4) further lowers losses to 153.339 kW, 

improving voltage deviation to 0.355 p.u. The most  
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optimized scenario, Case 5, with 2,119 kW and 1,525 kW 

PVs at Buses 30, 8 and tie-switching at 20, 18, 13,15,22 

achieves the lowest power loss (28.191 kW, 87.48% 

reduction) and the best voltage stability (0.135 p.u.) with 

optimal PF control (0.913, 0.850). Cases 6-9, despite 

larger PVs, do not surpass Case 5, underscoring the 

importance of strategic PV placement and switching. 

These results confirm WOA’s effectiveness in enhancing 

distribution network performance. 

Fig. 10 The bus voltage magnitudes of Case 5 using the WOA

Figure. 10 shows bus voltage magnitudes for Case 5 

(WOA) in the IEEE 33-bus system. Higher voltages (0.98-

1.0 p.u.) and reduced voltage drops (0.92-0.94 p.u.) 

confirm WOA’s effectiveness in stabilizing voltage and 

optimizing power distribution. The voltage profile across  

the IEEE 33-bus system is shown with a color gradient, 

where red represents higher voltages and blue indicates 

lower voltages which is minimum voltage: 0.986 p.u. 

maximum voltage: 1.003 p.u. average voltage: 0.996 p.u.. 

Fig. 11 The transmission lines power flow of Case 5 using the WOA 
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Figure. 11 shows optimized power flow in the IEEE 

33-bus system with WOA. Balanced distribution, reduced

losses (blue regions), and minimized congestion (smaller

red zones) confirm WOA’s effectiveness in improving 

efficiency and stability. 

Fig. 12 An example of a graph GWO The difference of voltage 

magnitude 

Figure. 12 compares voltage magnitudes across buses 

for different optimization cases using GWO. Baseline 

cases (Case 1 & 2) show the lowest voltage profiles, 

indicating significant drops. Case 3 & 4 (tie-switching and 

PVs) improve voltage stability, while Case 5 achieves the 

highest voltage support, ensuring the most stable profile. 

Other cases (6-9) show varying improvements but remain 

suboptimal. The results confirm that Case 5 optimally 

enhances voltage stability, demonstrating the effectiveness 

of GWO in PV placement and network reconfiguration. 

Fig. 13 An example of a graph GWO The difference of Line Flow 
magnitude 

Figure. 13 compares line flow magnitudes for 

different GWO optimization cases. Baseline cases (1 & 2) 

show the highest line flows, indicating network 

congestion. Case 3 & 4 (tie-switching and PV placement) 

reduce flows, improving distribution. Case 5 achieves the 

lowest line flow, minimizing power losses and congestion. 

Other cases (6-9) show improvements but remain 

suboptimal. The results confirm that Case 5 optimally 

enhances network efficiency and stability. 

Fig. 14 An example of a graph PSO The difference of voltage 
magnitude 

Figure. 14 compares voltage magnitudes across buses 

for different PSO optimization cases. Baseline cases (1 & 

2) show the lowest voltages, indicating poor stability.

Case 3 & 4 (tie-switching and PV integration) improve

voltage regulation. Case 5 achieves the highest voltage

stability, outperforming all cases. Cases 6-9 show

moderate improvements but remain suboptimal. The

results confirm that Case 5 provides the best voltage

support, proving PSO’s effectiveness in PV placement and

network optimization.

Fig. 15 An example of a graph PSO The difference of Line Flow 

magnitude 

Figure. 15 compares line flow magnitudes for 

different PSO optimization cases. Baseline cases (1 & 2) 

show the highest congestion, while Case 3 & 4 (tie-

switching and PV integration) reduce flows. Case 5 

achieves the lowest line flow, minimizing losses and 
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improving power balance. Other cases (6-9) show 

moderate improvements but remain suboptimal. The 

results confirm that Case 5 optimally enhances network 

efficiency. 

Fig. 16 An example of a graph WOA The difference of voltage 

magnitude 

Figure. 16 illustrates voltage magnitudes across 

buses for different WOA optimization cases. Baseline 

cases (1 & 2) show the lowest voltages, indicating poor 

stability. Case 3 & 4 (tie-switching and PV integration) 

improve voltage levels. Case 5 achieves the highest 

voltage stability, ensuring the best overall performance. 

Cases 6-9 show moderate improvements but remain less 

effective. The results confirm that Case 5 optimally 

enhances voltage regulation, demonstrating WOA’s 

effectiveness in PV placement and network 

reconfiguration. 

Fig. 17 An example of a graph WOA The difference of Line Flow 

magnitude 

Figure 17 compares line flow magnitudes for 

different WOA optimization cases. Baseline cases (1 & 2) 

show the highest line flows, indicating congestion and 

losses. Case 3 & 4 (tie-switching and PV integration) 

reduce flows, improving power distribution. Case 5 

achieves the lowest line flow, confirming optimal loss 

minimization and power balance. Cases 6-9 show 

moderate reductions but remain less effective. The results 

confirm that Case 5 optimally enhances network 

efficiency, demonstrating WOA’s effectiveness in loss 

reduction and system stability. 

Environmental performance indices are revealed by 

CO2 emission reduction estimate the reduction in 

emissions due to optimal PV integration together with 

network reconfiguration and PV penetration level in Table 

8. The emission factor is defined by 0.5251 kg CO2/MWh.

Table 8 Comparison of the CO2 emission reduction and the percentage 

of renewable energy level 

Optimiz

ation 

Techniq

ues 

Best 

solution 

PV 

power 

generati

on (kW) 

CO2 emission 

reduction (kg 

CO2/MWh) 

% 

Renewab

le 

(+FCS) 

GWO Case 5 2,756 2,376.99 68.64 

PSO Case 5 3,348 2,887.57 83.38 

WOA Case 5 3,644 3,142.87 90.76 

Table 8 shows the Environmental performance 

indices with PV power generation and percentage of the 

renewable energy are presented the PV power generation 

can be reduced the CO2 emission reduction. The results of 

CO2 emission reduction and the percentage of renewable 

energy level are presented by PSO case 5 from the Table 6 

in condition  the lowest of minimize power loss can 

reduced the CO2 emission of 2,887.57 kg CO2/MWh with 

83.38 % of the renewable utilization. 

The simulation results highlight the significant 

impact of hybrid objective function for optimization 

techniques on enhancing power distribution network 

performance, improving voltage stability, and reducing 

environmental impacts. These findings demonstrate the 

practical applicability of the proposed methods in 

optimizing power loss, voltage regulation, and renewable 

energy integration. The knowledge gained from this 

research not only underscores the effectiveness of the 

hybrid optimization approach but also provides valuable 

insights into its potential guideline for real-world 

implementation. In the following section, we will discuss 

the broader implications of these results and offer 

recommendations for future research, along with practical 

applications across various distribution power system 

contexts. 

5. Conclusion

This study analyzed the impact of FCS integration in

the IEEE 33-bus radial distribution system, considering 

network reconfiguration, DERs, and control strategies. 

The results confirm that FCS integration increases power 

losses and voltage instability, but optimal tie-switching 

and PV placement significantly mitigate these effects. 

Among the optimization techniques PSO achieved the 

highest power loss reduction (20.124 kW, 91.06%), and 

optimal voltage stability. WOA provided a balanced 

performance, reducing losses by (28.191 kW ,87.48%). 

GWO effectively reduced losses by (50.776 kW, 77.45%), 
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while improving voltage profiles. The best-performing 

Case 5 across all methods demonstrated that strategic 

DER placement and network reconfiguration significantly 

improve power distribution efficiency, voltage stability, 

and system reliability. Furthermore, environmental 

benefits were evident, with CO₂ emission reductions 

highest in WOA (90.76%), followed by PSO (83.38%) 

and GWO (68.64%), emphasizing the role of optimized 

renewable energy integration. Overall, this research 

underscores the effectiveness of hybrid objective function 

for optimization techniques in enhancing the performance 

of power distribution networks. By employing a hybrid 

objective function and conducting a comparative analysis 

of three optimization algorithms GWO, PSO, and WOA 

the study offers a comprehensive and multidimensional 

evaluation. The findings clearly validate that the 

coordinated implementation of control strategies, 

alongside the optimal placement and sizing of 

photovoltaic generation units, substantially improves the 

operational efficiency and stability of the distribution 

system.  
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