

Generalized Nonexpansive Mappings in CAT(0) spaces

Pim Sanboonsiri^{1*} and Paiwan Wongsasinchai¹

¹Department of Mathematics, Faculty of Science and Technology,
Rambhai Barni Rajabhat University, Muang, Chanthaburi 22000, Thailand

*E-mail: pim.m@rbru.ac.th

Abstract

In this paper, we introduce the modified algorithm in frame of a CAT(0) space for total asymptotically nonexpansive mapping and prove strong convergence. Moreover, we have numerical example for the proposed algorithm to compare speed of convergence among the existing iterative algorithm.

Keywords: generalized nonexpansive mappings, CAT(0) spaces , strong convergence .

1. Introduction

A CAT(0) space plays a primary role in various mathematic areas [1-3]. Moreover, it is also beneficial to biology and computer science [4-5]. A metric space X is a CAT(0) space if it is geodesically connected and if every geodesic triangle in X is at least as ‘thin’ as its comparison of triangle in the Euclidean plane. The CAT(0) space is the well-known method that provides complete, simply connected Riemannian manifold, showing non-positive sectional curvature. The

complex Hilbert ball with a hyperbolic metric is the CAT(0) space [6]. Other examples of the CAT(0) space include preHilbert spaces, R-trees [1] and Euclidean buildings [7].

Kirk proposed fixed point theory in a CAT(0) space [8-9]. He presented every nonexpansive mapping defined on a bounded closed convex subset of a complete CAT(0) space, always having a fixed point. Since then the fixedpoint theory in a CAT(0) space has been continuously developed, there have been a lot of reports for the CAT(0) space

Received: March 02, 2020

Revised: March 19, 2020

Accepted: April 27, 2020

application e.g., [8], [9], [10], [11], [12], [13], [14], [15], [16]. The Noor iteration [17] is defined as $u_1 \in K$ and

$$\begin{cases} z_n = (1 - \eta_n)u_n + \eta_n T u_n, \\ y_n = (1 - \vartheta_n)u_n + \vartheta_n T z_n, \\ x_{n+1} = (1 - \xi_n)y_n + \xi_n T y_n \end{cases} \quad (1.1)$$

for all $n \geq 1$, where $\{\xi_n\}$, $\{\vartheta_n\}$ and $\{\eta_n\}$ are sequences in $[0,1]$. If we take $\vartheta_n = \eta_n = 0$ for all n , (1.1) reducing to the Mann iteration [18], and $\eta_n = 0$ for all n , (1.1) is taken that reduces to the Ishikawa iteration [19].

The new two-step iteration [21] is defined as $u_1 \in K$ and

$$\begin{cases} y_n = (1 - \vartheta_n)u_n + \vartheta_n T u_n, \\ x_{n+1} = (1 - \xi_n)y_n + \xi_n T y_n \end{cases} \quad (1.2)$$

for all $n \geq 1$, where $\{\xi_n\}$, $\{\vartheta_n\}$ and $\{\eta_n\}$ are sequences in $[0,1]$.

Phuengrattana and Suantai [22] defined by the SP-iteration as follows:

$$\begin{cases} z_n = (1 - \eta_n)u_n + \eta_n T u_n, \\ y_n = (1 - \vartheta_n)z_n + \vartheta_n T z_n, \\ x_{n+1} = (1 - \xi_n)y_n + \xi_n T y_n \end{cases} \quad (1.3)$$

for all $n \geq 1$, where $u_1 \in K$, $\{\xi_n\}$, $\{\vartheta_n\}$ and $\{\eta_n\}$ are sequences in $[0,1]$. They reported that the Mann, Ishikawa, Noor and SP-iterations are equivalent and the SP-iteration converges better than those of the others for the continuous and nondecreasing functions class. The new two-step

and Mann iterations are clearly special cases of the SP-iteration.

Kitkuan and Padcharoen [26] have modified SP-iteration(1.3) in frame of a CAT(0) space as follows:

$$\begin{cases} z_n = (1 - \eta_n)u_n \oplus \eta_n T u_n, \\ y_n = (1 - \vartheta_n)z_n \oplus \vartheta_n T z_n, \\ x_{n+1} = (1 - \xi_n)y_n \oplus \xi_n T y_n \end{cases} \quad (1.4)$$

for all $n \geq 1$, where K is a nonempty convex subset of a CAT(0) space, $u_1 \in K$, $\{\xi_n\}$, $\{\vartheta_n\}$ and $\{\eta_n\}$ are sequences in $[0,1]$.

In this paper, we introduce the modified algorithm in frame of a CAT(0) space for total asymptotically nonexpansive mapping as follows:

$$\begin{cases} z_n = (1 - \vartheta_n)u_n \oplus \vartheta_n T^n u_n, \\ y_n = T^n z_n, \\ x_{n+1} = \xi_n T^n z_n \oplus (1 - \xi_n)T^n y_n \end{cases} \quad (1.5)$$

2. Preliminaries and lemmas

The definitions and known results are recalled in the existing literature on this concept. K is a nonempty subset of a CAT(0) space X and $T: K \rightarrow K$ is a mapping. A point $u \in K$ is called a fixed point of T if $Tu = u$.

Let we recall some basics for nonlinear mappings on metric spaces. Let (X, d) be a metric space and K be its non-empty subset. Then $T: K \rightarrow K$ is said a:

- Asymptotically nonexpansive if for a sequence $\{a_n\} \subset [0, \infty)$ with $\lim_{n \rightarrow \infty} a_n = 0$ such that

$$d(T^n u, T^n y) \leq (1 + a_n) d(u, y)$$

for all $u, y \in K$ and $n \geq 1$.

- Uniformly L -Lipschitzian if there exist $L > 0$ such that $d(T^n u, T^n y) \leq L d(u, y)$ for all $u, y \in K$ and $n \geq 1$.

Definition 2.1. [33] Let (X, d) be a CAT(0) space, K be a non-empty closed convex subset and let $T: K \rightarrow K$ be a mapping. T is said to be total asymptotically nonexpansive mapping if there exist nonnegative real sequences $\{a_n\}$, $\{b_n\}$ with $a_n \rightarrow 0$, $b_n \rightarrow 0$ and strictly increasing continuous function $\xi: [0, \infty) \rightarrow [0, \infty)$ with $\xi(0) = 0$ such that $d(T^n u, T^n y) \leq d(u, y) + a_n \xi(d(u, y)) + b_n$ for all $u, y \in K$ and $n \geq 1$.

Let (X, d) be a metric space. A geodesic path joining $u \in X$ to $y \in X$ (or more briefly, a *geodesic* from u to y) is a map t from a closed interval $[0, b] \subset \mathbb{R}$ to X such that $t(0) = u$, $t(b) = y$ and $d(t(a), t(a')) = |a - a'|$ for all $a, a' \in [0, b]$. A map t is an isometry and $d(u, y) = b$. The t image is called as a geodesic (or metric) segment joining u and y . When it is unique, this geodesic is denoted by $[u, y]$. If every two points of X are joined by a geodesic, the space, (X, d) is a geodesic space. More over, X is a uniquely geodesic space when there is exactly one geodesic joining u to y for each $u, y \in X$.

A geodesic triangle $\Delta(u_1, u_2, u_3)$ in a geodesic metric space (X, d) consists of three points in X (the vertices of Δ) and a geodesic segment between each pair of vertices (the edges of Δ). A comparison triangle for the geodesic triangle

$\Delta(u_1, u_2, u_3)$ in (X, d) is a triangle $\overline{\Delta}(u_1, u_2, u_3) = \Delta(\overline{u}_1, \overline{u}_2, \overline{u}_3)$ in the Euclidean plane \mathbb{R}^2 such that $d_{\mathbb{R}^2}(\overline{u}_i, \overline{u}_j) = d(u_i, u_j)$ for $i, j \in \{1, 2, 3\}$.

A geodesic metric space is said to be a CAT(0) space [1] if all geodesic triangles of appropriate size satisfy the following comparison axiom.

CAT(0): Δ is defined as a geodesic triangle in X and $\overline{\Delta}$ as a comparison triangle for Δ . If for all $u, y \in \Delta$ and all comparison points $\overline{u}, \overline{y} \in \overline{\Delta}$, Δ satisfies the *CN* inequality: $d(u, y) = d_{\mathbb{R}^2}(\overline{u}, \overline{y})$.

Finally, we observe that if u, y_1, y_2 are points of a CAT(0) space and if y_0 is the midpoint of the segment $[y_1, y_2]$, then the *CN* inequality implies

$$d(u, y_0)^2 \leq \frac{1}{2} d(u, y_1)^2 + \frac{1}{2} d(u, y_2)^2 - \frac{1}{4} d(y_1, y_2)^2. \quad (2.1)$$

The equality holds for the Euclidean metric. In actual fact [1], if and only if it satisfies inequality (2.1) (which is known as the *CN* inequality of Bruhat and Tits, a geodesic metric space is a CAT(0) space [23]). The ensuing lemmas can be found in [12].

Lemma 2.2. [12] Let X be a CAT(0) space. Then $d((1 - \varepsilon)x \oplus \varepsilon y, z) \leq (1 - \varepsilon)d(x, z) + \varepsilon d(y, z)$ for all $\varepsilon \in [0, 1]$ and $x, y, z \in X$.

Lemma 2.3. [12] Let X be a CAT(0) space. Then

$$d((1-\varepsilon)x \oplus \varepsilon y, z)^2 \leq (1-\varepsilon)d(x, z)^2 + \varepsilon d(y, z)^2$$

$$- \varepsilon(1-\varepsilon)d(x, y)^2$$

for all $\varepsilon \in [0,1]$ and $x, y, z \in X$.

Now, some definitions are recalled. X is a complete CAT(0) space and $\{u_n\}$ is a bounded sequence in X . For $x \in X$, set

$$r(x, \{u_n\}) = \limsup_{n \rightarrow \infty} d(x, u_n).$$

The *asymptotic radius* $r(\{u_n\})$ of $\{u_n\}$ is defined as

$$r(\{u_n\}) = \inf \{r(x, \{u_n\}) : x \in X\}.$$

The *asymptotic center* $A(\{u_n\})$ of $\{u_n\}$ is the set

$$A(\{u_n\}) = \{x \in X : r(x, \{u_n\}) = r(\{u_n\})\}.$$

It is known that in a complete CAT(0) space, $A(\{u_n\})$ consists of exactly one point (see [10]).

Also, every CAT(0) space has the *Opial* property, i.e., if $\{u_n\}$ is a sequence in K and $\Delta - \lim_{n \rightarrow \infty} u_n = x$,

then for each $y \neq x \in K$,

$$\limsup_{n \rightarrow \infty} d(u_n, x) < \limsup_{n \rightarrow \infty} d(u_n, y).$$

Definition 2.4. [8] A sequence $\{u_n\}$ in a CAT(0) space X is convergent to $x \in X$ if x is the unique asymptotic center of $\{u_n\}$ for every subsequence $\{u_n\}$ of $\{u_n\}$. For this case, $\Delta - \lim_{n \rightarrow \infty} u_n = x$ and x is given by the Δ -limit of $\{u_n\}$.

The concept of Δ -convergence in a fundamental metric space was reported by Lim [25]. Kirk and Panyanak [16] recently used the notion of Δ -convergence begin by Lim [25] to prove on the CAT(0) space analogous of some Banach space results, which relate to weak convergence.

Furthermore, Dhompongsa and Panyanak [12] achieved Δ -convergence theorems for the Picard, Mann and Ishikawa iterations in a CAT(0) space.

Lemma 2.5. [12]

- (i) Every bounded sequence in a complete CAT(0) space always contains a Δ -convergent subsequence.
- (ii) Let K be a nonempty closed convex subset of a complete CAT(0) space and let $\{u_n\}$ be a bounded sequence in K . Then the asymptotic center of $\{u_n\}$ is in K .
- (iii) Let K be a nonempty closed convex subset of a complete CAT(0) space X and let $f : K \rightarrow X$ be a nonexpansive mapping. Then the conditions, $\{u_n\}$ Δ -converges to x and $d(u_n, \{u_n\}) \rightarrow 0$, imply $x \in K$ and $f(x) = x$.

Lemma 2.6. [24] Define $\{a_n\}$, $\{\lambda_n\}$ and $\{c_n\}$ as the nonnegative numbers sequences such that

$$a_{n+1} \leq (1 + \lambda_n)a_n + c_n$$

for all $n \geq 1$. If $\sum_{n=1}^{\infty} \lambda_n < \infty$ and $\sum_{n=1}^{\infty} c_n < \infty$, then $\lim_{n \rightarrow \infty} a_n$ exists. Whenever, if there exists a subsequence $\{a_{n_i}\} \subseteq \{a_n\}$ such that $\{a_{n_i}\} \rightarrow 0$ as $i \rightarrow \infty$, then $\lim_{n \rightarrow \infty} a_n = 0$.

Lemma 2.7. [20] Define x as a point in a CAT(0) space (X, d) and $\{t_n\}$ to be a sequence in a closed interval $[b, d]$ for some $b, d \in (0, 1)$. Assume that $\{u_n\}$ and $\{y_n\}$ are two sequences in X such that

$$\limsup_{n \rightarrow \infty} d(u_n, x) \leq c$$

$$\limsup_{n \rightarrow \infty} d(y_n, x) \leq c$$

$$\lim_{n \rightarrow \infty} d((1-t_n)u_n \oplus t_n y_n, x) = c$$

for some $c \geq 0$. Then $\limsup_{n \rightarrow \infty} d(u_n, y_n) = 0$.

Lemma 2.8. [28] Assume (X, d) is a complete CAT(0) space. Consider a uniformly continuous, total asymptotically nonexpansive mapping self mapping T on a nonempty, convex, closed and bounded set $K \subset X$. Then T has a fixed point, and the fixed point set $F(T)$ is closed and convex.

Lemma 2.9. [28] Assume (X, d) is a complete CAT(0) space, and C a closed, convex subset of X . Define $T: K \rightarrow K$ is a uniformly continuous and total asymptotically nonexpansive mapping. For every bounded sequence $\{u_n\} \subset K$ such that,

$$\lim_{n \rightarrow \infty} d(u_n, Tu_n) = 0 \text{ and } \Delta - \lim_{n \rightarrow \infty} u_n = q, \text{ Then } Tq = q.$$

Lemma 2.10. [29] For the complete CAT(0) space (X, d) , every bounded sequence in X has Δ -convergent subsequence.

Lemma 2.11. [30] Define $\{u_n\}$ as a bounded sequence in a closed convex subset C of X . So, the asymptotic center of $\{u_n\}$ is in K , provided that (X, d) is a complete CAT(0) space.

Lemma 2.12. [31] Assume that (X, d) is a complete CAT(0) space. Let $\{u_n\}$ be a bounded sequence in X . If $A(\{u_n\}) = \{p\}$, $\{w_n\}$ is a subsequence of $\{u_n\}$ such that $A(\{w_n\}) = \{w\}$ and $d(u_n, w)$ converges, then $p = w$.

3. Results and Discussion

Theorem 3.1. Define C as a bounded closed convex subset of a complete CAT(0) space (X, d) and $T: K \rightarrow K$ as a uniformly L -Lipschitzian and

$(\{a_n\}, \{b_n\}, \varphi)$ -total asymptotically nonexpansive mapping. Assume that the following conditions are satisfied:

- (i) $\sum_{n=1}^{\infty} a_n < \infty$ and $\sum_{n=1}^{\infty} b_n < \infty$;
- (ii) there exist constants s, k with $0 < s < \xi_n < k < 1$ for every $n \in \mathbb{N}$;
- (iii) there exist constants g, e with $0 < g < \vartheta_n < e < 1$ for every $n \in \mathbb{N}$;
- (iv) there exists a constant τ such that $\psi(t) \leq \tau t$ for every $t \geq 0$.

Then the sequence $\{u_n\}$ defined by (1.5) Δ -converges to a fixed point of T .

Proof. By using Lemma 2.8, we get $F(T) \neq \emptyset$.

Next, we part the show that into three steps.

Step 1. $\limsup_{n \rightarrow \infty} d(u_n, u)$ is proved to exist for all $u \in F(T)$, where $\{u_n\}$ is defined as (1.5). Let $u \in F(T)$ and $n \in \mathbb{N}$. So,

$$\begin{aligned} d(z_n, u) &= d((1 - \vartheta_n)u_n \oplus \vartheta_n T^n u_n, u) \\ &\leq (1 - \vartheta_n)d(u_n, u) + \vartheta_n d(T^n u_n, u) \\ &\leq (1 - \vartheta_n)d(u_n, u) + \vartheta_n \{(1 + a_n \tau)d(u_n, u) + b_n\} \\ &\leq (1 + a_n \tau)d(u_n, u) + b_n. \end{aligned} \quad (3.1)$$

Also, we have

$$\begin{aligned} d(y_n, u) &= d(T^n z_n, T^n u) \\ &\leq (1 + a_n \tau)d(z_n, u) + b_n. \end{aligned} \quad (3.2)$$

By (iv) and (3.1) then,

$$\begin{aligned} d(y_n, u) &\leq (1 + a_n \tau) \{(1 + a_n \tau)d(u_n, u) + b_n\} \\ &\quad + b_n. \end{aligned} \quad (3.3)$$

By from (1.5) and lemma 2.2, then we get

$$\begin{aligned}
d(x_{n+1}, u) &= d(\xi_n T^n z_n \oplus (1 - \xi_n) T^n y_n, u) \\
&\leq \xi_n d(T^n z_n, u) + (1 - \xi_n) d(T^n y_n, u) \\
&= \xi_n d(T^n z_n, T^n u) + (1 - \xi_n) d(\xi_n T^n y_n, T^n u) \\
&\leq \xi_n \left\{ (1 + a_n \tau) d(z_n, u) + b_n \right\} \\
&\quad + (1 - \xi_n) \left\{ (1 + a_n \tau) d(y_n, u) + b_n \right\} \\
&= \xi_n (1 + a_n \tau) d(z_n, u) + \xi_n b_n \\
&\quad + (1 - \xi_n) (1 + a_n \tau) d(y_n, u) + (1 - \xi_n) b_n \\
&= \xi_n (1 + a_n \tau) d(z_n, u) + (1 - \xi_n) \\
&\quad \times (1 + a_n \tau) d(y_n, u) + \xi_n b_n. \quad (3.4)
\end{aligned}$$

Substituting (3.2) to (3.4), then we get

$$\begin{aligned}
d(x_{n+1}, u) &\leq \xi_n (1 + a_n \tau) d(z_n, u) \\
&\quad + (1 - \xi_n) (1 + a_n \tau) \left\{ (1 + a_n \tau) d(z_n, u) + b_n \right\} \\
&\quad + \xi_n b_n \\
&= \xi_n (1 + a_n \tau) d(z_n, u) + (1 - \xi_n) (1 + a_n \tau)^2 \\
&\quad \times d(z_n, u) + (1 - \xi_n) b_n + \xi_n b_n \\
&= \xi_n (1 + a_n \tau) d(z_n, u) + (1 - \xi_n) (1 + a_n \tau)^2 \\
&\quad \times d(z_n, u) + b_n \\
&\leq \xi_n (1 + a_n \tau)^2 d(z_n, u) + (1 - \xi_n) (1 + a_n \tau)^2 \\
&\quad \times d(z_n, u) + b_n \\
&= (1 + a_n \tau)^2 d(z_n, u) + b_n. \quad (3.5)
\end{aligned}$$

By (iv) and (3.5) we have

$$\begin{aligned}
d(x_{n+1}, u) &\leq (1 + a_n \tau)^2 \left\{ (1 + a_n \tau) d(u_n, u) + b_n \right\} + b_n \\
&= (1 + a_n \tau)^3 d(u_n, u) + \left\{ (1 + a_n \tau)^2 + 1 \right\} b_n \\
&= (1 + \varphi_n) d(u_n, u) + \theta_n, \quad (3.6)
\end{aligned}$$

where $\varphi = 3(a_n \tau) + 3(a_n \tau)^2 + 3(a_n \tau)^3$ and

$$\theta_n = \left\{ (1 + a_n \tau)^2 + 1 \right\} b_n. \quad \text{By (iv), we get}$$

$\sum_{n=1}^{\infty} a_n < \infty$ and $\sum_{n=1}^{\infty} b_n < \infty$, it follows that

$\sum_{n=1}^{\infty} \varphi_n < \infty$ and $\sum_{n=1}^{\infty} \theta_n < \infty$. Now, from (3.6) and lemma 2.8, consequently $\limsup_{n \rightarrow \infty} d(u_n, u)$ exists.

Step 2. Next, we will show that $\lim_{n \rightarrow \infty} d(u_n, u) = 0$.

By step 1 we have $\limsup_{n \rightarrow \infty} d(u_n, u)$ exists and $\{u_n\}$ is bounded without loss of generality, we may suppose that $c = \lim_{n \rightarrow \infty} d(u_n, u) \geq 0$. (3.7)

From (3.1) we have $\lim_{n \rightarrow \infty} d(z_n, u) \leq c$. (3.8)

By (iv) we have

$$d(T^n z_n, u) \leq (1 + a_n \tau) d(z_n, u) + b_n. \quad (3.9)$$

From (3.8) and (3.9), we get

$$\limsup_{n \rightarrow \infty} d(T^n z_n, u) \leq c$$

(3.10)

and

$$d(T^n u_n, u) \leq (1 + a_n \tau) d(u_n, u) + b_n. \quad (3.11)$$

Then,

$$\begin{aligned}
d(x_{n+1}, u) &= d(\xi_n T^n z_n \oplus (1 - \xi_n) T^n y_n, u) \\
&\leq \xi_n d(T^n z_n, u) + (1 - \xi_n) d(T^n y_n, u) \\
&= \xi_n d(y_n, u) + (1 - \xi_n) d(T^n y_n, T^n u) \\
&\leq \xi_n d(y_n, u) + (1 - \xi_n) \left\{ (1 + a_n \tau) d(y_n, u) + b_n \right\} \\
&= \left\{ \xi_n d(y_n, u) + (1 - \xi_n) (1 + a_n \tau) \right\} d(y_n, u) \\
&\quad + (1 - \xi_n) b_n. \quad (3.12)
\end{aligned}$$

$$\text{Thus, } c = \limsup_{n \rightarrow \infty} d(y_n, u). \quad (3.13)$$

We have

$$d(y_n, u) \leq (1 + a_n \tau) d(z_n, u) + b_n. \quad (3.14)$$

Then,

$$c \leq \limsup_{n \rightarrow \infty} d(z_n, u). \quad (3.15)$$

Hence,

$$\begin{aligned} c &= \limsup_{n \rightarrow \infty} d(z_n, u) \\ &= \limsup_{n \rightarrow \infty} d((1 - \vartheta_n)u_n \oplus \vartheta_n T^n u_n, u). \end{aligned} \quad (3.16)$$

By Lemma 2.7, we have

$$\limsup_{n \rightarrow \infty} d(u_n, T^n u_n) = 0. \quad (3.17)$$

Similarly, $\limsup_{n \rightarrow \infty} d(y_n, T^n y_n) = 0$ and

$$\limsup_{n \rightarrow \infty} d(z_n, T^n z_n) = 0. \quad (3.18)$$

Hence, we get

$$\begin{aligned} d(x_{n+1}, u) &= d(\xi_n T^n z_n \oplus (1 - \xi_n) T^n y_n, y_n) \\ &\leq \xi_n d(y_n, y_n) + (1 - \xi_n) d(T^n y_n, y_n) \\ &\rightarrow 0 \text{ as } n \rightarrow \infty. \end{aligned} \quad (3.19)$$

Similarly, we get

$$d(y_n, z_n) = d(T^n z_n, z_n) \rightarrow 0 \text{ as } n \rightarrow \infty \quad (3.20)$$

and

$$\begin{aligned} d(z_n, u_n) &= d((1 - \vartheta_n)u_n \oplus \vartheta_n T^n u_n, u) \\ &\leq (1 - \vartheta_n) d(u_n, u_n) + \vartheta_n d(T^n u_n, u) \\ &\rightarrow 0 \text{ as } n \rightarrow \infty. \end{aligned} \quad (3.21)$$

Since T is uniformly L -Lipschitzian, we have

$$\begin{aligned} d(Tu_n, u_n) &\leq d(u_n, x_{n+1}) + d(x_{n+1}, T^{n+1} x_{n+1}) \\ &\quad + d(T^{n+1} x_{n+1}, T^{n+1} u_n) \\ &\quad + d(T^{n+1} u_n, u_n) \\ &\leq (1 + L)d(u_n, x_{n+1}) \\ &\quad + d(x_{n+1}, T^{n+1} x_{n+1}) \\ &\quad + Ld(T^n u_n, u_n) \\ &\rightarrow 0 \text{ as } n \rightarrow \infty \end{aligned} \quad (3.22)$$

which implies

$$\limsup_{n \rightarrow \infty} d(T^n u_n, u_n) = 0. \quad (3.23)$$

The proof is completed.

Step 3. After that, we conclude that sequence $\{u_n\}$

Δ -converges to a fixed point of T . Indeed, we proof that $z_\Delta := \bigcup_{\{\vartheta_n\} \subseteq \{u_n\}} A(\{u_n\} \subseteq T(T))$ and

$z_\Delta(u_n)$ are collected of exactly one point. Let $w \in z_\Delta(u_n)$. By the definition of $z_\Delta(u_n)$, there exists a subsequence $\{w_n\}$ of $\{u_n\}$ such that $A(\{w_n\}) = \{w\}$. From Lemma 2.10, there is a subsequence $\{u_n\}$ of $\{w_n\}$ which $\Delta\text{-}\lim_{n \rightarrow \infty} u_n = u$

and $u \in C$. By Lemma 2.9, we have $u \in F(T)$. Since $\{d(w_n, u)\}$ converges, by Lemma 2.11, we get

$w = u$. Thus $z_\Delta(u_n) \subseteq F(T)$. Finally, we prove $z_\Delta(u_n)$ comprise exactly one point. Let $\{w_n\}$ be a subsequence of $\{u_n\}$ by the uniqueness asymptotic center such that $A(\{w_n\}) = w$ and allow

$A(\{w_n\}) = \{x\}$. Since $w = u \in F(T)$ and $\{d(u_n, u)\}$ converges, by using Lemma 2.12, we see that $x = u \in F(T)$. Therefore $z_\Delta(u_n) = \{x\}$. It refers to completes of the proof \square

By using the similar technique as in the proof of Theorem 3.2 as the previous report [32], we get strong convergence theorem without the proof immediately.

Theorem 3.2. Let X, T, K , (i), (ii), (iii), (iv), $\{\xi_n\}, \{\vartheta_n\}$ satisfy the hypothesis of Theorem 3.1.

Then, the sequence $\{u_n\}$ which is defined as (1.5) converges strongly to a fixed point of T if and only if $\liminf_{n \rightarrow \infty} d(u_n, F(T)) = 0$, where

$$d(u_n, F(T)) = 0, \inf \{d(u_n, u) : u \in F(T)\}.$$

The concept of special self mapping is called Condition(I) proposed by Senter and Dotson [27] as follows.

Definition 3.3. [27] Let (X, d) be a CAT(0) space and K a nonempty subset. A self mapping T with $F(T) \neq \emptyset$ is said to satisfy condition (I) if there is a nondecreasing function $f: [0, \infty) \rightarrow [0, \infty)$ with $f(0) = 0$ and $f(l) > 0$ for all $l > 0$ such that $d(x, Tx) \geq f(d(x, F(T)))$ for all $x \in K$.

By using Condition (I) with the similar technique as in the proof of Theorem 3.3 in Thakur et al. [32] we obtain the following result.

Theorem 3.4. Let X, T, K , (i), (ii), (iii), (iv), $\{\xi_n\}, \{9_n\}$ satisfy the presumption of Theorem 3.1 and let self mapping of T satisfy Condition (I). Then the sequence $\{u_n\}$ which is defined as (1.5) converges strongly to a fixed point of T .

Definition 3.5. Let (X, d) be a CAT(0) space and K a nonempty subset. Self mapping T is semicompact if K is closed and for all bounded sequence $\{u_n\} \subset K$ with $\lim_{n \rightarrow \infty} d(u_n, Tu_n) = 0$, there exists a subsequence $\{x_{n_j}\}$ of $\{u_n\}$ such that $\{x_{n_j}\} \rightarrow u \in K$.

Using a similar technique as in the proof of Theorem 22 in Karapinar et al. [28], we obtain the following results.

Theorem 3.6. Let X, T, K , (i), (ii), (iii), (iv), $\{\xi_n\}, \{9_n\}$ satisfy the hypothesis of Theorem 3.1 and define T as semicompact. Then, the sequence

$\{u_n\}$, defined as (1.5) converges strongly to a fixed point of T .

4. Numerical Example

Let $X = \mathbb{R}$ be a Euclidean metric space and $K = [1, 10]$. Let $T: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $Tx = \sqrt[3]{x^2 + 4}$. It is noticeable that T is a continuously uniform L -Lipschitzian and $F(T) = \{2\}$. Next, we present that T is total asymptotically nonexpansive mapping on $[1, 10]$.

Proof. Observe that the function

$f(x) = \sqrt[3]{x^2 + 4} - x$, $\forall x \in [1, 10]$ has the derivative

$$f'(x) = \frac{1}{3} \left(\frac{1}{\sqrt[3]{(x^2 + 4)^2}} (2x) \right) - 1, \quad \forall x \in [1, 10].$$

Since $x \geq 1$, we have $\frac{1}{3} \left(\frac{1}{\sqrt[3]{(x^2 + 4)^2}} (2x) \right) \leq 1$

and so, $f'(x) \leq 1$. Let $x, y \in [1, 10]$ with $x \leq y$ which implies that

$$f(y) \leq f(x). \text{ So,}$$

$$\begin{aligned} \sqrt[3]{y^2 + 4} - y &\leq \sqrt[3]{x^2 + 4} - x \\ \sqrt[3]{y^2 + 4} - \sqrt[3]{x^2 + 4} &\leq y - x \\ \left| \sqrt[3]{y^2 + 4} - \sqrt[3]{x^2 + 4} \right| &\leq |y - x| \end{aligned}$$

or

$$\left| \sqrt[3]{y^2 + 4} - \sqrt[3]{x^2 + 4} \right| \leq |x - y|.$$

Hence, we have $|Tx - Ty| \leq |x - y|$.

Therefore, T is nonexpansive mapping referring that T is total asymptotically nonexpansive mapping. \square
Let $u_1 = 9$. By using MATLAB reckon the iterates of algorithm (1.4) and our algorithm (1.5) with two different control conditions conditions

$\eta_n = \frac{1}{3n+1}$, $\vartheta_n = \frac{1}{n}$, $\xi_n = \frac{9n}{10n+1}$ and we obtain numerical results in Table 1, Figure 1, Table 2 and Figure 2.

$\eta_n = \frac{4n}{9n+1}$, $\vartheta_n = \frac{n}{10n+5}$, $\xi_n = \frac{5n}{10n+1}$. Then

Table 1 By using MATLAB reckon the iterates of algorithm (1.4) and our algorithm (1.5) with two different control conditions conditions $\eta_n = \frac{1}{3n+1}$, $\vartheta_n = \frac{1}{n}$, and $\xi_n = \frac{9n}{10n+1}$.

$\eta_n = \frac{1}{3n+1}$, $\vartheta_n = \frac{1}{n}$, $\xi_n = \frac{9n}{10n+1}$		
Iterative scheme		
Iterate	Algorithm (1.4)	Our Algorithm (1.5)
u_1	9.0000	9.0000
x_2	2.9678	2.0000
x_3	2.2612	-
x_4	2.0807	-
x_5	2.0807	-
x_6	2.0091	-
x_7	2.0032	-
x_8	2.0011	-
x_9	2.0004	-
x_{10}	2.0002	-
CPU Time (s)	0.0245	0.0067



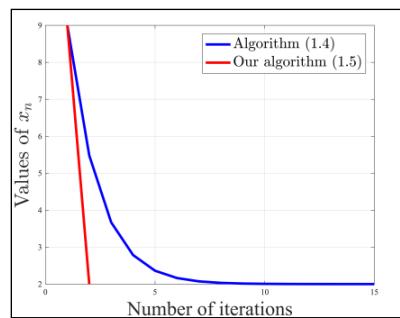
Figure 1 Graphical analysis our algorithm (1.5) faster than algorithm (1.4) in case

$$\eta_n = \frac{1}{3n+1}, \vartheta_n = \frac{1}{n}, \text{ and } \xi_n = \frac{9n}{10n+1}.$$

Table 2 By using MATLAB reckon the iterates of algorithm (1.4) and our algorithm (1.5) with two

different control conditions conditions $\eta_n = \frac{4n}{9n+1}$, $\vartheta_n = \frac{n}{10n+5}$ and $\xi_n = \frac{5n}{10n+1}$.

$\eta_n = \frac{4n}{9n+1}$, $\vartheta_n = \frac{n}{10n+5}$, $\xi_n = \frac{5n}{10n+1}$ Iterative scheme		
Iterate	Algorithm (1.4)	Our Algorithm (1.5)
u_1	9.0000	9.0000
x_2	5.4793	2.0000
x_3	3.6701	-
x_4	2.7845	-
x_5	2.3612	-
x_6	2.1639	-
x_7	2.0737	-
x_8	2.0329	-
x_9	2.0147	-
x_{10}	2.0065	-
x_{11}	2.0029	-
x_{12}	2.0013	-
x_{13}	2.0006	-
x_{14}	2.0003	-
x_{15}	2.0001	-
CPU Time (s)	0.0066	0.0058

**Figure 2** Graphical analysis our algorithm (1.5) faster than algorithm (1.4) in case

$\eta_n = \frac{4n}{9n+1}$, $\vartheta_n = \frac{n}{10n+5}$ and $\xi_n = \frac{5n}{10n+1}$.

From Table 1, Figure 1, Table 2 and Figure 2 show that the numerical results of algorithm (1.4), and our algorithm (1.5) which our algorithm (1.5) faster than algorithm (1.4) in case number of iterations and CPU Time (second).

5. Acknowledgements

The authors thank for the support of Rambhai Barni Rajabhat University.

6. References

- [1] Bridson M. , Haefliger A. *Metric Spaces of Non-Positive Curvature*. Springer Berlin. 1999.
- [2] Burago D. , Burago Y. and Ivanov S. *A course in metric geometry*. In: *Graduate Studies in Math.* 2001.
- [3] Gromov M. *Metric structures for Riemannian and non-Riemannian spaces*. Boston. 1999.
- [4] Bartolini I. , Ciaccia P. and Patella M. String matching with metric trees using an approximate distance. *SPIRE Lecture Notes in Computer Science*. 1999. 2476 : 271-283.
- [5] Semple C. *Phylogenetics*. *Oxford Lecture Series in Mathematics and Its Application*. Oxford University Press, Oxford. 2003.
- [6] Goebel K. and Reich S. *Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings*. Dekker, New York .1984.
- [7] Brown K.S. *Buildings*. Springer, New York . 1989.
- [8] Kirk, WA. Geodesic geometry and fixed point theory. *Seminar of Mathematical Analysis. Colecc. Abierta*, 2003. 64 : 195-225.
- [9] Kirk W.A. Geodesic geometry and fixed point theory. *International Conference on Fixed Point Theo. Appl.* 2004 : 113-142.
- [10] Dhompongsa S. , Kirk W.A. and Sims B. Fixed points of uniformly Lipschitzian mappings. *Nonlinear Anal., Theory Methods Appl.* 2006. 65 : 762-772.
- [11] Dhompongsa S. , Kirk W.A. and Panyanak B. Nonexpansive set-valued mappings in metric and Banach spaces. *J. Nonlinear Convex Anal.* 2007. 8 : 35-45
- [12] Dhompongsa S. And Panyanak B. On Δ - convergence theorems in $CAT(0)$ spaces. *Comput. Math. Appl.* 2008. 56 : 2572-2579.
- [13] Khan S.H. and Abbas M. Strong and Δ - convergence of some iterative schemes in $CAT(0)$ spaces. *Comput. Math. Appl.* 2011.61 : 109-116.
- [14] Sahin A. and Basarir M. On the strong convergence of a modified S-iteration process for asymptotically quasi-nonexpansive mappings in a $CAT(0)$ space. *Fixed Point Theory Appl.* 2013.
- [15] Sahin A. and Basarir M. On the strong and Δ -convergence theorems for nonself mappings on a $CAT(0)$ space. *Proceedings of the 10th IC-FPTA, Cluj-Napoca*, Romania, 9-18 July 2012 ; 227-240.

[16] Kirk W.A. and Panyanak B. A concept of convergence in geodesic spaces. *Nonlinear Anal. Theory Methods Appl.* 2008. 68 : 3689-3696.

[17] Xu B. and Noor MA. Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces. *J. Math. Anal. Appl.* 2002. 267 : 444-453.

[18] Mann W.R. Mean value methods in iteration. *Proc. Am. Math. Soc.* 1953. 4 : 506-510.

[19] Ishikawa S. Fixed points by a new iteration method. *Proc. Am. Math. Soc.* 1974. 44 : 147-150.

[20] Laokul T. and Panyanak B. Approximating fixed points of nonexpansive mappings in CAT (0) spaces, *Int. Journal of Math. Analysis*, 2009. 3 : 1305 - 1315.

[21] Thianwan S. Common fixed points of new iterations for two asymptotically nonexpansive nonself mappings in a Banach space. *J. Comput. Appl. Math.* 2009. 224 : 688-695.

[22] Phuengrattana W. and Suantai S. On the rate of convergence of Mann, Ishikawa, Noor and SP iterations for continuous functions on an arbitrary interval. *J. Comput. Appl. Math.* 2011. 235 : 3006-3014.

[23] Bruhat F. and Tits J. Groupes r'eductifs sur un corps local. *Publ. Math. Inst. Hautes Etudes Sci.* 1972. 41: 5-251.

[24] Qihou L. Iterative sequences for asymptotically quasi-nonexpansive mappings with error member. *J. Math. Anal. Appl.* 2001. 259 : 18-24.

[25] Lim TC. Remarks on some fixed point theorems. *Proc. Am. Math. Soc.* 1976. 60 : 179-182.

[26] Kitkuan D. and Padcharoen A. Strong convergence of a modified SP-iteration process for generalized asymptotically quasi-nonexpansive mappings in CAT(0) spaces. *J. Nonlinear Sci. Appl.* 2016. 9 : 2126-2135.

[27] Senter H.F. and Dotson W.G. Approximating fixed points of nonexpansive mappings. *Proc. Am. Math. Soc.* 1974. 44 : 375-380.

[28] Karapinar E., Salahifard H. and Vaezpour S. M. Demiclosedness principle for total asymptotically nonexpansive mappings in CAT(0) spaces, *J. Appl. Math.* 2014 : 1-10.

[29] Kirk, W. A. Geodesic geometry and fixed point theory II, Proceedings of International Conference in Fixed Point Theory and Applications. Valencia, Spain, 2003, : 113–142.

[30] Dhompongsa S. , Kirk W.A. and Panyanak B. Nonexpansive set- valued mappings in metric and Banach spaces, *J. Nonlinear Convex Anal.* 2007. 8 : 35-45.

- [31] Dhompongsa S. and Panyanak B. On Δ -convergence theorems in $CAT(0)$ spaces, *Comput. Math. Appl.* 2008. 56 : 2572-2579.
- [32] Thakur B.S. , Thakur D. and Postolache M. Modified Picard- Mann hybrid iteration process for total asymptotically nonexpansive mappings. *Fixed Point Theory and Application*. 2015. 140 : 1-11.
- [33] Kenyi C., Mart'inez-Moreno J. and Rojas E. M. Hybrid algorithm with perturbations for total asymptotically non-expansive mappings in $CAT(0)$ space. *Int. J. Comput. Math.* 2019 : 405-419.