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Abstract. This paper aims to develop a model for
human fall detection by simulating authentic fall incidents
for implementation in a computer vision system designed
to monitor falls in the elderly and deliver real-time
notifications. The model development process commences
with the utilization of a dataset comprising item bounding
boxes and corresponding annotations. The YOLOvV8
methodology is subsequently employed to train the
dataset. The study dataset consists of 2,788 raw images
that have been annotated and processed using Roboflow
technology. The images are categorized into three groups:
the training set comprises 77% of the data, totaling
approximately 2,146 images; the validation set constitutes
12%, or about 338 images; and the test set accounts for
11%, roughly 304 images. Data augmentation methods
were used in the fourth stage of the Roboflow platform to
increase data diversity, resulting in 19,000 images. This
expanded dataset enhances the model's ability to
generalize by exposing it to a wider variety of scenarios
and conditions. Consequently, the increased volume of
images allows for more robust training, ultimately
improving the accuracy and reliability of the model's
predictions in real-world applications. The ideal value for
improving model performance is one hundred epochs,
which is how long model training was run. The model
testing outcomes, carried out in the same setting as the
training, show a mean average accuracy (mAP) of 90.97%
and an overall accuracy of 95.36%, suggesting
outstanding accuracy and appropriateness for practical
use.
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1. Introduction

Nowadays, various technological domains have been
integrated to enhance convenience and improve the quality
of daily life [1-5]. The rapid aging of the world population

has generated pressing healthcare needs, especially in the
area of eldercare and fall prevention. The World Health
Organization estimates that, particularly among those 65
and older, falls are the second most common cause of
unintentional mortality worldwide. Often resulting in
major injuries, protracted hospital stays, or even lifelong
impairment, these events put enormous strain on families,
careers, and public health systems. As a result, smart
healthcare systems are increasingly including fall
detection and prevention technology as essential parts.

Usually, conventional fall detection techniques fall
into two categories: vision-based systems and wearable
sensor-based systems. Usually, wearable systems include
inertial sensors, gyroscopes, or accelerators tracking fast
movements. Although efficient in controlled settings,
these techniques call for continuous user compliance,
especially among those with cognitive disabilities who can
forget or decline to wear the devices. On the other hand,
vision-based systems passively watch environments using
cameras and artificial intelligence models. These devices
provide a less intrusive and more dependable option for
continuous monitoring in homes, hospitals, and nursing
facilities by eliminating the need for physical touch [6].

The creation of strong visual detection systems has
been driven by developments in deep learning and
computer vision. The YOLO (You Only Look Once)
series is a highly successful family of object detection
algorithms. Introduced in 2016, YOLO has gone through
many iterations—YOLOV1 to YOLOv8—each one greatly
enhancing speed, accuracy, and adaptability. The
YOLOVS, is perfect for real-time applications like fall
detection since it has simplified architecture, anchor-free
detection, and native support for functions including
instance segmentation and object tracking [7].

Several recent research studies have shown
YOLOv8's promise in fall detection situations. For
example, the study by Khekan et al. presented a high-
precision YOLOvV8-based model able to identify falls in
real-time, obtaining significant performance
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improvements over prior YOLO versions [8]. Even with
changing lighting circumstances, their method showed
remarkable accuracy. Likewise, Mao et al. offered a
YOLOv8-optimized system using depth cameras and
temporal monitoring that included movement trajectory
analysis to reduce false alarms even more [9].

Though YOLOvV8-based systems have several
difficulties in actual deployment even with their benefits.
The first is that access to large, diverse datasets is still
lacking. Many fall datasets are limited to laboratory
environments, which causes the so-called “domain gap”
problem: models trained in controlled settings fail to
generalize in actual situations [10]. This problem has
driven academics to create tailored datasets, sometimes
mixing synthetic and actual fall situations with different
body postures, angles, and illumination settings to
improve model generalization.

Vision-based monitoring in personal locations like
beds or restrooms brings up ethical and legal questions.
Recent studies have tried to solve these issues by
including privacy-preserving technologies such as edge
computing, local processing, and body anonymization
[11].

Latency is yet another important element. Fall
detection systems have to run in real-time and activate
alerts nearly instantaneously if they are to be effective.
Though the design of YOLOv8 provides high-speed
inference, total response time also relies on hardware
capability, network latency, and connectivity with alarm
systems like SMS or cloud dashboards. Moore et al.
showed a YOLOv8-powered system that maintained
privacy by processing data locally on edge devices, hence
attaining real-time fall detection [12].

The suggested study in this paper advances this
continuous work by creating a YOLOv8-based fall
detection system especially designed for elderly care
settings. The dataset design is a major advance. Unlike
earlier research that depended solely on current public
datasets, this one offers a tailored dataset made up of more
than 19,000 photos featuring simulated and staged fall
events in various settings. Augmented with Roboflow to
improve variety in scale, lighting, and orientation, the
dataset comprises fall and non-fall events. Standard
YOLOVS8 training pipelines are used to train the model;
mAP (mean Average Precision) measurements are used to
assess it. Early findings show that the model's detection
accuracy on the validation set exceeds 85%, which is
competitive with state-of-the-art systems. Furthermore, the
system is executed in a modular architecture deployable
on low-power edge devices, therefore enabling practical
smart eldercare solutions.

This work uses the capabilities of YOLOv8 and
addresses important limitations such as dataset variety,
real-time performance, and ethical issues to push the field
of vision-based fall detection forward. It adds to the
increasing number of Al-driven healthcare products meant

to enhance safety, autonomy, and quality of life for the
elderly.

2. Literature Review

Falls remain one of the most prevalent health hazards
affecting elderly populations, especially in aging societies.
According to the World Health Organization (WHO),
approximately 30% of people aged 65 and older
experience at least one fall annually. These incidents often
result in serious injuries or fatalities, and detecting falls
quickly and accurately is vital for providing timely
assistance. Research in fall detection has evolved from
simple threshold-based systems to sophisticated deep
learning and computer vision techniques, which offer real-
time and non-invasive monitoring.

Fall detection systems are typically categorized into
two main types: wearable sensor-based systems and
vision-based systems. Wearable systems utilize inertial
sensors (e.g., accelerometers and gyroscopes) to detect
rapid changes in motion and orientation. While accurate in
controlled environments, these systems require the elderly
user to consistently wear the device, which can be
inconvenient or impractical for individuals with cognitive
impairments or physical discomfort [13]. In contrast,
vision-based systems leverage video data and deep
learning models to detect falls by analyzing human
postures and movements. These systems offer the
advantage of being non-intrusive and context-aware,
making them ideal for passive monitoring in smart homes
and hospitals. However, challenges such as privacy
concerns, lighting variability, and occlusion remain issues
that researchers must address [14].

The “You Only Look Once” (YOLO) family of
algorithms has significantly influenced real-time object
detection since its inception. The YOLOvV1 was introduced
as a unified model capable of detecting objects at
unprecedented speed by treating detection as a regression
problem. Subsequent versions—YOLOv2, YOLOvV3,
YOLOv4, and YOLOv5—incorporated improvements
such as batch normalization, anchor boxes, and better
backbone networks [16]. The YOLOv7 introduced
enhanced efficiency with transformer-based modules, and
finally, the YOLOVS, released by Ultralytics in 2023,
integrated features like anchor-free detection, auto-
learning bounding boxes, and built-in support for instance
segmentation [16]. These improvements make the
YOLOV8 highly suitable for time-sensitive applications
such as fall detection, where both speed and accuracy are
paramount.

The recent rise in YOLOv8-based models in fall
detection reflects its strong performance in object
recognition and tracking. Mao et al. developed a system
using YOLOv8 combined with a depth camera and deep
learning-based tracking to monitor fall risks in elderly
patients. Their system significantly reduced false positives
by incorporating motion trajectory data over time [9].
Khekan et al. proposed a customized YOLOv8 model that
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achieved real-time fall detection with over 88% precision.
The model was trained on a synthesized dataset
mimicking elderly fall conditions and was deployable on
edge devices [8]. Similarly, Wang and Lin explored
privacy-preserving fall detection wusing YOLOVS,
highlighting the need to balance ethical concerns with
technological capability [11]. Nguyen et al. developed an
loT-integrated fall detection application using YOLOvV8
for smart wheelchair environments, achieving high
detection rates in varying lighting conditions [16]. Their
system showcased YOLOVS’s adaptability in complex
real-world scenarios. Another study by Moore et al.
demonstrated YOLOvS8’s utility in Parkinson’s disease
monitoring through video-based activity analysis,
validating its use beyond standard eldercare applications
[12].

One of the most significant limitations in fall
detection research is the lack of comprehensive, high-
quality datasets. Most public datasets are created under
laboratory conditions with actors simulating falls, which
introduces a “domain gap” between training and real-
world performance [17]. Additionally, the datasets often
lack diversity in age, gender, clothing, and fall directions,
making models less generalizable. To overcome these
issues, Belmonte et al. generated a multi-environment fall
detection dataset using synthetic data augmentation and
YOLOVS8 [18]. Their system was trained on over 25,000
images across various scenarios and achieved 92%
accuracy. Custom dataset generation and augmentation
tools such as Roboflow are increasingly used to simulate
diverse fall scenarios, improving generalization [19].
Privacy is another major concern in camera-based
systems. Continuous video monitoring in personal spaces
like bedrooms or restrooms raises ethical and legal
implications. Several researchers advocate for on-device
processing, human figure anonymization, and encrypted
data streams to ensure privacy preservation without
compromising accuracy [20].

For fall detection to be practically useful, the system
must operate in real-time with minimal latency.
YOLOvV8's lightweight architecture and high-speed
inference capabilities enable deployment on low-power
edge devices such as NVIDIA Jetson and Raspberry Pi.
Moore et al. reported that their YOLOV8-based detection
system had an average latency of just 76 milliseconds,
making it suitable for time-critical applications [12]. Edge
deployment also enhances data security by reducing
reliance on cloud computing and minimizing network
transfer delays. This approach is particularly beneficial in
rural or low-bandwidth settings. However, the trade-off
often lies in reduced model complexity, which may impact
detection precision. Therefore, ongoing research focuses
on balancing computational efficiency with high
recognition performance.

Despite recent advances, several gaps persist in
YOLOv8-based fall detection. First, no standard
benchmark dataset exists specifically for elderly fall
detection using real-world video data. Second, model

explainability and interpretability remain limited—
important features when systems are used in healthcare
contexts. Third, the integration of multimodal data (e.g.,
video+audio+10T sensor data) has yet to be fully explored.
Future research may involve the combination of YOLOv8
with transformers, temporal convolutional networks, or
LSTM-based tracking to improve temporal understanding.
Ethical Al frameworks will also become increasingly
important as these systems move from research labs to
patient rooms.

3. Methodology
A. System Overview

The proposed system architecture for elderly fall
detection consists of five primary stages: (1) dataset
creation, (2) data preprocessing and augmentation, (3)
YOLOv8 model training, (4) evaluation via validation and
testing sets, and (5) deployment on edge devices for real-
time inference. This comprehensive approach ensures that
the model is not only accurate but also efficient enough to
operate in real-time, allowing for immediate alerts for
caregivers. By utilizing edge devices, the system can
function independently of cloud connectivity, enhancing
reliability and responsiveness in critical situations. The
process flow is illustrated in Fig. 1.

r )

Dataset Creation

Deployment

System
Data pre-processing
and augmentation
YOLOv8 Model TelEtER

Training

Fig. 1 Pipeline diagram showing fall detection workflow using the
YOLOVS.

B. Dataset Preparation and Annotation

A dataset of 19,000 images was constructed using a
combination of real and simulated images representing fall
and non-fall scenarios. Annotation was performed using
Roboflow, labeling bounding boxes for two classes: “fall”
and “normal.” Augmentation techniques such as random
cropping, flipping, scaling, and contrast adjustment were
applied to increase variability. Fig. 2 and 3 show the
image augmentation and annotation, respectively.



274

ENGINEERING ACCESS, VOL. 11, NO. 2, JULY-DECEMBER 2025

Fig. 3 Annotated dataset samples for the fall/non-fall detection.

C. YOLOV8 Architecture and Training Setup

YOLOv8 features anchor-free detection, improved
backbone networks (C2f modules), and streamlined head
layers. The model accepts images resized to 640x640
pixels and was trained using a batch size of 16 for 100
epochs on a GPU with mixed precision.

Table 1 Training configuration for the YOLOVS fall detection model

Parameter Value
Input size 640 x 640
Batch size 16
Epochs 100
Learning rate 0.001
Optimizer SGD
Augmentation Roboflow
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Fig.4 YOLOV8 architecture components, including backbone, neck
and head layers [21].

D. Evaluation Metrics

Model performance was evaluated using standard
metrics such as F1-score, precision, recall, mean Average
Precision (mAP), confusion matrix, and accuracy:

... IpP 0
precision = —pp 1)
/= TP
recall = 75— )
mAP=mean(API1, AP2,...,APn) 3)
erecorer  2TP
ST TP YFPYFN )

where TP, FP, and FN refer to true positives, false
positives, and false negatives, respectively. The model
achieved a mAP of 92.10% on the validation set and
demonstrated high generalization under varied lighting
and orientation conditions.

E. Deployment and Real-Time Inference

The trained model was exported and deployed on
NVIDIA Jetson Nano for real-time execution. With an
average inference time of under 100 milliseconds per
frame, the system supports live monitoring while
preserving user privacy. Edge deployment ensures privacy
by avoiding cloud data transmission and enables offline
operation.

4. Results and Discussion

The YOLOv8 model was trained on a custom dataset
comprising over 19,000 images labeled as “fall,” “non-
fall,” and “background”. The training process spanned 100
epochs with a learning rate of 0.001. The evaluation was
conducted on a test set comprising 11% of the dataset.
Tables 2, 3, and 4 present the performance metrics of
YOLOV8 on the test set. The model achieved a mean
Average Precision (mAP) of 90.97% and an overall
accuracy of 95.36%.

Experimental results validate that the proposed
YOLOv8-based  approach  particularly  addresses
significant issues of real-time fall detection in elderly care
facilities. With an F1-score of 95%, the system indicated
fair balance between precision (98%) and recall (93%),
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implying ongoing dependability in distinguishing fall
events from fall-free activities. Those numbers much
exceed those for older YOLOvV5-based techniques shown
in other studies [8-9], hence suggesting the advancement
the design of YOLOvV8 offers for object identification
activities with complex human motions.

In practical uses where fall events could happen in
rather varied and unstructured settings, that level of
success is most important. The results of this study are
reconcilable and demonstrate the model's great relevance
in fall detection settings when compared to earlier
research such as Khekan et al. and Nguyen et al., which
also reported high mAP results using YOLOv8 [6],[8].
The model was evaluated with an entirely different dataset
designed and customized for actual seniors’ fall
circumstances. By closely mimicking actual deployment
circumstances unlike in previous studies that often used
limited or false datasets, such targeted augmentation
evolved the model toward robustness. The system ran
inferences under 100 milliseconds per frame on the Jetson
Nano platform, hence suggesting its potential for real-time
deployment in edge settings in terms of computational
convincingness.  Such efficiency is essential for
applications like home care and healthcare monitoring
since significant contributors are latency and on-device
processing constraints. Though the model produced
human-interpretable visual displays with well-defined
bounding boxes and tags, there were occasional
misclassifications—most notably in partial occlusions and
poor-lighting situations. Failures like this suggest potential
paths for study in the diversity of datasets and data
augmentation strategies, including tactics such as synthetic
occlusion, contrast adjustments, and adversarial
augmentation. This study now offers solid proof to
confirm the real-time fall detection feasibility of
YOLOVS, therefore offering both quick processing and
outstanding accuracy. Future studies could investigate
model pruning or quantization to further reduce inference
time and/or the incorporation of the LSTM or Transformer
module with temporal analysis for improving the
identification of unusual motion patterns.

Table 2 The confusion matrix of YOLOVS8 on the test set

Predicted: | Predicted: Predicted:
Fall Non-Fall Background
Class: Fall - 0.04 0.03
Class: Non-Fall 0.02 0.96 0.02
Class:

Table 3 The precision, recall and F1-score of YOLOV8 on the test

set
Precision Recall F1-score
Class: Fall 0.98 0.93 0.95
Class: Non-Fall 0.94 0.95 0.94
Class:
Background 0.94 0.97 0.95

Table 4 The mAP and accuracy of YOLOV8 on the test set

Accuracy (%) MAP (%)

95.36 90.97

Fig. 5 Sample prediction outputs of YOLOv8 showing fall and non-fall
cases from the dataset.
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Fig. 6 Sample prediction outputs of YOLOv8 showing fall and non-fall
cases from the webcam.
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5. Conclusions

This work proposes an extensive YOLOV8 vision
system designed for fall detection in elderly living
environments with a focus on accuracy, efficacy, and real-
time implementation. Utilizing a specially created dataset
consisting of more than 19,000 labeled images, the system
showed high performance metrics with 98% precision and
93% recall for fall events. Results validate that YOLOvV8
is very effective in the detection of fall incidents with
diverse illumination, camera positions, and real-world
situations. Besides better detection performance, the
system was shown to be operationally viable on edge
devices like NVIDIA Jetson Nano, enabling decentralized,
privacy-preserving surveillance. Robust model
generalization and resilience were further aided by the
application of Roboflow to data augmentation and
preprocessing. Additionally, the visual interpretation of
predictions and smooth model convergence validated the
architecture’s  suitability for real-time deployment.
Traditional wearable- and vision-based detection models
were outperformed by the approach regarding detection
speed and contextual correctness. However, some
degradation in performance under partial occlusion and
low-contrast scenarios was noted. Models in the future
could be explored with hybrid models that link vision data
with inertial sensors or with depth data. Additionally,
adding more real-world falling videos to the dataset,
increasing model interpretability, and adding lightweight
attention modules could enhance model performance. In
conclusion, this study highlights the viability of YOLOv8
to act as a foundational technology in smart eldercare fall
detection systems to promote more independent living and
a sense of security among the elderly population.
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