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Abstract  

In this paper, we establish new fixed point theorems for 𝜃 − 𝜙 Suzuki contraction on complete 
partial metric spaces. The results presented in the paper improve and extend some previous results. 
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1. Introduction  
  Fixed point theorem is considered a very 
important theory in applied in the branch. 
Mathematics and other disciplines, especially in the 
fields of spatial analysis function. 

In 1992, S.Banach [11] introduce the 
notion fixed point theorem for contraction on 
complete metric space which is the beginning of the 
study, it is The Banach Contraction Principle 
following 

Theorem 1.1 [11]. Let (𝑋, 𝑑) be a complete metric 
space and let 𝑇 be a contraction on 𝑋, there exists 
𝑟 ∈ [0,1) such that  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑑(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝑋. 
Then 𝑇  has a unique fixed point. 
 In 2014, Jleli and Samet [3] introduce 
type contraction that is called 𝜃 − contraction and 
establish fixed point theorem for 𝜃 − contraction 
on metric space. 

In 2017, D.W. Zheng, Z.Y. Cai and P. 
Wang [9] introduce the notion of 𝜃 − 𝜙 
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contraction and 𝜃 − 𝜙  Suzuki contraction and 
establish new fixed point theorem for 𝜃 − 𝜙 
contraction on complete metric space following 

Theorem 1.2 [9] Suppose (𝑋, 𝑑)  is a complete 
metric space and 𝑇: 𝑋 → 𝑋  is a 𝜃 − 𝜙 Suzuki 
contraction, there exists 𝜃 ∈ 𝛩  and 𝜙 ∈ 𝛷  such 
that for any x , 𝑦 ∈ 𝑋,  𝑇𝑥 ≠ 𝑇𝑦 . Then 𝑇  has a 
unique fixed point 𝑥∗ ∈ 𝑋 such that the sequence 
{𝑇𝑛𝑥} converges to 𝑥∗ for every 𝑥 ∈ 𝑋. 

From the above results, they obtain the 
following fixed point theorems for 𝜃 − 𝜙 
contraction and 𝜃 − 𝜙 Kannan-type contraction. 

In 2018, T. Hu, D.W. Zheng and J. Zhou 
[10] introduce the notion of 𝜃 − 𝜙 contraction, 
 𝜃 − 𝜙 Kannan-type contraction and establish new 
fixed point theorem on complete partial metric 
space following 

Theorem 1.3 [10] Suppose (𝑋, 𝑝)  is a complete 
partial metric space and 𝑇: 𝑋 → 𝑋  is a 𝜃 −

𝜙 contraction, then 𝑇 has a unique fixed point 𝑥∗ ∈

𝑋  such that the sequence {𝑇𝑛𝑥}  converges to 𝑥∗ 
for every 𝑥 ∈ 𝑋. 

Theorem 1.4 [10] Let (𝑋, 𝑝) be a complete partial 
metric space and suppose 𝑇: 𝑋 → 𝑋  is a 𝜃 − 𝜙 
Kannan-type contraction. Then 𝑇  has a unique 
fixed point 𝑥∗ ∈ 𝑋 such that the sequence {𝑇𝑛𝑥} 
converges to 𝑥∗ for every 𝑥 ∈ 𝑋. 

In this paper, we establish new fixed point 
theorems for 𝜃 − 𝜙 Suzuki contraction on complete 
partial metric spaces. The results presented in the 
paper improve and extend some previous results. 

 

2. Preliminaries 
Definition 2.1 A partial metric on a nonempty set 
𝑋  is a mapping 𝑝 ∶ 𝑋 × 𝑋 → [0, +∞) such that 
for all  
𝑥, 𝑦, 𝑧 ∈ 𝑋; 
(𝑃1) 𝑥 = 𝑦 ↔ 0 ≤ 𝑝(𝑥, 𝑥) = 𝑝(𝑥, 𝑦)

= 𝑝(𝑦, 𝑦); 
(𝑃2) 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦); 
(𝑃3) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥); 
(𝑃4) 𝑝𝑏(𝑥, 𝑦) ≤ 𝑝(𝑥, 𝑧) + 𝑝(𝑧, 𝑦) − 𝑝(𝑧, 𝑧). 

A partial metric space is a pair (𝑋, 𝑝) 
such that 𝑋 is a nonempty set and 𝑝 is a partial 
metric on 𝑋.  

For a partial metric 𝑝 on 𝑋, the function  
𝑑𝑝: 𝑋 × 𝑋 → [0, ∞) given by 

𝑑𝑝(𝑥, 𝑦) = 2𝑝(𝑥, 𝑦) − 𝑝(𝑥, 𝑥) − 𝑝(𝑦, 𝑦)   (2.1) 
is a metric on 𝑋. Each partial metric 𝑝 on 𝑋 
generates a 𝑇0 topology 𝜏𝑝 on 𝑋 with a base of the 
family of open 𝑝 −balls {𝐵𝑝(𝑥, 𝜀): 𝑥 ∈ 𝑋, 𝜀 >

0}, where  
𝐵𝑝(𝑥, 𝜀) = {𝑦 ∈ 𝑋: 𝑝(𝑥, 𝑦) < 𝑝(𝑥, 𝑥) + 𝜀} for 
all 𝑥 ∈ 𝑋 and 𝜀 > 0. 

Lemma 2.2 [3], [4], [5], [8] 
(1) A sequence {𝑥𝑛} is Cauchy in a partial metric 
space (𝑋, 𝑝) if and only if {𝑥𝑛} is Cauchy in a 
metric space (𝑋, 𝑑𝑝); 
(2) A partial metric space (𝑋, 𝑝) is complete if and 
only if the metric space (𝑋, 𝑑𝑝) is complete. 
Moreover, 
 
lim

𝑛→∞
𝑑𝑝 (𝑥, 𝑥𝑛) = 0 ⟺ 𝑝(𝑥, 𝑥) = lim

𝑛→∞
𝑝(𝑥, 𝑥𝑛) 

                                                       = lim
𝑛→∞

𝑝(𝑥𝑛 , 𝑥𝑚).            
                                                                           (2.2) 



Sci. & Tech. RMUTT J. Vol.9 No.2 (2019) 3 

 

Lemma 2.3 [6], [7]. Assume {𝑥𝑛} → 𝑧 as 𝑛 → ∞ 
in a partial metric space (𝑋, 𝑝) such that 
𝑝(𝑥, 𝑥) = 0. Then lim

𝑛→∞
𝑝(𝑥𝑛 , 𝑦) = 𝑝(𝑧, 𝑦)  for 

every 𝑦 ∈ 𝑋. 

Definition 2.4 Let (𝑋, 𝑝) be a partial metric space.  
(𝑖) A sequence {𝑥𝑛} in (𝑋, 𝑝) converges to a point 
𝑥 ∈ 𝑋 if and only if 𝑝(𝑥, 𝑥) = lim

𝑛→+∞
𝑝(𝑥𝑛 , 𝑥).  

(𝑖𝑖) A sequence {𝑥𝑛} in (𝑋, 𝑝) is called a Cauchy 
sequence if   lim

𝑛,𝑚→+∞
𝑝(𝑥𝑛 , 𝑥𝑚) exists. 

(𝑖𝑖𝑖) A partial metric space (𝑋, 𝑝) is said to be 
complete if every Cauchy sequence {𝑥𝑛}  in 𝑋 
converges to a point 
 𝑥 ∈ 𝑋 such that  𝑝(𝑥, 𝑥) = lim

𝑛,𝑚→+∞
𝑝(𝑥𝑛 , 𝑥𝑚).  

(𝑖𝑣) A mapping 𝑓: 𝑋 → 𝑋 is said to be continuous at  
𝑥0 ∈ 𝑋, if for every 𝜀 > 0, there exists 𝛿 > 0 
such that 𝑓(𝐵𝑝(𝑥0, 𝛿)) ⊂ 𝐵𝑝(𝑓(𝑥0), 𝜀). 

Definition 2.5 [2] Let (𝑋, 𝑝) be a metric space. A 
mapping 𝑇 ∶  𝑋 → 𝑋 is said to be an 𝜃 −

 contraction if there exist 𝜃 ∈ 𝛩 and 𝑘 ∈ (0,1) 

such that for any 𝑥, 𝑦 ∈ 𝑋, 
𝑑(𝑇𝑥, 𝑇𝑦) ≠ 0 ⇒ 𝜃(𝑑(𝑇𝑥, 𝑇𝑦)) ≤
𝜃(𝑑(𝑥, 𝑦))𝑘 (2.3)                           

where 𝜃 ∶ (0, ∞) → (1, ∞) satisfies the following 
conditions: 
(Θ1) 𝜃 is non-decreasing; 
(Θ2) for each sequence {𝑡𝑛} ⊂

(0, ∞),  lim
𝑛→∞

𝜃(𝑡𝑛) = 1  
if and only if  lim

𝑛→∞
𝑡𝑛 = 0+; 

(Θ3) 𝜃 is continuous on (0, ∞) 

Definition 2.6 [1] Denote by 𝜙 the set of functions  
𝜙 ∶ [1, ∞) → [1, ∞) satisfying the following 
conditions: 

(Φ1) 𝜙 ∶ [1, ∞) → [1, ∞) is non-decreasing; 
(Φ2) for each 𝑡 > 1, lim

𝑛→∞
𝜙𝑛(𝑡) = 1; 

(Φ3) 𝜙 is continuous on [1, ∞). 

Lemma 2.7 [1] If 𝜙 ∈ 𝛷 then 𝜙(1) = 1 and 
 𝜙(𝑡) < 𝑡 for each 𝑡 > 1. 

Definition 2.8 Let (𝑋, 𝑝) be a partial metric space 
and let 𝑇: 𝑋 → 𝑋 be a self-mapping; 
(1) 𝑇 is said to be a 𝜃 − 𝜙 contraction if exist 𝜃 ∈

𝛩 and 𝜙 ∈ 𝛷 such that for any 𝑥, 𝑦 ∈ 𝑋, 
𝜃(𝑝(𝑇𝑥, 𝑇𝑦))
≤ 𝜙[𝜃(𝑝(𝑥, 𝑦))]             (2.4) 

(2) 𝑇  is said to be a 𝜃 − 𝜙 Kannan-type 
contraction if exist 𝜃 ∈ 𝛩 and 𝜙 ∈ Φ such that 
for any 𝑥, 𝑦 ∈ 𝑋, 𝑇𝑥 ≠ 𝑇𝑦, 

𝜃(𝑝(𝑇𝑥, 𝑇𝑦))

≤ 𝜙 [𝜃 (
𝑝(𝑥, 𝑇𝑥) + 𝑝(𝑦, 𝑇𝑦)

2
)]    (2.5) 

(3) 𝑇 is said to be a  𝜃 − 𝜙 Suzuki contraction if 
there exist 𝜃 ∈ 𝛩 and 𝜙 ∈ Φ such that for any 
𝑥, 𝑦 ∈ 𝑋, 𝑇𝑥 ≠ 𝑇𝑦, 
if  1

2
𝑝(𝑥, 𝑇𝑥) < 𝑝(𝑥, 𝑦), 

then 𝜃(𝑝(𝑇𝑥, 𝑇𝑦))  ≤ 𝜙[𝜃(𝑁(𝑥, 𝑦))]   (2.6)                                                
where 𝑁(𝑥, 𝑦) =

max{𝑝(𝑥, 𝑦), 𝑝(𝑥, 𝑇𝑥), 𝑝(𝑦, 𝑇𝑦)}. 

3. Main results 
In this section, we obtain new fixed point 

theorem defined on complete partial metric space. 

Theorem 3.1 Suppose (𝑋, 𝑝) is a complete partial 
metric space and 𝑇: 𝑋 → 𝑋 is a 𝜃 − 𝜙 Suzuki 
contraction. Then 𝑇 has a unique fixed point 𝑥∗ ∈

𝑋 such that the sequence {𝑇𝑛𝑥} converges to 𝑥∗
  

for every 𝑥∗ ∈ 𝑋. 
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Proof. Fix 𝑥0 ∈ 𝑋 and construct the sequence 
{𝑥𝑛} by 𝑥𝑛+1 = 𝑇𝑥𝑛 , 𝑛 = 1,2,3, … 

Case 1. If 𝑥𝑛−1 = 𝑥𝑛 for some 𝑛 ∈ 𝑁, then 𝑥∗ =

𝑥𝑛 is a fixed point for 𝑇. 

Case 2. If 𝑥𝑛−1 ≠ 𝑥𝑛 for each 𝑛 ∈ 𝑁, then  

𝑝(𝑥𝑛+1, 𝑥𝑛) > 0 for all 𝑛 ∈ 𝑁. 
Substituting 𝑥 = 𝑥𝑛−1 and 𝑦 = 𝑥𝑛 in (2.6). To 
show that 1

2
𝑝(𝑥𝑛−1, 𝑥𝑛) =  

1

2
𝑝(𝑥𝑛−1, 𝑇𝑥𝑛−1) <

𝑝(𝑥𝑛−1, 𝑥𝑛). 
Hence 𝜃(𝑝(𝑇𝑥𝑛−1, 𝑇𝑥𝑛)) ≤

𝜙[𝜃(𝑁(𝑥𝑛−1, 𝑥𝑛))]                                           (3.1) 
where 
𝑁(𝑥𝑛−1, 𝑥𝑛) 
= max {𝑝(𝑥𝑛−1, 𝑥𝑛), 𝑝(𝑥𝑛−1, 𝑇𝑥𝑛−1), 𝑝(𝑥𝑛 , 𝑇𝑥𝑛)} 
= max {𝑝(𝑥𝑛−1, 𝑥𝑛), 𝑝(𝑥𝑛−1, 𝑥𝑛), 𝑝(𝑥𝑛 , 𝑥𝑛+1)}                                           
= max {𝑝(𝑥𝑛−1, 𝑥𝑛), 𝑝(𝑥𝑛, 𝑥𝑛+1)}. 

If 𝑁(𝑥𝑛−1, 𝑥𝑛) =  𝑝(𝑥𝑛, 𝑥𝑛+1) and using         (3.1),  
then 𝜃(𝑝(𝑥𝑛 , 𝑥𝑛+1)) = 𝜃(𝑝(𝑇𝑥𝑛−1, 𝑇𝑥𝑛))  
                                                  ≤ 𝜙[𝜃(𝑝(𝑥𝑛 , 𝑥𝑛+1))]  
By the definition of 𝜃 and Lemma 2.7, we have 
𝜃(𝑝(𝑥𝑛 , 𝑥𝑛+1)) =  𝜃(𝑝(𝑇𝑥𝑛−1, 𝑇𝑥𝑛))  
                                       ≤ 𝜙[𝜃(𝑝(𝑥𝑛 , 𝑥𝑛+1))]  
                                       < 𝜃(𝑝(𝑥𝑛 , 𝑥𝑛+1)), 

which is a contradiction. Thus  
𝑁(𝑥𝑛−1, 𝑥𝑛) = 𝑝(𝑥𝑛−1, 𝑥𝑛) that by (3.1),  
we have 𝜃(𝑝(𝑥𝑛 , 𝑥𝑛+1)) = 𝜃(𝑝(𝑇𝑥𝑛−1, 𝑇𝑥𝑛)) 
                                                           ≤ 𝜙[𝜃(𝑝(𝑥𝑛−1, 𝑥𝑛))] . 
Repeating this step, we conclude that  
𝜃(𝑝(𝑥𝑛 , 𝑥𝑛+1)) = 𝜃(𝑝(𝑇𝑥𝑛−1, 𝑇𝑥𝑛))  
                                       ≤ 𝜙[𝜃(𝑝(𝑥𝑛−1, 𝑥𝑛))] 
                                       ≤ 𝜙[𝜙[𝜃(𝑝(𝑥𝑛−2, 𝑥𝑛−1))]] 
                                       ≤ 𝜙2[𝜃(𝑝(𝑥𝑛−2, 𝑥𝑛−1))] 
                                       ≤ 𝜙3[𝜃(𝑝(𝑥𝑛−3, 𝑥𝑛−2))] 
                             ⋮ 
                                       ≤ 𝜙𝑛[𝜃(𝑝(𝑥0, 𝑥1))]. 
By the definition of 𝜃 and property (Φ2), we have 
lim

𝑛→+∞
𝜙𝑛[𝑝(𝑥0, 𝑥1)] = 1. 

Letting 𝑛 → ∞, we obtain  

1 ≤ lim
𝑛→+∞

𝜃(𝑝(𝑥𝑛 , 𝑥𝑛+1)) ≤

lim
𝑛→+∞

𝜙𝑛[𝑝(𝑥0, 𝑥1)] = 1. 

By Sandwich theorem,  lim
𝑛→+∞

𝜃(𝑝(𝑥𝑛 , 𝑥𝑛+1)) =

1. 
And by (Θ2), we have lim

𝑛→+∞
𝑝(𝑥𝑛 , 𝑥𝑛+1) = 0.                

(3.2) 
Similarly, setting 𝑥 = 𝑥𝑚 and 𝑦 = 𝑥𝑚. We obtain 
that 

1

2
𝑝(𝑥𝑚, 𝑥𝑚+1) =

1

2
𝑝(𝑥𝑚, 𝑇𝑥𝑚) < 𝑝(𝑥𝑚, 𝑥𝑚). 

Letting 𝑛 → ∞ and (3.2), we get 

0 = lim
𝑚→+∞

1

2
𝑝(𝑥𝑚, 𝑥𝑚+1) < lim

𝑚→+∞
𝑝(𝑥𝑚 , 𝑥𝑚) 

                                                                             = 𝑝(𝑥𝑚 , 𝑥𝑚).                                                                      

Hence  
          𝜃(𝑝(𝑇𝑥𝑚 , 𝑇𝑥𝑚)) ≤ 𝜙[𝜃(𝑁(𝑥𝑚, 𝑥𝑚))]            
(3.3) 
where 
𝑁(𝑥𝑚, 𝑥𝑚)  
= max {𝑝(𝑥𝑚 , 𝑥𝑚), 𝑝(𝑥𝑚, 𝑇𝑥𝑚), 𝑝(𝑥𝑚 , 𝑇𝑥𝑚)} 
= max {𝑝(𝑥𝑚 , 𝑥𝑚), 𝑝(𝑥𝑚, 𝑥𝑚+1), 𝑝(𝑥𝑚, 𝑥𝑚+1)}   
= max{𝑝(𝑥𝑚 , 𝑥𝑚),0,0} (𝑎𝑠 𝑛 → ∞).  

Thus 𝑁(𝑥𝑚, 𝑥𝑚) =  𝑝(𝑥𝑚, 𝑥𝑚) from (3.3), we 
have 
 
𝜃(𝑝(𝑥𝑚+1, 𝑥𝑚+1)) =  𝜃(𝑝(𝑇𝑥𝑚 , 𝑇𝑥𝑚))  
                                               ≤ 𝜙[𝜃(𝑝(𝑥𝑚, 𝑥𝑚))] 
                                               ≤
𝜙[𝜙[𝜃(𝑝(𝑥𝑚−1, 𝑥𝑚−1))]] 
                                               ≤ 𝜙2[𝜃(𝑝(𝑥𝑚−1, 𝑥𝑚−1))] 
                                               ≤ 𝜙3[𝜃(𝑝(𝑥𝑚−2, 𝑥𝑚−2))] 
                                  ⋮ 
                                               ≤ 𝜙𝑚[𝜃(𝑝(𝑥1, 𝑥1))]. 
By the definition of 𝜃 and property (Φ2), we have 

lim
𝑚→+∞

𝜙𝑚[𝑝(𝑥1, 𝑥1)] = 1. 

Letting 𝑛 → ∞, we have  
1 ≤ lim

𝑚→+∞
𝜃(𝑝(𝑥𝑚+1, 𝑥𝑚+1)) ≤

lim
𝑛→+∞

𝜙𝑚[𝑝(𝑥1, 𝑥1)] = 1. 

By Sandwich theorem, we have 
lim

𝑚→+∞
𝜃(𝑝(𝑥𝑚+1, 𝑥𝑚+1)) = 1. 
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And by (Θ2), we have lim
𝑚→+∞

𝑝(𝑥𝑚+1, 𝑥𝑚+1) = 0.               
               (3.4) 
Next, we prove that {𝑥𝑛} is a Cauchy sequence in 
the metric space (𝑥, 𝑑𝑝). Otherwise, there exists 
some 𝜀 > 0 for which we can find subsequences 
{𝑥𝑚(𝑘)} and {𝑥𝑛(𝑘)} of {𝑥𝑛} with 𝑛(𝑘) >

𝑚(𝑘) > 𝑘 such that 
                       𝑑𝑝(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≥ 𝜀.                            
 (3.5) 
Further, corresponding to 𝑚(𝑘), we can choose 
𝑛(𝑘) in such a way it is the smallest integer with 
𝑛(𝑘) > 𝑚(𝑘) and satisfying (3.5). Hence, 

𝑑𝑝(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)−1) < 𝜀. 
Then we have 
𝜀 ≤ 𝑑𝑝(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) 
     ≤ 𝑑𝑝(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)−1) + 𝑑𝑝(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘)) 
     < 𝜀 + 𝑑𝑝(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘)). 
Noting that  

𝑑𝑝(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘)) = 2𝑝(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘))   
                                       −𝑝(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘)−1) 

                                          −𝑝(𝑥𝑛(𝑘), 𝑥𝑛(𝑘)). 

Let 𝑘 → ∞ from (3.2), (3.4) and the above 
inequality, we can conclude that 
𝜀 ≤ lim

𝑘→+∞
𝑑𝑝(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) 

    < 𝜖 + 2 lim
𝑘→+∞

𝑝( 𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘)) − 
        − lim

𝑘→+∞
𝑝(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘)−1) −

lim
𝑘→+∞

𝑝(𝑥𝑛(𝑘), 𝑥𝑛(𝑘)) 
   = 𝜀. 

By Sandwich theorem, we have 
lim

𝑘→+∞
𝑑𝑝(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) = 𝜀. 

From (2.1), we have 
 lim
𝑘→+∞

𝑑𝑝(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) 
= 2 lim

𝑘→+∞
𝑝(𝑥𝑚(𝑘), 𝑥𝑛(𝑘))

− lim
𝑘→+∞

𝑝(𝑥𝑚(𝑘), 𝑥𝑚(𝑘)) 
      − lim

𝑘→+∞
𝑝(𝑥𝑛(𝑘), 𝑥𝑛(𝑘)) 

and from (3.4), we have 
 

𝜀 = lim
𝑘→+∞

𝑑𝑝(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) 

= 2 lim
𝑘→+∞

𝑝(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)).                             (3.6) 
Again 
𝑑𝑝(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)) 
≤ 𝑑𝑝(𝑥𝑛(𝑘), 𝑥𝑛(𝑘)−1) + 𝑑𝑝(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)) 
≤ 𝑑𝑝(𝑥𝑛(𝑘), 𝑥𝑛(𝑘)−1) + 𝑑𝑝(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1) 
      +𝑑𝑝(𝑥𝑚(𝑘)−1, 𝑥𝑚(𝑘)) 

 and 
𝑑𝑝(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1) 
≤ 𝑑𝑝(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘)) + 𝑑𝑝(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)−1) 
≤ 𝑑𝑝(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘)) + 𝑑𝑝(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)) 

      +𝑑𝑝(𝑥𝑚(𝑘), 𝑥𝑚(𝑘)−1). 
Consider 
𝑑𝑝(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)) 
≤ 𝑑𝑝(𝑥𝑛(𝑘), 𝑥𝑛(𝑘)−1) + 𝑑𝑝(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1) 
     +𝑑𝑝(𝑥𝑚(𝑘)−1, 𝑥𝑚(𝑘)) 
= [2𝑝(𝑥𝑛(𝑘), 𝑥𝑛(𝑘)−1) − 𝑝(𝑥𝑛(𝑘), 𝑥𝑛(𝑘)) 
       −𝑝(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘)−1)] +

𝑑𝑝(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1) 
      +[2𝑝(𝑥𝑚(𝑘)−1, 𝑥𝑚(𝑘)) −

𝑝(𝑥𝑚(𝑘)−1, 𝑥𝑚(𝑘)−1) 

       −𝑝(𝑥𝑚(𝑘), 𝑥𝑚(𝑘))]. 
Letting 𝑘 → ∞ and follow from (3.2) and (3.4) 
and the above in equations, we obtain 

lim
𝑘→+∞

𝑑𝑝(𝑥𝑛(𝑘), 𝑥𝑚(𝑘))

≤ lim
𝑘→+∞

𝑑𝑝(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1). 

Consider 
𝑑𝑝(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1) 
≤ 𝑑𝑝(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘)) + 𝑑𝑝(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)) 
      +𝑑𝑝(𝑥𝑚(𝑘), 𝑥𝑚(𝑘)−1) 
= [2𝑝(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘)) − 𝑝(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘)−1) 
       −𝑝(𝑥𝑛(𝑘), 𝑥𝑛(𝑘))] + 𝑑𝑝(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)) 
      +[2𝑝(𝑥𝑚(𝑘), 𝑥𝑚(𝑘)−1) − 𝑝(𝑥𝑚(𝑘), 𝑥𝑚(𝑘)) 
       −𝑝(𝑥𝑚(𝑘)−1, 𝑥𝑚(𝑘)−1)]. 
Letting 𝑘 → ∞ and follow from (3.2) and (3.4) 
and the above in equations, we get 

lim
𝑘→+∞

𝑑𝑝(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1)

≤ lim
𝑘→+∞

𝑑𝑝(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)). 
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Hence 

lim
𝑘→+∞

𝑑𝑝(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1)

≤ lim
𝑘→+∞

𝑑𝑝(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)) 

                                                                     ≤
lim

𝑘→+∞
𝑑𝑝(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1). 

By Sandwich theorem, we have 
lim
𝑘→∞

𝑑𝑝 (𝑥𝑛(𝑘), 𝑥𝑚(𝑘)) 

= lim
𝑘→∞

𝑑𝑝 (𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1) 

= 2 lim
𝑘→∞

𝑝 (𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1)

− lim
𝑘→∞

𝑝 (𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘)−1) 

    − lim
𝑘→∞

𝑝 (𝑥𝑚(𝑘)−1, 𝑥𝑚(𝑘)−1). 

From (3.4) and (3.6), we obtain 
𝜀 = lim

𝑘→∞
𝑑𝑝(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)) 

   = lim
𝑘→∞

𝑑𝑝(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1) 

   = 2 lim
𝑘→∞

𝑝(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1).                     (3.7)  

Let 𝑥 = 𝑥𝑚(𝑘)−1 and 𝑦 = 𝑥𝑛(𝑘)−1 in (2.6).  
To show that 
      1

2
𝑝(𝑥𝑚(𝑘)−1, 𝑥𝑚(𝑘)) =

1

2
𝑝(𝑥𝑚(𝑘)−1, 𝑇𝑥𝑚(𝑘)−1) 

                       < 𝑝(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1). 
Let 𝑘 → ∞ and from (3.2) and (3.7), we have 

0 = lim
𝑘→∞

1

2
𝑝(𝑥𝑚(𝑘)−1, 𝑥𝑚(𝑘)) 

< lim
𝑘→∞

𝑝(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1) 

=
𝜀

2
. 

Hence 
𝜃[𝑝(𝑇𝑥𝑚(𝑘)−1, 𝑇𝑥𝑛(𝑘)−1) ≤ 𝜙[𝜃(𝑁(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1))]    

(3.8) 

where 
𝑁(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1) 
= max {𝑝(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1), 𝑝(𝑥𝑚(𝑘)−1, 𝑇𝑥𝑚(𝑘)−1), 
       𝑝(𝑥𝑛(𝑘)−1, 𝑇𝑥𝑛(𝑘)−1)} 
= max {𝑝(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1), 𝑝(𝑥𝑚(𝑘)−1, 𝑥𝑚(𝑘)), 
      𝑝(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘))} 
= max {𝑝(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1),0,0}  (𝑎𝑠 𝑘 → ∞).                                                                              
Since 𝑁(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1) =

𝑝(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1) from (3.8), we have 
𝜃[𝑝(𝑇𝑥𝑚(𝑘)−1, 𝑇𝑥𝑛(𝑘)−1)]

≤ 𝜙[𝜃(𝑝(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1))]. 

Let 𝑘 → ∞,  we obtain that 
lim
𝑘→∞

𝜃[𝑝(𝑥𝑚(𝑘), 𝑥𝑛(𝑘))] 

= lim
𝑘→∞

 𝜃[𝑝(𝑇𝑥𝑚(𝑘)−1, 𝑇𝑥𝑛(𝑘)−1)] 

≤ lim
𝑘→∞

𝜙[𝜃(𝑝(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1))]. 

From (3.6), we have 
lim
𝑘→∞

 𝑑𝑝(𝑥𝑚(𝑘), 𝑥𝑛(𝑘))

2
= lim

𝑘→∞
 𝑝(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)). 

And from (3.5),  
𝜀

2
≤

lim
𝑘→∞

 𝑑𝑝(𝑥𝑚(𝑘), 𝑥𝑛(𝑘))

2
= lim

𝑘→∞
 𝑝(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)). 

Thus 
𝜃 (

𝜀

2
) ≤ lim

𝑘→∞
 𝜃[𝑝(𝑥𝑚(𝑘), 𝑥𝑛(𝑘))] 

                                 ≤
lim
𝑘→∞

𝜙[𝜃(𝑝(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1))]. 

From (3.7),  
𝜀

2
=

lim
𝑘→∞

 𝑑𝑝(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1)

2
 

                           = lim
𝑘→∞

 𝑝(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1). 

Therefore 
𝜃 (

𝜀

2
) ≤ lim

𝑘→∞
 𝜃[𝑝(𝑥𝑚(𝑘), 𝑥𝑛(𝑘))] ≤ 𝜙 [𝜃 (

𝜀

2
)]. 

By Lemma 2.7, we have 
𝜃 (

𝜀

2
) ≤ 𝜙 [𝜃 (

𝜀

2
)] < 𝜃 (

𝜀

2
), 

which it is a contradiction. Hence {𝑥𝑛} is a 

Cauchy sequence in (𝑋, 𝑑𝑝). 
The above show that {𝑥𝑛} must be a Cauchy 

sequence in the complete metric space (𝑋, 𝑑𝑝). 
Thus, there exists some 𝑥∗ in 𝑋 that by (2.2) and 
(3.4), we have 

lim
𝑛→∞

𝑑𝑝(𝑥𝑛 , 𝑥∗) = 0. 
Hence 

𝑝(𝑥∗, 𝑥∗) = lim
𝑛→∞

𝑝(𝑥𝑛 , 𝑥∗)  
= lim

𝑛,𝑚→∞
𝑝(𝑥𝑛, 𝑥𝑚) 

=
1

2
lim

𝑛,𝑚→∞
𝑑𝑝(𝑥𝑛 , 𝑥𝑚) = 0. 
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To show that this 𝑥∗ is a fixed point. By means of 

(𝑃2), to prove that 
𝑝(𝑇𝑥∗, 𝑥∗) = 𝑝(𝑥∗, 𝑥∗) = 𝑝(𝑇𝑥∗, 𝑇𝑥∗) = 0. 

From above 𝑝(𝑥∗, 𝑥∗) = 0, 

let 𝑥 = 𝑥∗and 𝑦 = 𝑥∗ in (2.6), we obtain that 
1

2
 𝑝(𝑥∗, 𝑇𝑥∗) < 𝑝(𝑥∗, 𝑥∗). 

Since 𝑝(𝑥∗, 𝑇𝑥∗) = 𝑝(𝑥∗, 𝑥∗), we have 
1

2
 𝑝(𝑥∗, 𝑥∗) < 𝑝(𝑥∗, 𝑥∗). 

Hence  𝜃[𝑝(𝑇𝑥∗, 𝑇𝑥∗)] ≤ 𝜙[𝜃(𝑁(𝑥∗, 𝑥∗))],            
(3.9) 

where 
𝑁(𝑥∗, 𝑥∗) 
= max{𝑝(𝑥∗, 𝑥∗), 𝑝(𝑥∗, 𝑇𝑥∗), 𝑝(𝑥∗, 𝑇𝑥∗)} 
= max{𝑝(𝑥∗, 𝑥∗), 𝑝(𝑥∗, 𝑥∗), 𝑝(𝑥∗, 𝑥∗)} 
= max{𝑝(𝑥∗, 𝑥∗)}. 

Thus 𝑁(𝑥∗, 𝑥∗) = 𝑝(𝑥∗, 𝑥∗) from (3.9), we get 
𝜃[𝑝(𝑇𝑥∗, 𝑇𝑥∗)] ≤ 𝜙[𝜃(𝑝(𝑥∗, 𝑥∗))]. 

Let 𝑛 → ∞, we obtain that 
lim

𝑛→∞
𝜃[𝑝(𝑇𝑥∗, 𝑇𝑥∗)] ≤ lim

𝑛→∞
𝜙[𝜃(𝑝(𝑥∗, 𝑥∗))]. 

And by (Θ2) and Lemma 2.7, we have 
1 ≤ lim

𝑛→∞
𝜃[𝑝(𝑇𝑥∗, 𝑇𝑥∗)]

≤ lim
𝑛→∞

𝜙[𝜃(𝑝(𝑥∗, 𝑥∗))] = 1. 

By Sandwich theorem, we obtain 
lim

𝑛→∞
𝜃[𝑝(𝑇𝑥∗, 𝑇𝑥∗)] = 1. 

And from (Θ2), we have 

𝑝(𝑇𝑥∗, 𝑇𝑥∗) = lim
𝑛→∞

𝑝(𝑇𝑥∗, 𝑇𝑥∗) = 0. 

Therefore 
𝑝(𝑇𝑥∗, 𝑇𝑥∗) = 0. 

Let 𝑥 = 𝑥𝑛−1 and 𝑦 = 𝑥∗ in (2.6). To show that 
1

2
𝑝(𝑥𝑛−1, 𝑇𝑥𝑛−1) < 𝑝(𝑥𝑛−1, 𝑥∗). 

Let 𝑛 → ∞ and from {𝑥𝑛} is a Cauchy sequence, 
we get 𝑥𝑛 → 𝑥∗ 

lim
𝑛→∞

1

2
𝑝(𝑥𝑛−1, 𝑇𝑥𝑛−1) < lim

𝑛→∞
𝑝(𝑥𝑛−1, 𝑥∗), 

        
1

2
𝑝(𝑥∗, 𝑥∗) < 𝑝(𝑥∗, 𝑥∗). 

That is, 

    𝜃[𝑝(𝑇𝑥𝑛−1, 𝑇𝑥∗)] ≤ 𝜙[𝜃(𝑁(𝑥𝑛−1, 𝑥∗))].   (3.10) 
where 
𝑁(𝑥𝑛−1, 𝑥∗)
= max{𝑝(𝑥𝑛−1, 𝑥∗), 𝑝(𝑥𝑛−1, 𝑇𝑥𝑛−1), 𝑝(𝑥∗, 𝑇𝑥∗)}
= max{𝑝(𝑥𝑛−1, 𝑥∗), 𝑝(𝑥𝑛−1, 𝑥𝑛), 𝑝(𝑥∗, 𝑥∗)}
= max{𝑝(𝑥∗, 𝑥∗), 0, 0}(𝑎𝑠 𝑛 → ∞). 

Thus 𝑁(𝑥𝑛−1, 𝑥∗) = 𝑝(𝑥∗, 𝑥∗) from (3.10),  
we have 

𝜃[𝑝(𝑥𝑛 , 𝑇𝑥∗)] = 𝜃[𝑝(𝑇𝑥𝑛−1, 𝑇𝑥∗)]

≤ 𝜙[𝜃(𝑝(𝑥∗, 𝑥∗))]. 

Let 𝑛 → ∞ and by Lemma 2.3, we obtain 
lim

𝑛→∞
𝜃[𝑝(𝑥𝑛 , 𝑇𝑥∗)] ≤ lim

𝑛→∞
𝜙[𝜃(𝑝(𝑥∗, 𝑥∗))] , 

𝜃[𝑝(𝑥∗, 𝑇𝑥∗)] ≤ 𝜙[𝜃(𝑝(𝑥∗, 𝑥∗))]. 

By the definition of 𝜃 and Lemma 2.7, we have 

1 ≤ 𝜃[𝑝(𝑥∗, 𝑇𝑥∗)] ≤ 1. 

Let 𝑛 → ∞ by Sandwich theorem, we get 
lim

𝑛→∞
𝜃[𝑝(𝑥∗, 𝑇𝑥∗)] = 1. 

And from (Θ2), we get 
𝑝(𝑥∗, 𝑇𝑥∗) = lim

𝑛→∞
𝑝(𝑥∗, 𝑇𝑥∗) = 0. 

Therefore 
𝑝(𝑥∗, 𝑇𝑥∗) = 0. 

Now, we shall show that 𝑇 has a unique fixed 

point. Suppose there exists another fixed point 𝑦∗ 
of  𝑇 such that 𝑇𝑥∗ = 𝑥∗ ≠ 𝑇𝑦∗ = 𝑦∗.  
Let 𝑥 = 𝑥∗ and 𝑦 = 𝑦∗ in (2.6). To show that 

0 =
1

2
𝑝(𝑥∗, 𝑥∗) =

1

2
𝑝(𝑥∗, 𝑇𝑥∗) < 𝑝(𝑥∗, 𝑦∗). 

Hence 
𝜃[𝑝(𝑇𝑥∗, 𝑇𝑦∗)] ≤ 𝜙[𝜃(𝑁(𝑥∗, 𝑦∗))],   (3.11) 

where 
𝑁(𝑥∗, 𝑦∗) 
= max{𝑝(𝑥∗, 𝑦∗), 𝑝(𝑥∗, 𝑇𝑥∗), 𝑝(𝑦∗, 𝑇𝑦∗)} 
= max{𝑝(𝑥∗, 𝑦∗), 𝑝(𝑥∗, 𝑥∗), 𝑝(𝑦∗, 𝑦∗)} 
= max{𝑝(𝑥∗, 𝑦∗), 0, 0}(𝑎𝑠 𝑛 → ∞). 

Thus 𝑁(𝑥∗, 𝑦∗) = 𝑝(𝑥∗, 𝑦∗) and from (3.11),  
we conclude that 

𝜃[𝑝(𝑥∗, 𝑦∗)] = 𝜃[𝑝(𝑇𝑥∗, 𝑇𝑦∗)] 
≤ 𝜙[𝜃(𝑝(𝑥∗, 𝑦∗))] 
< 𝜃(𝑝(𝑥∗, 𝑦∗)), 
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which is a contradiction. Therefore 𝑇 has a unique 
fixed point. 

Remark 3.2 Theorem 3.1 improves the main 
results [9] and [10]. 

It follows from Theorem 3.1 and [9], we 
obtain the following fixed point results for 𝜃 −

𝜙 contraction and 𝜃 − 𝜙 Kannan-type contraction. 

Corollary 3.3 Suppose (𝑋, 𝑝) is a complete partial 
metric space and 𝑇: 𝑋 → 𝑋 is a 𝜃 − 𝜙 contraction. 
Then 𝑇 has a unique fixed point 𝑥∗ ∈ 𝑋 such that 
the sequence {𝑇𝑛𝑥} converges to 𝑥∗ for every 𝑥 ∈

𝑋. 

Corollary 3.4 Let (𝑋, 𝑝)  be a complete partial 
metric space and suppose 𝑇: 𝑋 → 𝑋  is a 𝜃 − 𝜙 
Kannan-type contraction. Then 𝑇  has a unique 
fixed point 𝑥∗ ∈ 𝑋 such that the sequence {𝑇𝑛𝑥} 
converges to 𝑥∗ for every 𝑥 ∈ 𝑋. 

Remark 3.5 Corollary 3.3 and 3.4 improves the 
some main results in [10]. 

It follows from Theorem 3.1, we obtain 
the following fixed point results for 𝜃 − 𝜙 Suzuki 
contraction. 

Corollary 3.6 Suppose (𝑋, 𝑑) is a complete metric 
space and suppose 𝑇: 𝑋 → 𝑋  is a 𝜃 − 𝜙  Suzuki 
contraction, there exist 𝜃 ∈ 𝛩 and 𝜙 ∈ 𝛷 such that 
for any 𝑥, 𝑦 ∈ 𝑋,  

𝑇𝑥 ≠ 𝑇𝑦, 
1

2
𝑑(𝑥, 𝑇𝑥) < 𝑑(𝑥, 𝑦) → 𝜃(𝑑(𝑇𝑥, 𝑇𝑦)) ≤

𝜙[𝜃(𝑁(𝑥, 𝑦))]   
where 𝑁(𝑥, 𝑦) =

max{𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦)}. 

Then 𝑇 has a unique fixed point 𝑥∗ ∈ 𝑋 such that 
the sequence {𝑇𝑛𝑥} converges to 𝑥∗ for every 𝑥 ∈

𝑋. 

Remark 3.7 Corollary 3.6 improves the some main 
results in [9]. 

4. Conclusions  
We prove a new fixed point theorems for 

𝜃 − 𝜙  Suzuki contraction on complete partial 
metric spaces. The results presented in the paper 
improve and extend some previous results. 
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