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Abstract

This research focuses on the design and simulation of an autopilot system for a 2.75-inch
Wrap-Around Fin Aerial Rocket (WAFAR), incorporating a guidance system into the traditional
unguided airframe. The control system was designed using a combination of pole placement
techniques and proportional-integral (PI) control to enable precise directional control and maintain
stability during flight. The design process takes into account the dynamics and aerodynamic
characteristics of the rocket. The pole placement technique was employed to define the pole
locations in the system's transfer function, achieving the desired stability and response
characteristics. Concurrently, the Pl control enhances the system's responsiveness and tracking
accuracy. The guidance of the rocket is achieved through acceleration control, enabling it to follow
the desired trajectory. A nonlinear simulation of the rocket under different launch-to-target
distances and LOS errors demonstrates the effectiveness and accuracy of the proposed control
system in target tracking. Although the control system was designed based on a linearized model of
the rocket dynamics, it was evaluated on a nonlinear plant model to verify its practical

performance.
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1. Introduction

Continuous advancement of military weapon capabilities is essential. The 2.75-inch rocket is a
widely used military weapon due to its ease of installation and straightforward operation. However,
its accuracy in actual operations heavily relies on the pilot’s skill, and errors can occur when engaging
moving targets. This limitation arises because the rocket lacks the ability to adjust its trajectory once
launched. Therefore, integrating a guidance system into the rocket's structure is a necessary

development to enhance its operational effectiveness.
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The conventional 2.75-inch rocket is designed without a control system and relies on high-speed
spin stabilization to maintain flight stability. This characteristic makes the design of an in-flight
trajectory control system particularly challenging and complex. The control system design must
account for nonlinear dynamics, the rocket’s unique aerodynamic properties, and external
disturbances that may affect performance.

Previous studies have explored guidance system enhancements for the 2.75-inch rocket. For
instance, the U.S. Army’s Advanced Precision Kill Weapon System (APKWS) utilizes canard fin
adjustments to modify the rocket’s direction mid-flight [1]. The Skid-to-Turn autopilot system for
APKWS has been designed and simulated to evaluate its performance [2]. Additionally, alternative
guidance systems, such as the Hit-to-Kill Rocket Guidance Kit (Model HKGK), have been developed
and analyzed, utilizing reaction thrusters for directional control [3]. These studies demonstrate the
ongoing research and development of guidance systems for the 2.75-inch rocket.

While many existing approaches employ advanced control techniques such as model predictive
control (MPC) or adaptive control, these methods often require high computational resources and
complex implementation. In contrast, the method proposed in this study offers a practical trade-off
between simplicity and performance robustness. This research focuses on designing a control system
that prioritizes target-tracking accuracy while maintaining rocket stability under various flight
conditions. A hybrid control approach is proposed, integrating Pole Placement and PI control. The
Pole Placement technique is employed to modify the rocket’s dynamic response by appropriately
positioning the system’s transfer function poles, ensuring both stability and desired performance.
Meanwhile, PI control is incorporated to enhance system responsiveness and maintain accurate
trajectory tracking. The guidance law follows a Proportional Navigation (PN) strategy to determine the
required acceleration, followed by the designed control system, which determines the magnitude of
the reaction thrust. Furthermore, the maximum angle of attack is constrained to preserve flight
stability.

The proposed control system is evaluated through nonlinear simulations using a 6-degree-of-
freedom (6-DOF) model implemented within the CADAC++ framework [4], a high-fidelity simulation
tool for missile guidance and flight dynamics. This simulation provides a comprehensive assessment

of the developed control system’s performance and effectiveness.

2. Methods

This section presents the equations governing the rocket's motion dynamics and their
transformation into a linearized form. The equations are then reformulated into the state-space
representation. The next step involves designing the directional control system.

Due to the limitations of the Model HKGK guidance design, which prevents roll plane control,
the control system is designed to regulate pitch and yaw motions using reaction thrust located within
the guidance section. After presenting the relevant mathematical equations, the subsequent section

will focus on simulation and performance analysis.
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2.1 Nonlinear Equations of Motion
To accurately study the control of the rocket's motion and perform an in-depth analysis,

the 6-DOF equations of motion are utilized (Fig. 1).

,\\ Fixed Frame L

2

Fig 1 The 6-DOF equation of motion in the body frame

The translational equations of motion are derived based on Newton’s second law.
E
d(mvg )
dt

=F+mG

And from the Transport Theorem.

] {5 ot

This leads to the translational equations of motion, which are presented in Equation (1).
m{df T+m[QBE]B[VBE]B =[F]*+m[T]*[G] (1)

The formulation of the rotational equations of motion begins with Euler’s equations of

rotational dynamics.
E
d(120%)

=M
dt 8

By applying the Transport Theorem and assuming a constant moment of inertia for the

rocket, the rotational equations of motion can be derived as shown in Equation (2).

T [2  fo PLT o T - .

where: , )
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-q p O 0 0 1,

The symbols used in Equations (1) and (2) are defined as follows: mis the mass of the
rocket [kgl; VBE is the velocity vector of the rocket with respect to(wrt) the earth frame [m/s]; QFF
is the angular velocity vector of the rocket frame wrt the earth frame in the form of a skew-symmetric
matrix [rad/s]; [T]BL is the transformation matrix to convert values from the flat Earth coordinate
system to the rocket body coordinate system; G is the gravitational force vector [N]; |§ is the
Moment of Inertia (MOI) tensor of the rocket referred to the rocket’s center of gravity (c.g.) [ke-m?];
@™ is the angular velocity vector of the rocket frame wrt the earth frame [rad/s]; F is the force
vector, consisting of the Thrust vector (F,), Reaction Thrust vector (F,, ), and Aerodynamic Force
vector (F,) [N]; M is the moment vector, consisting of moments generated by the Reaction Thrust
(M ;) and Aerodynamic Moment (M) [N-m]; [*]B and [*]L are the vector or tensor * expressed in
the body and the local-level coordinate system, respectively.

Equations (1) and (2) describe the motion of the rocket, including both translational motion
and rotational motion along the Roll, Pitch, and Yaw axes. These equations are nonlinear differential
equations, where the nonlinearities arise from terms such as the product of velocity and angular
velocity in Equation (1), and the cross product of angular velocity and angular momentum in Equation
).

The terms of Aerodynamic Force and Moment can be expressed in terms of Aerodynamic
Coefficients, as shown in Fig. 2.

[Fa]B :aS [_CA C, _CN]T
[Ma]B :an [CI C, Cn]T

where a is the dynamic pressure IN/m?]; S is the reference area [m?; d is the rocket

diameter [m]; C,, C,, C,, C,, C, and C_ are the axial force coefficient, side force coefficient,

normal force coefficient, rolling moment coefficient, pitching moment coefficient, and yawing

moment coefficient, respectively.

35
Fig 2 Force and moment aerodynamics coefficient
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2.2 Linearization and State Space Equation
The control system used for the direction control of the rocket in this research utilizes a P!
controller combined with pole placement techniques, which is a classical control method. This
approach is suitable for linear systems. However, since the motion equations (1) and (2) describe a
nonlinear system, a direct design of the control system is not possible. Therefore, linearization must
be performed prior to design. It is assumed that changes in the rocket's direction are considered a
small perturbation to the system. Under this assumption, the state of the system can be expressed
as the sum of a reference component and a perturbation component. That is,
X, =R, +&x
where X, and X, are the state vectors at the perturbed and reference flights, respectively;
ex is the perturbation; R®P®" is the rotation tensor of the perturbed frame wrt the reference frame.
By substituting each variable in Equation (1) with the summation of its reference and
perturbation components, the following expression is obtained:
d(R™VE +evE) ]
dt

m +m[(RB”B“QBrEW+gQBE )Tp [(RB"BFVBEr +€VBE)]Bp

=[(R™F, +¢F)]" +m[(R*G, +£G)]”

where @™ is the angular velocity vector of the perturbed rocket frame wrt the reference
rocket frame [rad/s]; [*]Bp and [*]Br are the vector or tensor * expressed in the perturbed and the
reference coordinate system, respectively.

In the present analysis, a steady reference flight condition is assumed, in which the

reference flight is considered non-accelerated and non-rotating.
Bp Bp
d(R®® d (Vs d(eVy
m —( ) [VB'pr+m[RB"Br]Bp —( : ) +m —( : )
dt dt dt

Bp

[ T [ VST sm s [

[ U IR +[oF e [R ] [0, o]

The underlined term corresponds to the translational motion of the reference flight, rotated
by a rotation tensor. Since the rotation tensor appears identically on both sides of the equation, the
term cancels out. Together with the relations defined as:

&BE — QBpE _ RBpBrQBrE RBpBr
W — o 4 B
Based on the above assumptions, the equation can be reformulated as:
d ( RBpBr )
dt

E

» d(svE) "
m [VBEr]Bp+m —(ZtB ) +m[QBpBr]Bp [gVBE]Bp =[5F]Bp+m[8G]Bp

Under the assumption of small perturbation, the relation can be approximated as:
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d (RBpBr )
Cét
BRI p r .
Together with the relation [RB"B' = [T]BpB , it follows that

d(ng) »
m[ow P [vE T +m{—dt8 } +m[ Q% 7[5 |7 =[F " +m[eG]”

The underlined term remains nonlinear of second order. In the context of small

~ QBpBr R BpBr

perturbation analysis, this term becomes negligibly small and can therefore be omitted. Furthermore,
to simplify the control system design, the term m[QBpBrJBp [VBEr]Br , as well as the gravity force and

thrust force terms, are also excluded from consideration.

The forces and moments generated by aerodynamics typically depend on multiple

variables, which are nonlinear functions.

eF,=F,—F, = ok (ngE)

(e g ()

: 8VBE 2| a 3l av E3
oF, r 1 F r 1 aSFa r
aa)B;Bf (prB )+ 2| aa)BpBrZ ( e )2 +5 aa)BpBrg, ( B8 )3 +...
oF, (e, 1 O°F, 1 8°F,
+ a\/'BE ( VBE) 2| aV W E2 ( VBE )2 3| av AN E3 (SVB )

By considering small variations and using a Taylor series expansion, the nonlinear functions
can be approximated to linear forms by discarding the higher-order terms. The linearized equation
of motion can then be written as follows.

g TBP Bp Bp Bp
m 98| 28 | Lo T+ 5 | [prBfT%[@Fz} (e ] oF " O
B

Given the definitions [F]Bp:[X Y Z]T and [F —[0 T, —TZT,

decomposition of the matrix components can be expressed as:

X oox x| [ X XA X X
gl |éu v ew |9 0 ar p] |00 oV oW 0
oY oY oy oY oY oy oY oYy oy | .
mvi=sl— — —||V|tl=—= — —I9|+|= —= ||V T,
ou v ow o oq or o v ow || 1
oz oz az|'"M oz az ez |t |z az ez M) LT
Lou v ow | o oq or oUW

In this context, X, Y and Z represent the first, second, and third components of the
aerodynamic force vector, respectively. These components can be expressed as X =—A, where
A is the axial force, Y is the side force, and Z =—N, where N is the normal force. Ty and T,
are the side force and normal force from the reaction thrust, respectively [N].

For the rotational equations of motion, a similar linearization approach can be applied
under the small perturbation assumption, as was done for the translational case.

By defining[M ] =[LL M LN] and [Mn]Bp =[O TZ(XCg —Xt) Ty(xcg —Xt)]T,
the linearized rotational equations of motion can be written as:
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e do®™ T ToM, 7 e [ oM, TPr sme | OM, | - e 5 q
1] { m } {aVBE} [V ] +[aw8p3r} oo\ St | [T o fom” (@)
[oLL  oLL  oLL ] [oLL  oLL  aLL |
I, 0 0]p ou ov w |ry, op aq or
oM oM oM oM oM oM
0 |22 0 g|= VvV |+
0 I , ou ov ow op aq or
20N o an |FY N an an |
L au v ow o g or |
[OLL oLL  oLL
au N oW [y 0
oM oM oM
1% w aw VT Tz(xcg—xt)
oLN  aLN  aLN (FY [T (%, - %)
R

where LL, M and LN are the rolling moment, pitching moment, and yawing moment,
respectively [N-m]; X, and X, are the distances between the cg. and the position of the reaction
thrust from the rocket's nose, respectively [m].

From Equations (3) and (4), the complexity of the calculations can be reduced by minimizing
the number of aerodynamic force and moment terms. This can be achieved by applying the
derivative map [5], which selectively includes only the derivative terms that have a significant
influence on the forces and the moments acting on the rocket. As a result, the equations can be

reformulated in scalar form as follows:

mu= X u+X,u

mv=YV+Yr+YV+T (5)
mW=Zw+Zq+Z,W-T,

l,p=LL,p

l,,d=M W+ qu+va'v+TZ(xcg—xt) (6)

ot = LN+ LN, r + LNV +T, (%, =X, )

Since there is no control over the rotational motion in the roll plane, the equations related
to the motion in the roll plane can be discarded. In terms of aerodynamic force and moment, the
variables v, w, V and W can be replaced with the sideslip angle ( ), angle of attack (« ), side
acceleration (4, ), and normal acceleration (&, ), respectively. By neglecting the less significant terms,
Equations (5) and (6) can be rewritten as Equations (7) and (8), respectively.

ma, = Yﬂ,B +Ty

ma, =-Z,a+T,
|, =M, + Mg +T, (X, )
|pt = LN, B+LNr+T, (X, —x,)

()
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When considering small perturbation in the angle of attack, the relationship between

normal acceleration and the flight path angle () can be expressed by Equation (9).

a,=Vy 9)
Similarly, the relationship between side acceleration and the heading angle ( ¥ ) is given by
Equation (10).
a=Vy (10)
y=q—-c¢ and y=r+p
where V s the relative speed [m/s].
By taking the derivative of Equation (7) and substituting the values from Equations (9) and
(10), and neglecting the dynamics of the reaction thrusters, the equations can be rewritten as

Equations (11) and (12).

ma:Y—ﬁa—Yr
1 VI yij

. (11)
ma =—%a —Z
n V n Olq
. mM
|22q:_ 7 < an+qu+Tz(Xcg_Xt)
MmN, (12)
I22r=Ta,+LNrr+Ty(xcg—xt)
where Y,=0SC, ; Z, =—qSC, ; M, =qSdC, ;
oA 2 _ e ?
M, _oSde LN, =gSdC, and LN, _Sd
q B 2V r

From Equations (11) and (12), a state-space equation for a linear system can be formulated

in the following form.

X=Ax+Bu
y =Cx
This can be divided into two motion directions: the longitudinal equation and the lateral

equation.

Xat =[I’ g '
Uong =T,
Uyt :-ry
% 0 LN, 0
Along = ' ) Alat = 2 )
_Z, Z, /A
m mV m mV
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(Xcg_xt)
B=| 1, | C=[0 1]
0

Variables followed by the subscript "long" refer to the variables associated with the
longitudinal direction, while "lat™ refers to variables related to the lateral direction. Variables
without a subscript are used for both longitudinal and lateral directions.

2.3 Autopilot Design for HKGK Model

A widely used method for controlling the direction of a missile to track a target is
acceleration control, chosen due to its high accuracy. In this study, this method was chosen, and a
hybrid control technique combining pole placement and a Pl controller was employed. The control

system can be represented by the block diagram shown in Fig. 3.

» k

\4

Fig 3 Normal acceleration control by pole placement technique and PI controller

From Fig. 3, the system can be separated into two feedback loops: The inner loop consists
of the pole placement technique, which includes the acceleration loop and the rate loop. The rate
loop is added to enhance the stability of the system. The outer loop consists of the PI controller,
which is used to control the response speed and reduce steady-state errors in acceleration.

The transfer function of the system can be obtained by taking the Laplace transformation

of the state space equation. The result will be.

where u(s) =[—k2 -k, —ﬁ—kl}{ 9(s) }(kp +ﬁjanc (s), which can be

written asU(s)=a,x(s)+a,u’(s)
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By substituting the value of U (S) into the state space equation and rearranging, the new

equation will be.

() AXx(s)+B [ X(s)+a,u'(s)]
[sI-(A+Ba,)]x(s)=Ba,u'(s)
[sI- ]() ()

The poles of the system can be obtained from the eigenvalues of the matrix A’ by

considering the characteristic equation of the system.
Det(sI-A")=0

When substituted with the matrix, the result will be.

- ’ _
) k2 Nk
My (g =Xk, (g Xt)( S 1)

Det l,, I, l,, =0
Zo _Z
L m mV il
This can then be written as the equation.
s’+a _s’+b s+c =0 (13)
where
a_=- %+ Za B (Xcg _Xt)kz
l,, mV I,
b —— (Xcg _Xt)zakl _ qua n (Xcg _Xt)zakp n (Xcg _Xt)zak2
" ml,, mVl.,, ml,, mVl,,
_ (Xcg _Xt)zakl
" ml,,

From the cubic polynomial equation, it can be rewritten in terms of the damping ratio (¢ )

and natural frequency (@, ) as shown in equation (14).
(s+p)(s° +24m,s+af)=0
(14)
s°+(28w, + p)s* + (@} +2pw, )s+ pw} =0
where (S-I— p) is the factor of the polynomial that gives a real pole, with the pole
positioned at —P on the s-plane.

By comparing equations (13) and (14), the following is obtained.
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SR RERIE=S

22 mv I22
(Xcg _Xt)zaki _ qua " (Xcg _Xt)zakp n (Xcg _Xt)zakz
mi, mvi,, mi, mvi,,

(w§+2p§wn)=—[

WP =— (Xcg B Xt)Zakl

? =
ml,,

And the gain value can be calculated as shown in Equation (15).

_ mp|22a)§
I (Xcg _Xt)za
M
kz =I¢(p+2a)né’+_q+z_‘1j (15)
(Xcg _Xt) I22 mV
ml,, 2 20,2, pZ, Z?
- e 2 n a a a _
k (X —%)Z,, [w” repas mv v mvZ) e

For lateral acceleration control, it can be done in the same way as for normal acceleration.

Finally, the gain equation for lateral control is given in (16).

—_ mplzza)n2
! (Xcg _X'()Y/}
Y
(Xcg _Xt) |22 mV
2 Y Y?
kl=_L w§+2pwné’+ wné/Yﬁ_'_ P /3_'_ ﬂz _kp
(Xeg = %)Yy mv mvV m¥%

The gain k;, k, and k, will be recalculated continuously to keep the pole positions of
the system at their appropriate locations as defined.
The design of the HKGK model's attitude control will be adjusted using the thrust forces from

three reaction thrusters in the guidance system, with their positions arranged as shown in Fig. 4.

Fig 4 The positions and directions of the reaction thrust vectors

The thrust force generated by each reaction thruster is related to the resultant side force

(T,) and normal force (T, ) according to Equation (17).
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T, :Tl—(T2+T3)sin(%]

T,=(T, —Tz)cos(%j

where T, T, and T, are the thrust forces from reaction thrusters at positions 1, 2, and 3,

(17)

respectively [N].

3. Simulation and Evaluation

3.1 Simulation Using the CADAC++ Framework

The simulation framework Computer Aided Design of Aerospace Concepts (CADAC) was
originally developed using FORTRAN and later upgraded to C++ for its advantages in object-oriented
programming. This updated version is referred to as CADAC++ [4]. CADAC++ is a framework designed
to assist in the development and simulation of complex dynamic systems, particularly in the context
of aerospace, aviation, and autonomous control systems. It allows for accurate simulation of the
motion and control of these systems. In addition, CADAC++ can simulate noise or disturbances from
both sensors and environmental conditions, which further enhances the reliability of the simulations.

In this study, the direction control of a 2.75-inch aerial rocket is simulated using the
CADAC++ framework. A 6-DOF model is used to provide the most realistic analysis possible. The
rocket follows a semi-active guidance system, where it receives target position signals from a laser
designated by ground forces. For the simulation, it is assumed that the rocket can detect the target's
position via the laser sensor even before launch. Upon launch, after approximately 1.3 seconds,
which is the time when thrust from the rocket's engine runs out, the rocket enters the terminal phase
and starts using the designed control system for direction control. This simulation assumes that
throughout the entire flight, the rocket can always detect the target's position.

From the 1.3-second mark onward, the rocket enters the terminal phase, accurately guiding
toward the target. The control system begins calculating acceleration commands using the PN
guidance law. The acceleration command is then sent to the control system to be converted into
the required thrust values to adjust the rocket’s direction using reaction thrust. The control system
continuously receives the rocket's status after each reaction thrust operation and makes adjustments
accordingly, until the rocket either hits the target or impacts the ground. The overall working diagram

is shown in Fig. 5.

Terminal phase

! p Plant
—»| PNGuidance | Controller [ Ry —»  (2.75-inch
‘ thrusters rocket)

~ ~
The rocket
acceleration
and angular
The rocket velncity
position and
walocity Sensors [«

The target position

Fig 5 Overview of the rocket simulation operation

'
|
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For the conditions of the simulation, it is assumed that the M151 warhead is used, which
affects the various physical properties of the rocket. The distance between the rocket and the target
is set from 4 to 9 km along the ground, with the target remaining stationary. The rocket's altitude at
launch is 1 km above the ground level. The aircraft is assumed to fly at a speed of 185 m/s while
launching the rocket. The LOS error, which includes Azimuth error (Ay ) and Elevation error (A@)
at the moment of launch, is set between -30 to 30 degrees. These errors are related to the rocket's
pitch and yaw angles as shown in equation (18).

Wo =V 0s AW (18)
O, =005 +AO

where y, and 6, are the Yaw and Pitch angles of the rocket at the moment of launch,
respectively; y, osand 6,5 are the Azimuth and Elevation angles of the LOS, respectively.

In the simulation, the effects of the changing mass and Moment of Inertia (MOI) of the
rocket while flying are taken into account. Furthermore, limits are set for the acceleration command
signals to ensure that the angle of attack and side slip do not exceed 20 degrees, which helps

maintain the stability of the rocket during flight control.

3.2 Simulation Performance Evaluation
The performance analysis is divided into two main aspects: the response of the rocket's
acceleration control system and the accuracy of the rocket. These analyses provide insights into the
overall effectiveness of the rocket with an integrated guidance system. The details of each aspect
are as follows:
3.2.1 Control System Response Analysis

The acceleration control system was designed using a hybrid approach combining pole
placement and a Pl controller, as described in Section 2.3. This design requires specifying the system’s
pole locations by defining the constants &, @, , and P, which influence both the system’s stability
and response characteristics. Additionally, the gain K, can be adjusted to fine-tune the system’s
response sensitivity.

For a 2.75-inch rocket, a rapid response is essential because the rocket has a very short
time to reach the target. Since directional control begins approximately 1.3 seconds after launch, a
slow response could significantly reduce targeting accuracy. At the same time, maintaining stability
during flight is crucial to ensure the reliability of the control system.

From the simulation, the constants were setto ' =0.7, @, =9.8 rad/s, p=40 rad/s
and K, =1. The resulting normal acceleration response of the control system is shown in Fig. 6.

From the response shown in Fig. 6, the rocket's normal acceleration effectively follows
the control system’s command and reaches a steady-state value relatively quickly. This is because
the natural frequency was set to a relatively high value. However, a slight overshoot occurs during
the initial response to control signal changes due to the use of a damping ratio less than 1, which

results in an underdamped system behavior.
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Fig 6 Normal acceleration response of the control system

When examining the steady-state normal acceleration, there is only minor oscillation
in the signal. This oscillation is negligible and does not exhibit any tendency to grow over time,
ensuring that the system remains stable. Therefore, the control system successfully provides a rapid
response while maintaining stability throughout the flight.

To confirm that the rocket maintains stability while undergoing acceleration control,
the angle of attack (AOA) during flight can be analyzed, as shown in Fig. 7. The angle varies in response
to the acceleration command, exhibiting minor oscillations only during the initial phase of signal
changes. These transient oscillations do not significantly affect the overall stability of the rocket.

Additionally, during the steady-state phase, where acceleration signals fluctuate
slightly, these variations do not impact the stability of the angle of attack at that moment. This
indicates that the control system effectively maintains stable flight characteristics throughout the

maneuver.

Angle of attack (degrees)

Fig 7 Angle of attack during normal acceleration control

'
|
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The response of the lateral acceleration control signal exhibits a similar behavior to
that of the normal acceleration when the same constant values are applied. The system maintains
stability while effectively responding to control commands, ensuring precise maneuverability of the
rocket.

3.2.2 Accuracy Analysis

The accuracy assessment is conducted through a simulated rocket launch under the
conditions described in Section 3.1, assuming that each reaction thruster produces a maximum thrust
of 4.9 N. Accuracy is evaluated based on the miss distance between the rocket and the target, using
the c.g. as a reference point for both objects. The miss distance is measured when the rocket reaches
the ground, ensuring that the c.g. positions of the rocket and the target are at the same altitude. The

results of the simulated launches are presented in Tables 1-6.

Table 1: Miss Distance at a Rocket-to-Target Displacement of 4000 m

Ay \AG
(degrees) 5 0 5 10 15 20 25 30
-30
-25
-20
-15
-5 0.0676
0 0.0696 = 23.2308
5 28069  18.6418
10

15
e e e e
e e e e
e

Table 2: Miss Distance at a Rocket-to-Target Displacement of 5000 m

Ay \AG

(degrees)

-30
I
-20
B

]
LA
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Ay \AO
(degrees) 1o B 0 5 10 15 20 25 30
-10 0.0710
5 : 0.0693
0 : 0.0697
5 : 0.0702
10 11.4701
15
20
25

Table 3: Miss Distance at a Rocket-to-Target Displacement of 6000 m

Ay \AG
-10 -5 0 5 10 15 20 25 30

(degrees)

0.0268

0.0586 0.0536

0.0676 0.0328

0.0268

0.0630 0.0442

0.0321

0.0892 0.0894 0.0641 0.0453 0.0240 0.0189

0 0.1014 0.0920 0.0639 0.0451 0.0320 0.0234 0.0181 23.2397

5 0.0953 0.1176 0.0693 0.0440 0.0320 0.0231 0.0175

0.1203 0.0978 0.0629 0.0480 0.0356 0.0251 0.0197

L wm e e w e e e
o mm wm e e e e e e

Table 4: Miss Distance at a Rocket-to-Target Displacement of 7000 m

Ay \AG

(degrees)

-10 -5 0 5 10 15 20 25 30

11.8709 6.1333

0.0995

0.2374 0.0447 0.0024 0.0369 0.0136 0.0647

0.0269 0.0154 0.0604 0.4769

0.1389 0.1123 0.0208

L%
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Ay \AG
egrees) -10 -5 0 5 10 15 20 25 30

-10 125639 00237 00147 00351 00221 00073 00011 00004  0.0326
-5 03295 01313 00510 00273 00201 00138 00064 00103  0.0139

0 00533 01190 00403 00434 00255 00189 00100 00034  0.0305
5 00503 00510 00934 00474 00127 00172 00075 00019  0.0030
10 0.125 00984 01159 00398 00508 00182 00100 00031  0.0028
15 80260 00964 00295 00465 00484 09998 28431 00300  0.0075

20

25 19.8699

30

Table 5: Miss Distance at a Rocket-to-Target Displacement of 8000 m

Ay \AG
(degrees) - -5 0 5 10 15 20 25 30

-30 14519 11580 01321 01135 00362 00153  0.0145 9.4038
-25 0.1057  0.1329  0.0911 00144 00185  0.0406 0.0597
-20 45836 00420 01835  0.1066 00235 00248 00141 38366  0.0129
-15 0.2017  0.0474 00216 00229 00089 00006  0.0097  0.0089
-10 02347 01971 00819 00573 00998 00219 00343 00365  0.0054
-5 02138 00338  0.1435 00055 00265 00167 00177  0.0097  0.0008
0 01945 01513 01470 00149 00480 00116 00306  0.0081  0.0077
5 01719 02593 00226 00441 00468 00529 00312 00023  0.0078
10 0.1601  0.1946  0.1457 00987 00161 00074 00043 00091  0.0088
15 00651 01653 01731 00299 00485 00295 00303  0.0458  0.0125
20 116123 62178 71200 28860 01120  0.0197 43812 38366  4.8891

U4 21 2

Table 6: Miss Distance at a Rocket-to-Target Displacement of 9000 m

Ay \AG
-10 -5 0 5 10 15 20 25 30
(degrees)
-30 25.4865 16.9399  0.2060 0.0602 0.0792 0.0666 0.0149 0.0218 0.2532
-25 0.2300 0.2121 0.1338 0.0941 0.1282 0.0315 0.0016 0.0443 0.0071
-20 0.1945 0.2274 0.1301 0.0227 0.0779 0.0503 0.0256 0.0377 0.0242
-15 0.2120 0.2196 0.0968 0.1201 0.1022 0.0072 0.0050 0.0123 0.0191

]
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Ay \AG
egrees) -10 -5 0 5 10 15 20 25 30

-10 02473 01507 02034 01057 00914 01009 00125 00093 00146
-5 0184 02251 00870 01518 00495 00816 00151 00093 00133
0 02767 02540  0.1484 01271 00444 00505 00259 00118 00111
5 0.2846 00737 01454 01086 0.338 00521 00240 00085  0.0150
10 02477 01067 00029 01792 00258 00546 00504 00134 00165
15 0.2985 00380 01577 00281 01266 00223 00304 0005 00139
20 03003 00609 41036 01523 00911 01378 00373 00024 00130
25 72814 80398  4.6013 110329 97683 75389 14498 66340  7.8275

30 - 472622 41810  0.8245 - 451006 416817 9.1338  10.2938

From the simulation results presented in Tables 1-6, the rocket demonstrates high
accuracy, with the minimum miss distances recorded as 0.0676, 0.0292, 0.0175, 0.0004, 0.0006, and
0.0016 meters for target displacements of 4, 5, 6, 7, 8, and 9 km, respectively. Furthermore, as the

displacement increases from 4 to 9 km, the rocket maintains good accuracy even when launched
with a larger LOS error. This is because the reaction thruster's thrust is structurally limited, restricting
the rocket’s ability to change direction rapidly over time. As a result, at shorter displacement
distances, the rocket has a limited turning capability. However, the results in Tables 1-6 only consider
a maximum displacement of 9 km. If the displacement increases beyond this range, accuracy may
degrade due to the thrust limitations of the rocket.

In this study, a Monte Carlo simulation was conducted, incorporating disturbances from
atmospheric conditions and signals from the Inertial Navigation System (INS). A total of 100
simulations were performed to determine the 50% Circular Error Probable (CEP) of the rocket. The
50% CEP is defined as the radius of a circle, centered at the c.¢. of target point, within which 50% of
the simulated impacts are contained. The use of Monte Carlo simulations with the 50% CEP method
is widely adopted and effective for evaluating the accuracy of guidance systems, particularly when
assessing the uncertainties that influence the outcome of a launch.

The launch conditions followed the specifications described in Section 3.1, assuming
a displacement of 6 km between the rocket and the target. The launch angles were set with Ay =0°
and A@=5". From the simulation results, the 50% CEP was found to be 0.0448 m, demonstrating
the accuracy and reliability of the rocket’s trajectory control. The analysis of the 50% CEP is
illustrated in Fig. 8.

However, the analysis of the 50% CEP in this case is based on a single launch condition
to demonstrate that even when the system is subjected to disturbances, the rocket can still be
controlled to accurately impact the target. For other launch conditions, the 50% CEP values will

vary, but the miss distances will show a similar clustering pattern as in the example case.

'
|
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Fig 8 Analysis of the 50% Circular Error Probable (CEP)
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Fig 9 Shows an example of the trajectory from the simulation of a launch, assuming an angle of
Ay =-5"and A@=5", with a distance of 5 km between the rocket and the target. The resulting

miss distance is 0.0525 m

'
|

Uil 21 atuTt 2 nsngnau - Suaw 2568



354

4. Conclusion

This paper presents a method for controlling the direction of the 2.75-inch WAFAR using a
combination of pole placement and PI control to regulate the thrust output of the reaction thruster
output in the guidance section. The research results demonstrate that the direction of the rocket
can be accurately controlled to reach the target, and it performs well even when subjected to
disturbances from the environment and noise from the system itself. This highlights the reliability of
the simulation results, which were conducted using a 6-DOF model and tested with the rocket's
nonlinear dynamics equations. Although the control system generates signals that are not perfectly
smooth, it does not cause the rocket to lose stability during flisht and provides a fast response,
resulting in higher accuracy. The proposed control method is straightforward and practical for real-
world applications due to its simple calculations, which do not impose a heavy processing load on
the controller.

Overall, the PI control combined with pole placement can effectively be used to control the
direction of the rocket under normal operating conditions. However, this approach may lack flexibility
compared to more modern control techniques, especially when the rocket dynamics change
significantly, which can lead to a noticeable drop in accuracy. For this study, which focuses on a 2.75-
inch rocket that wasn’t originally designed for guided flight, the proposed control method is sufficient
to improve flight accuracy under typical usage scenarios.

However, when implementing the actual control system, the limitations of the various
components, particularly the reaction thruster in terms of both structure and specific dynamics of

the reaction thrust, should be carefully considered.
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