



New Fixed Point Theorems for $\theta - \phi$ Suzuki Contraction on Partial Metric Spaces

Areerat Arunchai¹, Aumpawan Lampet¹, Pornsuda Piromsuk^{1*} and Supasiri Ourliang¹

¹Mathematics Program, Faculty of Science and Technology, Nakhon Sawan Rajabhat University,
Nakonswan, 60000, Thailand

*E-mail: pornsuda140440@gmail.com

Abstract

In this paper, we establish new fixed point theorems for $\theta - \phi$ Suzuki contraction on complete partial metric spaces. The results presented in the paper improve and extend some previous results.

Keywords: Fixed points, Partial metric space, $\theta - \phi$ Suzuki contraction

1. Introduction

Fixed point theorem is considered a very important theory in applied in the branch. Mathematics and other disciplines, especially in the fields of spatial analysis function.

In 1992, S.Banach [11] introduce the notion fixed point theorem for contraction on complete metric space which is the beginning of the study, it is The Banach Contraction Principle following

Theorem 1.1 [11]. Let (X, d) be a complete metric space and let T be a contraction on X , there exists $r \in [0,1)$ such that $d(Tx, Ty) \leq rd(x, y)$, for all $x, y \in X$. Then T has a unique fixed point.

In 2014, Jleli and Samet [3] introduce type contraction that is called θ – contraction and establish fixed point theorem for θ – contraction on metric space.

In 2017, D.W. Zheng, Z.Y. Cai and P. Wang [9] introduce the notion of $\theta - \phi$

Received: December 20, 2018

Revised: June 30, 2019

Accepted: October 10, 2019

contraction and $\theta - \phi$ Suzuki contraction and establish new fixed point theorem for $\theta - \phi$ contraction on complete metric space following

Theorem 1.2 [9] Suppose (X, d) is a complete metric space and $T: X \rightarrow X$ is a $\theta - \phi$ Suzuki contraction, there exists $\theta \in \Theta$ and $\phi \in \Phi$ such that for any $x, y \in X$, $Tx \neq Ty$. Then T has a unique fixed point $x^* \in X$ such that the sequence $\{T^n x\}$ converges to x^* for every $x \in X$.

From the above results, they obtain the following fixed point theorems for $\theta - \phi$ contraction and $\theta - \phi$ Kannan-type contraction.

In 2018, T. Hu, D.W. Zheng and J. Zhou [10] introduce the notion of $\theta - \phi$ contraction, $\theta - \phi$ Kannan-type contraction and establish new fixed point theorem on complete partial metric space following

Theorem 1.3 [10] Suppose (X, p) is a complete partial metric space and $T: X \rightarrow X$ is a $\theta - \phi$ contraction, then T has a unique fixed point $x^* \in X$ such that the sequence $\{T^n x\}$ converges to x^* for every $x \in X$.

Theorem 1.4 [10] Let (X, p) be a complete partial metric space and suppose $T: X \rightarrow X$ is a $\theta - \phi$ Kannan-type contraction. Then T has a unique fixed point $x^* \in X$ such that the sequence $\{T^n x\}$ converges to x^* for every $x \in X$.

In this paper, we establish new fixed point theorems for $\theta - \phi$ Suzuki contraction on complete partial metric spaces. The results presented in the paper improve and extend some previous results.

2. Preliminaries

Definition 2.1 A partial metric on a nonempty set X is a mapping $p: X \times X \rightarrow [0, +\infty)$ such that for all

$x, y, z \in X$;

$$(P1) x = y \Leftrightarrow 0 \leq p(x, x) = p(x, y) = p(y, y);$$

$$(P2) p(x, x) \leq p(x, y);$$

$$(P3) p(x, y) = p(y, x);$$

$$(P4) p_b(x, y) \leq p(x, z) + p(z, y) - p(z, z).$$

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric on X .

For a partial metric p on X , the function

$$d_p: X \times X \rightarrow [0, \infty) \text{ given by}$$

$$d_p(x, y) = 2p(x, y) - p(x, x) - p(y, y) \quad (2.1)$$

is a metric on X . Each partial metric p on X generates a T_0 topology τ_p on X with a base of the family of open p -balls $\{B_p(x, \varepsilon): x \in X, \varepsilon > 0\}$, where

$$B_p(x, \varepsilon) = \{y \in X: p(x, y) < p(x, x) + \varepsilon\} \text{ for all } x \in X \text{ and } \varepsilon > 0.$$

Lemma 2.2 [3], [4], [5], [8]

(1) A sequence $\{x_n\}$ is Cauchy in a partial metric space (X, p) if and only if $\{x_n\}$ is Cauchy in a metric space (X, d_p) ;

(2) A partial metric space (X, p) is complete if and only if the metric space (X, d_p) is complete.

Moreover,

$$\begin{aligned} \lim_{n \rightarrow \infty} d_p(x, x_n) = 0 &\Leftrightarrow p(x, x) = \lim_{n \rightarrow \infty} p(x, x_n) \\ &= \lim_{n \rightarrow \infty} p(x_n, x_m). \end{aligned} \quad (2.2)$$

Lemma 2.3 [6], [7]. Assume $\{x_n\} \rightarrow z$ as $n \rightarrow \infty$ in a partial metric space (X, p) such that $p(x, x) = 0$. Then $\lim_{n \rightarrow \infty} p(x_n, y) = p(z, y)$ for every $y \in X$.

Definition 2.4 Let (X, p) be a partial metric space.

- (i) A sequence $\{x_n\}$ in (X, p) converges to a point $x \in X$ if and only if $p(x, x) = \lim_{n \rightarrow +\infty} p(x_n, x)$.
- (ii) A sequence $\{x_n\}$ in (X, p) is called a Cauchy sequence if $\lim_{n, m \rightarrow +\infty} p(x_n, x_m)$ exists.
- (iii) A partial metric space (X, p) is said to be complete if every Cauchy sequence $\{x_n\}$ in X converges to a point $x \in X$ such that $p(x, x) = \lim_{n, m \rightarrow +\infty} p(x_n, x_m)$.
- (iv) A mapping $f: X \rightarrow X$ is said to be continuous at $x_0 \in X$, if for every $\varepsilon > 0$, there exists $\delta > 0$ such that $f(B_p(x_0, \delta)) \subset B_p(f(x_0), \varepsilon)$.

Definition 2.5 [2] Let (X, p) be a metric space. A mapping $T: X \rightarrow X$ is said to be an θ - contraction if there exist $\theta \in \Theta$ and $k \in (0, 1)$ such that for any $x, y \in X$,

$$d(Tx, Ty) \neq 0 \Rightarrow \theta(d(Tx, Ty)) \leq \theta(d(x, y))^k \quad (2.3)$$

where $\theta: (0, \infty) \rightarrow (1, \infty)$ satisfies the following conditions:

- (Θ 1) θ is non-decreasing;
- (Θ 2) for each sequence $\{t_n\} \subset (0, \infty)$, $\lim_{n \rightarrow \infty} \theta(t_n) = 1$ if and only if $\lim_{n \rightarrow \infty} t_n = 0^+$;
- (Θ 3) θ is continuous on $(0, \infty)$

Definition 2.6 [1] Denote by Φ the set of functions $\phi: [1, \infty) \rightarrow [1, \infty)$ satisfying the following conditions:

(Φ 1) $\phi: [1, \infty) \rightarrow [1, \infty)$ is non-decreasing;

(Φ 2) for each $t > 1$, $\lim_{n \rightarrow \infty} \phi^n(t) = 1$;

(Φ 3) ϕ is continuous on $[1, \infty)$.

Lemma 2.7 [1] If $\phi \in \Phi$ then $\phi(1) = 1$ and $\phi(t) < t$ for each $t > 1$.

Definition 2.8 Let (X, p) be a partial metric space and let $T: X \rightarrow X$ be a self-mapping;

- (1) T is said to be a $\theta - \phi$ contraction if exist $\theta \in \Theta$ and $\phi \in \Phi$ such that for any $x, y \in X$,

$$\begin{aligned} & \theta(p(Tx, Ty)) \\ & \leq \phi[\theta(p(x, y))] \end{aligned} \quad (2.4)$$

- (2) T is said to be a $\theta - \phi$ Kannan-type contraction if exist $\theta \in \Theta$ and $\phi \in \Phi$ such that for any $x, y \in X$, $Tx \neq Ty$,

$$\begin{aligned} & \theta(p(Tx, Ty)) \\ & \leq \phi \left[\theta \left(\frac{p(x, Tx) + p(y, Ty)}{2} \right) \right] \end{aligned} \quad (2.5)$$

- (3) T is said to be a $\theta - \phi$ Suzuki contraction if there exist $\theta \in \Theta$ and $\phi \in \Phi$ such that for any $x, y \in X$, $Tx \neq Ty$, if $\frac{1}{2}p(x, Tx) < p(x, y)$, then $\theta(p(Tx, Ty)) \leq \phi[\theta(N(x, y))]$ (2.6) where $N(x, y) = \max\{p(x, y), p(x, Tx), p(y, Ty)\}$.

3. Main results

In this section, we obtain new fixed point theorem defined on complete partial metric space.

Theorem 3.1 Suppose (X, p) is a complete partial metric space and $T: X \rightarrow X$ is a $\theta - \phi$ Suzuki contraction. Then T has a unique fixed point $x^* \in X$ such that the sequence $\{T^n x\}$ converges to x^* for every $x^* \in X$.

Proof. Fix $x_0 \in X$ and construct the sequence $\{x_n\}$ by $x_{n+1} = Tx_n$, $n = 1, 2, 3, \dots$

Case 1. If $x_{n-1} = x_n$ for some $n \in N$, then $x^* = x_n$ is a fixed point for T .

Case 2. If $x_{n-1} \neq x_n$ for each $n \in N$, then

$$p(x_{n+1}, x_n) > 0 \text{ for all } n \in N.$$

Substituting $x = x_{n-1}$ and $y = x_n$ in (2.6). To show that $\frac{1}{2}p(x_{n-1}, x_n) = \frac{1}{2}p(x_{n-1}, Tx_{n-1}) < p(x_{n-1}, x_n)$.

Hence $\theta(p(Tx_{n-1}, Tx_n)) \leq$

$$\phi[\theta(N(x_{n-1}, x_n))] \quad (3.1)$$

where

$$\begin{aligned} N(x_{n-1}, x_n) \\ = \max\{p(x_{n-1}, x_n), p(x_{n-1}, Tx_{n-1}), p(x_n, Tx_n)\} \\ = \max\{p(x_{n-1}, x_n), p(x_{n-1}, x_n), p(x_n, x_{n+1})\} \\ = \max\{p(x_{n-1}, x_n), p(x_n, x_{n+1})\}. \end{aligned}$$

If $N(x_{n-1}, x_n) = p(x_n, x_{n+1})$ and using (3.1),

$$\begin{aligned} \text{then } \theta(p(x_n, x_{n+1})) &= \theta(p(Tx_{n-1}, Tx_n)) \\ &\leq \phi[\theta(p(x_n, x_{n+1}))] \end{aligned}$$

By the definition of θ and Lemma 2.7, we have

$$\begin{aligned} \theta(p(x_n, x_{n+1})) &= \theta(p(Tx_{n-1}, Tx_n)) \\ &\leq \phi[\theta(p(x_n, x_{n+1}))] \\ &< \theta(p(x_n, x_{n+1})), \end{aligned}$$

which is a contradiction. Thus

$$\begin{aligned} N(x_{n-1}, x_n) &= p(x_{n-1}, x_n) \text{ that by (3.1),} \\ \text{we have } \theta(p(x_n, x_{n+1})) &= \theta(p(Tx_{n-1}, Tx_n)) \\ &\leq \phi[\theta(p(x_{n-1}, x_n))]. \end{aligned}$$

Repeating this step, we conclude that

$$\begin{aligned} \theta(p(x_n, x_{n+1})) &= \theta(p(Tx_{n-1}, Tx_n)) \\ &\leq \phi[\theta(p(x_{n-1}, x_n))] \\ &\leq \phi[\phi[\theta(p(x_{n-2}, x_{n-1}))]] \\ &\leq \phi^2[\theta(p(x_{n-2}, x_{n-1}))] \\ &\leq \phi^3[\theta(p(x_{n-3}, x_{n-2}))] \\ &\vdots \\ &\leq \phi^n[\theta(p(x_0, x_1))]. \end{aligned}$$

By the definition of θ and property $(\Phi 2)$, we have

$$\lim_{n \rightarrow +\infty} \phi^n[p(x_0, x_1)] = 1.$$

Letting $n \rightarrow \infty$, we obtain

$$\begin{aligned} 1 &\leq \lim_{n \rightarrow +\infty} \theta(p(x_n, x_{n+1})) \leq \\ &\lim_{n \rightarrow +\infty} \phi^n[p(x_0, x_1)] = 1. \end{aligned}$$

By Sandwich theorem, $\lim_{n \rightarrow +\infty} \theta(p(x_n, x_{n+1})) = 1$.

$$\begin{aligned} \text{And by (3.2), we have } \lim_{n \rightarrow +\infty} p(x_n, x_{n+1}) &= 0. \\ (3.2) \end{aligned}$$

Similarly, setting $x = x_m$ and $y = x_m$. We obtain that

$$\frac{1}{2}p(x_m, x_{m+1}) = \frac{1}{2}p(x_m, Tx_m) < p(x_m, x_m).$$

Letting $n \rightarrow \infty$ and (3.2), we get

$$\begin{aligned} 0 &= \lim_{m \rightarrow +\infty} \frac{1}{2}p(x_m, x_{m+1}) < \lim_{m \rightarrow +\infty} p(x_m, x_m) \\ &= p(x_m, x_m). \end{aligned}$$

Hence

$$\theta(p(Tx_m, Tx_m)) \leq \phi[\theta(N(x_m, x_m))] \quad (3.3)$$

where

$$\begin{aligned} N(x_m, x_m) \\ = \max\{p(x_m, x_m), p(x_m, Tx_m), p(x_m, Tx_m)\} \\ = \max\{p(x_m, x_m), p(x_m, x_{m+1}), p(x_m, x_{m+1})\} \\ = \max\{p(x_m, x_m), 0, 0\} \text{ (as } n \rightarrow \infty\text{).} \end{aligned}$$

Thus $N(x_m, x_m) = p(x_m, x_m)$ from (3.3), we have

$$\begin{aligned} \theta(p(x_{m+1}, x_{m+1})) &= \theta(p(Tx_m, Tx_m)) \\ &\leq \phi[\theta(p(x_m, x_m))] \\ &\leq \\ \phi[\phi[\theta(p(x_{m-1}, x_{m-1}))]] &\leq \phi^2[\theta(p(x_{m-1}, x_{m-1}))] \\ &\leq \phi^3[\theta(p(x_{m-2}, x_{m-2}))] \\ &\vdots \\ &\leq \phi^m[\theta(p(x_1, x_1))]. \end{aligned}$$

By the definition of θ and property $(\Phi 2)$, we have

$$\lim_{m \rightarrow +\infty} \phi^m[p(x_1, x_1)] = 1.$$

Letting $n \rightarrow \infty$, we have

$$\begin{aligned} 1 &\leq \lim_{m \rightarrow +\infty} \theta(p(x_{m+1}, x_{m+1})) \leq \\ &\lim_{m \rightarrow +\infty} \phi^m[p(x_1, x_1)] = 1. \end{aligned}$$

By Sandwich theorem, we have

$$\lim_{m \rightarrow +\infty} \theta(p(x_{m+1}, x_{m+1})) = 1.$$

And by (θ2), we have $\lim_{m \rightarrow +\infty} p(x_{m+1}, x_{m+1}) = 0$. (3.4)

Next, we prove that $\{x_n\}$ is a Cauchy sequence in the metric space (x, d_p) . Otherwise, there exists some $\varepsilon > 0$ for which we can find subsequences $\{x_{m(k)}\}$ and $\{x_{n(k)}\}$ of $\{x_n\}$ with $n(k) > m(k) > k$ such that

$$d_p(x_{m(k)}, x_{n(k)}) \geq \varepsilon. \quad (3.5)$$

Further, corresponding to $m(k)$, we can choose $n(k)$ in such a way it is the smallest integer with $n(k) > m(k)$ and satisfying (3.5). Hence,

$$d_p(x_{m(k)}, x_{n(k)-1}) < \varepsilon.$$

Then we have

$$\begin{aligned} \varepsilon &\leq d_p(x_{m(k)}, x_{n(k)}) \\ &\leq d_p(x_{m(k)}, x_{n(k)-1}) + d_p(x_{n(k)-1}, x_{n(k)}) \\ &< \varepsilon + d_p(x_{n(k)-1}, x_{n(k)}). \end{aligned}$$

Noting that

$$\begin{aligned} d_p(x_{n(k)-1}, x_{n(k)}) &= 2p(x_{n(k)-1}, x_{n(k)}) \\ &\quad - p(x_{n(k)-1}, x_{n(k)-1}) \\ &\quad - p(x_{n(k)}, x_{n(k)}). \end{aligned}$$

Let $k \rightarrow \infty$ from (3.2), (3.4) and the above

inequality, we can conclude that

$$\begin{aligned} \varepsilon &\leq \lim_{k \rightarrow +\infty} d_p(x_{m(k)}, x_{n(k)}) \\ &< \varepsilon + 2 \lim_{k \rightarrow +\infty} p(x_{n(k)-1}, x_{n(k)}) \\ &\quad - \lim_{k \rightarrow +\infty} p(x_{n(k)-1}, x_{n(k)-1}) - \\ &\quad \lim_{k \rightarrow +\infty} p(x_{n(k)}, x_{n(k)}) \\ &= \varepsilon. \end{aligned}$$

By Sandwich theorem, we have

$$\lim_{k \rightarrow +\infty} d_p(x_{m(k)}, x_{n(k)}) = \varepsilon.$$

From (2.1), we have

$$\begin{aligned} &\lim_{k \rightarrow +\infty} d_p(x_{m(k)}, x_{n(k)}) \\ &= 2 \lim_{k \rightarrow +\infty} p(x_{m(k)}, x_{n(k)}) \\ &\quad - \lim_{k \rightarrow +\infty} p(x_{m(k)}, x_{m(k)}) \\ &\quad - \lim_{k \rightarrow +\infty} p(x_{n(k)}, x_{n(k)}) \end{aligned}$$

and from (3.4), we have

$$\begin{aligned} \varepsilon &= \lim_{k \rightarrow +\infty} d_p(x_{m(k)}, x_{n(k)}) \\ &= 2 \lim_{k \rightarrow +\infty} p(x_{m(k)}, x_{n(k)}). \end{aligned} \quad (3.6)$$

Again

$$\begin{aligned} &d_p(x_{n(k)}, x_{m(k)}) \\ &\leq d_p(x_{n(k)}, x_{n(k)-1}) + d_p(x_{n(k)-1}, x_{m(k)}) \\ &\leq d_p(x_{n(k)}, x_{n(k)-1}) + d_p(x_{n(k)-1}, x_{m(k)-1}) \\ &\quad + d_p(x_{m(k)-1}, x_{m(k)}) \end{aligned}$$

and

$$\begin{aligned} &d_p(x_{n(k)-1}, x_{m(k)-1}) \\ &\leq d_p(x_{n(k)-1}, x_{n(k)}) + d_p(x_{n(k)}, x_{m(k)-1}) \\ &\leq d_p(x_{n(k)-1}, x_{n(k)}) + d_p(x_{n(k)}, x_{m(k)}) \\ &\quad + d_p(x_{m(k)}, x_{m(k)-1}). \end{aligned}$$

Consider

$$\begin{aligned} &d_p(x_{n(k)}, x_{m(k)}) \\ &\leq d_p(x_{n(k)}, x_{n(k)-1}) + d_p(x_{n(k)-1}, x_{m(k)-1}) \\ &\quad + d_p(x_{m(k)-1}, x_{m(k)}) \\ &= [2p(x_{n(k)}, x_{n(k)-1}) - p(x_{n(k)}, x_{n(k)}) \\ &\quad - p(x_{n(k)-1}, x_{n(k)-1})] + \\ &d_p(x_{n(k)-1}, x_{m(k)-1}) \\ &\quad + [2p(x_{m(k)-1}, x_{m(k)}) - \\ &\quad p(x_{m(k)-1}, x_{m(k)-1}) \\ &\quad - p(x_{m(k)}, x_{m(k)})]. \end{aligned}$$

Letting $k \rightarrow \infty$ and follow from (3.2) and (3.4)

and the above in equations, we obtain

$$\lim_{k \rightarrow +\infty} d_p(x_{n(k)}, x_{m(k)}) \leq \lim_{k \rightarrow +\infty} d_p(x_{n(k)-1}, x_{m(k)-1}).$$

Consider

$$\begin{aligned} &d_p(x_{n(k)-1}, x_{m(k)-1}) \\ &\leq d_p(x_{n(k)-1}, x_{n(k)}) + d_p(x_{n(k)}, x_{m(k)}) \\ &\quad + d_p(x_{m(k)}, x_{m(k)-1}) \\ &= [2p(x_{n(k)-1}, x_{n(k)}) - p(x_{n(k)-1}, x_{n(k)-1}) \\ &\quad - p(x_{n(k)}, x_{n(k)})] + d_p(x_{n(k)}, x_{m(k)}) \\ &\quad + [2p(x_{m(k)}, x_{m(k)-1}) - p(x_{m(k)}, x_{m(k)}) \\ &\quad - p(x_{m(k)-1}, x_{m(k)-1})]. \end{aligned}$$

Letting $k \rightarrow \infty$ and follow from (3.2) and (3.4)

and the above in equations, we get

$$\begin{aligned} &\lim_{k \rightarrow +\infty} d_p(x_{n(k)-1}, x_{m(k)-1}) \\ &\leq \lim_{k \rightarrow +\infty} d_p(x_{n(k)}, x_{m(k)}). \end{aligned}$$

Hence

$$\begin{aligned} \lim_{k \rightarrow +\infty} d_p(x_{n(k)-1}, x_{m(k)-1}) \\ \leq \lim_{k \rightarrow +\infty} d_p(x_{n(k)}, x_{m(k)}) \\ \leq \lim_{k \rightarrow +\infty} d_p(x_{n(k)-1}, x_{m(k)-1}). \end{aligned}$$

By Sandwich theorem, we have

$$\begin{aligned} \lim_{k \rightarrow \infty} d_p(x_{n(k)}, x_{m(k)}) \\ = \lim_{k \rightarrow \infty} d_p(x_{n(k)-1}, x_{m(k)-1}) \\ = 2 \lim_{k \rightarrow \infty} p(x_{n(k)-1}, x_{m(k)-1}) \\ - \lim_{k \rightarrow \infty} p(x_{n(k)-1}, x_{n(k)-1}) \\ - \lim_{k \rightarrow \infty} p(x_{m(k)-1}, x_{m(k)-1}). \end{aligned}$$

From (3.4) and (3.6), we obtain

$$\begin{aligned} \varepsilon &= \lim_{k \rightarrow \infty} d_p(x_{n(k)}, x_{m(k)}) \\ &= \lim_{k \rightarrow \infty} d_p(x_{n(k)-1}, x_{m(k)-1}) \\ &= 2 \lim_{k \rightarrow \infty} p(x_{n(k)-1}, x_{m(k)-1}). \end{aligned} \quad (3.7)$$

Let $x = x_{m(k)-1}$ and $y = x_{n(k)-1}$ in (2.6).

To show that

$$\begin{aligned} \frac{1}{2}p(x_{m(k)-1}, x_{m(k)}) &= \\ \frac{1}{2}p(x_{m(k)-1}, Tx_{m(k)-1}) & \\ &< p(x_{m(k)-1}, x_{n(k)-1}). \end{aligned}$$

Let $k \rightarrow \infty$ and from (3.2) and (3.7), we have

$$\begin{aligned} 0 &= \lim_{k \rightarrow \infty} \frac{1}{2}p(x_{m(k)-1}, x_{m(k)}) \\ &< \lim_{k \rightarrow \infty} p(x_{m(k)-1}, x_{n(k)-1}) \\ &\quad \varepsilon \\ &= \frac{\varepsilon}{2}. \end{aligned}$$

Hence

$$\theta[p(Tx_{m(k)-1}, Tx_{n(k)-1})] \leq \phi[\theta(p(x_{m(k)-1}, x_{n(k)-1}))] \quad (3.8)$$

where

$$\begin{aligned} N(x_{m(k)-1}, x_{n(k)-1}) \\ &= \max\{p(x_{m(k)-1}, x_{n(k)-1}), p(x_{m(k)-1}, Tx_{m(k)-1}), \\ &\quad p(x_{n(k)-1}, Tx_{n(k)-1})\} \\ &= \max\{p(x_{m(k)-1}, x_{n(k)-1}), p(x_{m(k)-1}, x_{m(k)}), \\ &\quad p(x_{n(k)-1}, x_{n(k)})\} \\ &= \max\{p(x_{m(k)-1}, x_{n(k)-1}), 0, 0\} \text{ (as } k \rightarrow \infty\text{).} \end{aligned}$$

Since $N(x_{m(k)-1}, x_{n(k)-1}) = p(x_{m(k)-1}, x_{n(k)-1})$ from (3.8), we have

$$\begin{aligned} \theta[p(Tx_{m(k)-1}, Tx_{n(k)-1})] \\ \leq \phi[\theta(p(x_{m(k)-1}, x_{n(k)-1}))]. \end{aligned}$$

Let $k \rightarrow \infty$, we obtain that

$$\begin{aligned} \lim_{k \rightarrow \infty} \theta[p(x_{m(k)}, x_{n(k)})] \\ = \lim_{k \rightarrow \infty} \theta[p(Tx_{m(k)-1}, Tx_{n(k)-1})] \\ \leq \lim_{k \rightarrow \infty} \phi[\theta(p(x_{m(k)-1}, x_{n(k)-1}))]. \end{aligned}$$

From (3.6), we have

$$\frac{\lim_{k \rightarrow \infty} d_p(x_{m(k)}, x_{n(k)})}{2} = \lim_{k \rightarrow \infty} p(x_{m(k)}, x_{n(k)}).$$

And from (3.5),

$$\begin{aligned} \frac{\varepsilon}{2} &\leq \frac{\lim_{k \rightarrow \infty} d_p(x_{m(k)}, x_{n(k)})}{2} \\ &= \lim_{k \rightarrow \infty} p(x_{m(k)}, x_{n(k)}). \end{aligned}$$

Thus

$$\begin{aligned} \theta\left(\frac{\varepsilon}{2}\right) &\leq \lim_{k \rightarrow \infty} \theta[p(x_{m(k)}, x_{n(k)})] \\ &\leq \\ &\lim_{k \rightarrow \infty} \phi[\theta(p(x_{m(k)-1}, x_{n(k)-1}))]. \end{aligned}$$

From (3.7),

$$\begin{aligned} \frac{\varepsilon}{2} &= \frac{\lim_{k \rightarrow \infty} d_p(x_{m(k)-1}, x_{n(k)-1})}{2} \\ &= \lim_{k \rightarrow \infty} p(x_{m(k)-1}, x_{n(k)-1}). \end{aligned}$$

Therefore

$$\theta\left(\frac{\varepsilon}{2}\right) \leq \lim_{k \rightarrow \infty} \theta[p(x_{m(k)}, x_{n(k)})] \leq \phi\left[\theta\left(\frac{\varepsilon}{2}\right)\right].$$

By Lemma 2.7, we have

$$\theta\left(\frac{\varepsilon}{2}\right) \leq \phi\left[\theta\left(\frac{\varepsilon}{2}\right)\right] < \theta\left(\frac{\varepsilon}{2}\right),$$

which it is a contradiction. Hence $\{x_n\}$ is a

Cauchy sequence in (X, d_p) .

The above show that $\{x_n\}$ must be a Cauchy sequence in the complete metric space (X, d_p) .

Thus, there exists some x^* in X that by (2.2) and (3.4), we have

$$\lim_{n \rightarrow \infty} d_p(x_n, x^*) = 0.$$

Hence

$$\begin{aligned} p(x^*, x^*) &= \lim_{n \rightarrow \infty} p(x_n, x^*) \\ &= \lim_{n, m \rightarrow \infty} p(x_n, x_m) \\ &= \frac{1}{2} \lim_{n, m \rightarrow \infty} d_p(x_n, x_m) = 0. \end{aligned}$$

To show that this x^* is a fixed point. By means of

(P2), to prove that

$$p(Tx^*, x^*) = p(x^*, x^*) = p(Tx^*, Tx^*) = 0.$$

From above $p(x^*, x^*) = 0$,

let $x = x^*$ and $y = x^*$ in (2.6), we obtain that

$$\frac{1}{2} p(x^*, Tx^*) < p(x^*, x^*).$$

Since $p(x^*, Tx^*) = p(x^*, x^*)$, we have

$$\frac{1}{2} p(x^*, x^*) < p(x^*, x^*).$$

$$\text{Hence } \theta[p(Tx^*, Tx^*)] \leq \phi[\theta(N(x^*, x^*))], \quad (3.9)$$

where

$$\begin{aligned} N(x^*, x^*) &= \max\{p(x^*, x^*), p(x^*, Tx^*), p(x^*, Tx^*)\} \\ &= \max\{p(x^*, x^*), p(x^*, x^*), p(x^*, x^*)\} \\ &= \max\{p(x^*, x^*)\}. \end{aligned}$$

Thus $N(x^*, x^*) = p(x^*, x^*)$ from (3.9), we get

$$\theta[p(Tx^*, Tx^*)] \leq \phi[\theta(p(x^*, x^*))].$$

Let $n \rightarrow \infty$, we obtain that

$$\lim_{n \rightarrow \infty} \theta[p(Tx^*, Tx^*)] \leq \lim_{n \rightarrow \infty} \phi[\theta(p(x^*, x^*))].$$

And by (θ2) and Lemma 2.7, we have

$$\begin{aligned} 1 &\leq \lim_{n \rightarrow \infty} \theta[p(Tx^*, Tx^*)] \\ &\leq \lim_{n \rightarrow \infty} \phi[\theta(p(x^*, x^*))] = 1. \end{aligned}$$

By Sandwich theorem, we obtain

$$\lim_{n \rightarrow \infty} \theta[p(Tx^*, Tx^*)] = 1.$$

And from (θ2), we have

$$p(Tx^*, Tx^*) = \lim_{n \rightarrow \infty} p(Tx^*, Tx^*) = 0.$$

Therefore

$$p(Tx^*, Tx^*) = 0.$$

Let $x = x_{n-1}$ and $y = x^*$ in (2.6). To show that

$$\frac{1}{2} p(x_{n-1}, Tx_{n-1}) < p(x_{n-1}, x^*).$$

Let $n \rightarrow \infty$ and from $\{x_n\}$ is a Cauchy sequence,

we get $x_n \rightarrow x^*$

$$\begin{aligned} \lim_{n \rightarrow \infty} \frac{1}{2} p(x_{n-1}, Tx_{n-1}) &< \lim_{n \rightarrow \infty} p(x_{n-1}, x^*), \\ \frac{1}{2} p(x^*, x^*) &< p(x^*, x^*). \end{aligned}$$

That is,

$$\theta[p(Tx_{n-1}, Tx^*)] \leq \phi[\theta(N(x_{n-1}, x^*))]. \quad (3.10)$$

where

$$\begin{aligned} N(x_{n-1}, x^*) &= \max\{p(x_{n-1}, x^*), p(x_{n-1}, Tx_{n-1}), p(x^*, Tx^*)\} \\ &= \max\{p(x_{n-1}, x^*), p(x_{n-1}, x_n), p(x^*, x^*)\} \\ &= \max\{p(x^*, x^*), 0, 0\} \text{ (as } n \rightarrow \infty\text{).} \end{aligned}$$

Thus $N(x_{n-1}, x^*) = p(x^*, x^*)$ from (3.10),

we have

$$\begin{aligned} \theta[p(x_n, Tx^*)] &= \theta[p(Tx_{n-1}, Tx^*)] \\ &\leq \phi[\theta(p(x^*, x^*))]. \end{aligned}$$

Let $n \rightarrow \infty$ and by Lemma 2.3, we obtain

$$\begin{aligned} \lim_{n \rightarrow \infty} \theta[p(x_n, Tx^*)] &\leq \lim_{n \rightarrow \infty} \phi[\theta(p(x^*, x^*))], \\ \theta[p(x^*, Tx^*)] &\leq \phi[\theta(p(x^*, x^*))]. \end{aligned}$$

By the definition of θ and Lemma 2.7, we have

$$1 \leq \theta[p(x^*, Tx^*)] \leq 1.$$

Let $n \rightarrow \infty$ by Sandwich theorem, we get

$$\lim_{n \rightarrow \infty} \theta[p(x^*, Tx^*)] = 1.$$

And from (θ2), we get

$$p(x^*, Tx^*) = \lim_{n \rightarrow \infty} p(x^*, Tx^*) = 0.$$

Therefore

$$p(x^*, Tx^*) = 0.$$

Now, we shall show that T has a unique fixed

point. Suppose there exists another fixed point y^*

of T such that $Tx^* = x^* \neq Ty^* = y^*$.

Let $x = x^*$ and $y = y^*$ in (2.6). To show that

$$0 = \frac{1}{2} p(x^*, x^*) = \frac{1}{2} p(x^*, Tx^*) < p(x^*, y^*).$$

Hence

$$\theta[p(Tx^*, Ty^*)] \leq \phi[\theta(N(x^*, y^*))], \quad (3.11)$$

where

$$\begin{aligned} N(x^*, y^*) &= \max\{p(x^*, y^*), p(x^*, Tx^*), p(y^*, Ty^*)\} \\ &= \max\{p(x^*, y^*), p(x^*, x^*), p(y^*, y^*)\} \\ &= \max\{p(x^*, y^*), 0, 0\} \text{ (as } n \rightarrow \infty\text{).} \end{aligned}$$

Thus $N(x^*, y^*) = p(x^*, y^*)$ and from (3.11),

we conclude that

$$\begin{aligned} \theta[p(x^*, y^*)] &= \theta[p(Tx^*, Ty^*)] \\ &\leq \phi[\theta(p(x^*, y^*))] \\ &< \theta(p(x^*, y^*)). \end{aligned}$$

which is a contradiction. Therefore T has a unique fixed point.

Remark 3.2 Theorem 3.1 improves the main results [9] and [10].

It follows from Theorem 3.1 and [9], we obtain the following fixed point results for $\theta - \phi$ contraction and $\theta - \phi$ Kannan-type contraction.

Corollary 3.3 Suppose (X, p) is a complete partial metric space and $T: X \rightarrow X$ is a $\theta - \phi$ contraction. Then T has a unique fixed point $x^* \in X$ such that the sequence $\{T^n x\}$ converges to x^* for every $x \in X$.

Corollary 3.4 Let (X, p) be a complete partial metric space and suppose $T: X \rightarrow X$ is a $\theta - \phi$ Kannan-type contraction. Then T has a unique fixed point $x^* \in X$ such that the sequence $\{T^n x\}$ converges to x^* for every $x \in X$.

Remark 3.5 Corollary 3.3 and 3.4 improves the some main results in [10].

It follows from Theorem 3.1, we obtain the following fixed point results for $\theta - \phi$ Suzuki contraction.

Corollary 3.6 Suppose (X, d) is a complete metric space and suppose $T: X \rightarrow X$ is a $\theta - \phi$ Suzuki contraction, there exist $\theta \in \Theta$ and $\phi \in \Phi$ such that for any $x, y \in X$,

$$Tx \neq Ty, \quad \frac{1}{2}d(x, Tx) < d(x, y) \rightarrow \theta(d(Tx, Ty)) \leq \phi[\theta(N(x, y))]$$

where

$$N(x, y) =$$

$$\max\{d(x, y), d(x, Tx), d(y, Ty)\}.$$

Then T has a unique fixed point $x^* \in X$ such that the sequence $\{T^n x\}$ converges to x^* for every $x \in X$.

Remark 3.7 Corollary 3.6 improves the some main results in [9].

4. Conclusions

We prove a new fixed point theorems for $\theta - \phi$ Suzuki contraction on complete partial metric spaces. The results presented in the paper improve and extend some previous results.

5. References

- [1] M.P. Schellekens, A characterization of partial metrizability: domains are quantifiable, *Theor. Computer Science*, 305 (2003), 409-432.
[https://doi.org/10.1016/s0304-3975\(02\)00705-3](https://doi.org/10.1016/s0304-3975(02)00705-3)
- [2] S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, *Fixed Point Theory Appl.*, 2010 (2010) Article ID 493298, 1-7.
<https://doi.org/10.1155/2010/493298>
- [3] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, *J. Inequal. Appl.*, 2014 (2014), 38.
<https://doi.org/10.1186/1029-242X-2014-38>
- [4] T. Suzuki, A new type of fixed point theorem in metric spaces, *Nonlinear Anal.*, 71 (2009), 5313-5317. 1,2,4

[5] R. Heckmann, Approximation of metric spaces by partial metric spaces, *Appl. Categ. Structures*, 7(1999), 71-83.

[6] S. Oltra, O. Valero, Banach's fixed point theorem for partial metric spaces, *Rend. Istit. Mat. Univ. Trieste*, Spanish Ministry of Science and Technology, (2004), 17-26.

[7] T. Abdeljawad, Fixed points for generalized weakly contractive mappings in partial metric spaces, *Mathematical and computer Modelling*, 54 (2011) no. 11-12, 2923-2927.
<http://doi.org/10.1016/j.mcm.2011.07.013>

[8] I. Altun, A. Erduran, Fixed point theorems for monotone mappings on partial metric spaces, *Fixed Point Theory and Applications*, 2011 (2011), 1155-1165.
<http://doi.org/10.1155/2011/508730>

[9] Dingwei Zheng, Zhangyong Cai, Pei Qiang, New fixed point theorems for $\theta - \phi$ contraction in complete metric spaces. *Journal of Nonlinear Sciences and Applications*, 10 (2017), 2662-2670.
<http://doi.org/10.22436/jnsa.010.05.32>

[10] T. Tao Hu, Dingwei Zheng and Jingren Zhou¹ Some New Fixed Point Theorems on Partial Metric Spaces International Journal of Mathematical Analysis Vol. 12, 2018, no. 7, 343-352 HIKARI Ltd, www.m-hikari.com
<http://doi.org/10.12988/ijma.2018.8538>

[11] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, *Fund. Math.*, 3 (1922), 133-181.