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Abstract

In this paper, we introduce the modified algorithm in frame of a CAT(0) space for total asymptotically

nonexpansive mapping and prove strong convergence. Moreover, we have numerical example for the proposed

algorithm to compare speed of convergence among the existing iterative algorithm.
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1. Introduction

A CAT(0) space plays a primary role in
various mathematic areas [1-3]. Moreover, it is also
beneficial to biology and computer science [4-5]. A
metric space X is a CAT(0) space if it is
geodesically connected and if every geodesic
triangle in X is at least as ‘thin’ as its comparison
of triangle in the Euclidean plane. The CAT(0)
space is the well- known method that provides
complete, simply connected Riemannian manifold,

showing non- positive sectional curvature. The
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complex Hilbert ball with a hyperbolic metric is the
CAT(0) space [6]. Other examples of the CAT(0)
space include preHilbert spaces, R-trees [1] and
Euclidean buildings [7].

Kirk proposed fixed point theory in a
CAT(0) space [8-9]. He presented every nonexpansive
mapping defined on a bounded closed convex
subset of a complete CAT(0) space, always having
a fixed point. Since then the fixedpoint theory in a
CAT(0) space has been continueously developed,

there have been a lot of reports for the CAT(0) space
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application e.g., [81, [9], [10], [11], [12], [13], [14],
[15], [16]. The Noor iteration [17] is defined as

u, e K and

z, =a-nou +n Tu,
y, =0-9 u +8 Tz, (1.1)

xn+l =(1_an )u” +§n Tyn

for all n>1, where {z";n}, {9,} and {n,} are
sequences in [0,1] . If we take SH =m, =0 forall
n, (1.1) reducing to the Mann iteration [18], and
n, =0 forall n, (1.1) is taken that reduces to the
Ishikawa iteration [19].

The new two-step iteration [21] is defined
as u, € Kand

y, =0-98 u +9”Tun,

(1.2)
xn+l =(I_§n>yn+E-’nTyn

for all n>1, where {&n}, {9,} and {n,} are
sequences in [0,1].
Phuengrattana and Suantai [22] defined

by the SP-iteration as follows:

z :(l_nll)u'1+nnTun’

n

y, =0-8)z +9 Tz, (1.3)

x71+] :(1_§n)yn+§nTyn

forall n=1, where u, eK,{&n}, {9,} and {n,}
are sequences in [0,1]. They reported that the
Mann, Ishikawa, Noor and SP-iterations are
equivalent and the SP-iteration converges better
than those of the others for the continuous and

nondecreasing functions class. The new two-step

and Mann iterations are clearly special cases of the
SP-iteration.

Kitkuan and Padcharoen [26] have
modified SP-iteration(1.3) in frame of a CAT(0)

space as follows:

Zn =(l_n/1)un®nnTun’
y, =0-9)z ®3 Tz, (1.4)

xn+1 :(1_&n)yn®&nTyn

forall n>1,where K isanonempty convex subset
of a CAT(0) space, u, € K, {ﬁn} , {3,,} and {T]n}
are sequences in [0,1] .

In this paper, we introduce the modified
algorithm in frame of a CAT(0) space for total

asymptotically nonexpansive mapping as follows:
z, :(1—8ﬂ>un®8ﬂT"uﬂ,
y =T z, (1.5)

x71+1 = én T” Zn ®(1 - E—"I)Tn yn

2. Preliminaries and lemmas

The definitions and known results are
recalled in the existing literature on this concept. K
is a nonempty subset of a CAT(0) space X and
T: K — K is a mapping. A point u € K is called a
fixed pointof 7" if Tu=u.

Let we recall some basics for nonlinear
mappings on metric spaces. Let (X ,d) be a metric
space and K be its non-empty subset. Then
T:K — K issaid a:

» Asymptotically nonexpansive if for a
sequence {an} —[0.00) with lim  a =0such

that
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d(T"u, Tny) <1+ a, )d(u,y)
forall u,yeKand n>1.

* Uniformly L-Lipschitzian if there exist
L>0such that d(T"u, T"y) < Ld(u, y) for all

u,yeKand n>1.

Definition 2.1. [33] Let (X,d) be a CAT (0)
space, K be a non-empty closed convex subset and
let 7: K — K be a mapping. 7 is said to be total
asymptotically nonexpansive mapping if there exist
nonnegative real sequences {an}, {bn} with
a —0, b —0 andstrictly increasing continuous
function &: [0,00) - [0,00)With £(0) =0 such that
d(T"u, T"y)<d(u,y)+a E(d(u,»))+b, for all
u,yeKand n>1.

Let (X,d) be ametric space. A geodesic
path joining u€ X to y€X (or more briefly, a
geodesic from u to y)is a map ¢ from a closed
interval [0,6]cR to X such that #(0)=u,
t(h)=y and d(t(a), t(a") =la—a'] for all
a, a'e [O,b] . A map { is an isometry and
d(u,y)=0b. The t image is called as a geodesic
(or metric) segment joining u and y. When it is
unique, this geodesic is denoted by [u, y] . If every
two points of X are joined by a geodesic, the
space, (X,d) is a geodesic space. More over, X
is a uniquely geodesic space when there is exactly
one geodesic joining u to y foreach u,y € X .

A geodesic triangle A(u ,u,,u,)in a
geodesic metric space (X,d)consists of three
points in X (the vertices of A ) and a geodesic
segment between each pair of vertices (the edges of

A ). A comparison triangle for the geodesic triangle

Alu,u,,u) in (X,d) is a triangle
Au,u,,u)=A(w,u,w) in the Euclidean
plane R’ such that dIR2 (ﬁl_,ﬁj)=d(ui,uj) for
i,jell, 2, 3}

A geodesic metric space is said to be a
CAT(0) space [1] if all geodesic triangles of
appropriate size satisfy the following comparison
axiom.

CAT(0): A is defined as a geodesic
triangle in X and A as a comparison triangle for
A . If for allu,y €A and all comparison points

u,y €A, A satisfies the CN
d(u,y)=dp. (u,y).

inequality:

Finally, we observe that if u,y ,y,are
points of a CAT(0) space and if y is the midpoint
of the segment [yl ,yz] , then the CN inequality
implies

2 <1 2 1 2
du, y)) <5du,y) +5du,y,)

2.1
1 2
_Xd(yl ’yz) :

The equality holds for the Euclidean
metric. In actual fact [1], if and only if it satisfies
inequality (2.1) (which is known as the CN
inequality of Bruhat and Tits, a geodesic metric

space is a CAT(0) space [23]).The ensuing lemmas

can be found in [12].

Lemma 2.2.[12] Let X be a CAT(0) space. Then
d(1-e)x®@ey,z) <(1—¢€)d(x,z)+ed(y,z) for
all ef0,1] and x,y,z€ X .

Lemma 2.3.[12] Let X be a CAT(0) space.

Then
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d(1-e)x®@ey,z)’ <(1—g)d(x,2)" +ed(y,2)’
—e(1-8)d(x,y)’
forall e e [0,1] and x,y,ze X .
Now, some definitions are recalled. X is
a complete CAT(0) space and {un} is a bounded

sequence in X . For x € X, set

r(x,{un}) =limsupd(x,u ).

n—0

The asymptotic radius r({un}) of {un} is defined
as
r({un}) = inf{r(x,{un DE xeX} .

The asymptotic center A({un}) of {un} is the set

A({un}) = {xeX: r(x{u, PD=r({u,}) }
It is known that in a complete CAT(0) space,
A({un}) consists of exactly one point (see [10]).
Also, every CAT(0) space has the Opial property,

ie., if {un} isasequencein K and A—lim u =x,
n—>»00

then for each y#xek

lim sup d(un ,x) < lim sup d(u" ).

n—»om n—ow

Definition 2.4. [8] A sequence {u"} in a CAT(0)
space X is convergent to x € X if x is the unique
asymptotic center of {un} for every subsequence

{u } of {u }.For this case, A—lim u =x and
" " n—>00

x is given by the A= limit of {u } .

The concept of A— convergence in a
fundamental metric space was reported by Lim [25].
Kirk and Panyanak [16] recently used the notion of
A— convergence begin by Lim [25] to prove on the
CAT(0) space analogous of some Banach space

results, which relate to weak convergence.

Furthermore, Dhompongsa and Panyanak [ 12]
acheived A— convergence theorems for the Picard,

Mann and Ishikawa iterations in a CAT(0) space.

Lemma 2.5.[12]

(i) Every bounded sequence in a complete CAT(0)
space always contains a A— convergent subsequence.
(ii) Let K be a nonempty closed convex subset of a

complete CAT(0) space and let {u } be a bounded

sequence in K . Then the asymptotic center of {un }
isin K.

(iii) Let K be a nonempty closed convex subset of
a complete CAT(0) space X and let f: K —> X
be a nonexpansive mapping. Then the conditions,
{un} A— converges to x and d(un,{un})—>0 ,

implyxe K and f(x)=x.

Lemma 2.6. [24] Define {an}, {kn} and {Cn} as

the nonnegative numbers sequences such that
a, <(+A)a +c

for all n>1. If X,2A, <0 and Xeic, <O ,

then lim” La, exists. Whenever, if there exists

—

a subsequence {am.} c {an} such that {a }—) 0

ni

as i =00, then lim a =0.
n—0 n

Lemma 2.7. [20] Define x as a point in a CAT(0)
space (X,d) and {tn} to be a sequence in a closed
interval [b,d] for some b,d €(0,1). Assume that

{“n} and { yn} are two sequences in X such that

lim supd(u ,x)<c
n—>0 "

lim supd(y’z ,x)<c
n—»o0

lim d((1 -t )u” (—Btﬂyn,x) =c
n—»o0

for some ¢20.Then lim supd(u ,y )=0.
n—»0
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Lemma 2.8. [28] Assume (X,d) is a complete
CAT(0) space. Consider a uniformly continuous,
total asymptotically nonexpansive mapping self
mapping 7 on a nonempty, convex, closed and
bounded set K < X . Then T has a fixed point,

and the fixed point set F(T) is closed and convex.

Lemma 2.9. [28] Assume (X ,d) is a complete

CAT(0) space, and C a closed, convex subset of
X . Define 7': K — K is a uniformly continuous

and total asymptotically nonexpansive mapping. For

every bounded sequence {un} c K such that,
lim d(u" ’T”n) =0and A-— lim u =gq, Then
n—»00 n—»0

Tg =q.

Lemma 2.10. [29] For the complete CAT(0) space
(X,d), every bounded sequence in X has A—

convergent subsequence.

Lemma 2.11. [30] Define {un} as a bounded
sequence in a closed convex subset C of X . So,
the asymptotic center of {un} is in K, provided

that (X,d) is a complete CAT(0) space.

Lemma 2.12. [31] Assume that (X.d) is a
complete CAT(0) space. Let {u, | be a bounded
sequence in X . 1f A(fu D={p}, {w} is a
subsequence of {u | such that A({w |)={w}

and a’(un ,w)converges, then p=w.

3. Results and Discussion
Theorem 3.1. Define C as a bounded closed
convex subset of a complete CAT(0) space (X,d)

and 7: K — K as auniformly L -Lipschitzian and

({an } , {bﬂ },(p) - total asymptotically nonexpansive
mapping. Assume that the following conditions are
satisfied:

(i) X2 a, <o and 2,2 b, <0 ;

(ii) there exist constants s , k with 0 <s < é;n <k<l1
forevery ne N ;

(iii) there exist constants g ,e with 0<g<8 <e<l
forevery ne N ;

(iv) there exists a constant T such that y(z) <1t
forevery 1 20.

Then the sequence {u”} defined by (1.5) A-—
converges to a fixed point of 7.

Proof. By using Lemma 2.8, we get F(T)= .

Next, we part the show that into three steps.

Step 1. lim supd(u ,u) is proved to exist for all
n—»0

ue F(T), where {un} is defined as (1.5). Let
ue F(T)and neN. So,
d(z u)=d((1-9 u ©9 T'u ,u)
<=9 )d(u u)+9 d(T"u_u)
<=9 )d(u w+9 {(1+aDd u)+b }
<(+av)d(u u)+b . 3.1
Also, we have
d(yn,u) :d(T”zn,Tnu)
S(1+a"’c)d(zn,u)+bn . 3.2

By (iv) and (3.1) then,
d(y, ) <(+a0{(+aDd 0+ }
+b . (3.3)

n

By from (1.5) and lemma 2.2, then we get
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dx  .u)=d(E Tz ®1-E)T"y u)
<Ed(T'z u)+(1-€ )d(T"y u)
=€,d(T"z . T'W)+(1-& )dET"y ,T"u)
<g {U+avd(z,.u+,}
+1-e){+and(y, . +b, }
= (I+at)d(z, ,u)+&b
+(1-& Y1 +a Dd(y u)+(1-E b
=€, (+a1d(z, )+(1-¢)
X(1+a1)d(y u)+E b . (3.4)
Substituting (3.2) to (3.4), then we get

d(x u)Sﬁ,”(l-f-an‘r)d(zn,u)

-
+(1-¢ )1+ an‘r){(l +aD)d(z u)+b }
+&,b,

=£ (I+a D)d(z ,u)+(1-& )1+ a"l-)2
Xd(z ,u)+(1-& )b +& b
=€, (1+aDd(z u)+(1-& M1 +a 1)
Xd(z ,u)+b
<& (1+a1) d(z uw)+(1-& Ml+ar1)
Xd(z ,u)+b

~(1+a 1) d(z ,u)+b, . (3.5)

By (iv) and (3.5) we have

d(x,, ) <(+a0) {(+a)du 0 +b | +b,
~(1+a,0) d(u )+ {1 +av)’ +1}b,
—(1+¢ )d(u u)+0 . (3.6)

where (p:3(a”t)+3(ant)2 +3(anr)3 and

9n={(l+anr)2+l}bn. By ( iv) , we get

2oiia, <o and 2.l b <o it follows that

2oi@, <o and 2,20, <oo. Now, from (3.6)

and lemma 2.8, consequently lim supd(u_,u)
n—»0

exists.

Step 2. Next, we will show that lim d (un ,u)=0.
n—»0

By step 1 we have lim supd(u ,u) exists and
n—»0

{un} is bounded without loss of generality, we may

suppose that ¢ = lim d(u, ,u)>0. 3.7

n—»0

From (3.1) we have lim d(z ,u)<c. (3.8)

n—>o0
By (iv) we have
d(T"z,,u)<(1+a)d(z, ,u)+b . (3.9)
From (3.8) and (3.9), we get

lim supd(T"zn ) <c
n—»0

(3.10)
and

d(T"u )< +av)du, ,u)+b . (3.11)

Then,

dx u)=d(E Tz ®1-E)T"y ,u)

nt1?
<Ed(T'z u)+(1-8 )d(T"y u)
=& d(y,,w)+(1-€ )d(T"y ,T"v)
<g d(y a)+(1-E){(+ad(y w)+b |

—{e d(y +(1-E)1+aD}d(y )

+(1-8 )b . (3.12)
Thus, c¢=limsupd(y,,u). (3.13)
n—>»0
We have
d(yn,u)ﬁ(l+an‘c)d(zn,u)+bn. (3.14)
Then,
cSlimsupd(zn,u). (3.15)

n—»0
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Hence,

¢ =limsup d(zn Ju)
n—>0

:limsupd((l—S”)un (—DSWT"u”,u). (3.16)

n—»o0

By Lemma 2.7, we have

lim sup d(u”,Tnun) =0. (3.17)

n—»o0

Similarly, limsup d( Y, T v, )=0 and

n—»0

limsupd(zn,Tnzn)=0. (3.18)

n—»00

Hence, we get

d(xf1+l ,U) = d(E-’nT”Zn @(1 - an )Tnyn ’yn)

< E.,nd(yn Y, ) + (1 — an )d(T'lyn v, )
—>0asn—>o0 . (3.19)
Similarly, we get

d(yn,zn)zd(T"zn,zn) —>0 as n—o  (3.20)
and
d(zn,un)Zd((l —9n )u" @SHT"un,u)

<(1- SM )d(un U )+ S”d(T"u” )

—0 as n— 0. (3.21)

Since T is uniformly L-Lipschitzian, we have

1

d(Tun ’un ) < d(un ’xn‘H ) + d(xn‘H ’ T”+ xn+1 )
4 d(Tn+lx”+l i Tn‘Hun )
+ d(T”Jr]un ,un)

S(1+L)d(un,xn+l)

nt1

+d(xn+l ’T xn+] )

+Ld(Tnun,un)
—0 as n—>® (3.22)
which implies

limsupd(T"u ,u )= 0. (3.23)

n—»0

The proof is completed.

Step 3. After that, we conclude that sequence {un}
A—converges to a fixed point of 7. Indeed, we

proof thatz, :z{ }U{ }A({un} cT7(T)) and
9,y S,

z, (u ) are collected of exactly one point. Let
wez, (u ). By the definition of z, (u ), there
exists a subsequence {wn} of {un} such that
A({w"})z{w}.From Lemma 2.10, there is a

subsequence {un} of {wn} which A-limu =u

n—»o0

and u € C.By Lemma 2.9, we have u € F(T). Since
{d (wn ,u)} converges, by Lemma 2.11, we get
w=u.Thus z,(u )< F(T).Finally, we prove
z (u ) comprise exactly one point. Let {wn} be a
subsequence of {u"} by the uniqueness asymptotic
center such that A({wn }) =wand allow
A({wn}):{x}.since w=ueF(T) and
{d (u, ,u)} converges, by using Lemma 2.12, we see
that x=u€F(T), Therefore z,(u )= {x}. 1t
refers to completes of the proof O

By using the similar technique as in the
proof of Theorem 3.2 as the previous report [32],
we get strong convergence theorem without the

proof immediately.

Theorem 3.2. Let X,7,K, (i), (i), (ii), (iv),
{&}1},{9”} satisfy the hypothesis of Theorem 3.1.
Then, the sequence {u”} which is defined as (1.5)

converges strongly to a fixed point of 7" if and only

if liminfd(u” ,F(T))=0, where

n—>0

d(u ,F(T)=0,inf {d(u ,u):ue F(T)].
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The concept of special self mapping is
called Condition(I) proposed by Senter and Dotson
[27] as follows.

Definition 3.3. [27] Let (X,d) be a CAT(0) space
and K a nonempty subset. A self mapping T with
F(T)#0 is said to satisfy condition (I) if there is a
nondecreasing function f: [0,00) - [O,oo) with
f(0)=0and f(I)>0for all [>O0Osuch that

d(x,Tx) = f(d(x,F(T))) forall xeKk.
By using Condition (/) with the similar
technique as in the proof of Theorem 3.3 in Thakur

et al. ,[32] we obtain the following result.

Theorem 3.4. Let X,T.K, (i), (i), (iii), (iv),
{E;" } ,{9"} satisfy the presumption of Theorem 3.1
and let self mapping of T satisfy Condition (I). Then
the sequence {un} which is defined as (1.5)

converges strongly to a fixed point of 7.

Definition 3.5. Let (X,d) be a CAT(0) space and
K a nonempty subset. Self mapping 7 is
semicompact if K is closed and for all bounded

sequence {un} c K with lim d(un s Tu") =0, there
n—o0

exists a subsequence {xn} of {un} such that

j

{x" }—)ueK.

Using a similar technique as in the proof
of Theorem 22 in Karapinar et al. [28], we obtain

the following results.

Theorem 3.6. Let X,7T,K . (i), (ii), (iii), (iv),
{én},{Sn} satisfy the hypothesis of Theorem 3.1

and define T as semicompact. Then, the sequence

{un} , defined as (1.5) converges strongly to a fixed

pointof 7.

4. Numerical Example

Let X =R be a Euclidean metric space and K =1,
10]. Let 7:IR — R be defined as Tx:\/3 x +4.
It is noticeable that T is a continuously uniform L-
Lipschitzian and F(T)=1{2} Next, we present that
T is total asymptotically nonexpansive mapping on
[1], [10].

Proof. Observe that the function

) =/x"+4 —x, Vxe[1,10] has the

derivative

(2x) |-1, Vxe[1,10].

1 1
f1x)=7| 77—
3 3'(){2 +4)2
1 1
Since x >1, we have 3 T(%c)
\3/(x +4)

and so, f'(x)<1. Let x,y€[1,10] with x<y

<1

which implies that

F ()< f(x).S0,
{/y2+4—y3{/x2+4—x
\3/y2+4 —‘\3/x2+4 <y—x

\3/y2+4—\3/x2+4 S|y—x|

or
\3/)/2 +4—x +4] < |x—y|.

Hence, we have |Tx—Ty| < |x—y|.

Therefore, T is nonexpansive mapping referring that
T'is total asymptotically nonexpansive mapping. ]
Let u, =9 . By using MATLAB reckon the iterates
of algorithm (1.4) and our algorithm (1.5) with two

different control conditions conditions
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_ 1 5 _l £ = On and we obtain numerical results in Table 1, Figure 1,
=35 T S T 10041 ,
4 5 Table 2 and Figure 2.
n n n
M= 0nr1 T l0mes & T Tong1s TR

Table 1 By using MATLAB reckon the iterates of algorithm (1.4) and our algorithm (1.5) with two different

1 1 9n
control conditions conditions 1 = EPRT 9 = o and § = Tonsl
1 1 9n
NS S T S T ona
Iterative scheme
Iterate Algorithm (1.4) Our Algorithm (1.5)
u, 9.0000 9.0000
X, 2.9678 2.0000
X, 2.2612 -
x, 2.0807 -
X, 2.0807 -
X 2.0091 -
X, 2.0032 -
s 2.0011 -
x, 2.0004 -
) 2.0002 -
CPU Time (s) 0.0245 0.0067

Values of x,,

— Algorithm (1.4)
= Qur algorithm (1

.5

)

5 6

Number of iterations

8 9 0

Figure 1 Graphical analysis our algorithm (1.5) faster than algorithm (1.4) in case

1
LT

1
=—, and
n’ 5,

9

n

In

T 10n+1°
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Table 2 By using MATLAB reckon the iterates of algorithm (1.4) and our algorithm (1.5) with two

different control conditions conditions n =

4n n q
In+1’ % = Tonss N 5,

S5n
10n+1"

4n n S5n
=01 5 T Tones o T Tomtl

Iterative scheme

81 —— Our algorithm (1.5)

Values of x,

; m
Number of iterations

Iterate Algorithm (1.4) Our Algorithm (1.5)
u 9.0000 9.0000
X, 5.4793 2.0000
X 3.6701 -

Xy 2.7845 -
X, 2.3612 -
X, 2.1639 -
x, 2.0737 -
X, 2.0329 -
Xy 2.0147 -
Y10 2.0065 -
X, 2.0029 -
X 2.0013 -
X3 2.0006 -
Yia 2.0003 -
Xis 2.0001 -
CPU Time (s) 0.0066 0.0058
— Algorithm (1.4)

Figure 2 Graphical analysis our algorithm (1.5) faster than algorithm (1.4) in case

4n n q Sn
L TR L T
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From Table 1, Figure 1, Table 2 and Figure
2 show that the numerical results of algorithm (1.4),
and our algorithm (1.5) which our algorithm (1.5)
faster than algorithm ( 1. 4) in case number of

iterations and CPU Time (second).
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