

Anatase-3DOM Structure for Reactive Red Dye Photocatalytic Degradation

Tanya Kiatboonyarit^{1*}, Thipchanok Bowornhathai¹, Ramida Rattanakam¹, Supakit Achiawanich¹, Sutasinee Kityakarn^{1*}

¹ Department of Chemistry, Faculty of Science, University of Kasetsart, Bangkok, Thailand, 10903.

*Corresponding author's e-mail address: fscistsn@ku.ac.th

ARTICLE INFO

Article history

Submitted: 24 March 2017

Revised: 5 April 2017

Accepted: 10 July 2017

Available online: 28 July 2017

Keywords:

Ce-doped TiO₂

TiO₂

3DOM

Dye degradation

Photocatalysts

© 2017 The Microscopy Society of Thailand

ABSTRACT

Photocatalysts TiO₂-powder and TiO₂-3DOM (Three-dimensionally ordered macroporous, 3DOM) were prepared by the sol-gel method and calcined at 723 K. The TiO₂ and Ce/TiO₂ photocatalysts showed only anatase phase without CeO₂ and the particle size of the Ce/TiO₂-3DOM was smaller than the TiO₂-powder. The Poly(methyl methacrylate, PMMA) was the template for TiO₂ particle-orientation as investigated by SEM. The stoichiometry of element and the molar percentage of Ce/Ti in the sample were determined by EDS. The photocatalytic degradation of reactive red dye was evaluated by UV-Vis spectroscopy. TiO₂-powder-723 showed the highest photocatalytic activity compared to others due to their morphology and particle size.

INTRODUCTION

Wastewater from textile industrial processes generally consists of surfactants, chelating reagents, pH regulators, dyes and etc. Azo dyes are commonly used in the dyeing process. The residual dyes are biologically non-degradable compounds that contaminate wastewater. In textile wastewater treatment, color removal is a primary concern. Several methods such as electrocoagulation methods, electrochemical reduction methods, electrochemical oxidation methods, indirect oxidation methods and photo-assisted methods have been applied in order to eliminate dyes from wastewater [1-3].

The photo-Fenton process is the photoassisted method where H₂O₂, iron sulfate and UV radiation are incorporated resulting in OH[·] radicals which are capable of reducing harmful organic compounds. For the heterogeneous photocatalysis method, TiO₂ is used in the advanced oxidation process (AOP) for the mineralization of many organic pollutants. TiO₂ is a photoactive semiconductor, and generates electron/hole pairs (e⁻/h⁺) when irradiated by photons with sufficient energy. The generated e⁻/h⁺ pairs react with water or oxygen producing OH[·] or O₂^{·-} radicals, which will then react with the organic compounds to break them down to CO₂ and H₂O.

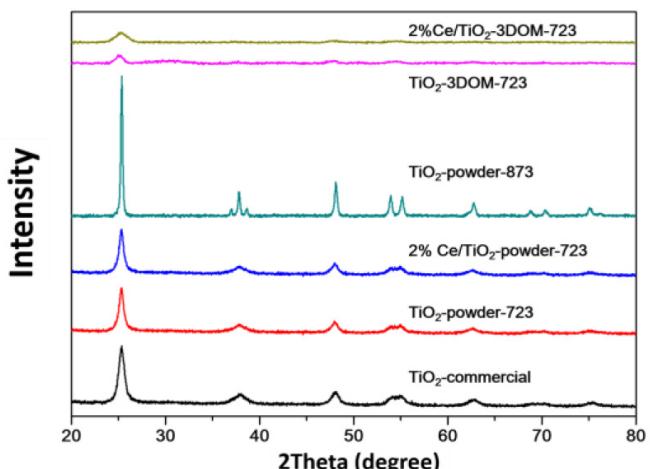
The improvement of photocatalysts is essential to reach the full potential of solar radiation because most photocatalysts are excited by UV radiation which accounts for only a small percentage of sunlight. The doping or substituting of p-block, lanthanide or actinide elements into TiO₂ such as Pt-TiO₂, B-TiO₂, CeO_x-TiO_y [4,5-14] is interesting for researchers. The application of rare earth elements like Ce (Ce³⁺/

Ce⁴⁺) is able to suppress the recombination of e⁻/h⁺ pairs and increases the efficiency of TiO₂ photocatalysts by decreasing the band-gap energy. In addition, the morphology of photocatalysts is important to modify the efficiency of photocatalysts.

In this research, TiO₂ and Ce/TiO₂ photocatalysts with different morphologies (powder and 3DOM) were prepared by the sol-gel method. The 3DOM formation of TiO₂ was prepared using PMMA as a template. The effect of Ce addition and the morphology of TiO₂ were investigated. The photocatalytic degradation of reactive red dye (RR) was evaluated by UV-Vis spectroscopy.

METHODOLOGY

Titanium (IV) isopropoxide, ethanol and cerium (III) nitrate hexahydrate were used for sol-gel preparation. The gelation of samples was at 323 K for 24 h and heated up to 383 K for 24 h. The dry powder was calcined at 723 K and 873 K under the mixing of N₂ and O₂ (70:30), (labeled, respectively, as TiO₂-powder-723 and TiO₂-powder-823). The sample with Ce was prepared by adding 2% molar ratio of Ce to Ti into the mixture (labeled as 2%Ce/TiO₂-powder-723).


The 3DOM samples were prepared in the same manner. TiO₂-powder and the mixture of Ce/TiO₂ was prepared by the addition of cerium (III) nitrate solution with 2% molar ratio of Ce to Ti. The mixture was dropped onto the PMMA, kept at room temperature for 7 days, dried at 353 K for 12 h and calcined at 723 K under the mixing of N₂ and O₂ (70:30) and the samples were labeled as TiO₂-3DOM, and 2%Ce/TiO₂-3DOM.

The structure of all the samples was characterized by X-ray diffraction spectrometer (XRD, D8 Advance Bruker). The Cu K_{α} x-ray is generated by an x-ray tube operated at 40 kV and 30 mA. The XRD patterns were recorded in the range of 10-80 degree. The XRD patterns were indexed by comparison with the JCPDS file. The morphology of the samples and the chemical composition in the prepared samples were investigated by Scanning Electron Microscope (SEM) equipped with energy dispersive X-ray spectrometer (EDS), Quanta 450FEI. The samples were sputtered with Au and imaged at 10k and 30k magnification. The photocatalytic dye degradation by TiO_2 catalysts was evaluated using UV-Vis spectroscopy. The suspended TiO_2 photocatalysts in the 12 ppm RR dye solution were irradiated by UV source (B-100YP, UVP lamp). The adsorption at 541 nm was used to determine the photocatalytic degradation of RR dye.

RESULTS AND DISCUSSION

The XRD patterns of all samples in Figure 1 showed the pattern of TiO_2 anatase (PDF No. 01-075-2545) without other TiO_2 phases and CeO_2 (PDF No. 01-078-3080). The TiO_2 -powder-823 showed highly sharp intensity indicating the high crystallinity of the TiO_2 anatase. The TiO_2 -commercial, TiO_2 -powder-723 and 2%Ce/ TiO_2 -powder-723 showed broad XRD peaks indicating the small crystalline size of the TiO_2 anatase. The TiO_2 -3DOM-723 and 2%Ce/ TiO_2 -3DOM-723 showed broader peaks and lower intensity of anatase phase due to the small crystalline size of TiO_2 anatase forming in 3DOM structure. The addition of Ce in the TiO_2 structure did not deform the anatase phase, however it suppressed the growing of TiO_2 crystal, resulting in the small crystalline size. The XRD peak intensity was affected by Ce addition. The high percentage of Ce showed a low XRD intensity indicating that the cerium ions dissolved in anatase phase [12]. This means that the Ce addition percentage represented the cerium ion solubility in anatase.

The morphology and chemical composition of TiO_2 photocatalysts were evaluated by SEM- EDS (Figure 2 and Table1). The SEM

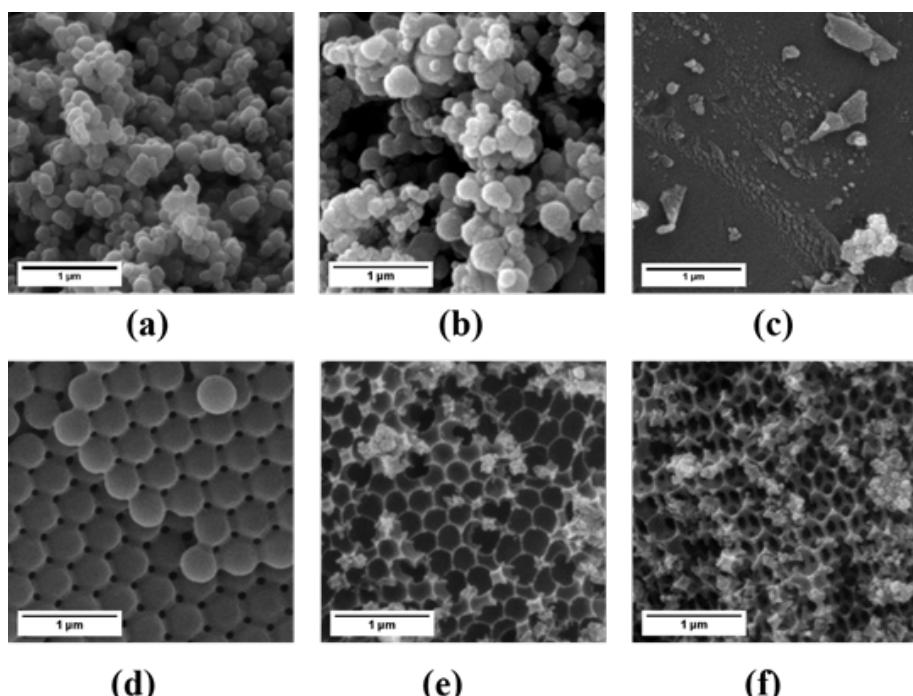


Figure 1 XRD patterns of TiO_2 -commercial, TiO_2 -powder-723, 2%Ce/ TiO_2 -powder-723, TiO_2 -powder-873, TiO_2 -3DOM-723 and 2%Ce/ TiO_2 -3DOM-723.

images presented the small particle size of TiO_2 -commercial and TiO_2 -powder-723 which correspond to the board XRD peaks (Figure 2 (a) – (b)). 2%Ce/ TiO_2 -powder-723 showed smaller, compact particles compared to the other powders (Figure 2 (c)). The percentage molar ratio of Ce to Ti in 2%Ce/ TiO_2 -powder-723 was 2.2 %.

The particles of PMMA were spherical with size of approximately 0.25 mm, Figure 2 (d). PMMA was used as the template for 3DOM formation for TiO_2 prepared by the sol-gel method. After the mixture of TiO_2 precursor was dropped onto the surface of PMMA and the coated TiO_2 precursor decomposed at 723 K, TiO_2 anatase with 3DOM structure and small particles TiO_2 anatase formed on the 3DOM structure as shown in Figure 2 (e) – (f).

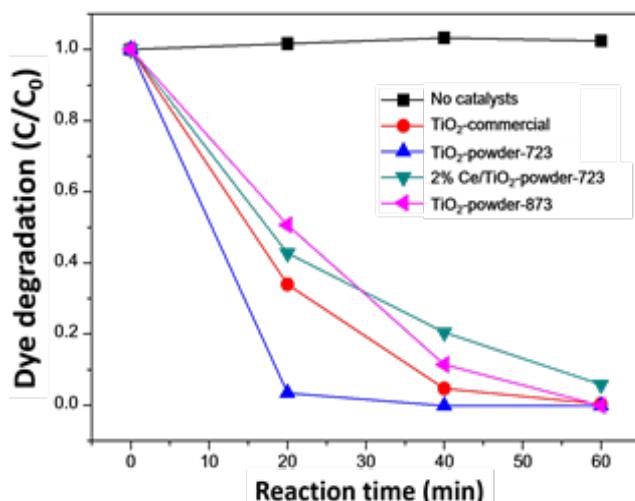
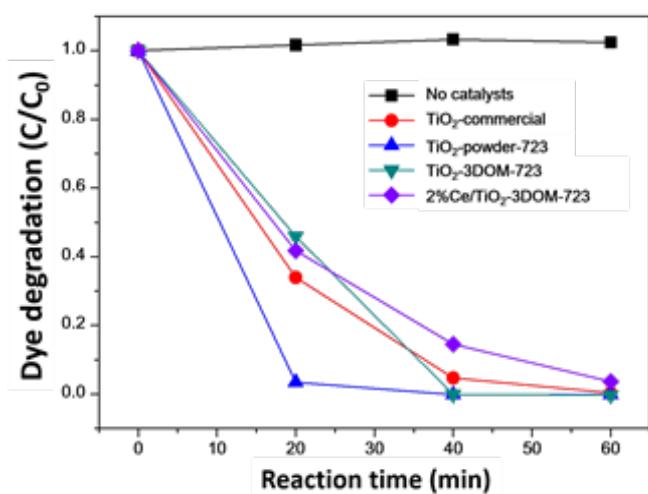

The particle sizes of TiO_2 -3DOM-723 and 2%Ce/ TiO_2 -3DOM-723 were small and their morphology was more regular

Figure 2 SEM images of (a) TiO_2 -commercial, (b) TiO_2 -powder-723, (c) 2%Ce/ TiO_2 -powder-723, (d) PMMA, (e) TiO_2 -3DOM-723 and (f) 2%Ce/ TiO_2 -3DOM-723. The magnification of all sample was 30k and scale bar was 1 μm .

Table 1 Chemical composition of photocatalysts measured by EDS.

Photocatalysts	Elemental (weight %)			Elemental (atomic %)		
	Ti	Ce	O	Ti	Ce	O
TiO ₂ -commercial	56.92		43.08	30.62		69.38
TiO ₂ -powder-723	57.34		42.66	30.98		69.02
2%Ce/TiO ₂ -powder-723	54.70	3.65	41.65	30.28	0.69	69.03
TiO ₂ -3DOM-723	61.63		38.37	34.91		65.09
2%Ce/TiO ₂ -3DOM-723	56.12	5.25	38.63	32.33	1.03	66.64


Figure 3 Photocatalytic activity of non-catalysts, TiO₂-commercial, TiO₂-powder-723, 2%Ce/TiO₂-powder-723, TiO₂-powder-873.

than the 2%Ce/TiO₂-powder-723. The SEM image of TiO₂-3DOM showed agglomeration of TiO₂ on the 3DOM structure. The number of agglomerated particles increased with the addition of Ce resulting in deformation of 3DOM structure as observed in Figure 2 (f). The percentage molar ratio of Ce to Ti in 2%Ce/TiO₂-3DOM was 3.1%.

The photocatalytic degradation of reactive red dye (RR) by TiO₂-anatase under irradiation was investigated by sampling 2 mL of solution every 20 min; the results are shown in Figure 3 and Figure 4. The RR dye did not degrade under irradiation without catalysts. The TiO₂-powder-723 showed the highest dye photodegradation due to its small regular particles. The TiO₂-powder-873 showed low catalytic activity compared to the TiO₂-powder-723 despite having the highest crystallinity of anatase phase. It is well known that the agglomeration of TiO₂ particles take place at high calcination temperature, resulting in large particle size and decreased surface area of catalysts. The photocatalytic activity of Ce added into TiO₂ was not significantly different from the TiO₂-powder-873. However, the photocatalytic activity of Ce/TiO₂ was lower than the TiO₂-powder-723 and TiO₂-commercial. This was due to the small compact particles of Ce/TiO₂-powder-723, which lead to decreased surface area of catalysts and lower catalytic activity.

To study the effect of morphology of TiO₂, photocatalysts with different morphology were used. The photodegradation of RR by TiO₂-3DOM-723 and 2%Ce/TiO₂-3DOM-723 showed similar photocatalytic activity that was lower than the TiO₂-powder-723 due to smaller photocatalysts particle sizes.

In further research, the preparation of 3DOM at high calcination temperature will be considered and the photocatalytic activity of high temperature calcined 3DOM will be investigated. The decrease in cerium percentage will be studied in order to evaluate the threshold of cerium present in the TiO₂ structure, which can enhance the

Figure 4 Photocatalytic activity of non-catalysts, TiO₂-commercial, TiO₂-powder-723, TiO₂-3DOM-723, 2%Ce/TiO₂-3DOM-723.

photocatalytic activity of TiO₂.

CONCLUSION

The anatase-3DOM was prepared by sol-gel method and PMMA was used as a template for 3DOM formation. The addition of Ce suppressed the growing of TiO₂ particles, resulting in small particles of Ce/TiO₂ for both powder and 3DOM. The TiO₂-powder-723 showed the highest photocatalytic activity due to its small regular particles. The addition of Ce into TiO₂ did not improve the photocatalytic activity of TiO₂ catalysts. The anatase 3DOM structure exhibited low photocatalytic activity due to the smaller particle size of the catalyst and lower degree of TiO₂ crystallinity. Increased calcination temperature was considered to enhance the photocatalytic activity of TiO₂-3DOM.

ACKNOWLEDGEMENTS

Financial support by Kasetsart University Research and Development Institute and Department of Chemistry, Faculty of Science, Kasetsart University are fully acknowledged.

References

1. O. Ercan, S. Deniz, E.K. Yetimoglu and A. Aydin, Degradation of Reactive Dyes Using Advanced Oxidation Method, *Clen-Soil, Air, Water*, **2015**, 7, 1031-1036.
2. N. T. Dung, N.V. Khoa and J.-M. Herrmann, Photocatalytic Degradation of Reactive Dye RED-3BA in Aqueous TiO₂ Suspension under UV-Visible Light, *Iner.J. Photoenergy*, **2005**, 7, 11-15.
3. M. Sala and M.C. Gutierrez-Bouzan, Electrochemical Techniques in Textile Process and Wastewater Treatment, *Iner.J. Photoenergy*,

2012, 1-12.

4. A.A. Ismail and D.W. Bahnemann, Photochemical splitting of water for hydrogen production by photocatalytic: A Review, *Sol. Energ. Mat. Sol. C.*, **2014**, 128, 85-101.
5. W. Wang, M.O. Tade and Z. Shao, Research progress of perovskite materials in Photocatalysis- and Photovoltaics-related energy conversion and environmental treatment, *Chem.Soc.Rev.*, **2015**, 44, 5371-5408.
6. S. G. Kumar and L.G. Devi, Review on Modified TiO_2 Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics, *J.Phys.Chem. A*, **2011**, 115, 13211-13241.
7. W. Chao-hai, T. Xin-hu, L. Jie-rong and T. Shu-ying, Preparation, Characterization and Photocatalytic activities of Boron- and Cerium- doped TiO_2 , *J.Environ. Sci.*, **2007**, 19, 90-96.
8. M. Tian, H. Wang, D. Sun and W. Peng, Visible Light Driven Nanocrystal anatase TiO_2 Doped Ce from Sol-gel Method and its Photoelectrochemical Water Spilling Properties, *Int. J. Hydrogen Energ.*, **2014**, 39, 13448-13453.
9. M. Zou, Y. Kong, J. Wang, Q. Wang, Z. Wang, B. Wang and P. Fan, Spectroscopic Analyses on ROS Generation Catalyzed by TiO_2 , $\text{CeO}_2/\text{TiO}_2$ and $\text{Fe}_2\text{O}_3/\text{TiO}_2$ under Ultrasonic and Visible-light irradiation *Spectrochim. Acta. A.*, **2013**, 101, 82-90.
10. L. Matejova, V. Vales, R. Fajgar, Z. Matej, V. Holy and O. Solcová, Reverse Micelles Directed Synthesis of $\text{TiO}_2\text{-CeO}_2$ Mixed Oxide and Investigation of their Crystal Structure and Morphology, *J. Solid State Chem.*, **2013**, 198, 485-495.
11. A. Niltarach, S. Kityakarn, A. Worayingyong, J. T-Thienprasert, W. Klysabun, P. Songsiririttingul, S. Limpijumnon, Structural Characterizations of Sol-gel Synthesized TiO_3 and Ce/TiO_2 Nanostructure, *Physica B*, **2012**, 407, 2915-2918.
12. S. Kityakarn, A. Worayingyong, A. Suramitr, M.F. Smith, Ce-doped Nanoparticles of TiO_2 : Rutile-to-Brookite Phase Transition and Evaluation of Ce local-structure Studied with XRD and XANES, *Mat.Chem.Phys.*, **2013**, 139, 543-549.
13. S. Otsuka-Yao-Matsuo, T. Omata and M. Yoshimura, Photocatalytic Behavior of Cerium Titanates, CeTiO_4 and CeTi_2O_6 and their Composite Powders with SrTiO_3 , *J. Alloy. Comp.*, **2004**, 376, 262-267.
14. D. Q. Fei, T. Hudaya and A. A. Adesina, Visible-light Activated Titania Perovskite Photocatalysts: Characterisation and Initial Activity Studies, *Catal. Comm.*, **2005**, 6, 253-258.