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Abstract

In this paper, we establish new fixed point theorems for 8 — ¢ Suzuki contraction on complete

partial metric spaces. The results presented in the paper improve and extend some previous results.
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1. Introduction

Fixed point theorem is considered a very
important theory in applied in the branch.
Mathematics and other disciplines, especially in the
fields of spatial analysis function.

In 1992, S.Banach [11] introduce the
notion fixed point theorem for contraction on
complete metric space which is the beginning of the

study, it is The Banach Contraction Principle

following
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Theorem 1.1 [11]. Let (X, d) be a complete metric
space and let T be a contraction on X, there exists

r € [0,1) such that
d(Tx,Ty) < rd(x,y),forall x,y € X.

Then T has a unique fixed point.

In 2014, Jleli and Samet [3] introduce
type contraction that is called @ — contraction and
establish fixed point theorem for 8 — contraction
on metric space.

In 2017, D.W. Zheng, Z.Y. Cai and P.

Wang [9] introduce the notion of 6 — ¢
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contraction and 6 — ¢ Suzuki contraction and
establish new fixed point theorem for 6 — ¢

contraction on complete metric space following

Theorem 1.2 [9] Suppose (X, d) is a complete
metric space and T:X = X is a 8 — ¢ Suzuki
contraction, there exists 8 € & and ¢ € @ such
that for any x,y € X, Tx # Ty. Then T has a
unique fixed point x* € X such that the sequence
{T™x} converges to x™ for every x € X.

From the above results, they obtain the
following fixed point theorems for 6 — ¢
contraction and 8 — ¢ Kannan-type contraction.

In 2018, T. Hu, D.W. Zheng and J. Zhou
[10] introduce the notion of 8 — ¢ contraction,

0 — ¢ Kannan-type contraction and establish new
fixed point theorem on complete partial metric

space following

Theorem 1.3 [10] Suppose (X,p) is a complete
partial metric space and T:X - X is a 0 —
¢ contraction, then T has a unique fixed point x* €
X such that the sequence {T™x} converges to x*

for every x € X.

Theorem 1.4 [10] Let (X, p) be a complete partial
metric space and suppose T:X = X is a 6 — ¢
Kannan-type contraction. Then T has a unique
fixed point x* € X such that the sequence {T"x}
converges to x* for every x € X.

In this paper, we establish new fixed point
theorems for 8 — ¢ Suzuki contraction on complete
partial metric spaces. The results presented in the

paper improve and extend some previous results.

2. Preliminaries

Definition 2.1 A partial metric on a nonempty set

X is a mapping p : X X X = [0, 4+0) such that

for all
x,y,Z €X;
Px=y ©0=<p(xx)=pky)

=p(y,y);
(P2) p(x,x) < p(x,y);
(P3) p(x,y) =p(y,x);
(PY) pp(x,y) < p(x,2) +p(2,y) —p(z, 2).

A partial metric space is a pair (X, p)
such that X is a nonempty set and p is a partial
metric on X.

For a partial metric p on X, the function
dp: X X X - [0, ) given by
dy(x,y) = 2p(x,y) —p(x,x) —p(y,y) (2.1
is a metric on X. Each partial metric p on X
generates a T topology T, on X with a base of the
family of open p —balls {B,,(x, £): x € X, & >
03, where
By(x,e) ={y € X:p(x,y) < p(x,x) + &} for
allx € Xand e > 0.

Lemma 2.2 [3], [4], [5], [8]

(1) A sequence {x,} is Cauchy in a partial metric
space (X, p) if and only if {x,,} is Cauchy in a
metric space (X, d,);

(2) A partial metric space (X, p) is complete if and
only if the metric space (X, d,,) is complete.

Moreover,

rlll_r& d, (x,x,) = 0 = p(x,x) 111_)1’1010 p(x, x,)

lim p(x,, ).
n—-oo

(2.2)
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Lemma 2.3 [6], [7]. Assume {X,,} = Zasn = ©
in a partial metric space (X, p) such that

p(x,x) = 0.Then 7ll_r){)lo p(xn,y) =p(z,y) for
every y € X.

Definition 2.4 Let (X, p) be a partial metric space.
(i) A sequence {x,,} in (X, p) converges to a point
x € X ifand only if p(x, x) = nl—l>IPoo p(xp, X).
(ii) A sequence {x,,} in (X, p) is called a Cauchy
sequence if m}liinm P(%n, Xm) exists.

(iii) A partial metric space (X, p) is said to be
complete if every Cauchy sequence {x,} in X
converges to a point

x € X such that p(x,x) = linqr P, Xm).
n,m-+oo

(iv) A mapping f: X — X is said to be continuous at

Xo € X, if for every € > 0, there exists § > 0

such that f (B, (xo, 6)) € B, (f(xo), &).

Definition 2.5 [2] Let (X, p) be a metric space. A
mapping T : X — X is said to be an 6 —
contraction if there exist 8 € @ and k € (0,1)

such that for any x,y € X,

d(Tx,Ty) # 0= 6(d(Tx, Ty)) <

0(d(x, y)* (2.3)

where 8 : (0,0) — (1, o0) satisfies the following

conditions:

(01) 6 is non-decreasing;

(82) for each sequence {t, } C

(0,00), lim 6(t,) = 1

if and only if rlll_r& t, = 0%;

(©3) 8 is continuous on (0, 00)

Definition 2.6 [1] Denote by ¢ the set of functions

¢ : [1,0) - [1, ) satisfying the following

conditions:

(®1) ¢ : [1,0) —> [1, ) is non-decreasing;
(®2) foreach t > 1, lim ¢™(t) = 1;
n—oo

(®3) ¢ is continuous on [1, o).

Lemma 2.7 [1] If ¢ € @ then ¢p(1) = 1 and

¢(t) < tforeacht > 1.

Definition 2.8 Let (X, p) be a partial metric space
and let T: X — X be a self-mapping;
(1) T is said to be a & — ¢ contraction if exist 8 €

0 and ¢ € @ such that forany x,y € X,

O(p(Tx,Ty))
< o[0(p(x, )] (2.4)

(2) T is said to be a 8 — ¢ Kannan-type
contraction if exist 8 € @ and ¢ € ® such that

forany x,y € X,Tx # Ty,
8(p(Tx, Ty))
< [9 (p(x, Tx) +p(y, Ty))] 25)

2

(3)T issaid to be a 8 — ¢ Suzuki contraction if

there exist 8 € @ and ¢ € ® such that for any
x,y €X,Tx # Ty,

if %p(x, Tx) <p(xy),

then 6(p(Tx, Ty)) < ¢p[0(N(x,y))] (2.6)
where N(x,y) =

max{p(x,y),p(x,Tx),p(y, Ty)}.

3. Main results
In this section, we obtain new fixed point

theorem defined on complete partial metric space.

Theorem 3.1 Suppose (X, p) is a complete partial
metric spaceand T: X — X isa 6 — ¢ Suzuki
contraction. Then T has a unique fixed point x* €
X such that the sequence {T™x} converges to x*

for every x* € X.
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Proof. Fix x, € X and construct the sequence
{2} by X101 =Tx,, n =123, ...

Case 1. If x,_; = x,, forsomen € N, then x* =
X, is a fixed point for T.

Case 2. If x,_; # x,, foreachn € N, then
p(Xp41,X,) > O0foralln € N.

Substituting X = X,,_; and ¥y = x,, in (2.6). To
show that%p(xn_l,xn) = %p(xn_l,Txn_l) <
P (Xn-1, Xn)-

Hence 8 (p(Txp-1,Txy)) <

PLON (xXn-1,%n))] (ERY)
where

N(xn—lﬂxn)

= max{p(xn—lf xn)' p(xn—lr Txn—l): p(xn' Txn)}
= max{p(xn_l, xn)' p(xn—lr xn): p(xnr xn+1)}

= max{p(Xp_1, Xn), P(Xn, Xn41)}-

If N(xp—1, %) = p(%xn, Xn41) and using 3B.1),
then 8 (p (X, Xp41)) = 0(@(Txn_1, TXy))

< P[0 (Xn Xns1))]
By the definition of 8 and Lemma 2.7, we have

O (X, xn41)) = O0(P(Txn-1, Txy))
< lO(P(xn, Xn+1))]
< 9(p(xn:xn+1))’

which is a contradiction. Thus

N(xp_1, %) = p(Xy_1, X,) that by (3.1),

we have 6(p(Xp, Xn4+1)) = 0(P(Txn-1, TXy))
< 9[0(p(xn-1, X2))] -

Repeating this step, we conclude that

0 (P (xn, Xn41)) = O(P(Txp_1, Txy))
< ¢[0(p(xn-1,Xn))]
< ¢[P[0(p(xn-2) Xn-1))]]
< @20 (Xn-2) Xn-1))]
< ¢*[0(P(¥n-3) Xn-2))]

< @™ [0(p(x0, x1))]-
By the definition of 8 and property (P2), we have
lim ¢ [p(xo,x)] =1
n-+oo

Letting n — 00, we obtain

1< lll}:l g(p(xn: xn+1)) <
n—->+oo

lim ¢"[p(xo, x)] =1

n-+oo

By Sandwich theorem, lir+n 0(p(xp, Xpns1)) =
n—-+oco

1.

And by (02), we have liIP p(xpn, Xne1) = 0.
n—-+o0o

(3.2)

Similarly, setting X = x,,, and y = x,,,. We obtain

that

1 1
Ep(xmvxm+1) = Ep(xmv Txp) < p(xmﬂxm)-

Letting n = oo and (3.2), we get

1
0= lim SpQ(m Xme1) < _lim pQy, xm)
m-—+oo 2 m-—+oo
= p(Xm, Xm)-
Hence
O (Txm, TXn)) < GLO(N (X, X))
(3.3)

where

N (%, Xm)

max{p (X, Xim), P Xm, T ), P (Xm, TXm )}
max{p(xm: xm): p(xm' xm+1): p(xm' xm+1)}
= max{p (X, x,,,),0,0} (asn - ).

Thus N (X, X)) = P (%X, Xp) from (3.3), we

have

(0 (Xm+1, Xm+1)) = O@(Txm, Tx))
< ¢[0(p(xm, Xm))]
<
P[P0 (P (Km-1, Xm-1))]]
< ¢2[0(p(Xm-1, Xim-1))]
< 310 (P (Xm-2, Xm-2))]

< ™[O (x4, x1))]-
By the definition of 8 and property (®2), we have

lim ¢™[p(x;,x)] = 1.

m-+oo

Letting n — 0o, we have
1< mlir_{looe(p(xm+1'xm+1)) =
lim ¢™[p(xy,x)] = 1.

n—+oo

By Sandwich theorem, we have

lim 6(p(Xm+1, Xms1)) = 1.

m-—+oo
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And by (62), we have im p (1, Xms1) = 0. e= lm d,(m@) Xnei))
(.4) =2 lim p (), Xnw))- (3.6)

Next, we prove that {x,,} is a Cauchy sequence in
the metric space (x, d,). Otherwise, there exists

some € > 0 for which we can find subsequences

{xm(k)} and {xn(k)} of {xn} with n(k) >
m(k) > k such that

dp (Xm(i)s Xnge)) = €-
(3.5)
Further, corresponding to m(k), we can choose
n(k) in such a way it is the smallest integer with
n(k) > m(k) and satisfying (3.5). Hence,
dp (Xm ey Xn-1) < €
Then we have
€< dp (xm(k)' xn(k))
< dp m(i)) Xn()-1) T dp (Xn)-1) Xn())
< &+ dy(Xn@y-1 Xni))-
Noting that
dp Xn()-1 X)) = 2P (Xn(0-1 Xni))
=P (Xn@)-1> Xn(k)-1)
=P (n(k)) Xn(i))-
Let k — oo from (3.2), (3.4) and the above

inequality, we can conclude that
S kl—iHloo dp (xm(k)' xn(k))
<e+2 lim p(xngo-1, Xnw)
= m P g-1, Xngo-1) —
Jm P (i), (k)

= E&.

By Sandwich theorem, we have
Jm dp (X, Xngo) = €.

From (2.1), we have

kl_{{{lm dp (Xm @)y Xn(i))
=2 kl_iﬂlm P(Xm@i) Xn(k))
- kl_iﬂloo P(Xmi) Xm(k))

— Jm Pn(i) Xn(k))

and from (3.4), we have

Again

dp (Xngi) Xm))

< dp (Xn(iy Xn)-1) + dp(Fnti-1 Xmr)

< dp (X)) Xn-1) + dp(Xn) -1, Xm()-1)
+dp (Xm@)-1) Xm(x))

and

dp (n i) -1 Xm@i)-1)

< dp (-1 X)) + dp Congiey) Xmy-1)

< dp (no)-1 X)) + dp (Xngi) Xm))
+dp, (X k)r Xm (k) —1)-

Consider

dp (Xng) Xm))

< dp (o)) Xn-1) + dp (Xn) -1 Xm@o)-1)
+dp (Xm@) -1 Xmx))

= [2p(Xnk) Xnr)-1) — PXn@i)r Xnk))
=P (Xn@o)-1 Xn)-1)] +

dp (Xn)-1 Xm)-1)
+[2p ) -1 Xm@) —

p(xm(k)—l' xm(k)—l)

=P (Xm ) Xm@i0)]-
Letting k — co and follow from (3.2) and (3.4)

and the above in equations, we obtain

kl_iglw dp (Xn)r Xm@))

< lm dp (00 -1, Xmio-1)-
Consider
dp (Xn)-1 Xm0 -1)
< dp (xn(k)—lixn(k)) + dp(xn(k)' xm(k))
+dp (xm(k): xm(k)—l)
= [2p(n)-1 X)) — PCongi)—10 Xn(i)-1)
=D (Xn @) Xn)] + dp (Xngo) Xm))
+[2P (Xm k) Xm)-1) — PComi)s Xm(x))
=P (Xm)-1 Xm@o)-1)]1-

Letting k — oo and follow from (3.2) and (3.4)
and the above in equations, we get

kliglw dp (Xn0)-1) Xm@)-1)

< Jim  dp (ngiy, Ximgi)-
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Hence
lim dp, (Xp()-1, Xm(i)-1)

k—+co
< Mmdp (Xn@), X))
<

kl_i)r}_lw dp (Xno) -1, Xm@k)-1)-
By Sandwich theorem, we have
’11_)1210 dp (X, X))
= 111—{1;10 dp (xn(k)—l' xm(k)—l)
=2 lim p (%ngi-1 Xm0 -1)
- Ill_{l; P (ng-1 Xn@i)-1)
- letl—{?o 14 (xm(k)—l' xm(k)—l)'
From (3.4) and (3.6), we obtain
£= Ilglglo dp (Xn (i) Xm(1))
= lim d;, (Xn(o)-1 Xmo)-1)
=2 %Lrg p(xn(k)—l’xm(k)—l)' G.7
Let X = Xy (k)-1 andy = Xn(k)-1 in (2.6).
To show that

%p(xm(k)—l' Xim(k)) =
ip(xm(k)—lﬂ TXim(i)-1)
< PXmy-1) Xn()-1)-
Let k = oo and from (3.2) and (3.7), we have

1
0 = lim 5P (X -1, ¥mi)
< 111_{2) p(xm(k)—lixn(k)—l)
3

>

Hence

Op(Txmay -1 Txny-1) < PIOWN Comiy-1, Xn(y-1))]
(3.8)

where

N (Xm)-1) Xn(k)-1)

= max{p(Xmk)-1 Xn)-1) P Xmi -1 TXmm)-1)»
P(Xn-1 TXn-1)}

= max{p(Xmk)-1 Xn)-1)» P Xm0 -1 Xm (i)
P(Xn-1 X))}

= max{p (Xm)-1 ¥n(1)-1),0,0} (as k > o).
Since N (Xm(x)-1) Xn()-1) =

P(Xmk)=1) Xn(k)—1) from (3.8), we have

O[p(TxXmauo-1 TXno-1)]
< dlOPXm)-1) Xnk)-1))]-

Let k — oo, we obtain that

Hm 0[p Cem i), Xn(w))]

= lim O[p(T%m(w)-1, TXn(-1)]

< lim ¢[0(p Ctma)-1 ¥n(r-1))]-

From (3.6), we have
Hm - dyy (miys Xn(i)

2
And from (3.5),

= ;152 P (i) Xn(i))-

£ _ lim d, (%1, Xn(1)
27 2 )
= ]ll—l;lolo p(xm(k),xn(k))'
Thus
2] (i) < lim O[p(x Xn@)]
5) = m m(k)» Xn(k)
<
Hm ¢[00 Ctma -1 ¥ni-1))]-
From (3.7),
e }11_}11010 dp (Xm0 -1) Xn(i)-1)
2 _ 2
= lim P (-1, %ng0-1)-
Therefore

€ ) £
o (E) < lim 0[p(Xmay Xnaio)] < & [9 (5)]
By Lemma 2.7, we have

€ € €
0(3)=0l0(3)] <0 (3)

which it is a contradiction. Hence {x,} is a
Cauchy sequence in (X, dp).
The above show that {x,, } must be a Cauchy
sequence in the complete metric space (X, dp).
Thus, there exists some x* in X that by (2.2) and

(3.4), we have

lim d,(x,,x™) = 0.

n—oo

Hence
p(X*!X*) = hm p(xn!X*)
n—-oo

= hm p ('xnl xm)
n,m-oo

= 3. m, b ) =0
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To show that this x* is a fixed point. By means of
(P2), to prove that
p(Tx*, x*) = p(x*,x*) = p(Tx*,Tx*) = 0.
From above p(x*,x*) =0,
let x = x*and y = x™ in (2.6), we obtain that
1
> p(x", Tx") <p(x",x").
Since p(x*, Tx*) = p(x*, x*), we have
1
5 PO xT) <ple’,x7).
Hence 6[p(Tx",Tx")] < ¢[0(N(x",x"))],
3.9
where
N(x™,x™)
= max{p(x",x"), p(x", Tx"), p(x", Tx")}
= max{p(x",x"), p(x", x"), p(x",x")}

= max{p(x",x")}.
Thus N(x*,x*) = p(x*, x*) from (3.9), we get

0lp(Tx*, Tx )] < ¢[8(p(x",x)].
Let n — ©0, we obtain that
lim 8[p(Tx*, Tx")] < lim ¢[6(p(x*,x"))].
n—-oo n—-oo
And by (02) and Lemma 2.7, we have
1 < lim 8[p(Tx*,Tx")]
n—-oo
< lim q,')[H(p(x*,x*))] = 1.
n—-oo
By Sandwich theorem, we obtain
lim 8[p(Tx* Tx*)] = 1.
n—-oo
And from (02), we have
p(Tx*,Tx*) = lim p(Tx*,Tx*) = 0.
n—-oo
Therefore
p(Tx*,Tx*) = 0.
Letx = x,,_; and y = x™ in (2.6). To show that
1
Ep(xn—lr Txn—l) < p(xn—lux*)-
Letn — oo and from {x,,} is a Cauchy sequence,

we get x,, = x”

1
lim _p(xn—lﬂTxn—l) < lim p(xn—l'x*)’
n—-oo 2 n—oo

1 * * * *
Ep(x ,XF) < p(x™, x*).
That is,

O[p(Txn_1, Tx )] < ¢[O(N(xp_1,x9))]. (3.10)

where
N(xy—q,x")

= max{p(xn—lﬂ X*), p(xn—li Txn—l): P(x*: TX*)}

= max{p(xn—lﬂ X*), p(xn—b xn): p(X*: X*)}
= max{p(x*,x*),0,0}(as n - ).

Thus N(x,_1,x*) = p(x*, x*) from (3.10),

we have
0[p(xn, Tx")] = O[p(Txy—1, Tx")]
< <;b[t9(p(x*,x*))].
Let n — oo and by Lemma 2.3, we obtain
lim 6[p(x, Tx )] < lim ¢[0(p(x", x)],
8[p(x*, Tx)] < p[8(p(x*,xM)]-
By the definition of 8 and Lemma 2.7, we have
1<0[p(x*Tx")] < 1.
Let n — oo by Sandwich theorem, we get
7111—1;120 B[p(x*, Tx*)] = 1.
And from (02), we get
p(x*, Tx*) = 7;1_{{)10 p(x*,Tx*) = 0.
Therefore
p(x*,Tx*) = 0.

Now, we shall show that T has a unique fixed
point. Suppose there exists another fixed point y*
of TsuchthatTx* = x* # Ty* = y*.

Letx = x* and y = y* in (2.6). To show that

1 % % 1 * * * *
0=-p(™x") =sp(x’, Tx") <p(x",y7).

T2

Hence

Olp(Tx", Ty")] < ¢p[6(N(x",y9))], (3.11)
where
N(x*,y")
= max{p(x",y"),p(x", Tx"),p(y", Ty")}
= max{p(x",y"),p(x",x"),p(y", y*)}
= max{p(x*,¥*),0,0}(as n » ).
Thus N(x*,y*) = p(x*,y*) and from (3.11),

we conclude that
O[p(x", )] = 0[p(Tx", Ty")]
< o[6(px",yM)]
< 0(p(x*,y"),
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which is a contradiction. Therefore T has a unique

fixed point.

Remark 3.2 Theorem 3.1 improves the main
results [9] and [10].

It follows from Theorem 3.1 and [9], we
obtain the following fixed point results for 6 —

¢ contraction and 8 — ¢ Kannan-type contraction.

Corollary 3.3 Suppose (X, p) is a complete partial
metric space and T: X — X isa 8 — ¢ contraction.
Then T has a unique fixed point x* € X such that
the sequence {T™x} converges to x™ for every x €
X.

Corollary 3.4 Let (X,p) be a complete partial
metric space and suppose T:X = X is a 6 — ¢
Kannan-type contraction. Then T has a unique
fixed point x* € X such that the sequence {T"x}

converges to x* for every x € X.

Remark 3.5 Corollary 3.3 and 3.4 improves the
some main results in [10].

It follows from Theorem 3.1, we obtain
the following fixed point results for 8 — ¢ Suzuki

contraction.

Corollary 3.6 Suppose (X, d) is a complete metric
space and suppose T: X = X is a 6 — ¢ Suzuki
contraction, there exist @ € @ and ¢ € @ such that

forany x,y € X,

Tx =Ty,

;d(x, Tx) <d(x,y) » Q(d(Tx, Ty)) <
¢lo(N )]

where N(x,y) =

max{d(x,y),d(x,Tx),d(y, Ty)}.

Then T has a unique fixed point x* € X such that

the sequence {T"x} converges to x* for every x €

X.

Remark 3.7 Corollary 3.6 improves the some main

results in [9].

4. Conclusions

We prove a new fixed point theorems for
0 — ¢ Suzuki contraction on complete partial
metric spaces. The results presented in the paper

improve and extend some previous results.
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