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Abstract

Automatic Watercraft Driving Technology: Cameras are essential for path determination and object detection
to avoid obstacles and prevent ship collisions. The key focus lies in tracking the recognizable ship movements.
In this article, the authors used Thai ship movement data and collected image data to develop a training model.
They then presented an object recognition method using AlexNet, simulated different maritime environments, and
evaluated the model's performance. Subsequently, they proposed a tracking algorithm for precise object tracking,
especially in high-motion video evaluations. The study utilized a total of 300 images, divided into 200 training
samples and 100 testing samples. Performance was assessed using a confusion matrix, and the experimental results
revealed high efficiency, with precision, recall, and F1-score values of 71.3 %, 95.4%, and 81.6%, respectively.
These results demonstrate that the tracking algorithm outperforms real-time online tracking in terms of object

tracking accuracy.
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3.3 a1dn1iin (AlexNet)
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M3190 3 ANLEINg

Taaa AlexNet
Precision 713 %
Recall 954 %
F1 Score 81.6 %
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