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Abstract 
In this paper, inverse problem with the use of optimization technique is proposed. Mathematical model 

of steady state magnetic field response is formulated. It is accomplished by using analytical method to solve 

boundary value problems in the wave number domain and then transforming back to the special domain. One 

dimensional geometric model of a two layered earth is considered. Probe sources of direct current are located 

perpendicularly in overburden. There is an ore body like a disc of radius c embedded in overburden. Magnetic field 

response is computed numerically to see their behavior against source-receiver spacing. The results show that, 

there are some relations between magnetic field responses and conductivity parameters or overburden thickness 

significantly as mentioned in some related works. Moreover, the magnetic field responses also depend on the size 

of disc as well. In our inversion process, conjugate gradient can be used to investigate radius of a disc embedded 

in overburden accurately. 
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1. Introduction  

Magnetometric Resistivity Method (MMR) 

was developed for more than four decades. 

Following the most popular article “On the theory of 

Magnetometric Resistivity  Methods(MMR)” conducted 

by Edwards(4), Edwards and et al.(5), Magnetometric 

Resistivity  Method (MMR) is based on the 

measurement of low-level, low‐frequency magnetic 

fields associated with non-inductive current flow 

underground surface. There are a few quantitative 

interpretational schemes for deriving resistivity from 

MMR data. The magnetic fields produced by the 

current in wire between the two electrodes effect to 

the ground surface and effect to any conductivity 

boundaries in the ground. Historically, for a surface 

MMR survey, the wire connecting the two current 

electrodes is typically plugged into ground surface 

and data measurements are made somewhere in 

between the electrode spread. Geometric model of 

ground is designed as a layered earth. Information 

concerning the conductivity distribution beneath the 

surface and the layered thickness are then extracted 

with the aid of optimization techniques. In our study, 

two layered earth, one dimensional conductivity 

ground profile are proposed. Here, we assume that  

 

there is an ore body embedded in binomially 

overburden at , 0d dz h h h=   . The shape of an 

ore body is assumed to be a disc (7). This assumption 

has been proposed in electromagnetic method but not 

in MMR history. With the use of conjugate gradient, 

the radius of a disc can be investigated. 

2. Governing Equations of Magnetic Field Due to 

a Semi-infinite Source of Two Layered Earth 

Model 

A semi-infinite vertical wire DC source 

carries an exciting current I is located on the ground. 

The electrode AB is placed deliberately at the 

interface z h=  of overburden and host. There is an 

ore body embedded in overburden region. The shape 

of an ore body is assumed to be a disc of radius c as 

mentioned by Siew and Yooyuanyong (7). The 

location of disc is at ,dz h= 0 dh h  as shown in 

Figure 1. The Maxwell's equations can be used to 

determine the magnetic field intensity H  as (2, 7) 

0E =                     (2.1) 
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and   

dH E J = + ,                                                    (2.2) 

where E is electric field intensity, H is magnetic 

field intensity,  is conductivity of medium,  is 

the Gradient operator and dJ is current density on 

disc. Using Eq. (2.1) and (2.2), for the case of no disc, 

yield 

1
0.H


  =                                                 (2.3) 

Figure 1 Geometric model of two-layered earth 

structure with a disc. 

In cylindrical coordinates ( ), , ,r z Eq. (2.3) can be 

expressed in terms of three unit vectors re , e and ze

as (8-11) 

( )
1 1 1 1 1r r z

r

H H H
rH e

r r r r z z r

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           

( )
1 1 1 1 1z r

HH H
rH e

z r z r r r r



 
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1 1 1 1 1
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z

HH H H
r e

r r z r r r z



   

         
− − − =    

             

where ,rH H and zH are magnetic field 

components in re , e and ze , respectively. Since the 

problem is axi-symmetric, and H  has only an 

azimuthal component in cylindrical coordinate, for 

simply, we use H to represent H thus, we obtain 

 

( )
1 1

0.
H

rH
z z r r r 

      
+ =   

      
               (2.4) 

 

For simply, we denote   as a function of depth z  

only, thus, Eq. (2.4) becomes 

2 2

2 2 2

1 1 1
0.

H H H H
H

z z z r r r r




        
+ + + − =    

          

            (2.5) 
 

We introduce the Hankel transforms pair (1), as 

1
0

( , ) ( , ) ( )H z rH r z J r dr 


=                  (2.6) 

and  

1
0

( , ) ( , ) ( ) ,H r z H z J r d   


=               (2.7) 

where 1J  is the Bessel function of the first kind of 

order one.  is a Hankel variable. Applying Eq. (2.6) 

to Eq. (2.5), we obtain 

 
2

2

2

1
0.

d H d dH
H

dz dz dz
 



 
+ − = 

 
               (2.8) 

3. Derivation of Magnetic Field Response from 

Transitional Ground Profile  

In the nature of the Earth structure, 

ground has various structures. A commonly 

structure that usually can be found is an   

overburden located on host rock. The      

conductivity of an overburden can be denoted by 

( )( ) 1 , 0 , 0 , , , 0,
m

nz a z z h a R m n Z n = +      

where R is the set of real number and Z is the set of 

integer. Host rock has high resistivity and the small 

positive value of constant conductivity can be 

approximately used. Substituting ( )( ) 1
m

nz a z = +  

into Eq. (2.8), we obtain ordinary differential 

equation as (9) 

( )

2
2

2
0.

1

d H m dH
H

dz n z dz
− − =

+
               (3.1) 

The solution to Eq. (3.1) is given by (9) 
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( )( )
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,                  (3.2) 

 

where 1A and 1B are arbitrary constants. 

2

m n

n

I +
 and  

2

m n

n

K +
 are the modified Bessel functions 

of the first and second kind of order 
2

m n

n

+
, 

respectively. 

4. Derivation of Magnetic Field Response from 

Homogeneous Ground Profile 
In host region, the conductivity is constant 

and denoted by ( ) ,z b z h =  , b and h are non-

negative real number. The Eq. (2.8) can be simplified 

to be 
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2
2

2
0

d H
H

dz
− = , 

and the solution is denoted by (9) 

 
( ) ( )

2 2( , ) ,z h z hH z A e B e  − − −= +                               (4.1) 

 

where 2A and 2B are arbitrary constants that can be 

determined by using boundary conditions. In our 

study, we consider for two-layered earth model as 

shown in Figure 1. We design the conductivity of 

ground for overburden and host rock, respectively, as 

( )( ) 1 , 0 ,
m

n
over z a z z h = +  

 
( ) ,host z b z h = 

 

where a and b are non-negative constants. For the 

first layer, magnetic field consists of three parts 

caused by ground, probe source and disc. The first 

part of magnetic field is responded from overburden 

and given by (9) 

( )

( )( )

( )( )

1

2
2
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2

1

( , ) 1
1

m n
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+
+

+
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   

The second part, magnetic field dues to the probe 

source (8), which is defined by Ampere’s law (9) 

( ), .
2

I
H r z

r
=

 

By using the Hankel Transforms (1) as described in 

Eq. (2.6), we obtain 

( ), .
2

I
H z


=

 

The third part, magnetic field dues to the disc 

embedded in overburden can be derived from the 

Maxwell’s equation as in Eq. (2.1) and Eq. (2.2). 

With the use of some algebraic operation, we obtain  

dH J =
. 

In cylindrical coordinates
( , , )r z

, we rewrite above 

equation in re , e and ze components as  

( )

.

r z r r z z

r z

r z

e
e e H e H e H e

r r z

J e J e J e



 







   
+ +  + + 

   

= + +
 

Since the magnetic field has only e component, 

thus, the above equation becomes 

( )
d

r r

d ove

H
J E

z


 


= = −



( ) ( ) ( )I c r a z h

r

  − −
= , 

where 
d is conductivity on disc, 

d

rE is electric field 

on disc in radial direction, ( )I  is electric current on 

disc, c is radius of disc and   is Dirac Delta function. 

Therefore, the magnetic field in overburden can be 

written as 

( ) 2( , ) 1
2

m n

n
over

I
H z z



+

= + + 
 

( )( ) ( )( )
( )

1 1

2 2

1 1m n m n

n n

I c
A I z B K z


 


+ +

 
+ + + + 

 
. 

For the second layer, host region, the magnetic field 

solution can be written by 

( ) ( )

2 2( , ) z h z h

hostH z A e B e  − − −= +
. 

5. Boundary Conditions 

The arbitrary constants in magnetic field 

solutions obtained from equation (3.1) can be found 

by using the following boundary conditions (10, 11): 

(1) The magnetic field is continuous at the interface 

of each layer 

( , ) | ( , ) |over hostz h z h
H r z H r z− += =

=
 

(2) The radial component of electric field is 

continuous at the interface of each layer 

( , ) ( , )lim lim
r r

over host

z h z h

E r z E r z
− +→ →

= ,  

where 
r

overE and 
r

hostE are radial electric fields in 

overburden and host rock, respectively. 

(3) As the depth z tends to infinity, the magnetic 

field tends to zero. 

(4) Since no current across the Air-Earth interface, 

then 0( ) ( , ) | 0,z

over over zz E r z = = where 
z

overE is an 

electric field in vertical direction in overburden.  

Applying the above boundary conditions and taking 

inverse Hankel Transforms as in Eq. (2.7), with 

1, 2, 1,m n a= = = 0 , 3b h+→ =  we obtain the 

magnetic field solutions on the ground surface as 
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( ) ( )
( )
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where 
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 , 

and
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4 4
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4 4
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 
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6. Numerical Experiments 

The magnetic field as described in Eq. (5.1) 

can be computed by using Chave’s Algorithm (3). In 

general, the behavior of magnetic field response from 

high conductive ground will be very strong. We hope 

to see some signal from graph to indicate the 

information underground surface such the thickness 

of overburden and conductivity parameters. In our 

numerical experiments, we perform the size of the 

conductive disc effect to magnitude of magnetic field 

to support our mathematical model. For our initial 

case, we start with overburden thickness

3 ,h meters= the conductivity parameters 

1 / , 0 / ,a S m b S m= =  1, 2.m n= =  ( )I  is electric 

current on disc which is approximately to be the 

maximum value of the electric current flow from 

probe source. The radius of disc is varied such

0,1, 2, 3c m= . Numerical results for magnetic 

fields on ground surface are performed as in Figure 

2. 

 

Figure 2 Graph of magnetic fields against source-

receiver spacing, using 1I = Ampere . 

As shown in Figure 2, the curve of 

magnetic fields against source-receiver spacing ( )r

are plotted at various size of disc, 

0,1, 2, 3c meters=  with the used of electric current 

( )I equal to 1 Ampere . We can see that the 

magnetic fields drop very fast to zero as the source-

receiver spacing is increased. This corresponds to   

the work done by Khonkhem and Yooyuanyong (6). 

At larger size of disc, the magnetic field is stronger 

response from ground and can be shown in Figure 2. 

For our second case, the electric current is varied, 

1, 2, 3I Amperes= . Radius of disc is given by

3 .c meters= Overburden thickness is 3h meters=  

and the conductivity parameters are denoted by

1 / , 0 / ,a S m b S m= = 1, 2.m n= =  ( )I  is electric 

current on disc which is approximately to be the 

maximum value of the electric current flow from 

probe source. Numerical results for magnetic fields 

on ground surface are performed as in Figure 3. 

 

Figure 3. Graph of magnetic fields against source-

receiver spacing at various electric currents. 

7. Inversion Process 

The most important problem in mining is 

how much of an ore buried under ground. In our 

context here, the calculation and measurement of 

magnetic fields are compared to find the size of ore 

body. Conjugate gradient method is an algorithm for 

our numerical solution of particular systems of linear 

equations. The conjugate gradient method is 

implemented as an iterative algorithm. The relative 

error of magnetic fields are used to terminate the 

iterative process. In our inversion example, synthesis 

data is formulated by using Eq. (5.1). The parameters 

used in our inversion example are the electric current

3I Amperes= , radius of disc 3c meters= , 

overburden thickness 3h meters=  and the 

conductivity parameters denoted by

1 / , 0 / , 1, 2.a S m b S m m n=  = = ( )I  is electric 

current on disc which is approximately to be the 

maximum value of the electric current flow from 

probe source. Two percent of Gauss error is added to 

perturb our data as noise signal. Inversion process is 

started by using initial guess 1 .c m=  As shown in 
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Table 1, conjugate gradient is used only 6 iterations 

to get solution accurately. To confirm our 

mathematical model, the second example is proposed 

by using initial guess 5 .c m=  The results are shown 

in Table 1 accurately with only 6 iterations as well on 

Desktop Intel®Core™I5-8250U CPU@1.8 GHz. 

The speed of convergence is similar to the work done 

by Yooyuanyong (9).

Table 1 Inversion results of conjugate gradient using initial guess c=1 m. and c=5 m. 

Calculation 

Results 

1st(initial guess) 2nditeration 

 

3rditeration 

 

4thiteration 

 

5thiteration 

 

6thiteration 

 

Radius of 

disc 

c=1.000 c=4.372 c=3.460 c=2.790 c=2.899 c=3.001 

Relative 

error 

5.65E-03 9.62E-04 1.27E-04 4.49E-05 6.54E-07 2.26E-08 

Radius of 

disc 

c=5.000 c=4.175 c=1.966 c=2.644 c=2.949 c=3.001 

Relative 

error 

9.01E-04 6.75E-04 5.57E-04 4.86E-05 2.26E-07 2.25E-08 

8. Conclusions 

In this paper, we propose a new approach 

to investigate an ore body buried under the ground by 

using Magnetometric Resistivity Method (MMR). 

Following Siew and Yooyuanyong (7) in 

electromagnetic method, the body of an ore is 

assumed to be a disc of radius c at 
dz h= beneath 

ground surface in overburden. It is accomplished by 

solving a boundary value problem in the wave 

number domain and then transforming back to the 

spatial domain. We consider two layered Earth model 

in our study. The magnetic field can be computed to 

see the behavior by using Chave’s algorithm (3). 

Numerical results due to Direct Current source on the 

ground surface are shown in Figure 2 and Figure 3. 

In our forward modeling, with the use of varying 

radius of the disc 0,1, 2, 3c meters= , the curves of 

magnetic field drop rapidly as we increase the source-

receiver spacing ( )r . With the use of three values of 

electric current 1, 2 3I and Amperes= , the curves 

of magnetic field drop in a similar manner. 

Unfortunately, the curves of magnetic field do not 

give any fluctuation related to the conductivity 

profile of the ground. There are very few relations 

between magnitude of magnetic fields and 

conductivity parameters which imply the conductive 

of ground as mention in above section. In our 

inversion for radius of the disc, conjugate gradient is 

used. Two examples are performed to show very 

good convergence of the solutions at 6 iterations 

only. 
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