

Possible Solutions of the Diophantine Equation $x^2 + ky^2 = z^2$

Piyanut Puangjampa

Department of Mathematics and Statistics, Faculty of Science, Surindra Rajabhat University, Surin 32000

E-mail: piyanut@math.sut.ac.th

Abstract

This paper is to identify the Diophantine equation $x^2 + ky^2 = z^2$ where k, x, y and z are integers satisfies; case 1: $k = 4m + 2$, has no integer solution if y is odd, and have integer solutions (x, y, z) is $(\pm(ka-b), \pm 2\sqrt{ab}, \pm(ka+b))$ where m is an integer, ab is a square number if y is even, case 2: $k = 2m + 1$, have integer solutions (x, y, z) is $\left(\pm \frac{ka-b}{2}, \pm \sqrt{ab}, \pm \frac{ka+b}{2} \right)$ where m is an integer, ab is an odd square number if y is odd, and $(\pm(ka-b), \pm 2\sqrt{ab}, \pm(ka+b))$ where m is an integer, ab is a square number if y is even, case 3: $k = 4m$, have integer solutions (x, y, z) is $\left(\pm \left(\frac{k}{4}a - b \right), \pm \sqrt{ab}, \pm \left(\frac{k}{4}a + b \right) \right)$ where m is an integer, ab is a square number,

Keywords: Diophantine equation, Congruence, Integer solutions, Divisibility

1. Introduction

Nowadays, there are many studies in the literature that concern the Diophantine equation. In 1995, Wiles showed that the Diophantine equation $x^n + y^n = z^n, xyz \neq 0$ has no integer solution when $n \geq 3$ [1]. In 1999, Bruin studied the

Diophantine equation $x^2 \pm y^4 = \pm z^6$ and $x^2 + y^8 = z^3$ [2]. In 2004, Bennett found the solution of the Diophantine equation $x^{2n} + y^{2n} = z^5$ [3]. In 2014, Abdelalim and Dyani searched the Diophantine equation $x^2 + 3y^2 = z^2$ have integer solutions (x, y, z) is

Received: May 09, 2017

Revised: August 21, 2017

Accepted: September 22, 2017

$$\left(\pm \frac{3y_1^2 - y_2^2}{2}, \pm y_1 y_2, \pm \frac{3y_1^2 + y_2^2}{2} \right) \text{ if } y \text{ is odd,}$$

and have integer solutions (x, y, z) is $\left(\pm (3y_1^2 - y_2^2), \pm 2y_1 y_2, \pm (3y_1^2 + y_2^2) \right)$ if y is even [4]. In 2015, Abdelalim and Diany characterized the solutions of the Diophantine equation $x^2 + y^2 = 2z^2$ [5].

Thus, this paper aims to study the Diophantine equation $x^2 + ky^2 = z^2$ where k, x, y and z are integers.

2. Materials and Experiment

Proposition 1: The Diophantine equation $x^2 + ky^2 = z^2$ has no integer solution where $k = 4m + 2, m, x, y$ and z are integers with y is odd.

Proof:

Suppose that (x, y, z) is a solution of the Diophantine equation $x^2 + (4m+2)y^2 = z^2$ with y is odd. Since $y^2 \equiv 1 \pmod{4}$ then $(4m+2)y^2 \equiv 2 \pmod{4}$, these consider into 2 cases as follow:

Case 1: If x is odd then z is odd.

Thus, $x^2 \equiv 1 \pmod{4}$ then

$x^2 + (4m+2)y^2 \equiv 3 \pmod{4}$. This is a contradiction with $z^2 \equiv 1 \pmod{4}$.

Case 2: If x is even then z is even.

Thus, $x^2 \equiv 0 \pmod{4}$ then

$x^2 + (4m+2)y^2 \equiv 2 \pmod{4}$. This is a contradiction with $z^2 \equiv 0 \pmod{4}$.

Therefore, by case 1 and 2, the Diophantine equation $x^2 + ky^2 = z^2$ has no integer solution

where $k = 4m + 2, m, x, y$ and z are integers with y is odd.

Proposition 2: The Diophantine equation $x^2 + ky^2 = z^2$ has the solutions in the form $(x, y, z) = (\pm(ka-b), \pm 2\sqrt{ab}, \pm(ka+b))$

where $k = 4m + 2, m, x, y$ and z are integers with y is even.

Proof:

Let (x, y, z) be a solution of the Diophantine equation $x^2 + ky^2 = z^2$ where $k = 4m + 2$ and y is even.

We have,

$$\begin{aligned} x^2 + ky^2 &= z^2 \\ ky^2 &= z^2 - x^2 \\ ky^2 &= (|z| - |x|)(|z| + |x|). \end{aligned}$$

Since y is even, so that $2 \mid (|z| - |x|)(|z| + |x|)$ hence, $2 \mid (|z| - |x|)$ or $2 \mid (|z| + |x|)$, we have x, z are even or x, z are odd, then $|z| - |x|$ and $|z| + |x|$ are even, we have $\frac{|z| - |x|}{2}, \frac{|z| + |x|}{2}$ are integers. It follows that,

$$\frac{ky^2}{4} = \frac{(|z| - |x|)(|z| + |x|)}{4}$$

$$k \left(\frac{y}{2} \right)^2 = \frac{|z| - |x|}{2} \frac{|z| + |x|}{2}.$$

Hence, $k \left| \frac{|z| - |x|}{2} \frac{|z| + |x|}{2} \right|$ then $k \left| \frac{|z| - |x|}{2} \right|$ or $k \left| \frac{|z| + |x|}{2} \right|$, these consider into 2 cases as follow:

Case 1: If $k \left| \frac{|z| - |x|}{2} \right|$ so that, there exists an integer a such that $ka = \frac{|z| - |x|}{2}$ and let $b = \frac{|z| + |x|}{2}$. It follows that,

$$k \left(\frac{y}{2} \right)^2 = (ka)b$$

$$\left(\frac{y}{2} \right)^2 = ab$$

$$\frac{y}{2} = \pm \sqrt{ab} \text{ where } ab \text{ is a square number.}$$

$$\text{Since } ka = \frac{|z| - |x|}{2} \text{ and } b = \frac{|z| + |x|}{2} \text{ then}$$

$$|x| = -(ka - b) \text{ and } |z| = ka + b \text{ that is,}$$

$$x = \pm(ka - b) \text{ and } z = \pm(ka + b).$$

Case 2: If $k \nmid \frac{|z| + |x|}{2}$ so that, there exists an

integer a such that $ka = \frac{|z| + |x|}{2}$ and let $b = \frac{|z| - |x|}{2}$. It follows that,

$$k \left(\frac{y}{2} \right)^2 = b(ka)$$

$$\left(\frac{y}{2} \right)^2 = ab$$

$$\frac{y}{2} = \pm \sqrt{ab} \text{ where } ab \text{ is a square number.}$$

$$y = \pm 2\sqrt{ab}$$

$$\text{Since } ka = \frac{|z| + |x|}{2} \text{ and } b = \frac{|z| - |x|}{2} \text{ then}$$

$$|x| = ka - b \text{ and } |z| = ka + b \text{ that is,}$$

$$x = \pm(ka - b) \text{ and } z = \pm(ka + b).$$

Therefore, by case 1 and 2, the solutions of this equation are in the form

$$(x, y, z) = (\pm(ka - b), \pm 2\sqrt{ab}, \pm(ka + b))$$

where ab is a square number.

3. Results and Discussion

Theorem 3: The Diophantine equation $x^2 + ky^2 = z^2$ has the solutions in the form $(x, y, z) = \left(\pm \frac{ka - b}{2}, \pm \sqrt{ab}, \pm \frac{ka + b}{2} \right)$ where

k is odd, x, y and z are integers with y is odd and ab is an odd square number.

Proof:

Let (x, y, z) be a solution of the Diophantine equation $x^2 + ky^2 = z^2$ with y is odd.

We have,

$$x^2 + ky^2 = z^2$$

$$ky^2 = z^2 - x^2$$

$$ky^2 = (|z| - |x|)(|z| + |x|).$$

Hence, $k \mid (|z| - |x|)(|z| + |x|)$ then $k \mid (|z| - |x|)$ or $k \mid (|z| + |x|)$, these consider into 2 cases as follow:

Case 1: If $k \mid (|z| - |x|)$ so that, there exists an integer a such that $ka = |z| - |x|$ and let $b = |z| + |x|$. It follows that,

$$ky^2 = (ka)b$$

$$y^2 = ab$$

$$y = \pm \sqrt{ab} \text{ where } ab \text{ is an odd square number.}$$

Since $ka = |z| - |x|$ and $b = |z| + |x|$ then

$$|x| = -\frac{ka - b}{2} \text{ and } |z| = \frac{ka + b}{2} \text{ that is,}$$

$$x = \pm \frac{ka - b}{2} \text{ and } z = \pm \frac{ka + b}{2}.$$

Case 2: If $k \mid (|z| + |x|)$ so that, there exists an integer a such that $ka = |z| + |x|$ and let $b = |z| - |x|$. It follows that,

$$ky^2 = b(ka)$$

$$y^2 = ab$$

$y = \pm\sqrt{ab}$ where ab is an odd square number.

Since $ka = |z| + |x|$ and $b = |z| - |x|$ then

$$|x| = \frac{ka - b}{2} \quad \text{and} \quad |z| = \frac{ka + b}{2} \quad \text{that is,}$$

$$x = \pm \frac{ka - b}{2} \quad \text{and} \quad z = \pm \frac{ka + b}{2}.$$

Therefore, by case 1 and 2, the solutions of this equation are in the form

$$(x, y, z) = \left(\pm \frac{ka - b}{2}, \pm \sqrt{ab}, \pm \frac{ka + b}{2} \right)$$

where ab is an odd square number.

Theorem 4: The Diophantine equation $x^2 + ky^2 = z^2$ has the solutions in the form

$$(x, y, z) = (\pm(ka - b), \pm 2\sqrt{ab}, \pm(ka + b))$$

where k is odd, x, y and z are integers with y is even and ab is a square number.

Proof:

Let (x, y, z) be a solution of the Diophantine equation $x^2 + ky^2 = z^2$ with y is even and ab is a square number. We have,

$$x^2 + ky^2 = z^2$$

$$ky^2 = z^2 - x^2$$

$$ky^2 = (|z| - |x|)(|z| + |x|).$$

Since y is even, so that $2 \mid (|z| - |x|)(|z| + |x|)$ hence, $2 \mid (|z| - |x|)$ or $2 \mid (|z| + |x|)$, we have x, z are even or x, z are odd, then $|z| - |x|$ and $|z| + |x|$ are even, we have $\frac{|z| - |x|}{2}, \frac{|z| + |x|}{2}$ are integers. It follows that,

$$\frac{ky^2}{4} = \frac{(|z| - |x|)(|z| + |x|)}{4}$$

$$k \left(\frac{y}{2} \right)^2 = \frac{|z| - |x|}{2} \frac{|z| + |x|}{2}.$$

Hence, $k \left| \frac{|z| - |x|}{2} \frac{|z| + |x|}{2} \right|$ then $k \left| \frac{|z| - |x|}{2} \right|$ or

$k \left| \frac{|z| + |x|}{2} \right|$, these consider into 2 cases as follow:

Case 1: If $k \left| \frac{|z| - |x|}{2} \right|$ so that, there exists an integer a such that $ka = \frac{|z| - |x|}{2}$ and let

$$b = \frac{|z| + |x|}{2}. \text{ It follows that,}$$

$$k \left(\frac{y}{2} \right)^2 = (ka)b$$

$$\left(\frac{y}{2} \right)^2 = ab$$

$$\frac{y}{2} = \pm \sqrt{ab} \quad \text{where } ab \text{ is a square number.}$$

$$y = \pm 2\sqrt{ab}$$

Since $ka = \frac{|z| - |x|}{2}$ and $b = \frac{|z| + |x|}{2}$ then

$|x| = -(ka - b)$ and $|z| = ka + b$ that is,

$x = \pm(ka - b)$ and $z = \pm(ka + b)$.

Case 2: If $k \left| \frac{|z| + |x|}{2} \right|$ so that, there exists an integer a such that $ka = \frac{|z| + |x|}{2}$ and let

$$b = \frac{|z| - |x|}{2}. \text{ It follows that,}$$

$$k \left(\frac{y}{2} \right)^2 = b(ka)$$

$$\left(\frac{y}{2} \right)^2 = ab$$

$$\frac{y}{2} = \pm \sqrt{ab} \quad \text{where } ab \text{ is a square number.}$$

$$y = \pm 2\sqrt{ab}$$

Since $ka = \frac{|z| + |x|}{2}$ and $b = \frac{|z| - |x|}{2}$ then $|x| = ka - b$ and $|z| = ka + b$ that is, $x = \pm(ka - b)$ and $z = \pm(ka + b)$.

Therefore, by case 1 and 2, the solutions of this equation are in the form

$$(x, y, z) = \left(\pm \frac{ka - b}{2}, \pm \sqrt{ab}, \pm \frac{ka + b}{2} \right)$$

where ab is a square number.

Theorem 5: The Diophantine equation $x^2 + ky^2 = z^2$ has the solutions in the form

$$(x, y, z) = \left(\pm \left(\frac{k}{4}a - b \right), \pm \sqrt{ab}, \pm \left(\frac{k}{4}a + b \right) \right)$$

where $k = 4m$, m, x, y and z are integers and ab is a square number.

Proof:

Let (x, y, z) be a solution of the Diophantine equation $x^2 + ky^2 = z^2$. We have,

$$\begin{aligned} x^2 + ky^2 &= z^2 \\ ky^2 &= z^2 - x^2 \\ ky^2 &= (|z| - |x|)(|z| + |x|) \\ 4my^2 &= (|z| - |x|)(|z| + |x|). \end{aligned}$$

So that $4 \mid (|z| - |x|)(|z| + |x|)$ hence,

$4 \mid (|z| - |x|)$ or $4 \mid (|z| + |x|)$, we have x, z are

even or x, z are odd, then $|z| - |x|$ and $|z| + |x|$

are even, we have $\frac{|z| - |x|}{2}, \frac{|z| + |x|}{2}$ are

integers. It follows that,

$$\begin{aligned} \frac{4my^2}{4} &= \frac{(|z| - |x|)(|z| + |x|)}{4} \\ my^2 &= \frac{|z| - |x|}{2} \frac{|z| + |x|}{2}. \end{aligned}$$

Hence, $m \left| \frac{|z| - |x|}{2} \frac{|z| + |x|}{2} \right|$ then $m \left| \frac{|z| - |x|}{2} \right|$

or $m \left| \frac{|z| + |x|}{2} \right|$, these consider into 2 cases as follow:

Case 1: If $m \left| \frac{|z| - |x|}{2} \right|$ so that, there exists an

integer a such that $ma = \frac{|z| - |x|}{2}$ and let $b = \frac{|z| + |x|}{2}$. It follows that,

$$my^2 = (ma)b$$

$$y^2 = ab$$

$y = \pm \sqrt{ab}$ where ab is a square number.

Since $ma = \frac{|z| - |x|}{2}$ and $b = \frac{|z| + |x|}{2}$ then

$|x| = -(ma - b)$ and $|z| = ma + b$ that is,

$$x = \pm \left(\frac{k}{4}a - b \right) \text{ and } z = \pm \left(\frac{k}{4}a + b \right).$$

Case 2: If $m \left| \frac{|z| + |x|}{2} \right|$ so that, there exists an

integer a such that $ma = \frac{|z| + |x|}{2}$ and let

$b = \frac{|z| - |x|}{2}$. It follows that,

$$my^2 = b(ma)$$

$$y^2 = ab$$

$y = \pm \sqrt{ab}$ where ab is a square number.

Since $ma = \frac{|z| + |x|}{2}$ and $b = \frac{|z| - |x|}{2}$ then

$|x| = ma - b$ and $|z| = ma + b$ that is,

$$x = \pm \left(\frac{k}{4}a - b \right) \text{ and } z = \pm \left(\frac{k}{4}a + b \right).$$

Therefore, by case 1 and 2, the solutions of this equation are in the form

$$(x, y, z) = \left(\pm \left(\frac{k}{4}a - b \right), \pm \sqrt{ab}, \pm \left(\frac{k}{4}a + b \right) \right)$$

where ab is a square number.

Example find all positive integer solutions of the Diophantine equation $x^2 + 75 = z^2$.

Consider $x^2 + 75 = z^2$ then $x^2 + 3(5)^2 = z^2$

By theorem 3. So that $y = \sqrt{ab} = 5$ then

$a = 1, b = 25$ so that $(x, z) = (11, 14)$

or $a = 5, b = 5$ so that $(x, z) = (5, 10)$

or $a = 25, b = 1$ so that $(x, z) = (37, 38)$

This theorem have three solutions.

By theorem 2.2 [4]. So that $y = y_1 y_2 = 5$ then

$y_1 = 1, y_2 = 5$ or $y_1 = 5, y_2 = 1$

This theorem have two solutions. (Incomplete)

4. Conclusions

It can be seen that this paper shown the solution of the Diophantine equation $x^2 + ky^2 = z^2$ has no integer solution where $k = 4m + 2, m$ is an integer, y is odd and have integer solutions

$$(x, y, z) = \left(\pm (ka - b), \pm 2\sqrt{ab}, \pm (ka + b) \right)$$

where $k = 4m + 2, 2m + 1$, ab is a square number, m, x, y and z are integers with y is even, we have seen that the solution of the Diophantine equation

$$x^2 + ky^2 = z^2 \quad \text{is}$$

$$(x, y, z) = \left(\pm \frac{ka - b}{2}, \pm \sqrt{ab}, \pm \frac{ka + b}{2} \right) \text{ where}$$

$k = 2m + 1$, ab is an odd square number, m, x, y

and z are integers with y is odd. Also, and

$$(x, y, z) = \left(\pm \left(\frac{k}{4}a - b \right), \pm \sqrt{ab}, \pm \left(\frac{k}{4}a + b \right) \right)$$

where $k = 4m, ab$ is a square number, m, x, y and z are integers.

5. Acknowledgement

I highly appreciate the editors and referees for his helpful comments and suggestions to make this study are more valuable.

6. References

- [1] A. Wiles. Modula elliptic curves and Fermat last theorem. *Annals of Mathematics*. **142** (1995): 443-551.
- [2] N. Bruin. The Diophantine equation $x^2 \pm y^4 = \pm z^6$ and $x^2 + y^8 = z^3$. *Compositio Mathematica*. **118** (1999): 305-321.
- [3] M.A. Bennett. The equation $x^{2n} + y^{2n} = z^5$. *Journal de Théorie des Nombres de Bordeaux*. **18** (2006): 315-321.
- [4] S. Abdelalim, H. Dyani. The solution of the Diophantine equation $x^2 + 3y^2 = z^2$. *International Journal of Algebra*. **8** (2014): 729-732.
- [5] S. Abdelalim, H. Diany. Characterization of the solution of the Diophantine equation $x^2 + y^2 = 2z^2$. *Gulf Journal of Mathematics*. **3** (2015): 1-4.