
Received:  
Revised: 
Accepted: 

March 02, 2020 
March 19, 2020 
April 27, 2020 

 

Science and Technology 
RMUTT Journal 

 

Generalized Nonexpansive Mappings in CAT(0) spaces 

Pim Sanboonsiri1*  and  Paiwan Wongsasinchai1 

1Department of Mathematics, Faculty of Science and Technology, 
Rambhai Barni Rajabhat University, Muang, Chanthaburi 22000, Thailand  

*E-mail: pim.m@rbru.ac.th 

Abstract 

In this paper, we introduce the modified algorithm in frame of a CAT(0) space for total asymptotically 
nonexpansive mapping and prove strong convergence. Moreover, we have numerical example for the proposed 
algorithm to compare speed of convergence among the existing iterative algorithm. 
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1. Introduction 
A CAT( 0)  space plays a primary role in 

various mathematic areas [1-3]. Moreover, it is also 
beneficial to biology and computer science [4-5]. A 
metric space X  is a CAT( 0)  space if it is 
geodesically connected and if every geodesic 
triangle in X  is at least as ‘thin’ as its comparison 
of triangle in the Euclidean plane.  The CAT( 0) 
space is the well- known method that provides 
complete, simply connected Riemannian manifold, 
showing non- positive sectional curvature.  The 

complex Hilbert ball with a hyperbolic metric is the 
CAT(0)  space [6] .  Other examples of the CAT(0) 
space include preHilbert spaces,  R- trees [ 1]  and 
Euclidean buildings [7].  

Kirk proposed fixed point theory in a 
CAT(0) space [8-9]. He presented every nonexpansive 
mapping defined on a bounded closed convex 
subset of a complete CAT(0) space, always having 
a fixed point. Since then the fixedpoint theory in a 
CAT(0) space has been continueously developed, 
there have been a lot of reports for the CAT(0) space 
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application e.g., [8], [9], [10], [11], [12], [13], [14], 
[15], [16]. The Noor iteration [17] is defined as 
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for all 1n , where  n ,  n  and  n  are 
sequences in  0,1 . If we take 0n n =  =  for all 
n , (1.1) reducing to the Mann iteration [18], and 

0n =  for all n , (1.1) is taken that reduces to the 
Ishikawa iteration [19].  
 The new two-step iteration [21] is defined 
as 1u K and  
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for all 1n , where  n ,  n  and  n  are 
sequences in 0,1   . 
 Phuengrattana and Suantai [22] defined 
by the SP-iteration as follows: 
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for all 1n , where 1u K , n ,  n  and  n  
are sequences in 0,1   . They reported that the 
Mann, Ishikawa, Noor and SP-iterations are 
equivalent and the SP-iteration converges better 
than those of the others for the continuous and 
nondecreasing functions class. The new two-step 

and Mann iterations are clearly special cases of the 
SP-iteration. 
 Kitkuan and Padcharoen [26] have 
modified SP-iteration(1.3) in frame of a CAT(0) 
space as follows: 
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for all 1n , where K  is a nonempty convex subset 
of a CAT(0) space, 1u K , n ,  n  and  n  
are sequences in  0,1 .  
 In this paper, we introduce the modified 
algorithm in frame of a CAT(0) space for total 
asymptotically nonexpansive mapping as follows: 
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2. Preliminaries and lemmas 
 The definitions and known results are 
recalled in the existing literature on this concept. K  
is a nonempty subset of a CAT(0) space X and 

:T K K→ is a mapping. A point u K is called a 
fixed point of T  if Tu u= .  
 Let we recall some basics for nonlinear 
mappings on metric spaces. Let ( , )X d  be a metric 
space and K  be its non-empty subset. Then 

:T K K→ is said a: 
• Asymptotically nonexpansive  if for a 

sequence    ),0na    with lim 0n na
→

= such 
that  
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( ,  ) (1 ) ( , )n n
nd T u T y a d u y +  

for all ,u y K and 1n . 
 • Uniformly L-Lipschitzian if there exist 

0L  such that ( ,  ) ( , )n nd T u T y Ld u y for all 
,u y K and 1n . 

Definition 2.1. [33] Let ( , )X d  be a CAT (0) 
space, K  be a non-empty closed convex subset and 
let :T K K→ be a mapping. T  is said to be total 
asymptotically nonexpansive mapping if there exist 
nonnegative real sequences   ,  na  nb  with 

0,  b 0n na → →  and strictly increasing continuous 
function  )  ): , ,0 0  →  with (0) 0 = such that  

( ,  ) ( , ) ( ( , ))n n
n nd T u T y d u y a d u y b +  +  for all 

,u y K and 1n .  
 Let ( , )X d  be a metric space. A geodesic 
path joining u X  to y X  (or more briefly, a 
geodesic from u  to y ) is a map t  from a closed 
interval  0,b   to X such that (0)t u= , 

( )t b y=
 

and ( ( ),  ( ))d t a t a a a= −   for all 
 ,  0,a a b . A map t  is an isometry and 

( , )d u y b= . The t  image is called as a geodesic 
(or metric) segment joining u  and y . When it is 
unique, this geodesic is denoted by  ,u y . If every 
two points of  X  are joined by a geodesic, the 
space, ( , )X d  is a geodesic space. More over, X  
is a uniquely geodesic space when there is exactly 
one geodesic joining  u  to y for each ,u y X .  

A geodesic triangle 1 2 3( , , )u u u in a 
geodesic metric space ( , )X d consists of three 
points in X (the vertices of ) and a geodesic 
segment between each pair of vertices (the edges of 

). A comparison triangle for the geodesic triangle 

1 2 3( , , )u u u  in ( , )X d  is a triangle 

1 2 3 1 2 3( , , ) ( , , )u u u u u u=  in the Euclidean 
plane 2  such that 2 ( , ) ( , )i j i jd u u d u u= for 

  . , 1,  2,  3i j  
 A geodesic metric space is said to be a 
CAT(0) space [1] if all geodesic triangles of 
appropriate size satisfy the following comparison 
axiom. 
 CAT(0):  is defined as a geodesic 
triangle in X  and  as a comparison triangle for 

. If for all ,u y  and all comparison points 
,u y  ,  satisfies the CN  inequality: 

2( , ) ( , ).d u y d u y=  
 Finally, we observe that if 1 2, ,u y y are 
points of a CAT(0) space and if 0y  is the midpoint 
of the segment  ,1 2y y , then the CN inequality 
implies 

 +

−

2 2 2
0 1 2

2
1 2

1 1
2 2

1
4

( ,  ) ( , ) ( , )

( , ) .

d u y d u y d u y

d y y
              (2.1) 

 The equality holds for the Euclidean 
metric. In actual fact [1], if and only if it satisfies 
inequality (2.1) (which is known as the CN 
inequality of Bruhat and Tits, a geodesic metric 
space is a CAT(0) space [23]).The ensuing lemmas 
can be found in [12]. 

Lemma 2.2. [12] Let X  be a CAT(0) space. Then 
((1 ) , ) (1 ) ( , ) ( , )d x y z d x z d y z−    −  +  for 

all  0,1  and , ,x y z X . 

Lemma 2.3. [12]  Let X  be a CAT(0) space. 
Then 
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for all  0,1  and , ,x y z X . 
 Now, some definitions are recalled. X  is 
a complete CAT( 0)  space and  nu  is a bounded 
sequence in X .  For x X , set 

 ( , ) lim sup ( , )n n
n

r x u d x u
→

= . 

The asymptotic radius  ( )nr u of  nu  is defined 
as 

    ( ) inf ( , ) : nnr u r x u x X=  . 

The asymptotic center  ( )nA u  of  nu  is the set 

       .( ) : ( , ) ( )  n nnA u x X r x u r u=  =  

It is known that in a complete CAT( 0)  space, 

 ( )nA u  consists of exactly one point ( see [ 10] ) . 
Also, every CAT( 0)  space has the Opial property, 
i.e., if  nu  is a sequence in K  and lim nn

u x
→

− = , 

then for each y x K  , 
lim sup ( , ) lim sup ( , ).n n

n n
d u x d u y

→ →

  

Definition 2.4. [8] A sequence  nu  in a CAT(0) 
space X  is convergent to x X if x is the unique 
asymptotic center of  nu  for every subsequence 

 nu  of  nu . For this case, lim nn
u x

→
− =  and

x  is given by the − limit of  nu .  
The concept of − convergence in a 

fundamental metric space was reported by Lim [25]. 
Kirk and Panyanak [16] recently used the notion of 
− convergence begin by Lim [25] to prove on the 

CAT( 0)  space analogous of some Banach space 
results, which relate to weak convergence. 

Furthermore, Dhompongsa and Panyanak [ 12] 
acheived − convergence theorems for the Picard, 
Mann and Ishikawa iterations in a CAT(0) space. 

Lemma 2.5. [12] 
( i)  Every bounded sequence in a complete CAT(0) 
space always contains a − convergent subsequence. 
(ii) Let K  be a nonempty closed convex subset of a 
complete CAT(0) space and let  nu  be a bounded 

sequence in K . Then the asymptotic center of  nu  
is in K . 
(iii) Let K  be a nonempty closed convex subset of 
a complete CAT( 0)  space X  and let :f K X→

be a nonexpansive mapping.  Then the conditions, 

 nu  − converges to x  and  ( , ) 0n nd u u → , 
imply x K and ( )f x x= . 

Lemma 2.6. [24] Define    ,  n na  and  nc  as 
the nonnegative  numbers  sequences such that 

1 (1 )n n n na a c+  + +  
for all 1n .  If 1n n


=    and 1n nc

=  , 
then lim n na

→
exists.

 
Whenever, if there exists 

a subsequence     ni na a such that    0nia →             

as i → , then lim 0n na
→

= . 

Lemma 2.7. [20] Define x  as a point in a CAT(0) 
space ( , )X d  and  nt  to be a sequence in a closed 
interval  ,b d for some , (0,1)b d .  Assume that 
 nu  and  ny  are two sequences in X  such that 

 

lim sup ( , )

lim sup ( , )

lim ((1 ) , )

n

n

n n n n

n

n

n

d u x c

d y x c

d t u t y x c

→

→

→





−  =

 

for some 0c  . Then lim sup ( , ) 0.n nn
d u y

→
=  
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Lemma 2.8. [28] Assume ( , )X d  is a complete 
CAT(0) space. Consider a uniformly continuous, 
total asymptotically nonexpansive mapping self 
mapping T  on a nonempty, convex, closed and 
bounded set K X . Then T  has a fixed point, 
and the fixed point set F(T) is closed and convex. 

Lemma 2.9. [28] Assume ( , )X d  is a complete 
CAT(0) space, and C  a closed, convex subset of 
X . Define :T K K→  is a uniformly continuous 

and total asymptotically nonexpansive mapping. For 
every bounded sequence  nu K such that ,

 
lim ( , ) 0n nn

d u Tu
→

= and lim ,nn
u q

→
− = Then

 
.Tq q=  

Lemma 2.10. [29] For the complete CAT(0) space 
( , )X d , every bounded sequence in X has −

convergent subsequence. 

Lemma 2. 11.  [ 30]  Define  nu  as a bounded 
sequence in a closed convex subset C  of X .  So, 
the asymptotic center of  nu  is in K , provided 
that ( , )X d is a complete CAT(0) space. 

Lemma 2. 12.  [ 31]  Assume that ( , )X d is a 

complete CAT( 0)  space.  Let  nu  be a bounded 

sequence in X .  If    ( )nA u p= ,  nw  is a 

subsequence of  nu  such that    ( )nA w w=  
and ( , )nd u w converges, then p w= . 

3. Results and Discussion 

Theorem 3. 1.  Define C  as a bounded closed 
convex subset of a complete CAT(0) space ( , )X d
and :T K K→ as a uniformly L -Lipschitzian and  
 

   , ,( )n na b  - total asymptotically nonexpansive 
mapping. Assume that the following conditions are 
satisfied:  

(i) 1n na
=   and 1n nb

=  ; 
(ii) there exist constants s , k  with 0 1ns k       
for every n ; 
(iii) there exist constants g , e  with     0 1ng e  
for every n ; 
( iv)  there exists a constant   such that ( )t t    
for every 0t  .  
Then the sequence  nu  defined by ( 1. 5)  −

converges to a fixed point of T . 

Proof.  By using Lemma 2. 8, we get ( )F T   . 
Next, we part the show that into three steps. 

Step 1.  lim sup ( , )nn
d u u

→
 is proved to exist for all

( )u F T , where  nu  is defined as ( 1. 5) .  Let 
( )u F T and n . So, 

 

= −  

 −  + 

 −  +  +  +

 +  +

( , ) ((1 ) , )

             (1 ) ( , ) ( , )

             (1 ) ( , ) (1 ) ( , )

             (1 ) ( , )  .                           (3.1)

n
n n n n n

n
n n n n

n n n n n n

n n n

d z u d u T u u

d u u d T u u

d u u a d u u b

a d u u b

 

Also, we have 

=

 +  +

( , ) ( , )

             (1 ) ( , )  .                  (3.2) 

n n
n n

n n n

d y u d T z T u

a d z u b
By (iv) and (3.1) then, 

  +  +  +

+

( , ) (1 ) (1 ) ( , )

 .                                              (3.3)             
n n n n n

n

d y u a a d u u b

b

By from (1.5) and lemma 2.2, then we get 
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 
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                ( , ) (1 ) ( , )
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                (1 ) ( , )
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n n
n n n n

n n n n
n n n n n

n n n n

n n

d x u d T z T y u

d T z u d T y u

d T z T u d T y T u

a d z u b

a +

=  +  + 

+ −  +  + − 

=  +  + − 

+  + 

) ( , )  

                (1 ) ( , )

                 (1 )(1 ) ( , ) (1 )

                (1 ) ( , ) (1 )

(1 ) ( , )  . (3.4) 

n n

n n n n

n n n n n

n n n n

n n n n

d y u b

a d z u b

a d y u b

a d z u

a d y u b

 

Substituting (3.2) to (3.4), then we get 

 

+
  + 

+ −  +  +  +

+ 

 +  + −  + 

+ −  + 

 +  + −  + 



1

2

( , ) (1 ) ( , )

                (1 )(1 ) (1 ) ( , )  

  

                = (1 ) ( , ) (1 )(1 )

( , ) (1 )    

                = (1 ) ( , ) (1 )(1

n n n n

n n n n n

n n

n n n n n

n n n n n

n n n n n

d x u a d z u

a a d z u b

b

a d z u a

d z u b b

a d z u a

+

  +  + −  + 

+

+  +





2

2 2

2

)

( , )

               (1 ) ( , ) (1 )(1 )

( , )

                =(1 ) ( , )  .                    (3.5) 

n n

n n n n n

n n

n n n

d z u b

a d z u a

d z u b

a d z u b

 

 
By (iv) and (3.5) we have 

 

 

+  +  +  + +

+  + +  +

+ + 

2
1

3 2
                        

                        ,                          

( , ) (1 ) (1 ) ( , )  

=(1 ) ( , ) (1 ) 1    

=(1 ) ( , ) (3.6) 

n n n n n n

n n n n

n n n

d x u a a d u u b b

a d u u a b

d u u
where 2 33( ) 3( ) 3( )n n na a a=  +  +  and 

 2= (1 ) 1 .n n na b +  +  By ( iv) , we get 

1n na
=   and 1n nb

=  ,it follows that 

1n n

=    and 1 .n n


=   Now, from ( 3. 6) 

and lemma 2. 8, consequently lim sup ( , )nn
d u u

→

exists. 

Step 2. Next, we will show that lim ( , ) 0nn
d u u

→
= .  

By step 1 we have lim sup ( , )nn
d u u

→
exists and 

 nu is bounded without loss of generality, we may 
suppose that

  →
= lim ( , ) 0.nn

c d u u                     (3.7)
 

From (3.1) we have lim ( , ) .  nn
d z u c

→
          (3.8)

By (iv) we have
( , ) (1 ) ( , ) .n

n n n nd T z u a d z u b +  +               (3.9)  
From (3.8) and (3.9), we get 
lim sup ( , )  n

n
n

d T z u c
→

                                 

(3.10)  
and 

 +  +   ( , ) (1 ) ( , ) . (3.11)n
n n n nd T u u a d u u b  

Then, 

 

+
=   − 

  + − 

=  + − 

  + −  +  +

=  +

1( , ) ( (1 ) , )

               ( , ) (1 ) ( , )        

            ( , ) (1 ) ( , ) 

               ( , ) (1 ) (1 ) ( , )  

               ( , )

n n
n n n n n

n n
n n n n

n n
n n n n

n n n n n n

n n

d x u d T z T y u

d T z u d T y u

d y u d T y T u

d y u a d y u b

d y u −  + 

+ − 

(1 )(1 ) ( , )

                   (1 ) .                                  (3.12)             
n n n

n n

a d y u

b

 

Thus,  lim sup ( , ).n
n

c d y u
→

=           (3.13)  

We have 
 +  +  ( , ) (1 ) ( , ) . (3.14)n n n nd y u a d z u b  

Then, 

→

 lim sup ( , ).                               (3.15)n
n

c d z u  
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Hence, 

→

→

=

= − 

lim sup ( , )       

  lim sup ((1 ) , ).         (3.16)

n

n
n n n n

n

n

c d z u

d u T u u
 

By Lemma 2.7, we have 

→

=lim sup ( , ) 0.   (3.17)n
n n

n
d u T u  

Similarly,
 
lim sup ( , ) 0 n

n n
n

d y T y
→

= and 

→

=lim sup ( , ) 0.                             (3.18)n
n n

n
d z T z  

Hence, we get 

+ =   −

  + −

→ →

1

  

( , ) ( (1 ) , )

( , ) (1 ) ( , )

                  0 as n  .                       (3.19) 

n n
n n n n n n

n
n n n n n n

d x u d T z T y y

d y y d T y y

Similarly, we get 
( , ) ( , ) 0  as  nn

n n n nd y z d T z z= → →    (3.20)  
and

= − 

 − +

→ →  .

( , ) ((1 ) , )

               (1 ) ( , ) ( , )              

                 0  as  n                         (3.21)

n
n n n n n n

n
n n n n n

d z u d u T u u

d u u d T u u  

Since T is uniformly L-Lipschitzian, we have 
+

+ + +

+ +

+

+

+

+

+ +

 +

+

+

 +

+

+

→ →

1
1 1 1

1 1
1

1

1

1
1 1

( , ) ( , ) ( , )

                    ( , )

( , )   

                 (1 ) ( , )

( , )

                   ( , )

0  as  n (3.22)

n
n n n n n n

n n
n n

n
n n

n n

n
n n

n
n n

d Tu u d u x d x T x

d T x T u

d T u u

L d u x

d x T x

Ld T u u

 

which implies

→

=lim sup ( , )  0.         (3.23)n
n n

n
d T u u

The proof is completed. 

Step 3. After that, we conclude that sequence  nu             
− converges to a fixed point of T. Indeed, we 

proof that  
   

: ( ( ))
n n

n
u

z A u T T





=   and 

( )nz u are collected of exactly one point. Let 

( ).nw z u  By the definition of ( )nz u , there 

exists a subsequence  nw  of  nu  such that 

    .( )nA w w= From Lemma 2.10, there is a 

subsequence  nu  of   nw  which lim nn
u u

→

− =  

and .u C By Lemma 2.9, we have ( ).u F T Since 

 ( , )nd w u converges, by Lemma 2.11, we get 
.w u= Thus ( ) ( ).nz u F T  Finally, we prove 

( )nz u comprise exactly one point. Let  nw  be a 

subsequence of  nu by the uniqueness asymptotic  

center such that  ( )nA w w= and allow 

    .( )nA w x= Since ( )w u F T=   and 

 ( , )nd u u  converges, by using Lemma 2.12, we see 
that ( )x u F T=  , Therefore   .( )nz u x =  It 
refers to completes of the proof                              
 By using the similar technique as in the 
proof of Theorem 3.2 as the previous report [32], 
we get strong convergence theorem without the 
proof immediately. 

Theorem 3.2. Let , ,X T K , (i), (ii), (iii), (iv), 

   ,n n  satisfy the hypothesis of Theorem 3.1. 

Then, the sequence  nu  which is defined as (1.5) 
converges strongly to a fixed point of T  if and only 
if liminf ( , ( )) 0,n

n
d u F T

→

= where 

  .( , ( )) 0, inf ( , ) : ( )n nd u F T d u u u F T=   
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 The concept of special self mapping is 
called Condition(I) proposed by Senter and Dotson 
[27] as follows. 

Definition 3.3. [27] Let ( , )X d  be a CAT(0) space 
and K  a nonempty subset. A self mapping T with 

( ) 0F T  is said to satisfy condition (I) if there is a 
nondecreasing function  )  ): 0, 0,f  →   with

(0) 0f = and ( ) 0f l  for all 0l  such that

( , ) ( ( , ( )))d x Tx f d x F T for all .x K  
 By using Condition (I) with the similar 
technique as in the proof of Theorem 3.3 in Thakur 
et al. ,[32] we obtain the following result. 

Theorem 3.4. Let  , ,X T K , (i), (ii), (iii), (iv), 

   ,n n  satisfy the presumption of Theorem 3.1 
and let self mapping of T satisfy Condition (I). Then 
the sequence  nu  which is defined as (1.5) 
converges strongly to a fixed point of T . 

Definition 3.5. Let ( , )X d  be a CAT(0) space and 
K  a nonempty subset. Self mapping T  is 
semicompact if K  is closed and for all bounded 
sequence  nu K with lim ( , ) 0n nn

d u Tu
→

= , there 

exists a subsequence  jnx  of  nu  such that 

 jnx u K→  . 

 Using a similar technique as in the proof 
of Theorem 22 in Karapinar et al. [28], we obtain 
the following results. 

Theorem 3.6. Let  , ,X T K , (i), (ii), (iii), (iv), 

   ,n n  satisfy the hypothesis of Theorem 3.1 
and define T as semicompact. Then, the sequence 

 nu , defined as (1.5) converges strongly to a fixed 
point of T . 

4. Numerical Example 
Let X = be a Euclidean metric space and K = [1, 

10]. Let :T →  be defined as 23 4 .Tx x= +

It is noticeable that T  is a continuously uniform L-
Lipschitzian and  ( ) 2F T =  Next, we present that 
T  is total asymptotically nonexpansive mapping on 
[1], [10]. 

Proof. Observe that the function 
23( ) 4 ,f x x x= + −  1,10x  has the 

derivative  

2 23

1 1
( ) (2 ) 1,3 ( 4)

f x x
x

= −

+

 
  

 
  .1,10x  

Since 1,x  we have 
2 23

1 1
(2 ) 13 ( 4)

x
x



+

 
 
 

 

and so, ( ) 1.f x   Let  , 1,10x y with x y

which implies that 
( ) ( ).f y f x S0,  

23 4y y+ − 
23 4x x+ −  

23 4y +
23 4x− +  y x−    

2 233 4 4y x+ − +  y x−   

or 
2 233 4 4y x+ − +  .x y−  

Hence, we have Tx Ty−  .x y−  
Therefore, T is nonexpansive mapping referring that 
T is total asymptotically nonexpansive mapping.    
Let 1 9u = . By using MATLAB reckon the iterates 
of algorithm (1.4) and our algorithm (1.5) with two 
different control conditions conditions  
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1

,3 1n n =
+

 
1

,n n =
9

10 1n

n
n =
+

and 
4

,9 1n

n
n =
+

 ,10 5n

n
n =
+

5
.10 1n

n
n =
+

 Then 

we obtain numerical results in Table 1, Figure 1, 
Table 2 and Figure 2.

Table 1 By using MATLAB reckon the iterates of algorithm (1.4) and our algorithm (1.5) with two different    

control conditions conditions  
1

,3 1n n =
+

 
1

,n n =
  
and

  
9

.10 1n

n
n =
+

 

1
,3 1n n =

+

1
,n n =

9
10 1n

n
n =
+

 

Iterative scheme 
Iterate Algorithm (1.4) Our Algorithm (1.5) 

1u  9.0000 9.0000 

2x  2.9678 2.0000 

3x  2.2612 - 

4x  2.0807 - 

5x  2.0807 - 

6x  2.0091 - 

7x  2.0032 - 

8x  2.0011 - 

9x  2.0004 - 

10x  2.0002 - 
CPU Time (s) 0.0245 0.0067 

 

 
Figure 1 Graphical analysis our algorithm (1.5) faster than algorithm (1.4) in case 

 1
,3 1n n =

+
 

1
,n n =

  
and

  

9
.10 1n

n
n =
+
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Table 2 By using MATLAB reckon the iterates of algorithm (1.4)  and our algorithm (1.5)  with two 

different control conditions conditions  
4

,9 1n

n
n =
+

 10 5n

n
n =
+

 and
 

5
.10 1n

n
n =
+

 

4
,9 1n

n
n =
+

 ,10 5n

n
n =
+

5
10 1n

n
n =
+

 

Iterative scheme 
Iterate Algorithm (1.4) Our Algorithm (1.5) 

1u  9.0000 9.0000 

2x  5.4793 2.0000 

3x  3.6701 - 

4x  2.7845 - 

5x  2.3612 - 

6x  2.1639 - 

7x  2.0737 - 

8x  2.0329 - 

9x  2.0147 - 

10x  2.0065 - 

11x  2.0029 - 

12x  2.0013 - 

13x  2.0006 - 

14x  2.0003 - 

15x  2.0001 - 
CPU Time (s) 0.0066 0.0058 

 

 
Figure 2 Graphical analysis our algorithm (1.5) faster than algorithm (1.4) in case   

 
4

,9 1n

n
n =
+

 10 5n

n
n =
+

 and
 

5
.10 1n

n
n =
+
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 From Table 1, Figure 1, Table 2 and Figure 
2 show that the numerical results of algorithm (1.4), 
and our algorithm ( 1. 5)  which our algorithm ( 1.5) 
faster than algorithm ( 1. 4)  in case number of 
iterations and CPU Time (second). 
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