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Abstract. The integration of distributed energy
resources (DERs), such as photovoltaic (PV) systems, into
power distribution networks is critical for enhancing grid
reliability, reducing power losses, and promoting
renewable energy adoption. Fast charging stations
(FCSs), due to their high energy demand, further
complicate grid operation, particularly in maintaining
voltage stability and coordinating power supply. While
previous studies often address DERs placement or control
strategies in isolation, this study proposes a unified
framework that optimizes both the placement and sizing of
DERs in combination with advanced grid control
mechanisms. The proposed approach uses a hybrid of
three metaheuristic algorithms: Grey Wolf Optimization
(GWO), Particle Swarm Optimization (PSO), and Whale
Optimization Algorithm (WOA). The multi-objective
formulation focuses on minimizing power loss and cost,
improving voltage profiles, and reducing the L-index. A
notable contribution of this work is the integration of
Volt/Var and power factor (PF) management into the
optimization process, which enables practical grid
stabilization  under steady-state  conditions. The
methodology is applied to the IEEE 33-bus distribution
network and validated through simulation. Results
indicate that the hybrid method performs better than

traditional  single-algorithm  approaches, achieving
significant power loss reductions and voltage
improvements. These findings provide a practical

roadmap for distribution system planning under high
DERs and FCS penetration.
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1. Introduction

The transformation of power distribution systems
through the integration of electric vehicles (EVs) and
distributed generation (DG) sources has introduced
significant  challenges in  network management,
optimization, and infrastructure planning. This evolution
necessitates  advanced  strategies  for  network
reconfiguration, distributed energy resource (DER)
coordination, and charging infrastructure integration to
ensure efficient, reliable, and sustainable operation.
Modern distribution networks must satisfy multiple
objectives, including power loss reduction, voltage profile
enhancement, and optimal EV charging station (EVCS)
placement, while maintaining overall system stability.

Network reconfiguration (NR) and DG allocation
have emerged as key strategies to address these objectives.
Recent advances in meta-heuristic optimization methods
have shown strong potential in enhancing distribution
network performance. Samman et al. [1] developed a two-
stage Firefly Algorithm (FA) that simplifies complex
networks using simplified network graphs (SNG),
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significantly improving computational efficiency. Salau et
al. [2] extended this work by proposing a modified
Selective Particle Swarm Optimization (SPSO) algorithm,
effectively minimizing voltage deviation and power
losses. Other developments include a sine-cosine
algorithm with Lévy flights for simultaneous NR and DG
allocation [3], and the Antlion Optimizer (ALO), which
incorporates power quality indices into optimization
objectives [4]. To manage the increasing complexity of
modern distribution systems, researchers have proposed
various multi-objective frameworks. Fast heuristic
methods for harmonic  minimization [5] have
demonstrated effectiveness in improving power quality
with low computational overhead. Cloud theory-based
approaches [6] have been applied to model uncertainty in
feeder reconfiguration, particularly in systems integrating
renewable energy sources. Integrated strategies for DG
and capacitor placement have also been introduced to
optimize reactive power support [7]. Fu et al. [8] proposed
phase demand balancing models to improve dispatch
capabilities in active distribution networks. Planning for
EVCS deployment introduces additional complexity in
distribution network operation. Wang et al. [9] presented a
unified framework for crew dispatch and restoration
planning, highlighting the importance of coordinated
infrastructure development. Pal et al. [10] examined
EVCS expansion planning based on user behavior and
charging demand patterns. Yenchamchalit et al. [11]
addressed the joint optimization of photovoltaic (PV)
systems and EVCS placement, while Mazumder et al. [12]
introduced reactive power compensation techniques for
EV charging infrastructure. These studies emphasize the
importance of integrated planning approaches that
consider both grid performance and user-centric factors.
Advanced strategies for EVCS planning continue to
evolve. Lima et al. [13] incorporated locational
transmission tariffs into NR strategies, while Fukui et al.
[14] developed placement models that account for
randomly distributed rooftop PV. Zeb et al. [15]
investigated optimal siting of multiple types of charging
stations in both commercial and residential settings. Gan
et al. [16] and Chitgreeyan et al. [17] explored elastic
demand models for fast-charging station (FCS)
deployment, introducing capacity planning strategies
aligned with temporal demand variations. More recently,
hybrid and enhanced meta-heuristic algorithms have been
applied to address complex optimization problems in
distribution  networks. An improved equilibrium
optimization algorithm was proposed in [18] for
simultaneous NR and DG allocation. Enhanced versions
of the Marine Predator Algorithm have shown improved
performance across varying load scenarios. Shaheen et al.
[19] introduced a chaotic search group algorithm for joint
optimization of network configuration and DER
integration.

However, many existing studies focus on isolated
components of distribution system optimization typically
addressing either DER placement or EVCS planning
without considering their combined impacts on network

reconfiguration and voltage regulation. Moreover, few
frameworks integrate steady-state operational control
strategies such as Volt/Var and power factor (PF)
regulation, which are essential for maintaining voltage
stability under high DER penetration. Challenges related
to scalability and practical implementation in large-scale
distribution networks also remain underexplored. This
study addresses these research gaps through the following
key contributions:

1. A hybrid meta-heuristic framework integrating
GWO, PSO, and WOA is developed for simultaneous FCS
placement, DER allocation, and network reconfiguration
to minimize power losses and improve voltage profiles.

2. To improve voltage stability and reactive power
management under steady-state operating conditions, we
incorporate Volt/Var control and power factor regulation

3. The proposed approach is validated on the IEEE
33-bus test system across various loading scenarios,
demonstrating scalability and operational effectiveness.

4. Environmental impacts, including DER
penetration and CO: emissions, are evaluated under
optimized and conventional control strategies.

2. Problem Formulation and Mathematical
Models

The mathematical model system used for solving
optimal power flow under the fast-charging stations
(FCSs) and distributed energy resources (DERS) interface
that is related by the power flow equation, photovoltaic
power plant, fast charging station, evaluation indices and
optimization techniques can be presented as follows:

A. Power Flow Equations

This research is integrating the power flow equations
of propose that combining with power balance of the grid
and apparatus are follows [20]:

PO 4 PPV = PSS — Pl = S VIV ()
(Gyj cos 6;; + By sin 0y)

id
QM+ @ - - =X VIV (@
(GU sin 911 - BU coSs GU)

Where: PE™, 08" : Active and reactive power from
the grid at busi,PFV,QF": Active and reactive power
generated by DG at busi,Active and reactive power
consumed by FCS at busi, P/°®, @l°a: Active and reactive
power consumed by loads at bus i

B. Photovoltaic (PV) Power Generation

The DERs are represented by the PV power plant.
The active power output of a solar PV system is
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determined by solar irradiance, temperature and system
efficiency:

Ppy(t) = G(t) - Apy - npy (3)

Where: Ppy(t): PV system's active power output (in
MW) at time ¢, G(t): Solar irradiance (in kW /m?) at
timet, Apy: Total area of PV panels (in m?), npy : Overall
efficiency of the PV system, including panel, inverter, and
system losses. The module efficiency Nmodute IS
temperature-dependent:

Nmodute = nm()dule,STC[l : ﬂ : (TC - TSTC)] (4)

Where: 1p0qule - Module efficiency at Standard Test
Conditions (STC), B:Temperature coefficient of power
(%/°C),T;:Cell  temperature (°C),Tgc: Standard Test
Condition temperature (25°C).

The cell temperature Tcan be approximated as:

G@)
TC N Ta * (Grej

Where: T. : Ambient temperature (°C)., Grer :
Reference irradiance (typically 1000 W/m?)., NOCT :
Nominal operating cell temperature (°C).

) NOCT 5)

Reactive Power Control of PV power plant is used to
control the power and voltage of the point of common
coupling (PCC). The PV can be controlled by Volt/Var
and PF control that related by the reactive power output

can be defined as:
pr/=1 ’ S;’V'P%V (6)

1. Reactive Power (Q) Calculation (PF Control):
Q = P - tan(cos~1( PF)) )

2. Volt/Var Control Linear interpolation based on
voltage:

i) Qo Coa) ®
(Vhigh'Vlow)

Q”1 var Qmux

Where: Qpy: Reactive power generated by the PV
system (in MVar), S&;: Apparent power capacity of the
PV system (in MVVA), Ppy: Active power generated by the
PV system (in MW).

C. Electric Vehicle Charging Station (EVCS)

Main of these devices are related by power electronic
conversion from AC to DC or called by rectifier circuits
and connected thought by wire conductor to the battery
system on the electric vehicles. The EVCS can be
categorized by many types of charging system and
application of the charging rate as fast charging, flash
charging, slow charging etc. So, many researchers are
studying the characteristics of EVCS for using to find and
analyze the impact of electric vehicles to the grid. This
research used the constant power model of the EVCS as
follows [21]:

PfCS:Pl_ﬁxed’ Qf-‘CS ~0.05 ,Pl{’CS (9)

D. Technical Performance Indices

These indices assess the technical benefits of the
proposed optimization and control strategies.

1) Total power loss reduction is used to evaluate the
reduction in total active power losses (Ploss) in the
system:

Ploss = Z?I:l P(line,i) = Z?’:l(ll%ne,i : Rline,i) (10)

Where Py,.; Iis the active power loss in line i.

2) Voltage profile improvement is used to analyze
the voltage magnitude (Vi) across all buses. The voltage
deviation index (VDI) is selected to analyze this problem
and can be expressed as:

VDI = Z£V21 [Vi — Vioml (11)

Where: Vom
[21].

3) Line Loading is used to evaluate the loading
percentage of each line to ensure no thermal violations.

is the nominal voltage (e.g., 1.0 p.u.)

Sline .100 (12)

Loading percentage =
S(line,max)

WHhere: Sjinemax) IS the line's thermal capacity.

4) Voltage Stability Index (L- Index) is delivered by
computing the L-index for each line to assess voltage
stability [22]:

L—index; =1— TLV’—LlVZ’ (13)

Where:Z;; :Impedance a the line between buses i and
j, Q;: Reactive power at bus i,|V;|?:Voltage magnitude at
bus i.

E. Environmental Performance Indices

Environmental performance indices (EPIs) are
related to the power generation reduced from using green
energy. This research focuses on PV power generation that
can be generated in a solar time on average of 4.5 hr. per
day. The EPIs are represented as follows [23]:

1) CO; emission reduction Estimate the reduction in
emissions due to PV integration with 4.5 hr. per day.

Cogaved — PPV .T - Efactor - 8760 hr/y (14)

Where: : C052*4Reduction in CO; emissions (in kg).
T is operational time (in 4.5 hours per day). Efqc¢oris Grid
emission factor (in kg CO./MWh).

2) Renewable energy penetration is used to measure
the quantify the percentage of renewable energy in total
power generation as follows:

%Renewable = -2 . 100 (15)

total
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F. The Multi-Optimization Techniques (MOTS)

The MOTSs are used to solve the optimal control of
the propose. Many methodologies of optimization
techniques are developed in the word of research, this
research is focused on popularly used to solve the problem
of the electrical power system as follows:

1) Gray Wolf Optimization (GWO)

The GWO algorithm is a metaheuristic
optimization technique inspired by the leadership
hierarchy and hunting behavior of gray wolves in nature.
It can be an important equation as follows [24,29]:

1.1 Key Concepts of GWO:
Gray Wolf Hierarchy:

- Alpha (a): The leader of the pack, responsible for
decision-making and guiding the hunt. Represents
the best solution in the optimization process.

- Beta (B): The second-in-command, assisting the
alpha. Represents the second-best solution.

- Delta (8): The subordinate wolves helping a and p.
Represents the third-best solution.

- Omega (0): The lowest-ranked wolves, following
the higher-ranked wolves. These represent the rest
of the solutions

1.2 Hunting behavior:
The algorithm mimics the gray wolves' hunting
process, which consists of encircling the prey,

attacking the prey, searching for prey,
respectively.
1.3 Mathematical model
1.3.1 Encircling prey as follows:
D =|C-X,® - X,@)| (16)
X,(t+1)=X,t)—AD (17)

Where: X (t) is current position of the wolf. X, (t) is
position of the prey (or best solution). A is a coefficient

vector to control exploration/exploitation. C is random
coefficient vector.

1.3.2Updating the positions of the wolves based
on the a, B, and & wolves:

X[+Xz+X3 (18)

X,(t +1) =122

Where X;, X, and X?are computed based on «, 8 and
d.

1.3.3Control Parameters are related by using
parameter as follows:

A=2d7;-d is balances exploration exploitation
(gradually decreases a a from 2 to 0).

5:2?2 is enhances randomness.

7; and 7, is random vectors in the range [0, 1].

2) Particle Swarm Optimization (PSO)

The PSO is an optimization method inspired by the
movement behavior of animal swarms, such as flocks of
birds or schools of fish. The main idea of PSO is to use a
group of particles to explore the search space to find the
best solution, where each particle represents a possible
solution to the problem.

The main equations of Particle Swarm Optimization
(PSO) are as follows [25]:

Velocity Update:
vi(t+ 1) =w-v;(t) + ¢, -1y - (pbest; —

xi(6)) + ¢, 5 - (gest — x,(£)) (19
Position Update:
x;(t+1) =x;(t) +v;(t+D) (20)

Where:

v;(t) is the velocity of particle i at time t. x;(¢t) is
the position of particleiat time t.w is inertia weightc, ¢, is
cognitive and social learning coefficients. r,r, are
random values between 0 and 1. pbest;:The best position
of particle.gbest The global best position (best position of
the entire swarm).

3) Whale Optimization Algorithm (WOA)

WOA is a metaheuristic optimization technique
inspired by the bubble-net hunting strategy of humpback
whales.

3.1 The modelling of WOA

This behavior is modeled through two key
mechanisms are Exploitation: represented by encircling
and spiraling toward prey and Exploration: achieved by
searching for new prey in the search space.

3.2 Mathematical Modeling of WOA [26]:
e Encircling Prey:

Whales estimate the position of the prey (optimal
solution) and adjust their position toward it:

—

D=/C-X"()-X()/ (21)
X(e+) =X ()-A D/ (22)

Where: )?*(t) is best-known solution (position of
prey). )_()(t) is the current position of the whale. Z
B |coefficients controlling exploration and exploitation.

e Spiral Updating Position:

Whales swim around the prey in a spiral path:

X+ 1)=D' M cos(2a)+X" 1) 23)

Where: bis Shape constant of the spiral. [ is Random

number in search space. D' is the distance between whale
and prey.

e Search for Prey:
Whales randomly explore the search space by
moving away from the best-known solution:
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-

X(t+1)=Xgng—A-D (24)

IR
Where X,.,,q4 is a randomly chosen solution.

3. Methodology

This section is to present the research step for
preparing the simulation case. Static state power flow is
applied to solve and explore the purpose based on
pandapower [27] as follows:

A. Hybrid - Objective Function

A hybrid-objective function is formulated to
minimize power losses, L-index and VDI. Penalty factors
are included to address voltage violations, reverse power
flow, line overloading, constraints.

The optimization aims to minimize a hybrid-objective
function Fcombining several goals:

F = w; - Ploss + w, - max(L — index) + w5 - VDI
+ Ppenalty (25)
Where: P, is total power losses in the network.L —
index is maximum voltage stability index. VDI is voltage
deviation index from nominal values. Pyeya,: Penalty for
constraint violations.,w;, w,, ws: Weights assigned to each
objective are set up 0.333.

B. Constraint and Limits

1. Voltage magnitude at each bus must remain
within permissible limits:

V Vil BUSES sy (26)

2. Line Thermal Limits
The loading on each line must not exceed its
thermal capacity:

S;= Pé-i—QégSg?”x, V(i,j) ELines (27)

3. The FCS grid connection:
The grid supplies active and reactive power to
balance the system:

PFSS, Q¥ >0 (28)

4. Power Balance of Bus
The PV contributes to the overall power balance
at its bus:

Pyus = Pioad — Ppv + Prcs (29)

5. Power Factor (PF) Constraints
The PF of DG must remain within its operational
limits:

PFyin < PFy £ PFL.  VN;number of DG (30)

6. Renewable Power Output Constraints
Power generated by PV systems must respect
resource availability:

0 < Ppy < PR (31)

Penalty Terms
The penalty for constraint violations is expressed as:

PpenaltyZPv+Pr+Pl (32)

Where: Pv: Penalty for voltage violations |V| <
0.95p.u. or|V| > 1.05p.u.,B.: Penalty for reverse power
flow.,P;: Penalty for line loading exceeding 100%.

C. Primary Distribution Power Systems

The IEEE 33-bus system is selected to evaluate the
impact of FCS integration on the power grid. It operates
with a total load of 3.72 MW and 2.30 MVar, consisting
of 32 radial transmission lines [28]. This study categorizes
the system into six zones based on load type: industrial
plants (1,020 kW) have the highest demand, followed by
department Stores (740 kW) and tourist areas (625 kW).
Other zones, including housing, Theme Parks, and
miscellaneous loads, range between 420-460 kW. This
classification supports efficient power distribution and
resource management as shown in Table 1 and Figure 1.
The FCSs are defined by using passive conceptual of the
sizing and location by Table 4.

Table 1 The Load categories zone

(Z’\cl)gg Categories Bus (No.) TOt(T(IVb;) ad
1 Housing estate 2,19, 20,21, 22 460
2 Industrials 3,23,24,25 1,020
3 Theme Parks 4,5,6,26,27,28 420
4 Tourist Area 7,8,9,10,11,12 625
5 Department 29, 30, 31, 32, 33 740
6 Other 13, 14, 15, 16, 17,18 450

Table 2 Parameter of the multi-optimization techniques

Parameters Description Value/Range
Objective Hybrid of the total power -
loss, VDI, max L-index
with p.u. base.
Method Optimal solution for line Multi-
control, PVs placement optimization
techniques
FCS Cap. Fast charging station 50 kW
capacity
FCS Number Fast charging station 6 (Fix Position)
number

PV Cap. PV power plant capacity 0.1-3.0 MW
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Table 2 Parameter of the multi-optimization techniques (Cont.)

Parameters Description Value/Range
Tie-switch The number of Tie- 6 (Variables)/Loop
number switch
PF. Control Power factor control 0.85-1.00
limit
Volt/Var Volt/var control limit -2 Mvar to 2 MVar
control
Voltage Limits Acceptable voltage 0.95-1.05 p.u.
range
Line loading Acceptable line Thermal limit of line
limit loading range each section
Iteration Solvmg .the problem 100
limit range
GWO:
N Number of Wolves 100
PSO:
N Number of particles 100
Coefficient of Local
C1 . 2.5
acceleration
¢ Coefficient of global 25
acceleration
w Weight inertia 1
WOA:
Number of Whales 100

Table 2 shows the parameters of the multi-
optimization techniques for wusing to find optimal

conditions. So that, all basic parameters of each
optimization needed to equip for comparing the
performance.

Table 3. defines optimization variables across cases. Tie-
switch control (X1-X5) starts from Case 3, while PVs
Position & Sizing (X6-X11) are introduced in Case 4
onward. PF Control (X8-X14) is applied in Cases 4-6,
while Volt/Var control (X10-X14) is used in Cases 7-9
for voltage regulation. Cases 6 and 9 implement the most
comprehensive optimization strategy. However, the
limitation of the tie switch controller is constrained by the
number of operations allowed per day. Therefore, optimal
control must be managed accordingly in real power
systems.

Table 4. compares FCSs, Tie-Line Control, and PV
placement strategies. Case 1 is the base scenario, while
Cases 2-3 add FCSs and tie-line control. Cases 4-6
integrate 1-3 PV units with PF control, optimizing power

flow. Cases 7-9 apply Volt/VVar control for better voltage
regulation. Cases 6 and 9 (Multi-PVs with 3 units) achieve
the best power balance and voltage stability, confirming
optimal tie-line and PV placement effectiveness.

4. Simulation and Results

The result of this research is divided into 3 main
sections that are based by the multi-optimization
techniques of the purpose. The case study from Table 1 is
used to solve the problem and results in evaluating the
power system improving under optimal conditions. The
FCSs are installed by fixing location and sizing which is
the electrical power system needed to manage the system
for supporting the demand from the FCSs. However, this
study focuses on the photovoltaic power generation

system and network reconfiguration control for managing
the power generation and transmission line control.
Network control is defined by using radial system, does
not islanding mode and loop system. The comparison of
each case can be presented by the table, network graph
and voltage magnitude profiles and line loading. Power
system analysis tool is applied by network graph and
combined with heat map of voltage magnitude and line
loading. The best case of each optimization technique is
selected to present the graph for benchmarking the
performance and analysis.

Table 5. highlights the effectiveness of GWO in
optimizing PV placement and tie-switching. Baseline
cases (1 & 2) exhibit high power losses (202.677 kW and
225.295 kW) with poor voltage deviation (1.700 p.u. and
1.830 p.u.). Tie-switching alone (Case 3) reduces power
loss to 167.019 KW (25.81% improvement), while adding
PVs (Case 4) further lowers losses to 84.687 kW,
improving voltage deviation to 0.467 p.u.. The most
optimized scenario, Case 5, with 1,353 kW and 1,403 kW

PVs at Buses 9, 31 and tie-switching at 9, 6, 13, 30, 23,
achieves the lowest power loss (50.776 kW, 77.45%
reduction) and the best voltage stability (0.224 p.u.) with
optimal PF control (0.850, 0.850). Cases 6-9, despite
larger PVs, do not surpass Case 5, underscoring the
importance of strategic PV placement and switching.
These results confirm GWO’s effectiveness in enhancing
distribution network performance.
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Fig.1 The IEEE 33 bus testing system for solving the optimal Tie -switch control, PVs placement of the propose

Table 3 Definition of variables for using optimal control from the propose.

Variable No. X1 to X,

Case

Tie-Switch Control PVs Position PVs Sizing PF. Control Volt/Var Control
1 - - - - - - - - - - - - - - - - -
2 - - - - - - - - - - - - - - - - -
3 X1 X2 X3 X4 X5 - - - - - - - - - - - -
4 X1 X2 X3 X4 X5 X6 - - X7 - - X8 - - - - -
5 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 - - - -
6 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 - - -
7 X1 X2 X3 X4 X5 X6 - - X7 - - - - - X8 - -
8 X1 X2 X3 X4 X5 X6 X7 X8 X9 - - - - X10 Xi1 -
9 X1 X2 X3 X4 X5 X6 X7 X8 X9 X110 Xi1 - - - X12  X13 X14
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Table 4 The study case of the Optimal Line Control and Distributed Energy Resources Placement

FCS PVs
Case FCS Location Tie Line/PVs Number Total Number Total Control
stud Sizing of Capacity  Location  Sizing of PVs Capacity Tvoe
udy Station of FCS of PVs yP
(Bus No.) (Line No.) (kW)  (Unit) (W) ﬁg‘; (kW) Unit (kW) (W)
Disable =
! Base Case 33,34,35,36,37 - - - - - - - -
Disable =
2 6,9,15,20,23,31 33.34.35.36.37 50 6 300 - - - - -
3 6,9,15,20,23,31 Optimal Tie-Line 50 6 300 } } ) } )
Control
6,9,15,20,23,31 Optimal Tie-Line
4 Control +PV 50 6 300 OPT OPT 1 OPT PF
Optimal Tie-Line
6,9,15,20,23,31 Control and
5 Multi-PVs (2 50 6 300 OPT OPT 2 OPT PF
PVs)
Optimal Tie-Line
6 69,15,20,23,31 Control and 50 6 300 OPT  OPT 3 OPT PF
Optimal Multi-
PVs (3 PVs)
6,9,15,20,23,31 Optimal Tie-Line
7 Control + PV 50 6 300 OPT OPT 1 OPT Volt/Var
Optimal Tie-Line
6,9,15,20,23,31 Control and
8 Optimal Multi- 50 6 300 OPT OPT 2 OPT Volt/Var
PVs (2 PVs)
Optimal Tie-Line
9 6,9,15,20,23,31 Control and 50 6 300 OPT  OPT 3 OPT  VoltVar
Optimal Multi-
PVs (3 PVs)
Table 5 Simulation Results of the GWO
Total power loss Voltage Deviation
PVs . .
Case Tle(z\c/)v;tch Before After Before After PF Control
(kw) (Bus No.) (kW) (kW) (p.u.) (p.u.)
1 - - - 202.677 - 1.700 - -
2 - - - 225.295 - 1.830 - -
3 - - 8,5, 13, 16, 27 225.295 167.019 1.830 1.262 -
4 1,164 18 7,6,12,29, 27 225.295 84.687 1.830 0.467 0.891
5 11:250% 9,31 9, 6,13, 30, 23 225.295 50.776 1.830 0.224 0.850, 0.850
6 1506, 301025 10,4,12,14,27  225.295 52.566 1.830 0.328 0.999,0.856,0.884
715, 1212
7 2,909 29 10, 4, 13, 35, 22 225.295 208.895 1.830 1.597 0.997
8 100, 2777 8,30 10, 3,11, 15,21 225.295 246.559 1.830 2.243 0.997, 0.856
1570,
9 002, 29,2131 SAMILZ 55550 148,67 1.830 0874  0977,0.856,0.884

1080
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Voltage Magnitudes [p.u.]
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Fig. 2 The bus voltage magnitudes of Case 2

Figure. 2 visualizes bus voltage magnitudes in the  stability and the need for tie-switching or PV integration
IEEE 33-bus system for Case 2, showing voltage to improve voltage profiles. In deep details, the color red
distribution under FCS integration. Higher voltages (~1.0  represents higher voltages, and blue indicates lower
p.u.) appear near the substation, while lower voltages  voltages which is minimum voltage: 0.907 p.u. maximum
(0.91 p.u.) occur in distant buses, indicating weak voltage  voltage: 0.100 p.u. average voltage: 0.945 p.u.
regulation. The voltage drop worsens with increased
distance, highlighting the impact of FCS on system
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Fig. 3 The transmission lines power flow of Case 2

Figure. 3 visualizes power flow in the IEEE 33-bus  The sharp variations highlight network congestion,
system under FCS integration and network control. Red  confirming the need for tie-switching and PV integration
zones near the source indicate high power flows, while  to enhance stability and reduce losses.
blue regions show weaker distribution in distant buses.
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Fig. 4 The bus voltage magnitudes of Case 3

Figure.4 shows the bus voltage magnitudes for Case
3 with tie-switch control. Compared to Case 2, voltage
stability improves, with fewer low-voltage areas. Higher
voltages (0.99-1.0 p.u.) dominate, while voltage drops
(0.95 p.u.) are minimized. This confirms that tie-
switching enhances voltage regulation and

0.06

system stability. The voltage profile with a colour
gradient, where red represents higher voltages and
blue indicates lower voltages which is minimum
voltage: 0.931 p.u. maximum voltage: 1.000 p.u.
average voltage: 0.963 p.u.
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Fig. 5 The transmiss

Figure. 5 shows power flow in the IEEE 33-bus system
with tie-switch control. Compared to Case 2, congestion is
reduced, flow is more balanced, and losses are minimized.
Smaller red zones indicate improved network stability and
efficiency. These

ion lines power flow of Case 3

results demonstrate that effectively manages power
flow, reducing losses and enhancing network
performance.in: min: 0.000 p.u., max: 0.022 p.u., Avg:
0.003 p.u.
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Fig.6 The bus voltage magnitudes of Case 5 using the GWO

Figure.6 shows bus voltage magnitudes for Case5 revealed the voltage magnitude with minimize 0.983 p.u.
(GWO) in the IEEE 33-bus system. Higher voltages (0.98- and maximum 1.015 p.u. average 0.996 p.u..
1.0 p.u.) and reduced voltage drops (~0.88-0.92 p.u.)
indicate improved stability and power distribution due to
optimized tie- switching and PV placement that result
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0.35 Bus23  Bus24
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402

Line Flows [p.u]
(=]
&

Fig. 7 The transmission lines power flow of Case 5 using the GWO

Figure. 7 shows optimized power flow in the IEEE 33-  (smaller red zones) confirm that tie-switching and PV
bus system with GWO. Balanced load distribution,  placement enhance efficiency and stability.
reduced losses (blue regions), and minimized congestion
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Table 6 SIMULATION RESULTS OF PSO

Total power loss

Voltage Deviation

Case oY Tie Switch (No.) Before After Before After PF Control
(kw) (Bus No.) (kw) (kw) (p.u.) (p.u))
1 202,677 1.700 -
2 225295 1.801 -
3 - - 8, 6,13, 35, 27 225295 156.205 1.830 1125 -
4 3000 28 10,1911,1423 225295 68.428 1.830 0.308 0.85
5 1883, 1465 30,8 34,18,12,14,27 225295 20.124 1.830 0.099 0.85,0.85
6 984 2236, 92018  32,19,12,3521 225295 19.059 1.830 0.123 0.85, 0.85,1
7 3,000 8 8,19,13,30,36 225205 115.859 1.830 0.729 .
8 2367, 1335 831 34,19,12,14,35 225295 107332 1.830 0.468 .
9 e 31230  32,19,33,1423 225295 101.076 1.830 0.627 ;

Table. 6 highlights the effectiveness of PSO in
optimizing PV placement and tie-switching. Baseline
cases (1 & 2) exhibit high power losses (202.677 kW and
225.295 kW) with poor voltage deviation (1.700 p.u. and
1.830 p.u.). Tie-switching alone (Case 3) reduces power
loss to 156.205 kW, (30.66% improvement), while adding
PVs (Case 4) further lowers it to 68.428 kW. while adding
PVs (Case 4)

1.02

Bus23 Bus24 Bus25

0.98

0.96

Voltage Magnitudes [p.u.]

0.94

further lowers losses to 68.428 kW, improving voltage
deviation to 0.308p.u. The most optimized scenario, Case
5, with 1,883 kW and 1,465 kW PVs at Buses 30, 8 and
tie-switching at 34,18,12,14,27 achieves the lowest power
loss (20.124 kW, 91.06% reduction) and the best voltage
stability (0.099 p.u.) with optimal PF control (0.850,
0.850). Cases 6-9, despite larger PVs, do not surpass Case
5, underscoring the importance of strategic PV placement
and switching. These results confirm PSO’s effectiveness
in enhancing distribution network performance.

0.99

0.95

0.94

0.93

Fig. 8 The bus voltage magnitudes of Case 5 using the PSO

Figure. 8 shows bus voltage magnitudes for Case 5

(PSO) in the IEEE 33-bus system. Higher voltages (0.98-

1.0 p.u.) and fewer voltage drops (0.93-0.95 p.u.) The
voltage profile across the IEEE 33-bus system is shown
with a color gradient, where red represents higher voltages
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and blue indicates lower voltages which is minimum
voltage: 0.992 p.u. maximum voltage: 1.005 p.u. average

0.4

03

0.2

Line Flows [p.u.]

0.1

-0.1

Bus23 Bus24 Bus25

Buso Bus02 Bud3 Busos Bus0S Buskq

Fig. 9 The transmission lines power flow of Case 5 using the PSO

Figure. 9 shows optimized power flow in the IEEE
33-bus system with PSO. Balanced distribution, reduced
losses (blue regions), and minimized congestion (smaller

Table 7 Simulation Results of the WOA

voltage: 0.997 p.u. confirm PSO’s effectiveness in
stabilizing voltage and optimizing power distribution.

red zones) confirm PSO’s effectiveness in improving
efficiency and stability.

Total power loss

Voltage Deviation

PVs Tie Switch
Case (No.) Before After Before After PF Control
(kW) (Bus No.) (kW) (kW) (p.u.) (p.u.)
1 - - - 202.677 - 1.700 . -
2 - - - 225.295 - 1.801 . -
3 - - 8,6,13,35,27 225.295 160311 1.830 1.129 -
4 2745 15 2019,12,2927  225.295 153.339 1.830 0.355 1
5 fr 30,8 20,18,13,1522 225295 28.191 1.830 0.135 0.913, 0.850
6 12%”3'32 18613  9,4,122823 225295 199.601 1.830 0.199 0.850,0.850,0.850
7 1748 17 105112827 225295 165.926 1.830 1213 -
8 ’1&%88 15,25 206112027 225295 70.566 1.830 0.708 -
9 10%29?17'81 20,1530  20,6,123522  225.295 90.159 1.830 0.585 -

Table 7. highlights the effectiveness of WOA in
optimizing PV placement and tie-switching. Baseline
cases (1 & 2) exhibit high power losses (202.677 kW and
225.295 kW) with poor voltage deviation (1.700 p.u. and
1.830 p.u.). Tie-switching alone (Case 3) reduces power

loss to 160.311 kW, (28.84% improvement) while adding
PVs (Case 4) further lowers it to 153.339 kW. while
adding PVs (Case 4) further lowers losses to 153.339 kW,
improving voltage deviation to 0.355 p.u. The most
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optimized scenario, Case 5, with 2,119 kW and 1,525 kW
PVs at Buses 30, 8 and tie-switching at 20, 18, 13,15,22
achieves the lowest power loss (28.191 kW, 87.48%
reduction) and the best voltage stability (0.135 p.u.) with
optimal PF control (0.913, 0.850). Cases 6-9, despite

larger PVs, do not surpass Case 5, underscoring the
importance of strategic PV placement and switching.
These results confirm WOA’s effectiveness in enhancing
distribution network performance.

1.02

Bus23  Bus2¢  Bus2s

BusOl  Bus02 BudQ3 Busk4  Buso5  Busdg

0.98

0.96

Voltage Magnitudes [p.u_]
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= 0.96

o 0.95

Fig. 10 The bus voltage magnitudes of Case 5 using the WOA

Figure. 10 shows bus voltage magnitudes for Case 5
(WOA) in the IEEE 33-bus system. Higher voltages (0.98-
1.0 p.u.) and reduced voltage drops (0.92-0.94 p.u.)
confirm WOA’s effectiveness in stabilizing voltage and
optimizing power distribution. The voltage profile across

0.5

the IEEE 33-bus system is shown with a color gradient,
where red represents higher voltages and blue indicates
lower voltages which is minimum voltage: 0.986 p.u.
maximum voltage: 1.003 p.u. average voltage: 0.996 p.u..
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Fig. 11 The transmission lines power flow of Case 5 using the WOA
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Figure. 11 shows optimized power flow in the IEEE
33-bus system with WOA. Balanced distribution, reduced
losses (blue regions), and minimized congestion (smaller
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Fig. 12 An example of a graph GWO The difference of voltage
magnitude

Figure. 12 compares voltage magnitudes across buses
for different optimization cases using GWO. Baseline
cases (Case 1 & 2) show the lowest voltage profiles,
indicating significant drops. Case 3 & 4 (tie-switching and
PVs) improve voltage stability, while Case 5 achieves the
highest voltage support, ensuring the most stable profile.
Other cases (6-9) show varying improvements but remain
suboptimal. The results confirm that Case 5 optimally
enhances voltage stability, demonstrating the effectiveness
of GWO in PV placement and network reconfiguration.
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Fig. 13 An example of a graph GWO The difference of Line Flow
magnitude

Figure. 13 compares line flow magnitudes for
different GWO optimization cases. Baseline cases (1 & 2)
show the highest line flows, indicating network
congestion. Case 3 & 4 (tie-switching and PV placement)
reduce flows, improving distribution. Case 5 achieves the
lowest line flow, minimizing power losses and congestion.
Other cases (6-9) show improvements but remain

red zones) confirm WOA’s effectiveness in improving
efficiency and stability.

suboptimal. The results confirm that Case 5 optimally
enhances network efficiency and stability.
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Fig. 14 An example of a graph PSO The difference of voltage
magnitude

Figure. 14 compares voltage magnitudes across buses
for different PSO optimization cases. Baseline cases (1 &
2) show the lowest voltages, indicating poor stability.
Case 3 & 4 (tie-switching and PV integration) improve
voltage regulation. Case 5 achieves the highest voltage
stability, outperforming all cases. Cases 6-9 show
moderate improvements but remain suboptimal. The
results confirm that Case 5 provides the best voltage
support, proving PSO’s effectiveness in PV placement and
network optimization.
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Fig. 15 An example of a graph PSO The difference of Line Flow
magnitude

Figure. 15 compares line flow magnitudes for
different PSO optimization cases. Baseline cases (1 & 2)
show the highest congestion, while Case 3 & 4 (tie-
switching and PV integration) reduce flows. Case 5
achieves the lowest line flow, minimizing losses and
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improving power balance. Other cases (6-9) show
moderate improvements but remain suboptimal. The
results confirm that Case 5 optimally enhances network
efficiency.
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Fig. 16 An example of a graph WOA The difference of voltage
magnitude

Figure. 16 illustrates voltage magnitudes across
buses for different WOA optimization cases. Baseline
cases (1 & 2) show the lowest voltages, indicating poor
stability. Case 3 & 4 (tie-switching and PV integration)
improve voltage levels. Case 5 achieves the highest
voltage stability, ensuring the best overall performance.
Cases 6-9 show moderate improvements but remain less
effective. The results confirm that Case 5 optimally

enhances voltage regulation, demonstrating WOA’s
effectiveness in PV  placement and network
reconfiguration.
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Fig. 17 An example of a graph WOA The difference of Line Flow
magnitude

Figure 17 compares line flow magnitudes for
different WOA optimization cases. Baseline cases (1 & 2)
show the highest line flows, indicating congestion and
losses. Case 3 & 4 (tie-switching and PV integration)
reduce flows, improving power distribution. Case 5
achieves the lowest line flow, confirming optimal loss
minimization and power balance. Cases 6-9 show
moderate reductions but remain less effective. The results

confirm that Case 5 optimally enhances network
efficiency, demonstrating WOA’s effectiveness in loss
reduction and system stability.

Environmental performance indices are revealed by
CO; emission reduction estimate the reduction in
emissions due to optimal PV integration together with
network reconfiguration and PV penetration level in Table
8. The emission factor is defined by 0.5251 kg CO/MWh.

Table 8 Comparison of the CO, emission reduction and the percentage
of renewable energy level

Optimiz PV CO; emission %
ation Best power 2= Renewab
- . . reduction (kg
Techniq solution generati CO./MWh) le
ues on (KW) 2 (+FCS)
GWO Case5 2,756 2,376.99 68.64
PSO Case 5 3,348 2,887.57 83.38
WOA Case 5 3,644 3,142.87 90.76

Table 8 shows the Environmental performance
indices with PV power generation and percentage of the
renewable energy are presented the PV power generation
can be reduced the CO; emission reduction. The results of
CO; emission reduction and the percentage of renewable
energy level are presented by PSO case 5 from the Table 6
in condition the lowest of minimize power loss can
reduced the CO, emission of 2,887.57 kg CO/MWh with
83.38 % of the renewable utilization.

The simulation results highlight the significant
impact of hybrid objective function for optimization
techniques on enhancing power distribution network
performance, improving voltage stability, and reducing
environmental impacts. These findings demonstrate the
practical applicability of the proposed methods in
optimizing power loss, voltage regulation, and renewable
energy integration. The knowledge gained from this
research not only underscores the effectiveness of the
hybrid optimization approach but also provides valuable
insights into its potential guideline for real-world
implementation. In the following section, we will discuss
the broader implications of these results and offer
recommendations for future research, along with practical
applications across various distribution power system
contexts.

5. Conclusion

This study analyzed the impact of FCS integration in
the IEEE 33-bus radial distribution system, considering
network reconfiguration, DERs, and control strategies.
The results confirm that FCS integration increases power
losses and voltage instability, but optimal tie-switching
and PV placement significantly mitigate these effects.
Among the optimization techniques PSO achieved the
highest power loss reduction (20.124 kW, 91.06%), and
optimal voltage stability. WOA provided a balanced
performance, reducing losses by (28.191 kW ,87.48%).
GWO effectively reduced losses by (50.776 kW, 77.45%),
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while improving voltage profiles. The best-performing
Case 5 across all methods demonstrated that strategic
DER placement and network reconfiguration significantly
improve power distribution efficiency, voltage stability,
and system reliability. Furthermore, environmental
benefits were evident, with CO: emission reductions
highest in WOA (90.76%), followed by PSO (83.38%)
and GWO (68.64%), emphasizing the role of optimized
renewable energy integration. Overall, this research
underscores the effectiveness of hybrid objective function
for optimization techniques in enhancing the performance
of power distribution networks. By employing a hybrid
objective function and conducting a comparative analysis
of three optimization algorithms GWO, PSO, and WOA
the study offers a comprehensive and multidimensional

evaluation. The findings clearly validate that the
coordinated implementation of control strategies,
alongside the optimal placement and sizing of

photovoltaic generation units, substantially improves the
operational efficiency and stability of the distribution
system.
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