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Abstract  

Traditionally, the classical Multi-frame Super Resolution Reconstruction (MSRR) schemes can be 
effectively implemented on the video with a simple shifting motion pattern because the conventional inspected 
model in video MSRR scheme is established on an ordinary registration. In this paper, the universal inspection 
registration (established on a fast affine block-based transform) has been proposed for handling with any real 
and complex inter-frame motion patterns therefore this the video MSRR cooperated with the proposed 
registration can be applied on any real and complex videos. Later, this paper mathematically presents the 
solution (or the refined SR image) of the video MSRR with the proposed registration under the regularization 
framework by using an optimized nonlinear programing technique. Using two tested video sequences such as 
Susie and Foreman with four noise models at several noise energy, the refined SR image products from 
experiments expose that the MSRR schemes with the proposed registration outperforms than the antecedent 
MSRR schemes with the an ordinary registration. 
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1. Antecedent Researched Tasks and 
Researched Problem 

This division rehearses the antecedent 
research tasks from the registration perspective due 
to the reason that the grade of the refined SR image 
is contingent severely on the trustworthy of the 
inspection model; in fact, subpixel-level 
trustworthy in the nonisometric inter-frame motion 
pattern is demanded to achieve the expected 
progress. The ordinary MSRR schemes reviewed in 
[10, 11, 12, 14, 16, 25] are established on a simple 
inspection registration using globally or locally 
shifting motion pattern for handling with the 
effortless synthesized LR images [3, 23, 29] or real 
LR sequences with a shifting motion pattern [1, 27] 
because the ordinary MSRR schemes assume that 
these LR images or video are inspected at a satisfied 
temporal sampling frame rate. Like almost tested 
standard sequences (Carphone, Foreman, Mobile 
Calendar, Susie, etc.), the real LR images or LR 
video are often inspected by a real smart phone or 
real digital camera at a low temporal sampling 
frame rate wherefore these real LR images or LR 
video comprise of several complicated motion 
patterns instead of only simple shifting motion 
patterns. Consequently, the registration trustworthy 
is not sufficient for modeling these complicated 
motion patterns and the refined SR image products 
from the MSRR established on shifting motion 
pattern is degraded. 

For enlarging the ordinary inspected model 
[3-8, 27] to nonisometric inter-frame pattern, so 
called affine inspection registration, the MSRR 

scheme [28] established on stochastic maximum a 
posteriori (MAP) framework with the enlarged 
inspected model was rehearsed in 2006. In 2007, the 
MSRR scheme [9] established on stochastic 
maximum a posteriori (MAP) framework with the 
more general inspected model (shifting motion 
pattern and rotational motion pattern) was 
rehearsed. 

In order to conquer the above registration 
problem, which is insufficient temporal frame rate 
and cannot model these complicated motion 
patterns, this paper confers the video MSRR 
scheme established on stochastic maximum a 
posteriori framework with universal inspection 
registration [15] that is found on fast affine block-
based transform [13]. The proposed universal 
inspection registration is not only a subpixel-level 
trustworthy in the nonisometric inter-frame motion 
pattern but the registration information is also 
estimated by a fast technique for attenuating the 
calculated time. 

This article is partitioned into five main 
divisions as forthcoming. The first division 
rehearses antecedent researched tasks from 
registration perspective and, later, discusses the 
researched problems. The second division rehearses 
the stochastic impression of the MSRR problem 
formulation established on stochastic maximum a 
posteriori (MAP) framework with the ordinary 
registration and universal inspection registration. 
Next, the third division rehearses the video MSRR 
scheme established on stochastic maximum a 
posteriori framework with universal inspection 
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registration for modeling these complicated motion 
patterns. Proving by simulating under four noise 
models at several noise energy levels on Susie and 
Foreman, copious refined SR image products are 
simulated for exposing that the MSRR schemes 
with the proposed universal inspection registration 
outperforms than the original MSRR schemes. 
Finally, the discussion and summary are rehearsed 
in the fifth division. 

2. The Stochastic Impression of MSRR 
Problem Formulation of the Ordinary 
Registration and its Solution 

In this division, we rehearse the MSRR 
problem, which is stochastically formulated by 
using the ordinary observation model (a simple 
shifting motion pattern) and, later, we rehearse the 
solution of MSRR problem, which is solved by 
using an optimized nonlinear programing 
technique. 

2.1 The Ordinary Registration of MSRR 
Scheme 

The inspected LR images or LR video are 
expounded as  kY , which have the measurement 
as 

1 2N N , and artistic HR image is expounded as 
X , which have the measurement as 

1 2qN qN  
where q  is a magnification rate. For accelerating 
the simulated calculation, both artistic HR image 
and LR images are departed into the over-
intersection miniature square structures as verified 
in fig.1(a) and fig.1(b) and, then, are restructured in 
ordered column-wise lexicographical vector form. 
Finally, for a stochastic impression of the MSRR 

problem formulation, the over-intersection 
miniature square structures of LR images is 
expounded as 2M

kY  which have the 
measurement as 2 1M   and the over-intersection 
miniature square structures of HR image is 
expounded as 2 2q MX  which have the 
measurement as 2 1L   or 2 2 1q M  . Therefore, the 
over-intersection miniature square structures of HR 
image and LR images are stochastically signified as 

; 1,2, ,k k k Tk kY D H F X V k N                       (1) 

The matrix of an original inspected shifted 
motion between reference image and inspected 
image is expounded as 

TkF  (where 
2 2 2 2q M q M

TkF  ) and the defocused matrix with 
both time invariant and space invariant is 
expounded as 

kH  (where 2 2 2 2q M q M

kH  ). The 
de-magnification rate matrix with a constant image 
is expounded as 

kD  (where 2 2 2M q M

kD  ) and the 
noise matrix from the inspected system is 
expounded as 

kV  (where 2M

kV  ). The original 
over-intersection miniature square structures of HR 
image and LR images are stochastically signified in 
fig.1(c). 

2.2 The Video L1-L2 MSRR Scheme 
Established on Classical Registration 

For L1 or L2 error function [2], we can 
stochastically signify the MSRR problem equation 
in the form of statistical optimization classis from 
integrating the ordinary Tikhonov prior function as 

   
2

1

ArgMin
N

kk k Tk
X k

X D H F X Y X 


 
     

 
   (2) 

where     is L1 or L2 error function,   is 
the prior function parameter and   is the Tikhonov 
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prior function where the Laplacian prior kernel can 
be easily signified as. 

 1
KERNEL

8
1 1 1 ; 1 8 1 ; 1 1 1      (3) 

Using the 1st order minimization 
technique for example, the steepest descent 
technique [21], the MSRR solution from the above 
equation can be signified as 

 

  
1

ˆ
ˆ ˆ

ˆ

N
T T T

k nTk k k k k Tk

k N
n n

T

n

F H D Y D H F X
X X

X









  
   

    
      

      

                                                                             (4) 

where         and   is the 

calculated constant of the 1st order minimization 
technique. 

 

3. The Proposed Video MSRR Scheme 
Established on a Universal Inspection 
Registration 

In this section, the paper first presents the 
novel registration and the novel deformed matrix 

kF . Later, this paper mathematically describes the 
algebraic formulation of MSRR problem by using 
the novel deformed matrix 

kF . Finally, this paper 
mathematically explains the solution of this MSRR 
problem in both L1 and L2 error function.  

3.1 The Universal Inspection Registration for 
MSRR Scheme 

The proposed registration for universal 
inspected model of MSRR is based on a fast affine 
block-based transform [13].  The registration can be 
disentangled into 2 sub-processes. The first sub-
process of this registration technique disentangles  

 

 

Figure 1 The universal inspection registration [15] 
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the whole image into many miniature square 
structures by divorcing both the inspected image 
and the reference image into 50% over intersection 
miniature square structure, which have the 
measurement as 16x16. The cardinal propose of the 
first sub-process is not only for disclosing and 
enumerating the regional moving but also for 
dwindling the enumerated time, especially when the 
parallel processing is implemented. The second 
sub-process enumerates the motion vector, which 
consists of six affine parameter, instead of two 
shifting parameter, between the inspected frame and 
the reference frame by using the M3SS (Modified 
Three Step Search) technique [13]. For dwindling 
the ultimately processing time of affine motion 
vector enumerating, the M3SS (Modified Three 
Step Search) technique is proposed. The M3SS, 
which is found on the famous 3SS of the ordinary 
shifting parameter estimation, is proposed to reduce 
a very high computational load in affine motion 
vector estimation. As a result, for each 7x7 
inspecting square structures (inspected shifted 
motion) and 20 degree (rotation, broadening or 
extrication inspecting pattern), the number of 
inspecting is 72936   (the motion vector is 
modified in 6 unknown affined parameters instead 
of 2 parameters) in the first inspecting process and, 
then, the group of modified affine parameters, 
which make the lowest error, is reused as the 
midpoint of the next inspecting process but the 
inspecting square structure is dwindled by half in 
the next inspecting process until the inspecting 
square structure is identical to pre-setting value. The 

parameter turning principle of M3SS in this article 
was found on the simulation results, which make the 
motion vector enumeration of the Foreman, 
Carphone and Stefan the highest PSNR [13], the  
number of inspecting is set to be 3.65E+3. 
Correlated with the ordinary shifting parameter 
estimation at ¼ subpixel level and 9x9 inspecting 
square structures, the number of inspecting of 
M3SS is higher than FS (Full Search) of the 
ordinary shifting parameter estimation about 3 
enumerating times however the PSNR result from 
M3SS technique is ultimately higher than the PSNR 
result from ordinary technique about 5-6 dB. 
Finally, the motion vector from universal inspection 
registration is used to create the matrix of an 
inspected motion between a reference image and an 
inspected image or 

kF  in the same manner as the 
affine inspection registration [28]. 

3.2 The Universal Inspection Model for 
MSRR Scheme  

For handling with a real or complex inter-
frame motion pattern, the universal inspection 
registration [15], established on a fast affine block-
based transform [13], was proposed in the form of 
an inspected shifted motion matrix 2 2 2 2q M q M

kF 

, which is nonisometric inter-frame deformation 
pattern such as affine motion pattern between over-
intersection miniature square structures of HR 
image X  and LR images 

kY . Then, the over-
intersection miniature square structures of HR 
image and LR images are stochastically signified 

       ; 1,2, ,k k k k kY D H F X V k N            (5) 
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The universal inspected over-intersection 
miniature square structures of HR image and LR 
images are stochastically signified in fig.1(c). 

3.3 The Video L1 MSRR Scheme Established 
on Universal Inspection Registration 

In this division, the MSRR problem is first 
mathematically formulated under the stochastic 
maximum a posteriori framework and the universal 
inspection registration but the solution of this 
MSRR [17], which stochastically convinces the 
Eq.(1) or Eq.(2), in the case of under-determined 
situation has an infinite possible solutions because 
the problem of this MSRR is signified as ill-posed 
condition. Moreover, the solutions of this MSRR in 
the case of over-determined situation is unreliable 
because if there is the little noise from the inspected 
system will cause the dramatic different values of 
the solution thence Tikhonov prior function is 
generally required in the sense of the stochastic 
computation for enumerating the MSRR solution by 
getting rid of artifacts in the MSRR solution and by 
accelerating the convergent rate. 

One of the most attractive error function 
for noise-vigorous perspective, which is generally 
undertaken in MSRR field [7-8,22], is L1 error 
function [2]. Thence, we can stochastically signify 
the MSRR problem equation in the form of 
statistical optimization classis from integrating the 
ordinary Tikhonov prior function as 

 
2

1

ArgMin
N

kk k k
X k

X D H F X Y X


 
     

 
 (6) 

Using the 1st order minimization 
technique for example, the steepest descent 

technique [21], the MSRR solution from the above 
equation can be signified as 

 

  
1

ˆsign
ˆ ˆ

ˆ

N
T T T

k nk k k k k k

k N
n n

T

n

F H D Y D H F X
X X

X








  
   

    
      

      

                                                                             (7) 
where   is the calculated constant of the 1st 

order minimization technique. 
3.4 The Video L2 MSRR Scheme Established 

on Universal Inspection Registration 
Another of the most attractive error 

function for real implemented perspective, which is 
generally undertaken in MSRR field [22,29,3], is 
L2 error function. Thence, we can stochastically 
signify the MSRR problem equation in the form of 
statistical optimization classis from integrating the 
ordinary Tikhonov prior function as 

 
22

2
1

ArgMin
N

kk k k
X k

X D H F X Y X


 
     

 
  (8)            

Using the 1st order minimization 
technique for example, the steepest descent 
technique [21], the MSRR solution from the above 
equation can be signified as 

 

  
1

1

ˆ
ˆ ˆ

ˆ

N
T T T

k nk k k k k k

k
n n

T

n

F H D Y D H F X
X X

X








 
 

   
    
 

      

                                                                            (9) 

4. The Results of Proposed Video MSRR 
Scheme 

This partition proves the outperforming of 
the MSRR schemes with the proposed universal 
inspection registration by simulating under four 
noise models at several noise energy levels on Susie 
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and Foreman, copious image products. This 
simulation is written by MATLAB program and the 
over-intersection miniature square structures of HR 
image and LR images are stochastically signified as 
8x8 and 16x16, respectively. 

The guideline [23, 7-8] of simulated 
parameter nomination in our simulation is to set the 
simulated parameters which generate the maximum 
PSNR and best envision desirable result. 
Furthermore, every simulation is reiterated a lot of 
times with dissimilar values and the maximum 
PSNR & the best envision desirable results are 
nominated. 

4.1 The generation of LR images from 
original HR images 

In this simulation, the original HR Susie 
(at 38, 39, 40, 41 and 42 frame) at 176x144 

resolution for enhancing the refined SR image (40 
frame of Susie) and Foreman (108, 109, 110, 111 
and 112 frame) sequence for enhancing the refined 
SR image (110 frame of foreman) are used in this 
simulation because both sequences have 
complicated edge detail and complex inter-frame 
motion pattern therefore the number of LR images 
is five images or N=5 for using in each MSRR 
schemes as indicating in the following block 
diagram of generating of LR images from original 
HR images in fig.2. Each original images was 
defocused by both 3x3 time invariant and space 
invariant Gaussian filter is expounded as 

kH  and, 
then, was de-magnified by 2x2 to has 88x72 
resolution and, then, was added by noise from the 
inspected system is expounded as 

kV .

3 3 Gaussian

filter



Defocus

1Noise

De-Magnification +

2Noise

+

3Noise

+

4Noise

+

1LR Image

2LR Image

3LR Image

4LR Image

De-Magnification

(2 2)

1

Original 

HR Image

2

Original

HR Image

3

Original

HR Image

4

Original

HR Image

5Noise

+ 5LR Image
5

Original

HR Image

Defocus

Defocus

Defocus

Defocus

Defocus

De-Magnification

De-Magnification

De-Magnification

De-Magnification

 
Figure 2 The block diagram of the generation of LR images from original HR images
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The LR images are added by the 
following four noise models: additive Gaussian 
model, multiplicative Gaussian model, Poisson 
model and Impulsive model.  Five noise energy 
levels are applied in additive Gaussian model and 
three level energy levels are applied in both 
multiplicative Gaussian model and impulsive 
model. One energy level of noise is applied in 
Poisson model. The detail of energy levels of noise 
model is as following: 

1) Additive Gaussian model: PSNR of the 
noisy LR image = 25, 22.5, 20, 17.5, 15 dB 

2) Multiplicative Gaussian model: V = 0.01, 
0.02, 0.03. 

3) Impulsive Model: noise density=0.5%, 
1.0% and 1.5% 

4.2 The Results of Proposed Video MSRR 
Scheme with the Universal Inspection Model 

The PSNR results of the refined SR image 
(40 frame of Susie) and the refined SR image (110 
frame of foreman) are summarized in Table 1 and 
Table 2 respectively.

Table 1 The comparative PSNR results of the refined SR image (40 frame of Susie) [15] 
Noise Model The PSNR of SRR Image (dB) 

LR 

Image 

L1 : Classic 

Model 

L2 : Classic 

Model 

L1 : Gen. 

Model 
L2 : Gen. 

Model 

AWGN (dB): 

SNR=25  
SNR=22.5 

SNR=20  

SNR=17.5 
SNR=15  

 

25.8468 
24.8508 

23.7206 

22.1395 
20.3124 

 

26.0369 
25.4006 

24.7384 

24.8148 
22.7614 

 

25.8468 
24.8508 

23.7206 

22.1395 
20.3124 

 

26.1473 

25.5834 

24.9608 

24.0890 

23.1151 

 

25.8468 
24.8508 

24.0387 

22.8283 
21.1894 

Poisson 25.0577 25.5626 25.0577 25.7916 25.1040 

Salt&Pepper: 

D=0.005 
D=0.010 

D=0.015 

 

25.5815 
24.6287 

23.6269 

 

25.8052 
25.1489 

24.5757 

 

25.5815 
24.6287 

23.6269 

 

25.9735 

25.3920 

24.8592 

 

25.5815 
24.8303 

24.2964 

Speckle: 

V=0.01 

V=0.02 
V=0.03 

 

23.7767 

21.8538 
20.5570 

 

24.8022 

23.7556 
22.9761 

 

23.7767 

21.8538 
20.5570 

 

25.0185 

24.0958 

23.3854 

 

24.1172 

22.7284 
21.7708 

 

Table 2 The comparative PSNR results of the refined SR image (110 frame of foreman) [15] 
Noise Model The PSNR of SRR Image (dB) 

LR 

Image 

L1 : Classic 

Model 

L2 : Classic 

Model 

L1 : Gen. 

Model 

L2 : Gen. 

Model 

AWGN (dB): 

SNR=25 

SNR=22.5 
SNR=20  

SNR=17.5 

SNR=15 

 

30.1487 

29.0574 
27.5740 

25.7765 

23.7393 

 

30.3824 

29.6625 
28.8004 

26.1635 

26.2371 

 

30.1487 

29.0574 
27.5740 

25.7765 

23.7393 

 

30.6615 

30.0186 

29.1304 

28.0193 

26.6879 

 

30.2347 

29.4315 
28.3754 

27.0041 

25.2707 

Poisson 27.9892 28.8819 27.9892 29.3107 28.8507 

Salt&Pepper: 

D=0.005 

D=0.010 
D=0.015 

 

29.3506 

27.3206 
25.5210 

 

29.7082 

28.2861 
27.0972 

 

29.3506 

27.3206 
25.5210 

 

30.0868 

28.7302 

27.5187 

 

29.5284 

27.8977 
26.2784 

Speckle: 
V=0.01 

V=0.02 

V=0.03 

 
27.5301 

25.2720 

23.9860 

 
28.6916 

27.2486 

26.7384 

 
27.5301 

25.2720 

23.9860 

 

29.1562 

27.7187 

27.0925 

 
28.3942 

26.6633 

25.5199 
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The results of the refined SR images that 
are based enumerated by the L1 MSRR scheme 
established on universal inspection model, which 
can be simulated by Eq. (7), and L2 MSRR scheme 
established on universal inspection model, which 
can be simulated by Eq. (9) analogously shows with 
L1 and L2 MSRR scheme established on originally 
inspection model, which can be simulated from the 
result of Eq. (4). 

From the results in Table 1 (40 frame of 
Susie) and Table 2 (110 frame of foreman), we can 
deduce as follow: 

From the inspected registration 
prospective, the MSRR scheme with the proposed 
inspected registration has the better PSNR than 
MSRR scheme with the original inspected 
registration. 

From the error function prospective, the 
MSRR scheme with L1 error function has the better 
PSNR than MSRR scheme with L2 error function 
for the original inspected registration and the 
proposed inspected registration, respectively 
because the L2 error function is more problematic 
the noise from the inspected system or registration 
error than L1 error function. 

From the overall prospective, the MSRR 
scheme with L1 error function and the proposed 
inspected registration has the best PSNR than other 
MSRR schemes. 

From the overall prospective, the MSRR 
scheme with L2 error function and the original 
inspected registration cannot enhance the PSNR 

because L2 error function is more problematic for 
the severe error from the original inspected 
registration. 

The envision desirable results of the 
refined SR image (for 40 frame of Susie) and the 
refined SR image (for 110 frame of Foreman) from 
the proposed video MSRR scheme is indicated in 
figure 3 and figure 4, respectively. 

Considering Additive Gaussian model of 
the noisy LR images at 25, 22.5, 20, 17.5, 15 dB, 
the envision results is indicated in figure 3(a) – 3(e) 
for the refined SR image (for 40 frame of Susie) and 
in figure 4(a) – 4(e) for the refined SR image (for 
110 frame of Foreman), respectively. 

Considering Poisson model of the noisy 
LR image, the envision results is indicated in figure 
3(f) for the refined SR image (for 40 frame of Susie) 
and in figure 4(f) for the refined SR image (for 110 
frame of Foreman), respectively. 

Considering Impulsive model of the noisy 
LR image at noise density=0.5%, 1.0% and 1.5%, 
the envision results is indicated in figure 3(g) – 3(i) 
for the refined SR image (for 40 frame of Susie) and 
in figure 4(g) – 4(i) for the refined SR image (for 
110 frame of Foreman), respectively. 

Considering Multiplicative Gaussian 
model of the noisy LR images at V=0.01, V=0.02 
and V=0.03, the envision results is indicated in 
figure 3(j) – 3(l) for the refined SR image (for 40 
frame of Susie) and in figure 3(j) – 3(l) for the 
refined SR image (for 110 frame of Foreman), 
respectively. 
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Figure 3 The envision desirable results of the refined SR images (for 40 frame of Susie) 
(In each refined SR images, the right-side image of each sub-image is the total distinction, which is magnified 

by five, between the refined SR image (at left-size image) and the artistic image) 
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Figure 4 The envision desirable results of the refined SR images (for 110 frame of Foreman) 
(In each refined SR images, the right-side image of each sub-image is the total distinction, which is magnified 

by five, between the refined SR image (at left-size image) and the artistic image) [15] 
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5. The Discussion and Summary 
The universal inspected model, which is 

desired for applying on video MSRR scheme 
established on both L1 and L2 error function, is 
proposed. Thence, the video MSRR scheme with 
this universal inspected model can be imposed on 
the real standard video with the complicated motion 
pattern. The results from the simulation obviously 
convey that the proposed universal inspected model 
can be imposed on the real standard video with 
outperforming PSNR results and envision results 
from the video MSRR scheme. 

For the future research, this proposed 
universal inspected model is mathematically 
combined with the powerful adaptive robust error 
function [24] (instead of L1 and L2 error function) 
for applying on the real noisy videos. 

Portions of this research work were 
presented at the IEEE-ISPACS-2008 Conference, 
8-11 Dec 2008 as "General Observation Model for 
an Iterative Multiframe Regularized Super-
Resolution Reconstruction for Video 
Enhancement" [15]. 
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