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Abstract. Invasive ductal carcinoma (IDC) grading is crucial for determining treatment and prognosis. However, the process of 
manual grading of whole-slide histological images (WSIs) is time-consuming and prone to variability. In this study, we propose a 
deep learning-based method aimed at automating the grading of breast cancer from WSIs. Unlike conventional approaches that 
directly process entire WSIs, our method divides them into smaller patches and employs an unsupervised autoencoder to extract 
pathological features from each patch. These features are then integrated into a comprehensive representation of the WSI. A 
classification model is subsequently utilized to assign one of three grades. The proposed approach effectively captures local 
pathological features while preserving spatial relationships between patches. This technique uniquely balances feature 
preservation with computational efficiency, addressing the challenges associated with the high resolution of WSIs. Experimental 
results on a breast cancer histological image dataset demonstrate that our method achieves an average accuracy of 71.43% while 
reducing training time by 50–67%. This performance outperforms the best results obtained using traditional feature extraction 
techniques. This highlights the robustness and reliability of our approach in reducing pathologists' workload and improving 
diagnostic consistency. 
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1. Introduction 

Digital histopathology has transformed medical diagnostics, especially in cancer research, by converting traditional glass 
slides into digitized Whole Slide Images (WSIs). This advancement enables pathologists to analyze tissue samples with greater 
precision and accessibility [1]. In breast cancer diagnosis, histologic grading remains a critical prognostic factor that directly 
influences treatment strategies and patient outcomes [2]. The Nottingham Histologic Grading (NHG) system represents the gold 
standard for classifying breast cancer severity, evaluating nuclear pleomorphism, tubular formation, and mitotic count to determine 
disease grade [3]. However, manual grading suffers from inter-observer and intra-observer variability, creating a pressing need for 
more standardized and reliable diagnostic approaches [4]. 

Computer-aided diagnosis (CAD) systems integrated with artificial intelligence (AI) and machine learning (ML) offer 
promising solutions to the subjectivity and inefficiency of manual grading. These systems can assist pathologists by automating 
tumor region identification, measuring histological characteristics, and assessing cancer severity [5]. Despite their potential, 
developing effective CAD systems for whole-slide histopathology presents significant challenges due to three primary factors: (1) 
the massive size of WSIs (often exceeding 10GB per slide), (2) the intricate morphological patterns that require precise feature 
identification, and (3) the scarcity of well-annotated training datasets [6]. 

The computational demands of processing entire high-resolution WSIs directly through deep learning models are prohibitive 
for most clinical applications [7]. Moreover, downsampling WSIs to accommodate model constraints inevitably results in the loss 
of critical histological details, compromising diagnostic accuracy [8]. While patch-based approaches have been proposed to address 
these challenges, they often struggle to maintain the contextual relationships between tissue regions that are essential for accurate 
grading [9, 10]. 

This study introduces a novel feature encoding approach that effectively bridges the gap between computational feasibility 
and diagnostic accuracy for IDC grading. Our approach offers three key advantages over existing methods: 

• Preservation of diagnostic information: The autoencoder captures essential histopathological features while reducing 
dimensionality. By preserving spatial relationships and feature aggregation, it leverages deep learning to retain local cellular 
details and their global distribution on the slide, avoiding the information loss of direct downsampling. 

• Computational efficiency: By encoding patches into a compact latent space representation, our method reduces the 
computational burden of processing gigapixel-scale WSIs by approximately 67% compared to baseline approaches. 

• Improved classification performance: Our experiments demonstrate an average grading accuracy of 71.43%, surpassing 
conventional feature extraction techniques by 4.76% on the same dataset. 
The benefits of our research extend beyond technical improvements to address critical clinical and research needs. 

Pathologists gain a reliable decision support tool that maintains diagnostic accuracy while significantly reducing analysis time. 
Healthcare systems benefit from more consistent diagnoses, reducing the need for secondary consultations and enabling more 
efficient resource allocation. Researchers gain a robust framework for extracting and analyzing histopathological features across 
large datasets, potentially enabling new discoveries in cancer biology. 
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The remainder of this paper is organized as follows: Section 2 reviews relevant literature, critically analyzing existing 
approaches and identifying research gaps. Section 3 details our proposed methodology, including the patch-based feature encoding 
mechanism and the classification framework. Section 4 presents experimental results and comparative analysis, while Section 5 
concludes with a discussion of implications and future research directions. 
 
2. Related Work 

Grading breast cancer (BC) from WSIs is a challenging and crucial undertaking in the field of digital pathology. Numerous 
computational methodologies have been devised to automate this task, with a specific emphasis on employing classification-based 
techniques that leverage machine and deep learning models. This section reviews relevant approaches for histopathological image 
analysis, particularly focusing on feature engineering and classification methods for invasive ductal carcinoma (IDC) grading. 

 
2.1 Patch-based Analysis Approaches 

Convolutional neural networks (CNNs) have emerged as a pivotal approach in addressing a wide array of medical applications, 
including the classification of breast cancer. A. Cruz-Roa et al. [11] utilized a CNN to directly identify invasive ductal carcinoma 
(IDC) from WSIs. Their method processes WSIs by dividing them into smaller patches, classifying each one, and reconstructing 
an IDC probability map based on patch coordinates and classification results. This map was used for the final grading prediction. 
The method achieved an accuracy of 84.23% in automatically detecting IDC regions within WSIs. However, this patch-based 
classification approach typically demands significant computational resources, especially when dealing with large WSIs [9]. 

Patch-level analysis represents the foundational approach in computational histopathology for breast cancer, where high-
resolution histopathological whole slide images (WSIs) are divided into smaller, manageable patches for feature extraction and 
classification. Transfer learning has proven particularly effective for histopathological image analysis due to the scarcity of 
annotated medical data. As demonstrated in the reference document, Bayramoglu et al. [12] achieved an accuracy of 88.03% in 
distinguishing between epithelial, inflammatory, and fibroblast nuclei using a fine-tuned VGG-16 architecture pre-trained on 
ImageNet. 

Dash et al. [13] proposed a hybrid model called Mask-EffNet for lung cancer diagnosis through CT scan image analysis. Their 
model employs a masked autoencoder for feature extraction in the initial phase, followed by classification using a pre-trained 
EfficientNet model. This two-phase approach allows for effective feature acquisition before classification, which is conceptually 
similar to our patch-based feature encoding technique for WSI analysis. Their method achieved 98.98% test set accuracy with 
ROC scores of 0.9782-0.9872, demonstrating the effectiveness of leveraging deep transfer learning for medical image analysis. 

 
2.2 Multi-scale and Attention-based Methods 

M. Shanban et al. [10] developed a multi-scale convolutional neural network (MSCNN) for the classification of histopathology 
images. This innovative approach entails meticulously analyzing image patches at various scales to capture a wide range of multi-
resolution features, thereby significantly enhancing the accuracy of grading. However, the model's heavy reliance on processing 
the entire slide presents a substantial computational burden and leaves it susceptible to the inadvertent loss of crucial details in the 
downsizing process. 

The hierarchical nature of tissue morphology necessitates multi-scale feature extraction strategies. Khan et al. [14] proposed 
a multi-scale feature fusion model that effectively addresses the challenges of small object retention and domain adaptation in 
breast cancer classification. Their approach utilizes dilated layers to preserve fine-grained structures in deeper network layers and 
achieves 98.23% accuracy on the BreakHis dataset, demonstrating the effectiveness of multi-scale feature integration in preserving 
both microscopic and macroscopic tissue features. 

Attention mechanisms have significantly enhanced feature relevance in histopathological image analysis. Wang et al. [15] 
introduced CTransPath, an innovative hybrid architecture that combines CNN's local feature extraction capabilities with a multi-
scale Swin Transformer for capturing global contextual information. Their model employs a semantically relevant contrastive 
learning (SRCL) strategy that aligns multiple positive instances with similar visual concepts, enabling more robust feature 
representations without extensive manual annotations. 

 
2.3 WSI-level Analysis Techniques 

Sirinukunwattana et al. [16] proposed a Random Polygons Model (RPM) for glandular structures in histology images. Their 
approach models each gland as a polygon whose vertices represent epithelial nuclei locations, formulated as a Bayesian inference 
problem. Using Reversible-Jump Markov Chain Monte Carlo simulation, RPM can effectively segment glands across various 
differentiation grades of adenocarcinomas. The method doesn't assume architectural regularity of glandular structures, making it 
versatile for different cancer grades. However, its stochastic nature requires higher computational resources compared to 
deterministic approaches, which could potentially impact its clinical implementation. 

Graph Neural Networks (GNNs) have proven effective in capturing spatial relationships between tissue regions [17]. Gao et 
al. [18] proposed an integrated CNN-GCN framework that captures spatial correlations in breast cancer histopathological images. 
Their architecture consists of an adaptive graph constructor and a novel graph learning module that eliminates the need for complex 
preprocessing like nuclei detection or tissue segmentation. This sophisticated design achieved superior performance on BioImaging 
2015 (94.40% accuracy) datasets, significantly outperforming traditional CNN and GCN approaches. 

Wang et al. [19] proposed a connectivity-aware graph transformer (CGT) for breast cancer classification from digital 
pathology images. Their approach constructs tissue graphs from histopathology images and employs a novel architecture that 
integrates connectivity embedding at every graph transformer layer through local connectivity aggregation. The model encodes 
spatial distance between nodes as connectivity bias in self-attention calculation, allowing it to distinctively capture topological 
relationships. Unlike methods that process entire whole slide images directly, CGT works with tissue graphs, which reduces 
computational requirements while maintaining the ability to represent complex cellular patterns. Experimental results on the 
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BRACS dataset demonstrated that CGT outperforms state-of-the-art methods and achieves classification performance comparable 
to domain expert pathologists for certain cancer subtypes, with lower standard deviations indicating more stable performance. 

 
2.4 Recent Advances in IDC Grading 

Voon et al. [20] evaluated the performance of seven CNNs for grading invasive ductal carcinoma in breast histopathological 
images. EfficientNetB0 [21], ResNet50 [22], and MobileNet [23] demonstrated outstanding performance. EfficientNetB0 employs 
a compound scaling method, achieving high accuracy and efficiency. ResNet50 alleviates the training difficulties of deep networks 
through residual connections, excelling in feature extraction and classification. MobileNet uses depthwise separable convolutions, 
making it lightweight and effective in resource-constrained environments. These models achieved over 90% accuracy on the Four 
Breast Cancer Grades (FBCG) dataset [24], establishing them as representative CNN methods for IDC grading tasks. 

Similarly, Hattiya et al. [25] conducted a comparative study on seven CNN architectures for diabetic retinopathy detection, 
evaluating models such as ResNet50, DenseNet201, and InceptionV3. Their findings aligned with those of Voon et al., further 
reinforcing the strong performance of ResNet50, DenseNet201, and InceptionV3 in IDC grading tasks. 
S. Sharma et al. [26] used an ensemble of CNN networks for the automatic grading of breast cancer, testing various combinations 
of base models—including DenseNet [27], ResNet, Inception V3 [28], MobileNet, and VGG [29]—which resulted in improved 
accuracy on the Databiox dataset [30], albeit with limited gains. 

Furthermore, E. Kumaraswamy et al. [31] investigated the impact of feature extraction techniques on WSI-based cancer grade 
classification. Their work combined the VGG16 model with a classifier, demonstrating that applying this method to whole 
histopathological images yields superior results and offers valuable insights for high-resolution WSI classification. 

 
2.5 Challenges in Automated IDC Grading 

Despite significant advancements in computational pathology, automated IDC grading remains a challenging task. According 
to the NHG standard, IDC grading requires a more nuanced feature analysis than subtype classification. While subtype 
classification primarily depends on distinct cellular and architectural patterns, grading necessitates the evaluation of subtle 
variations in nuclear pleomorphism, mitotic activity, and tubule formation. These morphological characteristics often exhibit 
continuous rather than discrete variations, making traditional classification methods less effective. 

Furthermore, WSI-level grading introduces substantial computational and methodological challenges due to the gigapixel 
scale of whole-slide images and the need to integrate contextual information across tissue regions. The scarcity of well-annotated 
IDC grading datasets further complicates the task, as creating grade-annotated collections requires extensive expert review and 
consensus among pathologists. 

This study proposes a novel approach to mitigate the challenges of direct whole-slide grading. By dividing WSIs into 
manageable patches and using an autoencoder to extract condensed feature representations, this approach preserves vital diagnostic 
details. The encoded patch features are systematically aggregated to maintain spatial relationships, creating an efficient yet 
comprehensive representation of the entire slide for subsequent classification. This feature-focused method provides an effective 
and computationally practical solution for grading breast cancer, closing the divide between thorough analysis and achievable 
scalability, as explained in the following sections. 

 

 
Figure 1. Overall process of proposed feature encoding for grade classification. 
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3. Methodology 
The accurate grading of Invasive Ductal Carcinoma (IDC) is crucial for evaluating disease progression and tailoring effective 

treatment strategies. This innovative study introduces a novel feature encoding technique for analyzing high-resolution Whole 
Slide Images (WSIs). Our technique is specifically engineered to address the complexities inherent in IDC grading, thereby 
enhancing the precision and reliability of the grading process. The diagram in Fig. 1 provides an overview of the proposed method 
for encoding features and its corresponding application steps. The main objective of this approach is twofold: to transforming high-
resolution WSIs into compact, information-rich representations that preserve diagnostic features and to achieve precise 
classification of IDC severity. 

The approach to addressing this problem begins by dividing the WSI into a series of smaller patches. Following this, a training 
process is carried out using a dataset of these patches to train an Autoencoder network. The autoencoder employs convolutional 
layers to compress input images into a lower-dimensional latent space representation. Subsequently, a reconstruction process 
involving deconvolution is used to generate an image that closely resembles the original input. 

In order to facilitate WSI classification and IDC grading, the proposed feature encoding technique harnesses the power of a 
trained encoder component to extract features from each patch. These extracted patch features are then amalgamated to construct 
a comprehensive feature representation of the WSI. The aggregation method takes into consideration the original spatial 
relationships between the patches, effectively preserving the density and distribution characteristics of the cancerous regions. 
Subsequently, the aggregated WSI feature representation is channeled into a deep learning-based classifier, which is adept at 
performing the grading task. The input layer of the classifier is adeptly adjusted to accommodate the dimensionality of the WSI 
encoding. Through rigorous training, the deep learning classifier learns both patch-level features and the spatial relationships 
between patches. This allows it to leverage multi-scale features from high-resolution WSIs, thereby enhancing classification 
performance. 

The proposed feature encoding technique offers several advantages that could greatly benefit our work. First, a patching and 
feature reconstruction process is implemented. This process effectively addresses the challenge of handling high-resolution WSIs, 
which typically demands significant computational resources. For feature extraction, a pre-trained encoder is employed. This 
encoder processes small patch images to extract and compress features. Such an approach prevents the loss of microscopic details 
- a crucial aspect of pathological analysis. Furthermore, the deep learning-based classifier has two key strengths. It examines 
micro-level features while simultaneously analyzing their large-scale relationships. Through this dual approach, a more 
comprehensive integration of multi-scale features into the grading decision is achieved. It is expected that the proposed approach 
can significantly improve the accuracy. In the following subsections, a detailed theoretical explanation is provided. Each step of 
the method is thoroughly described to ensure a clear understanding for all readers. 

 
3.1 Data and Preprocessing 

In this research study, a comprehensive analysis of histopathological images of invasive ductal carcinoma (IDC) was 
conducted with the aim of classifying cancer grades. The dataset comprises images of Grade I, II, and III breast cancer obtained 
from 124 patients at the Anahid Clinic and Pour Sina Hakim Digestive Diseases Research Center, Isfahan University of Medical 
Science [30]. The distribution of patients across the grades includes 37 for Grade I, 43 for Grade II, and 44 for Grade III. The 
whole-slide images were captured at 4x, 10x, 20x, and 40x magnifications, all in RGB format, and saved as JPEG files. For our 
research, we concentrated on a subset of 40x magnification images with a resolution of 4032×3024 pixels. This subset includes 
131 Grade I, 180 Grade II, and 143 Grade III images. An example of histology is illustrated in Fig. 2. Based on our investigation, 
this represents the only open access breast cancer WSI dataset with grade labeling. 

 

         
(a) Grade I                                                           (b) Grade II                                                       (c) Grade III 

Figure 2 . Sample histology slides of IDC (graded by the expert pathologists) from the dataset at a magnification of 40x [30]. 
 

To standardize image dimensions and minimize the impact of microscope imaging, the original dataset was cropped using 
an inscribed square method, as shown in Fig. 3. The resulting cropped images all have a consistent resolution of 2048×2048 
pixels, which represents the maximum feasible size while ensuring uniformity across all samples. These cropped images form 
the dataset for the baseline method. 
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Figure 3. WSI patching with overlap. 

 
3.2 Patch Encoding 

Let I∈ℝw×h represents an image of dimension w×h. The image I is divided into n small size, overlapping patches, each of 
dimension ŵ×ĥ. The set of patches can be denoted as I = p1, p2, ..., pn, where each patch pi∈ℝŵ×ĥ. The process is illustrated in Fig. 
3. 

To train a model for encoding the histology patches, the patches are firstly collected from a separate set of data. A patch 
encoding function f: p→t is then constructed, where t represents the encoded feature vector for each patch p. The goal of this 
encoding function is to map each patch p to its corresponding representation  
t∈ℝd, where d is the dimensionality of the encoded feature space. 

An autoencoder model is utilized as the encoding function f [32]. The autoencoder consists of two main components: an 
encoder function fenc and a decoder function fdec. An overview of the autoencoder structure is shown in Fig. 4. The encoder fenc 
compresses each patch pi into a lower-dimensional latent representation ti∈ℝd, where d is the dimensionality of the latent space. 
The decoder fdec reconstructs the original patch from the latent representation. For a given patch pi, the encoding and decoding 
processes can be represented as: 

 𝑡𝑡𝑖𝑖 = 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒(𝑝𝑝𝑖𝑖)     (1) 

 𝑝𝑝𝚤𝚤� = 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑖𝑖)     (2) 

The autoencoder undergoes training through the minimization of the reconstruction loss, which quantifies the difference between 
the original patch pi and its reconstruction p̂i. A commonly employed approach for quantifying reconstruction loss is using the 
mean squared error (MSE) as the designated metric stipulated by equation (3). This loss function is frequently employed in training 
autoencoders to minimize the differences between the input and output data. 

 𝐿𝐿 = 1
𝑛𝑛
∑ �|𝑝𝑝𝑖𝑖 − 𝑝𝑝𝚤𝚤� |�2𝑛𝑛
𝑖𝑖=1      (3) 

 
Figure 4. Overall process of Autoencoder training. 

 
3.3 Slide Feature Generation 

With a trained autoencoder model in hand, our objective is to generate features for the full slide image  
I∈ℝw×h. The procedure has three distinct steps. 

The initial step involves image patching and feature extraction, which is clearly depicted in Fig. 5. The image I is divided into 
n overlapping patches pi. This patch division is identical to the one used during the training process. For each patch pi, the trained 
encoder fenc is used to generate the latent representation (feature vector) ti∈ℝd, refer to equation (1). The set of features for all 
patches of the image I can be written as: TI = t1, t2, ..., tn, T∈ℝn×d, and TI represents the concatenation of the feature vectors for all 
patches of I. 
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To effectively analyze WSIs, we need to consolidate the features extracted from individual patches into a unified 
representation. This WSI-level feature aggregation utilizes feature concatenation, which is a straightforward yet effective 
technique. It effectively preserves spatial relationships while ensuring computational efficiency. This method creates a unified 
feature matrix by sequentially combining latent representations (ti) of individual patches. The resulting matrix, while substantially 
smaller than the original WSI resolution, retains the essential spatial structure of the image. The concatenation process can be 
formally described as: 

 𝑇𝑇𝐼𝐼  =  [𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛] =   �
𝑡𝑡1 𝑡𝑡2 ⋯
⋯ ⋯ ⋯
⋯ ⋯ 𝑡𝑡𝑛𝑛

�     (4) 

The WSI feature representation TI is transformed from a set of ti in ℝ1×d into a comprehensive feature vector in ℝnrow×ncol×d. 
This ensures that the final feature vector contains rich spatial and contextual information from the original WSI. 

 
3.4 Slide Grading 

This research endeavor is focused on transforming the slide grading task into an image classification problem. The approach 
of generating features from the autoencoder model for classification offers a distinct advantage over directly classifying whole 
slide images. It enables the implementation of a more advanced and refined deep learning-based technique. This method enables 
a meticulous linking of the extracted feature representations with the corresponding slide grades, ultimately leading to a more 
nuanced and accurate classification process. Let I∈ℝw×h denote the whole slide image, and tI∈ℝnrow×ncol×d be the corresponding 
feature vector extracted from the patches of I using the encoder function fenc (see the previous section). The objective of the grading 
task is to classify image I into one of C possible grades (e.g., severity levels). 

This process can be formulated as learning a mapping function g: ℝnrow×ncol×d→1, 2, ..., C, where g(tI) represents the predicted 
grade for the image I. Mathematically, this can be expressed as: 

 𝑦𝑦� = 𝑔𝑔(𝑡𝑡𝐼𝐼)     (5) 

where ŷ∈1, 2, ..., C is the predicted class label (grade) for the image I, and tI is the feature vector representing the image. 
This work utilizes a neural network gθ, parameterized by θ, mapping the input feature vector tI to the predicted class label ŷ. This 
neural network can be organized as a sequence of fully connected layers, followed by a softmax activation function to produce the 
probabilities for each class. 

The final output layer of the network is denoted by z, while the weight matrix and bias vector are represented by W and b, 
respectively. The output layer applies to a linear transformation followed by a softmax function to produce the class probabilities: 

 𝑝𝑝 = softmax(𝑊𝑊𝑊𝑊 + 𝑏𝑏)     (6) 

where p = [p1, p2, …, pC] is the vector of class probabilities, and the probability of the image is classified into grade j. The 
softmax function is defined as pj: 

 𝑝𝑝𝑗𝑗 =
EXP�(𝑊𝑊𝑊𝑊+𝑏𝑏)𝑗𝑗�

∑ EXP𝐶𝐶
𝑘𝑘=1 ((𝑊𝑊𝑊𝑊+𝑏𝑏)𝑘𝑘)

     (7) 

The predicted class label ŷ is then given by the class with the highest probability as: 

 𝑦𝑦� = arg max
𝑗𝑗
�𝑝𝑝𝑗𝑗�     (8) 

The subsequent section encompasses an in-depth examination of the training procedure, evaluation metrics, and the acquired 
results. A comparative analysis evaluates the proposed approach compared to baseline methods, aiming to provide a 
comprehensive understanding of its inherent advantages and limitations. 
 
4. Experiment and Results 

This section outlines the performance metrics, experimental setup, and results for assessing the proposed WSI grading method. 
The experiments encompass two crucial stages: firstly, training an autoencoder for feature extraction, and secondly, training a 
classification model utilizing the extracted features. 

 
4.1 Performance Metrics 

To comprehensively evaluate the proposed model, two sets of evaluation metrics are employed: feature encoder metrics to 
assess the quality of extracted features and classification metrics to evaluate the diagnostic performance. The performance 
assessment of our approach is grounded in information theory principles and statistical learning theory. Information theory guides 
our feature encoding evaluation, measuring how effectively the autoencoder preserves critical diagnostic information while 
reducing dimensionality. Statistical learning theory provides the foundation for evaluating how well our model generalizes from 
training to testing data through cross-validation protocols. 
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A. Feature Encoder Metrics 
Two standard metrics are utilized to evaluate the quality of the feature encoder. Peak Signal-to-Noise Ratio (PSNR) 

measures the pixel-level fidelity of reconstructed images compared to the original ones, defined as: 

 PSNR = 10 ∗ log10
𝑚𝑚𝑚𝑚𝑚𝑚(𝐼𝐼)2

MSE
     (9) 

where max(I) is the maximum possible pixel value (255 for 8-bit images), and MSE is the Mean Squared Error between 
the original and reconstructed images, reference equation (3). Higher PSNR values indicate better reconstruction quality. 
Structural Similarity Index (SSIM) assesses the perceived quality of digital images by measuring the structural similarity between 
two images: 

 SSIM(𝑥𝑥,𝑦𝑦) = (2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦+𝑐𝑐1)(2𝜎𝜎𝑥𝑥𝑥𝑥+𝑐𝑐2)
(𝜇𝜇𝑥𝑥2+𝜇𝜇𝑦𝑦2+𝑐𝑐1)(𝜎𝜎𝑥𝑥2+𝜎𝜎𝑦𝑦2+𝑐𝑐2)

     (10) 

where μx, μy, σx, σy, and σxy are the local means, standard deviations, and cross-covariance for images x, y. 
 
B. Classification Metrics 
The diagnostic performance of this model is rigorously evaluated using a comprehensive suite of classification metrics. 

These metrics encompass accuracy, precision, recall, F1 score, and the Area Under the Receiver Operating Characteristic Curve 
(AUC-ROC), each providing unique insights into different aspects of model performance. 

The fundamental metrics are derived from the confusion matrix elements: True Positives (TP, correctly identified positive 
cases), True Negatives (TN, correctly identified negative cases), False Positives (FP, incorrectly identified positive cases), and 
False Negatives (FN, incorrectly identified negative cases). The basic performance metrics are defined as follows: 

 Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

     (11) 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑃𝑃

    (12) 

 Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

     (13) 

 F1 = 2∗𝑇𝑇𝑇𝑇
2∗𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

     (14) 

To comprehensively assess the model’s discriminative capability across different decision thresholds, Receiver Operating 
Characteristic (ROC) analysis is employed. The ROC curve plots the True Positive Rate (TPR) against the False Positive Rate 
(FPR), defined as: 

 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

     (15) 

 𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇

     (16) 

The integral of this curve yields the AUC-ROC score, providing a threshold-independent performance metric. This score 
ranges from 0.5, indicating performance equivalent to random chance, to 1.0, representing perfect classification. For the evaluation 
of our multiclass classification model, we employed the one-vs-rest strategy to calculate AUC-ROC scores. This approach 
iteratively treats each class as positive while considering all other classes as negative. The final results of all metrics were 
aggregated across different labels using the macro-averaging method. 

 
4.2 Experiment Settings 

The experiment consisted of three main stages: autoencoder training, feature extraction, and classification. The 
experimental design followed established machine learning evaluation principles to ensure robustness and reliability. We employed 
stratified 5-fold cross-validation to maintain class distribution consistency across training and validation splits, addressing potential 
bias from the dataset’s moderate imbalance (131 Grade I, 180 Grade II, and 143 Grade III images). 

To evaluate the generalizability of our feature encoding approach, two experimental settings were compared: (1) a 
baseline approach using downsampled WSIs as direct inputs for classification and (2) our proposed method, where encoded feature 
vectors served as classifier inputs. This comparison helped quantify the advantages of feature encoding. We selected diverse deep 
learning architectures: ResNet-50, DenseNet-201/DenseNet-121, and Inception V3. These models were chosen for their distinct 
feature extraction strategies—ResNet’s residual connections enhance gradient flow in deep networks, DenseNet’s dense 
connectivity promotes feature reuse, and Inception’s multi-scale processing captures spatial features at different resolutions. And 
they have shown strong performance in related IDC grading tasks [17]. This architectural diversity allowed us to assess whether 
the benefits of feature encoding are consistent across different classification paradigms. 

For implementation, WSIs were resized to match model input requirements (224×224 for most networks, 299×299 for 
Inception V3). To ensure compatibility with lower-dimensional latent features, we replaced DenseNet-201 with DenseNet-121 
and applied zero-padding to match Inception V3’s input size. Data augmentation was also used to mitigate overfitting while 
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preserving critical pathological characteristics. 
 
4.3 Hyperparameters Configuration 

Extensive experiments were conducted to determine the optimal hyperparameter settings for this model. Table 1 presents 
the comprehensive hyperparameter configuration used in our experiments. 

Table 1 Hyperparameter settings 
 

Hyperparameter Value 
Model input size 128×128(Autoencoder) 

224×224(Classifier) 
Number of epochs 100 (Autoencoder) 

100 (Classifier) 
Batch size 64 
Optimizer Adam 

Learning rate 0.001 
Data augmentation Random resized crop 

Rotation 90°, 180°, 270° 
Random vertical flip 

Random horizontal flip 
Number of fold 5 

4.4 Results 
A. Autoencoder Training 

To access the performance of feature encoding techniques for WSI of IDC, we first preprocessed the data into 128×128 
image patches and trained an autoencoder. The encoder compresses features through several convolutional layers to generate latent 
space representations of patch. The decoder employs transposed convolutional layers to reconstruct patch image from the latent 
representations. The experiments were conducted with various latent dimensions to determine the optimal latent space dimension 
for this specific dataset.  

 
Fig. 6 Impact of latent dimensionality on reconstruction quality 

 
Fig. 7 Visual comparison between original patch and reconstructed patch for 1024 latent dim (Top: the original patch 

images and Bottom: the corresponding decoded images) 
The reconstruction error for various dimensions can be observed in Fig. 6, while Fig. 7 displays sample original and 

reconstructed images. Upon visual inspection, it is evident that the reconstructed images maintain the crucial cellular structural 
features required for pathological diagnosis. 

Table 2 Performance metrics comparison over latent dimensionality of Autoencoder 
 

Dim 64 128 256 384 512 102
4 

204
8 

PSNR(d
B) 

30.3
7 

31.5
1 

32.8
3 

33.6
8 

34.2
6 

34.8
6 

31.9
0 

SSIM 0.70 0.76 0.81 0.84 0.86 0.90 0.85 
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Reconstruction quality was assessed using 100 original images and their corresponding reconstructed images, evenly 
distributed across all classes in the test set. The comparison of results can be found in Table 2. 
In our study, PSNR increased with higher latent space dimensions, peaking at 34.8617dB for 1024 dimensions. This suggests that 
the reconstructed images had minimal distortion, making the differences almost imperceptible to the human eye. SSIM also 
improved with higher dimensions, reaching a maximum of 0.8981 at 1024 dimensions, indicating high similarity to the original 
images (refer to Fig. 7). A slight drop in PSNR and SSIM was observed at 2048 dimensions, which could be due to insufficient 
training dataset. 

B. Performance on Slide Grading 
The comprehensive evaluation of our proposed feature encoding approach against baseline methods revealed significant 

performance improvements across all key metrics. As shown in Table 3, our feature encoding method consistently outperformed 
baseline models using the resizing approach across all evaluation metrics. Among the tested architectures, the ResNet-50 classifier 
with our feature encoding method achieved the highest accuracy of 71.43% and AUC-ROC score of 0.8940, representing a 
meaningful improvement over the baseline ResNet-50 model (66.67% accuracy, 0.8894 AUC-ROC). 

Of particular clinical significance is the improvement in recall (sensitivity), which increased from 0.6631 in the baseline 
ResNet-50 to 0.7246 in our feature encoding-enhanced model. This 6.15% improvement in recall is especially critical in IDC 
grading, as it directly relates to the model's ability to correctly identify higher-grade malignancies. In clinical practice, missing a 
high-grade tumor (false negative) carries substantially greater risk than over-grading a lower-grade tumor, as under-treatment of 
aggressive cancers can lead to poorer patient outcomes. The enhanced recall of our model means fewer high-grade tumors would 
be misclassified as lower grade, potentially reducing the risk of insufficient treatment planning. 

Our model also demonstrated improved F1 score (0.7184 versus 0.6653 in the baseline), which represents a balanced 
measure of precision and recall. This balanced performance is crucial for optimizing resource allocation in clinical settings while 
maintaining patient safety. While maximizing recall remains the primary concern in cancer grading, the improved F1 score 
indicates that our model achieves this without excessive false positives that could lead to unnecessary aggressive treatments, patient 
anxiety, and medical resource wastage. 

The precision metric also showed improvement (0.7136 versus 0.6806 in the baseline), indicating better specificity in 
identifying true high-grade cases. This enhanced precision helps avoid over-treatment scenarios, reducing unnecessary treatment 
toxicity and improving resource utilization. In clinical implementation, higher precision would increase pathologists' confidence 
in the system's recommendations, potentially improving adoption rates of AI-assisted diagnostic tools. 

Table 3 Performance metrics comparison: baseline model vs feature encoding models 
 

Model Method Accuracy Precision Recall F1 
Score 

AUC-
ROC 

ResNet-50 Resize 0.6667 0.6806 0.6631 0.6653 0.8894 
DenseNet-

201 
Resize 0.5714 0.5765 0.5896 0.5517 0.8308 

Inception V3 Resize 0.6190 0.6208 0.6243 0.6183 0.7656 
ResNet-50 Feature 

Encoding 
0.7143 0.7136 0.7246 0.7184 0.8940 

DenseNet-
121 

Feature 
Encoding 

0.6467 0.6592 0.6482 0.6518 0.8037 

Inception V3 Feature 
Encoding 

0.6435 0.6501 0.6437 0.6444 0.8004 

 

           
(a) ResNet-50                                                   (b) DenseNet-201                                             (c) Inception V3 
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(d) ResNet-50 (FE)                                           (e) DenseNet-121 (FE)                                        (f) Inception V3 (FE) 

Fig. 8 Confusion matrix comparison: baseline model vs feature encoding models. 
 

The confusion matrix comparison in Fig. 8 provides further evidence of our approach's superior performance. Feature 
encoding-based models exhibited fewer misclassifications, particularly between Grade I and Grade III—the most clinically 
significant distinction where misclassification would have the most severe treatment implications. Among feature encoding 
models, ResNet-50 and DenseNet-121 demonstrated superior discriminative ability for Grade I, while Inception-V3 achieved more 
balanced accuracy across all three grades. The persistent classification challenges primarily stem from the complex similarities 
between intermediate and advanced IDC stages (Grades II and III), which frequently cause divergent opinions even among 
experienced pathologists. 

The improved recall for higher grades in our model aligns with clinical practice, where pathologists tend to upstage 
borderline cases to ensure adequate treatment. This conservative approach to cancer grading is appropriately reflected in our 
model's performance characteristics, making it more suitable for real-world clinical application where patient safety is paramount. 
To provide pathology experts with more intuitive insights into our model's performance, Fig. 9 presents representative examples 
of both correctly and incorrectly classified samples across all three grades. For visualization clarity, we display the square-cropped 
WSIs. While our pathological expertise is limited, we offer observations from a computational classification perspective. 
The correctly classified Grade I samples (Fig. 9, top row, left) exhibit well-formed tubular structures with relatively uniform nuclei 
and minimal pleomorphism. These images display characteristic low-grade features including regular cellular organization and 
abundant stromal elements. The model successfully captures these defining Grade I attributes, particularly the tubular formation 
patterns that pathologists consider during grading. 

For Grade II (Fig. 9, top row, middle), correctly classified images show intermediate features with moderate nuclear 
pleomorphism and partial tubule formation. These samples present a balance of organized and disorganized tissue architecture - a 
challenging intermediate pattern that our feature encoding method effectively distinguishes from both low and high grades. 
Correctly classified Grade III samples (Fig. 9, top row, right) display the hallmark features of high-grade malignancy: marked 
nuclear pleomorphism, absence of tubule formation, and sheets of disorganized tumor cells. The model successfully identifies 
these aggressive patterns, which represent cases where proper classification is most clinically critical. 
The misclassified samples (Fig. 9, bottom row) reveal several interesting patterns. Grade I samples misclassified as Grade II 
(bottom row, left) typically contain areas with higher cellularity or slight nuclear atypia that mimic intermediate-grade features. 
For Grade II samples (bottom row, middle), misclassifications often occur in cases with heterogeneous features - some regions 
appearing more like Grade I while others resemble Grade III. This heterogeneity reflects the inherent challenge pathologists face 
when encountering borderline cases. 

Most notably, Grade III samples misclassified as Grade II (bottom row, right) often display areas of residual tubule 
formation alongside highly pleomorphic regions. These challenging cases highlight the clinical reality that cancer grades exist on 
a continuum rather than as discrete categories, explaining the persistent challenge of distinguishing borderline cases even with 
advanced computational approaches. 
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Fig. 9 Visual samples of correct grading (top) and incorrect grading (bottom) by ResNet-50 with feature encoding 

technique. 
 

These visual examples complement our quantitative results, illustrating both the strengths of our feature encoding 
approach in capturing diagnostic patterns and the inherent challenges of IDC grading that exist even for human experts. The model 
performs particularly well on cases with clear, classic features of their respective grades, while misclassifications typically occur 
in borderline cases with mixed or ambiguous features - precisely the same cases that often generate disagreement among 
pathologists. 

Beyond classification performance, our method demonstrated remarkable computational efficiency. To ensure 
consistency, all experiments were conducted on the Google Colab platform using an NVIDIA L4 GPU. As illustrated in Fig. 10, 
training time was reduced by approximately 50-67% compared to baseline approaches. This efficiency gain is attributable to two 
factors: (1) the compact nature of our encoded features (288×288×1) compared to baseline resized WSIs (224×224×3), and (2) our 
optimized training pipeline that pre-computes encoded features, eliminating redundant processing during training iterations. 

 
Fig. 10 Training time comparison (100 epochs): baseline model vs feature encoding models. 

 
4.5 Discussion 

We established model effectiveness through multiple complementary approaches. First, we implemented k-fold cross-
validation (k=5) to ensure robust performance estimation across different data partitions, mitigating potential selection bias. 
Second, we verified the biological plausibility of our approach by confirming that the autoencoder preserves critical histological 
features essential for pathological diagnosis (as demonstrated in Fig. 7). Third, we quantitatively validated our feature extraction 
method by demonstrating high PSNR (34.86dB) and SSIM (0.90) values, confirming that encoded representations retain 
diagnostically relevant information. Finally, the consistent performance improvement across multiple classification architectures 
(ResNet-50, DenseNet-121, and Inception V3) provides strong evidence for the validity of our feature encoding approach, 



ENGINEERING ACCESS, VOL. 12, NO. 1, JANUARY-JUNE 2026 136 
 

demonstrating that the benefits are independent of the specific classification architecture employed. 
These results collectively demonstrate that our feature encoding approach effectively captures the essential diagnostic 

information from high-resolution WSIs while significantly reducing computational demands. The superior performance across all 
metrics, combined with substantially improved efficiency, positions this method as a viable solution for practical clinical 
implementation in IDC grading tasks. 

While our best model achieved 71.43% accuracy, which is lower than some recent CNN-based approaches 
reporting >80% accuracy, our method offers several significant advantages that justify its adoption. First, most higher-accuracy 
methods in literature were evaluated on different datasets with potentially less challenging cases or different grading criteria, 
making direct accuracy comparisons problematic. Second, our approach provides substantial computational efficiency gains, 
reducing training time by 50-67% compared to baseline methods (Fig. 10), which is crucial for real-world clinical implementation. 
Third, our method maintains interpretability by preserving spatial relationships between tissue regions, unlike black-box end-to-
end approaches. Finally, our feature encoding technique demonstrates remarkable robustness to the unique challenges of the 
Databiox dataset, which contains significant inter-grade similarities that reflect real-world diagnostic challenges faced by 
pathologists. This robustness to challenging cases, combined with computational efficiency and interpretability, makes our 
approach preferable for practical clinical applications despite the moderate accuracy improvement over baseline methods on this 
specific dataset. 

 
5. Conclusion 

This study introduced a novel deep learning-based feature encoding approach for grading IDC from high-resolution whole-
slide images. Unlike traditional methods, which often compromise diagnostic accuracy due to downsampling or computational 
constraints, our approach effectively balances computational efficiency and diagnostic fidelity by utilizing a patch-based 
autoencoder framework. The encoder extracted meaningful latent representations from tissue patches, which were aggregated to 
preserve spatial relationships and improve classification accuracy. Experimental results demonstrated that our method achieved an 
accuracy of 71.43% and an AUC-ROC score of 0.8940, outperforming conventional resizing-based approaches. 

Our findings are consistent with prior studies highlighting the importance of preserving histopathological details in WSI 
analysis while addressing computational challenges. Specifically, our framework overcomes the limitations of the traditional CNN 
network using downsampling methods, which often lose critical diagnostic features, by employing a high-fidelity patch encoding 
and dimensionality reduction approach combined with effective feature aggregation. Moreover, our method meets the clinical 
demand for efficient and reliable IDC grading tools by significantly reducing training time (by approximately 50-67%) while 
maintaining interpretability—both crucial factors for real-world clinical implementation. 

Despite its contributions, this study has limitations. The dataset size and diversity were constrained, potentially limiting the 
generalizability of the model to other cancer types or populations. In addition, compared to classification results from expertly 
curated datasets (accuracy > 80%), this model's accuracy still has significant opportunities for improvement, particularly in 
distinguishing between Grade II and Grade III cases. Future research should expand dataset diversity, explore other deep encoding 
components (such as VGG [29]) within our framework, investigate advanced architectures (e.g., Vision Transformers [32]), and 
develop interpretable methods for visualizing aggregated features. Moreover, extending the application of this feature encoding 
framework to other domains, such as radiology or multi-modal medical imaging, could further validate its utility. 

This study provides a robust foundation for automated IDC grading, demonstrating the potential of deep learning-based 
feature encoding to enhance diagnostic consistency, reduce pathologists’ workload, and improve patient care. Future efforts should 
focus on addressing identified limitations and expanding the applicability of this approach to broader clinical and research contexts. 
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