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Abstract 
 This research focuses on the design and simulation of an autopilot system for a 2.75-inch 
Wrap-Around Fin Aerial Rocket (WAFAR), incorporating a guidance system into the traditional 
unguided airframe. The control system was designed using a combination of pole placement 
techniques and proportional-integral (PI) control to enable precise directional control and maintain 
stability during flight. The design process takes into account the dynamics and aerodynamic 
characteristics of the rocket. The pole placement technique was employed to define the pole 
locations in the system's transfer function, achieving the desired stability and response 
characteristics. Concurrently, the PI control enhances the system's responsiveness and tracking 
accuracy. The guidance of the rocket is achieved through acceleration control, enabling it to follow 
the desired trajectory. A nonlinear simulation of the rocket under different launch-to-target 
distances and LOS errors demonstrates the effectiveness and accuracy of the proposed control 
system in target tracking. Although the control system was designed based on a linearized model of 
the rocket dynamics, it was evaluated on a nonlinear plant model to verify its practical 
performance. 
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1. Introduction 
 Continuous advancement of military weapon capabilities is essential. The 2.75-inch rocket is a 
widely used military weapon due to its ease of installation and straightforward operation. However, 
its accuracy in actual operations heavily relies on the pilot’s skill, and errors can occur when engaging 
moving targets. This limitation arises because the rocket lacks the ability to adjust its trajectory once 
launched. Therefore, integrating a guidance system into the rocket's structure is a necessary 
development to enhance its operational effectiveness. 



336 

 ปีท่ี 21 ฉบับท่ี 2 กรกฎาคม – ธันวาคม 2568 

 The conventional 2.75-inch rocket is designed without a control system and relies on high-speed 
spin stabilization to maintain flight stability. This characteristic makes the design of an in-flight 
trajectory control system particularly challenging and complex. The control system design must 
account for nonlinear dynamics, the rocket’s unique aerodynamic properties, and external 
disturbances that may affect performance. 
 Previous studies have explored guidance system enhancements for the 2.75-inch rocket. For 
instance, the U.S. Army’s Advanced Precision Kill Weapon System (APKWS) utilizes canard fin 
adjustments to modify the rocket’s direction mid-flight [1]. The Skid-to-Turn autopilot system for 
APKWS has been designed and simulated to evaluate its performance [2]. Additionally, alternative 
guidance systems, such as the Hit-to-Kill Rocket Guidance Kit (Model HKGK), have been developed 
and analyzed, utilizing reaction thrusters for directional control [3]. These studies demonstrate the 
ongoing research and development of guidance systems for the 2.75-inch rocket. 
 While many existing approaches employ advanced control techniques such as model predictive 
control (MPC) or adaptive control, these methods often require high computational resources and 
complex implementation. In contrast, the method proposed in this study offers a practical trade-off 
between simplicity and performance robustness. This research focuses on designing a control system 
that prioritizes target-tracking accuracy while maintaining rocket stability under various flight 
conditions. A hybrid control approach is proposed, integrating Pole Placement and PI control. The 
Pole Placement technique is employed to modify the rocket’s dynamic response by appropriately 
positioning the system’s transfer function poles, ensuring both stability and desired performance. 
Meanwhile, PI control is incorporated to enhance system responsiveness and maintain accurate 
trajectory tracking. The guidance law follows a Proportional Navigation (PN) strategy to determine the 
required acceleration, followed by the designed control system, which determines the magnitude of 
the reaction thrust. Furthermore, the maximum angle of attack is constrained to preserve flight 
stability. 
 The proposed control system is evaluated through nonlinear simulations using a 6-degree-of-
freedom (6-DOF) model implemented within the CADAC++ framework [4], a high-fidelity simulation 
tool for missile guidance and flight dynamics. This simulation provides a comprehensive assessment 
of the developed control system’s performance and effectiveness. 
 
2. Methods 
 This section presents the equations governing the rocket's motion dynamics and their 
transformation into a linearized form. The equations are then reformulated into the state-space 
representation. The next step involves designing the directional control system. 
 Due to the limitations of the Model HKGK guidance design, which prevents roll plane control, 
the control system is designed to regulate pitch and yaw motions using reaction thrust located within 
the guidance section. After presenting the relevant mathematical equations, the subsequent section 
will focus on simulation and performance analysis. 
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 2.1 Nonlinear Equations of Motion 
  To accurately study the control of the rocket's motion and perform an in-depth analysis, 
the 6-DOF equations of motion are utilized (Fig. 1). 

 
Fig 1 The 6-DOF equation of motion in the body frame 

  The translational equations of motion are derived based on Newton’s second law. 
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  This leads to the translational equations of motion, which are presented in Equation (1). 

     
B

E
B B B BL LBE EB

B

dV
m m V F m T G

dt

 
   +  = +     

 
         (1) 

  The formulation of the rotational equations of motion begins with Euler’s equations of 
rotational dynamics. 
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  By applying the Transport Theorem and assuming a constant moment of inertia for the 
rocket, the rotational equations of motion can be derived as shown in Equation (2).     
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  The symbols used in Equations (1) and (2) are defined as follows: m is the mass of the 
rocket [kg]; E

BV  is the velocity vector of the rocket with respect to(wrt) the earth frame [m/s]; BE  
is the angular velocity vector of the rocket frame wrt the earth frame in the form of a skew-symmetric 
matrix [rad/s];  

BL
T  is the transformation matrix to convert values from the flat Earth coordinate 

system to the rocket body coordinate system; G  is the gravitational force vector [N]; B

BI  is the 
Moment of Inertia (MOI) tensor of the rocket referred to the rocket’s center of gravity (c.g.) [kg·m2]; 

BE  is the angular velocity vector of the rocket frame wrt the earth frame [rad/s]; F is the force 
vector, consisting of the Thrust vector (

tF ), Reaction Thrust vector (
rtF ), and Aerodynamic Force 

vector (
aF ) [N]; 

BM is the moment vector, consisting of moments generated by the Reaction Thrust 
(

rtM ) and Aerodynamic Moment (
aM ) [N·m];  *

B  and  *
L  are the vector or tensor * expressed in 

the body and the local-level coordinate system, respectively. 
  Equations (1) and (2) describe the motion of the rocket, including both translational motion 
and rotational motion along the Roll, Pitch, and Yaw axes. These equations are nonlinear differential 
equations, where the nonlinearities arise from terms such as the product of velocity and angular 
velocity in Equation (1), and the cross product of angular velocity and angular momentum in Equation 
(2). 
  The terms of Aerodynamic Force and Moment can be expressed in terms of Aerodynamic 
Coefficients, as shown in Fig. 2. 

   
B T

a A Y NF qS C C C= − −  

   
B T

a l m nM qSd C C C=  

  where q  is the dynamic pressure [N/m2]; S  is the reference area [m2]; d  is the rocket 
diameter [m]; 

AC , 
YC , 

NC , 
lC , 

mC  and 
nC  are the axial force coefficient, side force coefficient, 

normal force coefficient, rolling moment coefficient, pitching moment coefficient, and yawing 
moment coefficient, respectively. 

 
Fig 2 Force and moment aerodynamics coefficient 
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 2.2 Linearization and State Space Equation 
  The control system used for the direction control of the rocket in this research utilizes a PI 
controller combined with pole placement techniques, which is a classical control method. This 
approach is suitable for linear systems. However, since the motion equations (1) and (2) describe a 
nonlinear system, a direct design of the control system is not possible. Therefore, linearization must 
be performed prior to design. It is assumed that changes in the rocket's direction are considered a 
small perturbation to the system. Under this assumption, the state of the system can be expressed 
as the sum of a reference component and a perturbation component. That is, 

x x xBpBr

p rR = +  

  where x p  and x r  are the state vectors at the perturbed and reference flights, respectively; 
x is the perturbation; BpBrR  is the rotation tensor of the perturbed frame wrt the reference frame. 

  By substituting each variable in Equation (1) with the summation of its reference and 
perturbation components, the following expression is obtained: 
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  where BpBr  is the angular velocity vector of the perturbed rocket frame wrt the reference 
rocket frame [rad/s];   *

Bp  and  *
Br  are the vector or tensor * expressed in the perturbed and the 

reference coordinate system, respectively. 
  In the present analysis, a steady reference flight condition is assumed, in which the 
reference flight is considered non-accelerated and non-rotating. 
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  The underlined term corresponds to the translational motion of the reference flight, rotated 
by a rotation tensor. Since the rotation tensor appears identically on both sides of the equation, the 
term cancels out. Together with the relations defined as: 

BE BpE BpBr BrE BpBrR R = −   
BpE BpBr BrE  = +  

  Based on the above assumptions, the equation can be reformulated as: 
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  Under the assumption of small perturbation, the relation can be approximated as: 
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  The underlined term remains nonlinear of second order. In the context of small 
perturbation analysis, this term becomes negligibly small and can therefore be omitted. Furthermore, 
to simplify the control system design, the term Bp Br

BpBr E

Brm V       , as well as the gravity force and 
thrust force terms, are also excluded from consideration. 
  The forces and moments generated by aerodynamics typically depend on multiple 
variables, which are nonlinear functions.  
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  By considering small variations and using a Taylor series expansion, the nonlinear functions 
can be approximated to linear forms by discarding the higher-order terms. The linearized equation 
of motion can then be written as follows. 
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  In this context, X , Y  and Z  represent the first, second, and third components of the 
aerodynamic force vector, respectively. These components can be expressed as X A= − , where 
A  is the axial force, Y  is the side force, and Z N= − , where N  is the normal force. yT and zT  
are the side force and normal force from the reaction thrust, respectively [N]. 
  For the rotational equations of motion, a similar linearization approach can be applied 
under the small perturbation assumption, as was done for the translational case.  
  By defining   

Bp T

aM LL M LN=  and   ( ) ( )0
TBp

rt z cg t y cg tM T x x T x x = − −
 

, 
the linearized rotational equations of motion can be written as:  
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  where LL , M  and LN   are the rolling moment, pitching moment, and yawing moment, 
respectively [N·m]; cgx  and 

tx  are the distances between the c.g. and the position of the reaction 
thrust from the rocket's nose, respectively [m]. 
  From Equations (3) and (4), the complexity of the calculations can be reduced by minimizing 
the number of aerodynamic force and moment terms. This can be achieved by applying the 
derivative map [5], which selectively includes only the derivative terms that have a significant 
influence on the forces and the moments acting on the rocket. As a result, the equations can be 
reformulated in scalar form as follows: 

u u
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= + + +
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( )

( )

11

22

22

p

w q w z cg t

v r v y cg t

I p LL p

I q M w M q M w T x x

I r LN v LN r LN v T x x

=

= + + + −

= + + + −

           (6) 

  Since there is no control over the rotational motion in the roll plane, the equations related 
to the motion in the roll plane can be discarded. In terms of aerodynamic force and moment, the 
variables v , w , v  and w  can be replaced with the sideslip angle (  ), angle of attack ( ), side 
acceleration (

la ), and normal acceleration (
na ), respectively. By neglecting the less significant terms, 

Equations (5) and (6) can be rewritten as Equations (7) and (8), respectively. 
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  When considering small perturbation in the angle of attack, the relationship between 
normal acceleration and the flight path angle (  ) can be expressed by Equation (9). 

na V=          (9) 

  Similarly, the relationship between side acceleration and the heading angle (  ) is given by 
Equation (10). 

la V=        (10) 
q = −  and r = +  

  where V  is the relative speed [m/s]. 
  By taking the derivative of Equation (7) and substituting the values from Equations (9) and 
(10), and neglecting the dynamics of the reaction thrusters, the equations can be rewritten as 
Equations (11) and (12). 
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where  YY qSC
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  From Equations (11) and (12), a state-space equation for a linear system can be formulated 
in the following form. 

x = Ax + Bu

y = Cx
 

  This can be divided into two motion directions: the longitudinal equation and the lateral 
equation. 
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  Variables followed by the subscript " "long  refer to the variables associated with the  
longitudinal direction, while " "lat  refers to variables related to the lateral direction. Variables 
without a subscript are used for both longitudinal and lateral directions. 
 2.3 Autopilot Design for HKGK Model 
  A widely used method for controlling the direction of a missile to track a target is 
acceleration control, chosen due to its high accuracy. In this study, this method was chosen, and a 
hybrid control technique combining pole placement and a PI controller was employed. The control 
system can be represented by the block diagram shown in Fig. 3. 

 

Fig 3 Normal acceleration control by pole placement technique and PI controller 

  From Fig. 3, the system can be separated into two feedback loops: The inner loop consists 
of the pole placement technique, which includes the acceleration loop and the rate loop. The rate 
loop is added to enhance the stability of the system. The outer loop consists of the PI controller, 
which is used to control the response speed and reduce steady-state errors in acceleration. 
  The transfer function of the system can be obtained by taking the Laplace transformation 
of the state space equation. The result will be. 

( ) ( ) ( )

( ) ( )

x Ax Bu

y Cx

s s s s

s s

= +

=
 

where ( )
( )

( )
( )2 1u I I

p p nc

n

q sk k
s k k k k a s

a ss s

    
= − − − − + +    
    

, which can be 

written as ( ) ( ) ( )1 2u a x a us s s= +  
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  By substituting the value of ( )u s  into the state space equation and rearranging, the new 
equation will be. 

( ) ( ) ( ) ( )
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1 2

1 2
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  − =

 

  The poles of the system can be obtained from the eigenvalues of the matrix A  by 
considering the characteristic equation of the system. 
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  When substituted with the matrix, the result will be. 
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  This can then be written as the equation. 
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  From the cubic polynomial equation, it can be rewritten in terms of the damping ratio ( ) 
and natural frequency (

n ) as shown in equation (14). 
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  where ( )s p+   is the factor of the polynomial that gives a real pole, with the pole 
positioned at p−  on the s-plane. 
  By comparing equations (13) and (14), the following is obtained. 
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  And the gain value can be calculated as shown in Equation (15). 
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  For lateral acceleration control, it can be done in the same way as for normal acceleration. 
Finally, the gain equation for lateral control is given in (16). 
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  The gain 1k , 2k  and Ik  will be recalculated continuously to keep the pole positions of 
the system at their appropriate locations as defined. 
  The design of the HKGK model's attitude control will be adjusted using the thrust forces from 
three reaction thrusters in the guidance system, with their positions arranged as shown in Fig. 4. 

 

Fig 4 The positions and directions of the reaction thrust vectors 

  The thrust force generated by each reaction thruster is related to the resultant side force 
( yT ) and normal force ( zT ) according to Equation (17). 
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  where 
1T , 

2T  and 
3T  are the thrust forces from reaction thrusters at positions 1, 2, and 3, 

respectively [N]. 
 
3. Simulation and Evaluation 

 3.1 Simulation Using the CADAC++ Framework 
  The simulation framework Computer Aided Design of Aerospace Concepts (CADAC) was 
originally developed using FORTRAN and later upgraded to C++ for its advantages in object-oriented 
programming. This updated version is referred to as CADAC++ [4]. CADAC++ is a framework designed 
to assist in the development and simulation of complex dynamic systems, particularly in the context 
of aerospace, aviation, and autonomous control systems. It allows for accurate simulation of the 
motion and control of these systems. In addition, CADAC++ can simulate noise or disturbances from 
both sensors and environmental conditions, which further enhances the reliability of the simulations. 
  In this study, the direction control of a 2.75-inch aerial rocket is simulated using the 
CADAC++ framework. A 6-DOF model is used to provide the most realistic analysis possible. The 
rocket follows a semi-active guidance system, where it receives target position signals from a laser 
designated by ground forces. For the simulation, it is assumed that the rocket can detect the target's 
position via the laser sensor even before launch. Upon launch, after approximately 1.3 seconds, 
which is the time when thrust from the rocket's engine runs out, the rocket enters the terminal phase 
and starts using the designed control system for direction control. This simulation assumes that 
throughout the entire flight, the rocket can always detect the target's position. 
  From the 1.3-second mark onward, the rocket enters the terminal phase, accurately guiding 
toward the target. The control system begins calculating acceleration commands using the PN 
guidance law. The acceleration command is then sent to the control system to be converted into 
the required thrust values to adjust the rocket’s direction using reaction thrust. The control system 
continuously receives the rocket's status after each reaction thrust operation and makes adjustments 
accordingly, until the rocket either hits the target or impacts the ground. The overall working diagram 
is shown in Fig. 5. 

 

Fig 5 Overview of the rocket simulation operation 
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  For the conditions of the simulation, it is assumed that the M151 warhead is used, which 
affects the various physical properties of the rocket. The distance between the rocket and the target 
is set from 4 to 9 km along the ground, with the target remaining stationary. The rocket's altitude at 
launch is 1 km above the ground level. The aircraft is assumed to fly at a speed of 185 m/s while 
launching the rocket. The LOS error, which includes Azimuth error (  ) and Elevation error (  ) 
at the moment of launch, is set between -30 to 30 degrees. These errors are related to the rocket's 
pitch and yaw angles as shown in equation (18). 

0

0

LOS

LOS

  

  

= +

= +
      (18) 

  where 
0  and 

0  are the Yaw and Pitch angles of the rocket at the moment of launch, 
respectively; 

LOS and 
LOS  are the Azimuth and Elevation angles of the LOS, respectively. 

  In the simulation, the effects of the changing mass and Moment of Inertia (MOI) of the 
rocket while flying are taken into account. Furthermore, limits are set for the acceleration command 
signals to ensure that the angle of attack and side slip do not exceed 20 degrees, which helps 
maintain the stability of the rocket during flight control. 

 3.2 Simulation Performance Evaluation 
  The performance analysis is divided into two main aspects: the response of the rocket's 
acceleration control system and the accuracy of the rocket. These analyses provide insights into the 
overall effectiveness of the rocket with an integrated guidance system. The details of each aspect 
are as follows: 
  3.2.1 Control System Response Analysis  
   The acceleration control system was designed using a hybrid approach combining pole 
placement and a PI controller, as described in Section 2.3. This design requires specifying the system’s 
pole locations by defining the constants  , 

n , and p , which influence both the system’s stability 
and response characteristics. Additionally, the gain Pk  can be adjusted to fine-tune the system’s 
response sensitivity. 
   For a 2.75-inch rocket, a rapid response is essential because the rocket has a very short 
time to reach the target. Since directional control begins approximately 1.3 seconds after launch, a 
slow response could significantly reduce targeting accuracy. At the same time, maintaining stability 
during flight is crucial to ensure the reliability of the control system. 
   From the simulation, the constants were set to 0.7 = , 9.8n =  rad/s, 40p =  rad/s 
and 1Pk = . The resulting normal acceleration response of the control system is shown in Fig. 6. 
   From the response shown in Fig. 6, the rocket's normal acceleration effectively follows 
the control system’s command and reaches a steady-state value relatively quickly. This is because 
the natural frequency was set to a relatively high value. However, a slight overshoot occurs during 
the initial response to control signal changes due to the use of a damping ratio less than 1, which 
results in an underdamped system behavior. 
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Fig 6 Normal acceleration response of the control system 

   When examining the steady-state normal acceleration, there is only minor oscillation 
in the signal. This oscillation is negligible and does not exhibit any tendency to grow over time, 
ensuring that the system remains stable. Therefore, the control system successfully provides a rapid 
response while maintaining stability throughout the flight. 
   To confirm that the rocket maintains stability while undergoing acceleration control, 
the angle of attack (AOA) during flight can be analyzed, as shown in Fig. 7. The angle varies in response 
to the acceleration command, exhibiting minor oscillations only during the initial phase of signal 
changes. These transient oscillations do not significantly affect the overall stability of the rocket. 
   Additionally, during the steady-state phase, where acceleration signals fluctuate 
slightly, these variations do not impact the stability of the angle of attack at that moment. This 
indicates that the control system effectively maintains stable flight characteristics throughout the 
maneuver. 

 

Fig 7 Angle of attack during normal acceleration control 
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   The response of the lateral acceleration control signal exhibits a similar behavior to 
that of the normal acceleration when the same constant values are applied. The system maintains 
stability while effectively responding to control commands, ensuring precise maneuverability of the 
rocket. 
  3.2.2 Accuracy Analysis 
   The accuracy assessment is conducted through a simulated rocket launch under the 
conditions described in Section 3.1, assuming that each reaction thruster produces a maximum thrust 
of 4.9 N. Accuracy is evaluated based on the miss distance between the rocket and the target, using 
the c.g. as a reference point for both objects. The miss distance is measured when the rocket reaches 
the ground, ensuring that the c.g. positions of the rocket and the target are at the same altitude. The 
results of the simulated launches are presented in Tables 1–6. 

Table 1: Miss Distance at a Rocket-to-Target Displacement of 4000 m 

\  

(degrees) 
-10 -5 0 5 10 15 20 25 30 

-30 >50 >50 >50 >50 >50 >50 >50 >50 >50 

-25 >50 >50 >50 >50 >50 >50 >50 >50 >50 

-20 >50 >50 >50 >50 >50 >50 >50 >50 >50 

-15 >50 >50 >50 >50 >50 >50 >50 >50 >50 

-10 >50 >50 >50 26.7041 >50 >50 >50 >50 >50 

-5 >50 >50 0.0902 0.0676 >50 >50 >50 >50 >50 

0 >50 43.3668 0.0921 0.0696 23.2308 >50 >50 >50 >50 

5 >50 >50 2.8069 18.6418 32.7264 >50 >50 >50 >50 

10 >50 >50 >50 >50 >50 >50 >50 >50 >50 

15 >50 >50 >50 >50 >50 >50 >50 >50 >50 

20 >50 >50 >50 >50 >50 >50 >50 >50 >50 

25 >50 >50 >50 >50 >50 >50 >50 >50 >50 

30 >50 >50 >50 >50 >50 >50 >50 >50 >50 

Table 2: Miss Distance at a Rocket-to-Target Displacement of 5000 m 

\  

(degrees) 
-10 -5 0 5 10 15 20 25 30 

-30 >50 >50 >50 >50 >50 >50 >50 >50 >50 

-25 >50 >50 >50 >50 >50 >50 >50 >50 >50 

-20 >50 >50 >50 >50 >50 >50 >50 >50 >50 

-15 >50 >50 >50 >50 >50 >50 >50 >50 >50 
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\  

(degrees) 
-10 -5 0 5 10 15 20 25 30 

-10 >50 >50 0.0710 0.0495 >50 >50 >50 >50 >50 

-5 >50 0.0819 0.0693 0.0525 0.0405 >50 >50 >50 >50 

0 >50 0.0984 0.0697 0.0530 0.0401 0.0314 >50 >50 >50 

5 >50 0.0995 0.0702 0.0524 0.0393 0.0292 >50 >50 >50 

10 >50 >50 38.9640 11.4701 26.6625 7.6116 >50 >50 >50 

15 >50 >50 >50 >50 >50 >50 >50 >50 >50 

20 >50 >50 >50 >50 >50 >50 >50 >50 >50 

25 >50 >50 >50 >50 >50 >50 >50 >50 >50 

30 >50 >50 >50 >50 >50 >50 >50 >50 >50 

Table 3: Miss Distance at a Rocket-to-Target Displacement of 6000 m 

\  

(degrees) 
-10 -5 0 5 10 15 20 25 30 

-30 >50 >50 >50 >50 >50 >50 >50 >50 >50 

-25 >50 >50 >50 >50 >50 >50 >50 >50 >50 

-20 >50 >50 >50 >50 >50 >50 >50 >50 >50 

-15 >50 31.3999 0.0586 0.0536 0.0268 >50 >50 >50 >50 

-10 >50 0.0676 0.0630 0.0442 0.0328 0.0268 >50 >50 >50 

-5 0.0892 0.0894 0.0641 0.0453 0.0321 0.0240 0.0189 >50 >50 

0 0.1014 0.0920 0.0639 0.0451 0.0320 0.0234 0.0181 23.2397 >50 

5 0.0953 0.1176 0.0693 0.0440 0.0320 0.0231 0.0175 39.1378 >50 

10 0.1203 0.0978 0.0629 0.0480 0.0356 0.0251 0.0197 >50 >50 

15 >50 >50 47.2664 10.6291 22.3619 >50 12.6340 >50 >50 

20 >50 >50 >50 >50 >50 >50 >50 >50 >50 

25 >50 >50 >50 >50 >50 >50 >50 >50 >50 

30 >50 >50 >50 >50 >50 >50 >50 >50 >50 

Table 4: Miss Distance at a Rocket-to-Target Displacement of 7000 m 

\  

(degrees) 
-10 -5 0 5 10 15 20 25 30 

-30 >50 >50 >50 >50 >50 >50 >50 >50 >50 

-25 >50 >50 11.8709 0.0995 6.1333 >50 30.9069 >50 >50 

-20 >50 0.2374 0.0447 0.0024 0.0369 0.0136 0.0647 >50 >50 

-15 >50 0.1389 0.1123 0.0208 0.0269 0.0154 0.0604 0.4769 >50 
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\  

(degrees) 
-10 -5 0 5 10 15 20 25 30 

-10 12.5639 0.0237 0.0147 0.0351 0.0221 0.0073 0.0011 0.0004 0.0326 

-5 0.3295 0.1313 0.0510 0.0273 0.0201 0.0138 0.0064 0.0103 0.0139 

0 0.0533 0.1190 0.0403 0.0434 0.0255 0.0189 0.0100 0.0034 0.0305 

5 0.0503 0.0510 0.0934 0.0474 0.0127 0.0172 0.0075 0.0019 0.0030 

10 0.1125 0.0984 0.1159 0.0398 0.0508 0.0182 0.0100 0.0031 0.0028 

15 8.0260 0.0964 0.0295 0.0465 0.0484 0.9998 2.8431 0.0300 0.0075 

20 >50 >50 >50 >50 >50 >50 >50 >50 >50 

25 19.8699 >50 >50 >50 >50 >50 >50 >50 >50 

30 >50 >50 >50 >50 >50 >50 >50 >50 >50 

Table 5: Miss Distance at a Rocket-to-Target Displacement of 8000 m 

\  

(degrees) 
-10 -5 0 5 10 15 20 25 30 

-30 1.4519 1.1580 0.1321 0.1135 0.0362 0.0153 0.0145 >50 9.4038 

-25 37.6822 0.1057 0.1329 0.0911 0.0144 0.0185 0.0406 >50 0.0597 

-20 4.5836 0.0420 0.1835 0.1066 0.0235 0.0248 0.0141 3.8366 0.0129 

-15 38.9477 0.2017 0.0474 0.0216 0.0229 0.0089 0.0006 0.0097 0.0089 

-10 0.2347 0.1971 0.0819 0.0573 0.0998 0.0219 0.0343 0.0365 0.0054 

-5 0.2138 0.0338 0.1435 0.0055 0.0265 0.0167 0.0177 0.0097 0.0008 

0 0.1945 0.1513 0.1470 0.0149 0.0480 0.0116 0.0306 0.0081 0.0077 

5 0.1719 0.2593 0.0226 0.0441 0.0468 0.0529 0.0312 0.0023 0.0078 

10 0.1601 0.1946 0.1457 0.0987 0.0161 0.0074 0.0043 0.0091 0.0088 

15 0.0651 0.1653 0.1731 0.0299 0.0485 0.0295 0.0303 0.0458 0.0125 

20 11.6123 6.2178 7.1200 2.8860 0.1120 0.0197 4.3812 3.8366 4.8891 

25 >50 >50 >50 >50 >50 >50 >50 >50 >50 

30 >50 >50 >50 >50 >50 >50 >50 >50 >50 

Table 6: Miss Distance at a Rocket-to-Target Displacement of 9000 m 

\  

(degrees) 
-10 -5 0 5 10 15 20 25 30 

-30 25.4865 16.9399 0.2060 0.0602 0.0792 0.0666 0.0149 0.0218 0.2532 

-25 0.2300 0.2121 0.1338 0.0941 0.1282 0.0315 0.0016 0.0443 0.0071 

-20 0.1945 0.2274 0.1301 0.0227 0.0779 0.0503 0.0256 0.0377 0.0242 

-15 0.2120 0.2196 0.0968 0.1201 0.1022 0.0072 0.0050 0.0123 0.0191 
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\  

(degrees) 
-10 -5 0 5 10 15 20 25 30 

-10 0.2473 0.1507 0.2034 0.1057 0.0914 0.1009 0.0125 0.0093 0.0146 

-5 0.1184 0.2251 0.0870 0.1518 0.0495 0.0816 0.0151 0.0093 0.0133 

0 0.2767 0.2540 0.1484 0.1271 0.0444 0.0505 0.0259 0.0118 0.0111 

5 0.2846 0.0737 0.1454 0.1086 0.1338 0.0521 0.0240 0.0085 0.0150 

10 0.2477 0.1067 0.0029 0.1792 0.0258 0.0546 0.0504 0.0134 0.0165 

15 0.2985 0.0380 0.1577 0.0281 0.1266 0.0223 0.0304 0.0059 0.0139 

20 0.3003 0.0609 4.1036 0.1523 0.0911 0.1378 0.0373 0.0024 0.0130 

25 7.2814 8.0398 4.6013 11.0329 9.7683 7.5389 1.4498 6.6340 7.8275 

30 >50 47.2622 4.1810 0.8245 >50 45.1004 41.6817 9.1338 10.2938 

   From the simulation results presented in Tables 1-6, the rocket demonstrates high 
accuracy, with the minimum miss distances recorded as 0.0676, 0.0292, 0.0175, 0.0004, 0.0006, and 
0.0016 meters for target displacements of 4, 5, 6, 7, 8, and 9 km, respectively. Furthermore, as the 
displacement increases from 4 to 9 km, the rocket maintains good accuracy even when launched 
with a larger LOS error. This is because the reaction thruster's thrust is structurally limited, restricting 
the rocket’s ability to change direction rapidly over time. As a result, at shorter displacement 
distances, the rocket has a limited turning capability. However, the results in Tables 1-6 only consider 
a maximum displacement of 9 km. If the displacement increases beyond this range, accuracy may 
degrade due to the thrust limitations of the rocket. 
   In this study, a Monte Carlo simulation was conducted, incorporating disturbances from 
atmospheric conditions and signals from the Inertial Navigation System (INS). A total of 100 
simulations were performed to determine the 50% Circular Error Probable (CEP) of the rocket. The 
50% CEP is defined as the radius of a circle, centered at the c.g. of target point, within which 50% of 
the simulated impacts are contained. The use of Monte Carlo simulations with the 50% CEP method 
is widely adopted and effective for evaluating the accuracy of guidance systems, particularly when 
assessing the uncertainties that influence the outcome of a launch. 
   The launch conditions followed the specifications described in Section 3.1, assuming 
a displacement of 6 km between the rocket and the target. The launch angles were set with 0 =  
and 5 = . From the simulation results, the 50% CEP was found to be 0.0448 m, demonstrating 
the accuracy and reliability of the rocket’s trajectory control. The analysis of the 50% CEP is 
illustrated in Fig. 8. 
   However, the analysis of the 50% CEP in this case is based on a single launch condition 
to demonstrate that even when the system is subjected to disturbances, the rocket can still be 
controlled to accurately impact the target. For other launch conditions, the 50% CEP values will 
vary, but the miss distances will show a similar clustering pattern as in the example case. 
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Fig 8 Analysis of the 50% Circular Error Probable (CEP) 

 
(a) 3D trajectory of the rocket 

 
(b) Trajectory projection on the XY plane 

 
(c) Trajectory projection on the XZ plane 

Fig 9 Shows an example of the trajectory from the simulation of a launch, assuming an angle of
5 = −  and 5 =  , with a distance of 5 km between the rocket and the target. The resulting 

miss distance is 0.0525 m 
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4. Conclusion 

 This paper presents a method for controlling the direction of the 2.75-inch WAFAR using a 
combination of pole placement and PI control to regulate the thrust output of the reaction thruster 
output in the guidance section. The research results demonstrate that the direction of the rocket 
can be accurately controlled to reach the target, and it performs well even when subjected to 
disturbances from the environment and noise from the system itself. This highlights the reliability of 
the simulation results, which were conducted using a 6-DOF model and tested with the rocket's 
nonlinear dynamics equations. Although the control system generates signals that are not perfectly 
smooth, it does not cause the rocket to lose stability during flight and provides a fast response, 
resulting in higher accuracy. The proposed control method is straightforward and practical for real-
world applications due to its simple calculations, which do not impose a heavy processing load on 
the controller.  
 Overall, the PI control combined with pole placement can effectively be used to control the 
direction of the rocket under normal operating conditions. However, this approach may lack flexibility 
compared to more modern control techniques, especially when the rocket dynamics change 
significantly, which can lead to a noticeable drop in accuracy. For this study, which focuses on a 2.75-
inch rocket that wasn’t originally designed for guided flight, the proposed control method is sufficient 
to improve flight accuracy under typical usage scenarios. 
 However, when implementing the actual control system, the limitations of the various 
components, particularly the reaction thruster in terms of both structure and specific dynamics of 
the reaction thrust, should be carefully considered. 
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