
Received 25th April 2020, 

Revised 23rd May 2020, 

Accepted 23rd August 2020 

DOI: 10.14456/past.2020.4 

Sums of Reciprocal Triangular Numbers 

Lalita Nilasinwong1 and Kantaphon Kuhapatanakul1* 
1 Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok, 10900, 
Thailand. 

*E-mail: fscikpkk@ku.ac.th 

Abstract 
We consider the infinite sums of the reciprocals of the triangular numbers 𝑇𝑛2 and 𝑇𝑛

2. Then, by 

applying the floor function to the reciprocals of these sums, we obtain the new identities involving the triangular 

numbers. Further, we give a formula for an alternating sum of the reciprocals of triangular numbers. 
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1. Introduction  

Let {𝑎𝑘}𝑘≥1 be a strictly increasing positive 

sequence such that ∑ (𝑎𝑘)
−1∞

𝑘=1  is convergent. Many 

authors studied the partial infinite sums of reciprocal 

𝑎𝑘, 

⌊(∑
1

𝑎𝑘
𝑠

∞

𝑘=𝑛

)

−1

⌋, 

where 𝑠 > 1 and ⌊𝑥⌋ is the greatest integer 

not exceeding 𝑥. 

Ohtsuka and Nakamura (5) derived the 

formulas for the integer part of sums of reciprocal 

Fibonacci numbers, as follows: 

⌊(∑
1

𝐹𝑘

∞

𝑘=𝑛

)

−1

⌋ =  {
𝐹𝑛−2,                𝑛 𝑒𝑣𝑒𝑛
𝐹𝑛−2 − 1, 𝑛 𝑜𝑑𝑑,

     

⌊(∑
1

𝐹𝑘
2

∞

𝑘=𝑛

)

−1

⌋ =  {
𝐹𝑛−1𝐹𝑛 − 1, 𝑛 𝑒𝑣𝑒𝑛
𝐹𝑛−1𝐹𝑛,                 𝑛 𝑜𝑑𝑑.

 

Holliday and Komatsu (2) generalized a 

formula (1.1) for the generalized Fibonacci numbers. 

Similar properties were investigated in several 

different ways; see (3, 6). In (3), the author gave a 

similar formula (1.1) for alternating sums of reciprocal 

Fibonacci numbers as  

⌊(∑
(−1)𝑘

𝐹𝑘

∞

𝑘=𝑛

)

−1

⌋ = (−1)𝑛𝐹𝑛+1 − 1,     

and the generalized Fibonacci numbers are 

shown in (4). Anantakitpaisal and Kuhapatanakul (1) 

generalized the formulas (1.1) and (1.2) to the 

tribonacci numbers. 

Xin (7) studies the reciprocal sums related 

to the Riemann zeta function and showed that 

⌊(∑
1

𝑘2

∞

𝑘=𝑛

)

−1

⌋ = 𝑛 − 1, 

⌊(∑
1

𝑘3

∞

𝑘=𝑛

)

−1

⌋ = 2𝑛(𝑛 − 1). 

Recently, Xu (8) gave the formulas for the 

sums of reciprocal 𝑘4 and 𝑘5. 

Naturally, a following question arises: is 

there a similar formula for the triangular numbers? 

The triangular number 𝑇𝑛  is a number obtained by 

adding all positive integers less than or equal to a 

given positive integer 𝑛, 

𝑇𝑛 =
𝑛(𝑛 + 1)

2
 

We know that the series ∑
1

𝑇𝑛
𝑝 converses if 

𝑝 >
1

2
 . 

It is easy to verify that 

∑
1

𝑇𝑘

∞

𝑘=𝑛

= ∑
2

𝑘(𝑘 + 1)
= 2∑ (

1

𝑘
−

1

𝑘 + 1
)

∞

𝑘=𝑛

∞

𝑘=𝑛

=
2

𝑛
 , 
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we get that   

⌊(∑
1

𝑇𝑘

∞

𝑘=𝑛

)

−1

⌋ = ⌊
𝑛

2
⌋ 

The main purpose of this paper is to study 

the reciprocal sums of the triangular numbers 𝑇2𝑛 , 

𝑇2𝑛−1 , 𝑇𝑛2  and the alternating sums of reciprocal 

triangular numbers. 

2. Materials and Experiment  

2.1 Applying the methods of proof of Xin (7) and Xu 

(8) to derive the formulas for integer part of inverse of 

sums and alternating sums of reciprocal triangular 

numbers. 

3. Results and Discussion (Heading 1 Style) 

3.1 We begin with the formulas for reciprocal sums of 

the even-indexed and odd-indexed triangular 

numbers. 

Theorem 2.1 For any positive integer 𝑛, we have that 

(𝑖)  ⌊(∑
1

𝑇2𝑘

∞

𝑘=𝑛

)

−1

⌋ = 2𝑛 − 1 

(𝑖𝑖) ⌊(∑
1

𝑇2𝑘−1

∞

𝑘=𝑛

)

−1

⌋ = 2𝑛 − 2. 

Proof. Consider 

1

2𝑛
= ∑ (

1

2𝑘
−

1

2𝑘 + 2
)

∞

𝑘=𝑛

 

       = ∑
2

(2𝑘)(2𝑘 + 2)

∞

𝑘=𝑛

 

       < ∑
2

(2𝑘)(2𝑘 + 1)
= ∑

1

𝑇2𝑘

∞

𝑘=𝑛

∞

𝑘=𝑛

 

and 

1

2𝑛 − 1
= ∑ (

1

2𝑘 − 1
−

1

2𝑘 + 1
)

∞

𝑘=𝑛

 

              = ∑
2

(2𝑘 − 1)(2𝑘 + 1)

∞

𝑘=𝑛

 

              > ∑
2

(2𝑘)(2𝑘 + 1)
= ∑

1

𝑇2𝑘

∞

𝑘=𝑛

∞

𝑘=𝑛

, 

 

 

 

 

we get that 

1

2𝑛
< ∑

1

𝑇2𝑘

∞

𝑘=𝑛

<
1

2𝑛 − 1
. 

Hence 

⌊(∑
1

𝑇2𝑘

∞

𝑘=𝑛

)

−1

⌋ = 2𝑛 − 1. 

On the other hand, 

1

2𝑛 − 1
= ∑ (

1

2𝑘 − 1
−

1

2𝑘 + 1
)

∞

𝑘=𝑛

 

              = ∑
2

(2𝑘 − 1)(2𝑘 + 1)

∞

𝑘=𝑛

 

             < ∑
2

(2𝑘 − 1)(2𝑘)
= ∑

1

𝑇2𝑘−1

∞

𝑘=𝑛

∞

𝑘=𝑛

 

 

and 

1

2𝑛 − 2
= ∑ (

1

2𝑘 − 2
−
1

2𝑘
)

∞

𝑘=𝑛

 

              = ∑
2

(2𝑘 − 2)(2𝑘)

∞

𝑘=𝑛

 

              > ∑
2

(2𝑘 − 1)(2𝑘)
= ∑

1

𝑇2𝑘−1

∞

𝑘=𝑛

∞

𝑘=𝑛

, 

we get that 

⌊(∑
1

𝑇2𝑘−1

∞

𝑘=𝑛

)

−1

⌋ = 2𝑛 − 2, 

so the part (𝑖𝑖) is always valid. 

Next, we give a formula for an alternating sum of 

reciprocal triangular numbers. 

Theorem 2.2 For any positive integer 𝑛 we have 

⌊(|∑
(−1)𝑘

𝑇𝑘

∞

𝑘=𝑛

|)

−1

⌋ = 𝑛2. 

Proof. Observe that  

1

2k + 1
<

2k + 1

4k(k + 1)
, 
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then we have 

1

𝑇2𝑘
−

1

𝑇2𝑘+1
=

1

𝑘(𝑘 + 1)(2𝑘 + 1)
 

                       <
4(2𝑘 + 1)

(2𝑘)2(2𝑘 + 2)2
 

                       =
1

(2𝑘)2
−

1

(2𝑘 + 2)2
. 

Likewise, it is easy to verify that 

1

𝑘(𝑘 + 1)(2𝑘 + 1)
>

4(2𝑘 + 1)

((2𝑘)2 + 1)((2𝑘 + 2)2 + 1)
. 

We obtain that  

1

(2𝑘)2 + 1
−

1

(2𝑘 + 2)2 + 1
 

                    <
1

𝑇2𝑘
−

1

𝑇2𝑘−1
 

                    <
1

(2𝑘)2
−

1

(2𝑘 + 2)2
 , 

and so 

1

4𝑚2 + 1
< ∑ (

1

𝑇2𝑘
−

1

𝑇2𝑘−1
)

∞

𝑘=𝑚

<
1

4𝑚2. 

Therefore, 

⌊(|∑
(−1)k

Tk

∞

k=n

|)

−1

⌋ = (2m)2. 

Similarly, we can verify that 

1

(2m − 1)2 + 1
< ∑ (

1

T2k−1
−

1

T2k
)

∞

k=m

<
1

(2m− 1)2
. 

Therefore, 

⌊(|∑
(−1)k

Tk

∞

k=n

|)

−1

⌋ = (2m − 1)2. 

This completes the proof. 

 

Finally, we give the formula for the reciprocal sum of 

the squares of triangular numbers. 

 

Theorem 2.3 For any positive integer 𝑛, we have 

⌊(∑
1

𝑇𝑘
2

∞

𝑘=𝑛

)

−1

⌋ 

=

{
 
 

 
 6𝑚3 + ⌊

3

10
𝑚⌋ , 𝑖𝑓 𝑛 = 2𝑚, 𝑚 ≠ 0(𝑚𝑜𝑑10) 

6𝑚3 +
3

10
𝑚 − 1 , 𝑖𝑓 𝑛 = 2𝑚, 𝑚 ≡ 0(𝑚𝑜𝑑10) 

6𝑚3 − 9𝑚2 + 5𝑚− 1 − ⌊
𝑚 + 4

5
⌋ , 𝑖𝑓 𝑛 = 2𝑚 − 1.

 

Proof. For the case 𝑛 = 2𝑚 − 1, we will show that  

1

6𝑚3 − 9𝑚2 +
24
5
𝑚 −

9
8

< ∑ (
1

𝑇2𝑘−1
2 +

1

𝑇2𝑘
2)

∞

𝑘=𝑚

 

                                            <
1

6𝑚3 − 9𝑚2 +
24
5
𝑚 −

9
5

.  

              (2.1) 

Set 

𝑓(𝑘) = 6𝑘3 − 9𝑘2 +
24

5
𝑘 −

9

8
 , 

𝑔(𝑘) = 6𝑘3 − 9𝑘2 +
24

5
𝑘 −

9

5
. 

Observe that 

1

𝑇2𝑘−1
2 +

1

𝑇2𝑘
2 =

8𝑘2 + 2

𝑘2(2𝑘 − 1)2(2𝑘 + 1)2
, 

 
1

𝑓(𝑘)
−

1

𝑓(𝑘 + 1)
=

18𝑘2 +
9
5

𝑓(𝑘)𝑓(𝑘 + 1)
 

and 

1

𝑔(𝑘)
−

1

𝑔(𝑘 + 1)
=

18𝑘2 +
9
5

𝑔(𝑘)𝑔(𝑘 + 1)
. 

We can easily check that 

1

𝑓(𝑘)
−

1

𝑓(𝑘 + 1)
<

1

𝑇2𝑘−1
2 +

1

𝑇2𝑘
2 

       <
1

𝑔(𝑘)
−

1

𝑔(𝑘 + 1)
. 

Summing inequalities from 𝑘 = 𝑚 to ∞, we get the 

inequality (2.1). 

For the case 𝑛 = 2𝑚  and 𝑚 ≡ 0(𝑚𝑜𝑑10) , we will 

show that 

1

6𝑚3 −
3
10
𝑚
< ∑ (

1

𝑇2𝑘
2 +

1

𝑇2𝑘+1
2)

∞

𝑘=𝑚

 

 

                         <
1

6𝑚3 −
3
10
𝑚− 1

. 

Set 

𝑓(𝑘) = 6𝑘3 −
3

10
𝑘 , 

𝑔(𝑘) = 6𝑘3 −
3

10
𝑘 − 1. 

(2.2) 
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Observe that 

1

𝑇2𝑘−1
2 +

1

𝑇2𝑘
2 =

2𝑘2 + 2𝑘 + 1

𝑘2(𝑘 + 1)2(2𝑘 + 1)2
, 

1

𝑓(𝑘)
−

1

𝑓(𝑘 + 1)
=
18𝑘2 + 18𝑘 +

63
10

𝑓(𝑘)𝑓(𝑘 + 1)
 

and  

1

𝑔(𝑘)
−

1

𝑔(𝑘 + 1)
=
18𝑘2 + 18𝑘 +

63
10

𝑔(𝑘)𝑔(𝑘 + 1)
. 

 

We can easily check that 

1

𝑓(𝑘)
−

1

𝑓(𝑘 + 1)
<

1

𝑇2𝑘
2 +

1

𝑇2𝑘+1
2 

                                 <
1

𝑔(𝑘)
−

1

𝑔(𝑘 + 1)
. 

Summing inequalities from 𝑘 = 𝑚 to ∞, we get the 

inequality (2.2). 

 

For the case 𝑛 = 2𝑚 and 𝑚 ≠ 0(𝑚𝑜𝑑10), 

⌊
3

10
(𝑚 − 1)⌋ = ⌊

3

10
𝑚⌋. 

We will show that 

1

6𝑚3 −
3
10
𝑚
< ∑ (

1

𝑇2𝑘
2 +

1

𝑇2𝑘+1
2)

∞

𝑘=𝑚

 

                         <
1

6𝑚3 −
3
10
𝑚 −

3
10

.                     

Set 

𝑓(𝑘) = 6𝑘3 −
3

10
𝑘 , 

𝑔(𝑘) = 6𝑘3 −
3

10
𝑘 −

3

10
. 

Observe that 

1

𝑇2𝑘
2 +

1

𝑇2𝑘+1
2 =

2𝑘2 + 2𝑘 + 1

𝑘2(𝑘 + 1)2(2𝑘 + 1)2
, 

1

𝑓(𝑘)
−

1

𝑓(𝑘 + 1)
=
18𝑘2 + 18𝑘 +

63
10

𝑓(𝑘)𝑓(𝑘 + 1)
 

 

and  

1

𝑔(𝑘)
−

1

𝑔(𝑘 + 1)
=
18𝑘2 + 18𝑘 +

63
10

𝑔(𝑘)𝑔(𝑘 + 1)
. 

We can easily check that 

1

𝑓(𝑘)
−

1

𝑓(𝑘 + 1)
<

1

𝑇2𝑘
2 +

1

𝑇2𝑘+1
2 

       <
1

𝑔(𝑘)
−

1

𝑔(𝑘 + 1)
. 

Summing inequalities from 𝑘 = 𝑚 to ∞, we get the 

inequality (2.3). 

4. Conclusions 
We prove new formulas for integer part of 

inverse of sums and alternating sums of reciprocal 

triangular numbers. The results are showed in the 

paper. 
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