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Abstract 

This paper proposed the exact distribution of internal studentized residual which used to evaluate 
the outliers in X and Y space in linear multiple regression analysis. The authors explored the relationship 
between the internal studentized residual in terms of two independent t-ratio, F-ratio’s and they show the 
derived density function of the residual in terms of Gauss hyper-geometric function. Moreover, the new form 
of the distribution is symmetric, first two moments of the distribution are derived and the authors computed 
the critical points of internal studentized residual at 5% and 1% significance level for different sample sizes 
and varying number of predictors. Evidence plots were also proposed to evaluate the exact position and 
location of the outliers. Finally, the numerical example shows the results extracted from the proposed 
approaches are more scientific, systematic in identifying the outliers in both spaces(X and Y) and its 
exactness gives more insights than the traditional Weisberg test. 
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1. Introduction and Related work 
A studentized residual is the quotient 

resulting from the division of a residual by an 
estimate of its standard deviation. Typically the 
standard deviations of residuals in a sample vary 
greatly from one data point to another even when 
the errors all have the same standard deviation, 
particularly in regression analysis; thus it does not 
make sense to compare residuals at different data 
points without first studentizing. It is a form of a 
Student's t-statistic, with the estimate of error 
varying between points. This is an important 
technique in the detection of outliers. It is named 
in honor of William Sealey Gosset, who wrote 
under the pseudonym Student, and dividing by an 
estimate of scale is called studentizing, in analogy 
with standardizing and normalizing. Studentization, is 
the adjustment consisting of division of a first-
degree statistic derived from a sample, by a 
sample-based estimate of a population standard 
deviation. The term is also used for the 
standardisation of a higher-degree statistic by 
another statistic of the same degree (Kendall and 
Stuart [15]). José A. Díaz-García, et al., [14] find 
the distributions of normalized, standardized and 
studentized (internally and externally studentized) 
residuals, assuming normal and elliptical 
distributions. In addition, they propose an 
alternative approach to the results published by 
Ellenberg [10] and Beckman and Trusell [13], The 
distribution of an arbitrary studentized residual and 
effects of updating in multiple regression. In least-

squares fitting it is important to understand the 
influence which a data y value will have on each 
fitted y value. A projection matrix known as the 
hat matrix contains this information and, together 
with the studentized residuals, provides a means of 
identifying exceptional data points (Hoaglin and 
Welsch, [12]). The studentized residuals, tt , (i.e. 
the residual divided by its standard deviation) have 
been recommended (Behnken and Draper [2], 
Davies and Hutton [8], Huber [13]) as more 
appropriate than the standardized residuals (i.e., 
the residual divided by the square root of the mean 
square for error) for detecting outliers. Also, 
approximate critical values for the maximum 
absolute studentized residual are available (Lund, 
[19]). Cook [5] has been the first to establish a 
simple measure, Di that incorporates information 
from the X-space and Y-space used for assessing 
the influential observations in regression models. 
The problem of outliers or influential data in the 
multiple or multivariate linear regression setting 
has been thoroughly discussed with reference to 
parametric regression models by the pioneers 
namely Cook [5], Cook and Weisberg [7], Belsley 
et al. [4] and Chatterjee and Hadi [6] respectively. 
In non-parametric regression models, diagnostic 
results are quite rare. Among them, Eubank [11], 
Silverman [20], Thomas [21], and Kim [16] 
studied residuals, leverages, and several types of 
Cook’s distance in smoothing splines, and Kim 
and Kim [17], Kim et.al [18] proposed a type of 
Cook’s distance in kernel density estimation and in 
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local polynomial regression. The phrase ‘influence 
measures’ has glimpsed a great surge of research 
interests. The developments of different measures 
are investigated to identify the influential 
observation from the early criteria of Cook’s to the 
present and a definition about influence, which 
appears most suitable, is given by Belsley et al. 
[4]. Cook’s statistical diagnostic measure is a 
simple, unifying and general approach for judging 
the local influence in statistical models. As far as 
the influence measures  concern in the literature, 
the procedures were designed to detect the 
influence of observations on a specific regression 
result. However, Hadi [1], proposed a diagnostic 
measure called Hadi’s influence function to 
identify the overall potential influence which 
possesses several desirable properties that many of 
the frequently used diagnostics do not generally 
possess such as invariance to location and scale in 
the response variable, invariance to non-singular 
transformations of the explanatory variables, it is 
an additive function of measures of leverage and of 
residual error, and it is monotonically increasing in 
the leverage values and in the squared residuals. 
Recently, Dı ́az-Garcı́a and González-Farı́as [9] 
modified the classical cook’s distance with 
generalized Mahalanobis distance in the context of 
multivariate elliptical linear regression models and 
they also establish the exact distribution for 
identification of outlier data points. Considering 
the above reviews, the authors proposed the exact 
distribution of internal studentized residual which 
need to exactly identify the Outlying data points in 

both spaces with the help of the evidence plots and 
it is discussed in the subsequent sections. 

2. Relationship among Internal studentized 
residual, student’s-t and F-ratio 

The multiple linear regression model 
with ‘p’ regressors and random error is given by 

 

Y X e                                            - (1) 

Where ( 1)nx
Y  is the vector of values of the dependent 

variable,   1nx p
X


 is full column rank matrix of 

predictors, 
(( 1) 1)p x




is the vector of beta co-efficients 

or partial regression co-efficients and 
( 1)nx
e is the 

vector of error followed normal distribution N 
(0, ne I2 ) From (1), statisticians concentrate and 
give importance to the error diagnostics such as 
outlier detection, identification of leverage points 
and evaluation of influential observations. Several 
error diagnostics techniques exist in the literature 
proposed by statisticians, but studentized residual 
attracts the statisticians to scrutinize the outliers in 
the Y-space. Studentization can be done in two 
ways namely internal studentization and external 
studentization of the regression residuals. Many 
authors believe internal studentization of the 
residual which followed approximate student’s t-
distribution with 2n p   degrees of freedom and 
Weisberg [22] provided a monotonic 
transformation of the internally studentized 
residual which followed the exact t-distribution. 
All the works in the literature show that the 
transformation of residuals to any forms which 
always helps to evaluate the outliers in Y-space. 
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Some authors like Cook [5] and Hadi [1] proposed 
measures to find the influential observations and 
potential outliers in the X-space as well as in the 
Y-space. The authors of this paper argue that the 
internal studentized residual comprised of 
information about the position of each observation 
in the X-space and the Y-space and traditionally 
the general form of the internal studentized 
residual )( ir  of the ith observation is given as 

  
1

i

i

e ii

e
r

S h



                                        - (2) 

Where 
ie  is the estimated ith regression residual, 

S
e

 is the unbiased standard deviation of the 
estimated residuals and )( iih  is the hat values or 
the diagonal elements of the hat matrix 

' 1 '
( ( ) )H X X X X


 which involves the set of 

predictors respectively. Usually, the )( ir  was 
compared with critical values of student’s t-ratio 
for 2n p  degrees of freedom and if the 
computed )( ir  exceeds, then the observation is 
said to be an outlier in the Y-space. The authors’ 
redefined internal studentized residual is the ratio 

of the two terms namely /e Si
e

 
  
 

 and 

 
1/2

1
ii

h ,where the first term conveys information 
about the individual observation in the Y-space 
and latter term visualizes the position of the 

observations in the X-space. If the /i
e

e S
 
 
 
 

 is close 

to 0, then )( ir  approaches zero, then the 

observation is an inlier in Y-space and if /e Si
e

 
 
 
 

 is 

very large, then )( ir  will also become very large, 
then the observation is far away and it is said to be 
an outlier in Y-space. Similarly, we know the hat 

values lie between n/1  and 1 and it is used to 
evaluate the influential observations in the X-
space. If the hat values close to n/1 , then the 
residual and error variance of each observation 
will be larger and the observation will be remote or 
formally it will be an influential in X-space. 
Similarly, if it is close to 1, then the residual of the 
particular observation will be smaller and it is said 
to be a leverage point. This hat values always 
played a vital role in reflecting the information 
about the position of the observation in the X-
space. Rewrite (2) in terms of the true standard 
deviation  e

  of the residual as  

 
/

/ 1

e i
er

i
S h
e e ii







                                 - (3) 

From (3) if   2 2
1 /n p S

e e
   follows chi-square 

distribution with 1n p   degrees of freedom, 

2

( 1)
x

n p 
 then /i ee   follows normal distribution 

with mean 0 and variance 1 and the quantum 

/e eS   is equal to 2
/ ( 1)

( 1)
n p

n p
  

 
. Therefore 

(3) will be further modified as 

      
2

( 1)
/ / ( 1)

1

i n p

i

ii

z n p
r

h


 

 



                   - (4) 

Where ˆ /
i i e

z e    
From (4), we know ratio  2

( 1)
/ / ( 1)

i n p
z n p

 
   

followed student’s t-distribution with 1n p   
degrees of freedom, , ( 1)

i
z n p  and by definition 

it is equal to the student’s-t ratio, then (4) can be 
written as 

 1

1

t
i n p

r
i h

ii

 



                                      - (5) 
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From (5), it is the most important form identified 
by the authors. The t-ratio explained the position 
of the observation in the Y-space and the hat 
values represents the status of the observations in 
the X-space. The explanation of the above 
discussion is given detailed in section 4. 
Traditionally, statisticians always concentrating on 
the distribution of the dependent variable and the 
residual and they completely ignore the 
distribution of the predictor set. Over the past 
decades, studentized residual are frequently used 
to identify the outliers in Y-space and it is the first 
attempt made by the authors and they proved that 
the internal studentized residual comprised of the 
information about the both spaces (X-space and Y-
space). If we incorporate and consider the 
distribution of dependent, predictor set simultaneously, 
we can use the internal studentized residual as a 
measure to evaluate and identify the outliers in 
both the spaces. In order to prove this 
scientifically, we proposed the exact distribution of 
the internal studentized residual by utilizing the 
relationship among the internally studentized 
residual )( ir , t-ratio and hat elements )( iih . From 
(5), the terms it  and iih  are independent, because 
the computation of )( it  involves the error term 

2
(0, )e N

i e
  and iih  values involves the set of 

predictors ' 1 '
( ( ) )H X X X X


 . Therefore, from the 

property of least squares ( ) 0E eX  , so it  and iih  
are also uncorrelated and independent. Using this 
assumption, we identify the distribution of iih  
based on the relationship proposed by Belsley et al 
[4] and they showed when the set of predictors in a 

linear regression model followed the multivariate 
normal distribution with ( , )

X X
  , then          

 ( ) (1/ )

( 1, )( 1)(1 )

n p h n
ii

F
p n pp h

ii

 


  
                      - (6) 

From (6) it follows the F-distribution with 
( 1, )p n p  degrees of freedom and it can be written 
in an alternative form as 

       (( 1) / ( )) 1 /
( 1, )

1 (( 1) / ( ))
( 1, )

p n p F n
i p n p

h
ii p n p F

i p n p

      
  

 

            - (7) 

In order to derive the exact distribution of ( )r
i

, 
substitute (7) in (5), we get the r

i
 in terms of the 

independent t-ratio and F-ratio which followed  
1n p   and ( 1, )p n p   degrees of freedom 

respectively and the relationship is given as 
 1

1 1
1/ 1

( 1, )

t
i n p

r
i

n p
F
i p n pn n p

 


   
     

                 - (8)                                                                                                

From (8), it can be further simplified and ( )r
i

 is 
expressed in terms of independent t-ratio and beta 
variable 

i
  of the first kind by using the following 

facts 
1 1

,
11 2 2

1
( 1, )

n p p

ip
F
i p n pn p

 
  

     
 

        - (9)                           

Then, without loss of generality (9) can be written 
as 

 

  

1

1 /

t
i n p

r
i n n

i


 



                               - (10) 

Based on the identified relationship from (10), the 
authors derived the exact distribution of the 
internal studentized residual and it is discussed in 
the next section.             
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3. Exact Distribution of Internal Studentized  
Residual 

Using the technique of two-dimensional 
Jacobian of transformation, J, the joint probability 
density function of the t-ratio and the beta variable 
of Kind-1 namely it , i  were transformed into 
density function of ir  and it is given as 
 

   , ,f r u f t J
i i i i

                      - (11) 

From (11), we know it  and i  are independent 
then rewrite (11) as 
 

     ,f r u f t f Ji i i i             - (12) 
 

Using the change of variable technique, substitute 
ui i   in (12) we get 

  

  

1

1 /

ti n p
ri

n n ui

 



                     - (13) 

Then partially differentiate (13) and compute the 
Jacobian determinant in (12) as 

      
 ,

,

( , )

t
i i

f r u f t f
i i i i r u

i i











                - (14) 

     ,

t t
i i

r u
i i

f r u f t f
i i i i

i i

r u
i i



 

 

 



 

 

            - (15) 

From (15), we know it  and 
i

  are independent, 
then the density function of the joint distribution of  

it  and 
i

  is given as 
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                                                                         - (16)                                                                                                                    
where 

it   , 10  i , , 0n p  , 
( , )B a b    

 and   

 

 

1 1
,

1
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0 1

r
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t u ni i in nu u
i inr u
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


 



                                              

                                                                         - (17) 
Then substitute (16) and (17) in (15) in terms of 
the substitution of iu ,we get the joint distribution 
of ir  and iu  as 

 

 

 

1 1

2
2 2

11
1

2
2
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1 1
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                                                                         - (18) 
where ri    , 0 1ui  , , 0n p   and  

1n
J u

in


 . Rearrange (18) and integrate with 

respect to iu , we get the marginal distribution of 

ir  as    ,
i

f r p n  
 

1 1
1 1 21

2 21 1
2 2

0

1
(1 ) 1

1

n p
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i i i i
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n p n
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                                                                         - (19) 
     Where

i
r    , , 0n p  , n p and      
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We know, from (17) and (18) 
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                                                                         - (20)   
Then substitute (20) in (19) and arrange the terms, 
we get the density function of ir  as 
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From (21), it is the density function of internal 
studentized residual )( ir  which is symmetric in 
nature and it involves two auxiliary functions 
namely  ; ,

1
r p n
i

 .  ; ,
2

r p n
i

  which exhibits in 

terms of Gauss hyper-geometric function  
2 1

F  

and the normalizing constant  ,p n  in terms of 

beta functions namely 1 1
( , )

2 2

n p
B

  , 

1
( , )

2 2

n p p
B

   with two shape parameters ( np, ), 

where n is the sample size and p is the number of 
predictors used in a multiple linear regression 
model. In order to know the location and 

dispersion of internal studentized residual, the 
authors derived the first two moments in terms of 
mean, variance from (8) and it is shown as follows. 
Using (8), take expectation and substitute the 
moments of independent t-ratio and F-ratio, we get 
the first moment of ir  as 

   
1

1
1

n p
E r E t E Fi i i

n n p


 

 

  
  
  

      - (22) 

  0E ri                                                        - (23) 

From (23), if the moment of the internal 
studentized residual is zero (   0irE ), then the 
second moment is equal to its variance. Hence, the 
square (8) on both sides, then take expectation and 
substitute the appropriate second order moments of 
independent t-ratio  and F-ratio, we get the 
variance of the ir  is given as 
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                                                                         - (24) 
As a proposed approach, the authors adopted the 
test of significance approach of evaluating and 
identifying the outliers in a sample. The approach 
is to derive the critical points of the internal 
studentized residual by using the following 
relationship from (8) and it is given as  
                      

 
 

 
 
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1
, 1 1,1
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                                                                         - (25) 
From (25), for different combination of values of 

),( np  and the significance probability 

  
,

( )
r i i p n

p r r    , we computed the critical 
points of internal studentized residual. If the 
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sample size is very large  n   , then the 
limiting distribution of ir  followed standard 
normal distribution with mean 0 and variance 1. 
By using the critical points, we can test the 
significance of the outliers in a multiple linear 
regression model. The following tables 1,2 exhibits 
the significant percentage points of the distribution 
of  internal studentized residual for varying sample 
size(n) and the number of predictors (p) at 5% and 
1% significance ( ) calculated by using the 
software IBM SPSS 22 based on the relationship 
equation from (25) . 

4. Heuristic evidences and Evidence plots 
The proposed exact distribution helps to 

evaluate the outliers in a multiple regression 
model, but it fails to reveals the exact position of 
the observations in the X-space or Y-space or in 
both. For this, the author visualizes heuristic 
evidences and by using the evidence plots along 
with test of significance approach, we can identify 
groups in the observations. We recommend to use 
a two-dimensional scatter plot to find the 
evidences of the observation being exact outliers in 
both spaces. Consider the absolute value of the 
quantum /i ee S  is the representation of the Y-

space and   2/1
1 iih  is the good proxy of the X-

space. Plot the values  ˆ /i ee s  and    2/1
1 iih  

in the two-dimensional space and classify the plots 
of observations into groups in the spaces by using 
a predetermined cut-off. From (10) if 

 ˆ /U e s
i i e
  follows the t-distribution with n-p-

1 degrees of freedom and  
1/ 2

1
i ii

V h   follows 
the beta distribution  with shape parameters p and 
n, then the following steps need to classify the 
observations by using the evidence plots and it is 
given as follows. 

Step1: Run a multiple linear regression analysis 
and compute the internal studentized residuals 
from (2). 

Step2: Use the proposed distribution of internal 
studentized residual and evaluate the outliers at 5% 
and 1% level of significance. 

Step3: Compute the estimated unstandardized 
residuals ˆ( )e

i
, unbiased standard deviation of the 

residuals  
e

S and the hat values  ii
h .  

Step4: Calculate the new variables  ˆ /
i i e

U e s  
and    2/1

1 iii hV  , then plot  iU  and  iV  in a 
two-dimensional scatter plot by these variables are 
proxies of the Y-space and X-space respectively. 

Step5: We know iU  and  iV  are independent, 
then determine the cut-off separately for both the 
variables at 5% and 1% level of significance 
(

 
 

1i n p
U t 

 
  and   npiV ,  follows beta 

distribution-refer Table 3 and 4) where  is the 
upper alpha point of the distributions respectively. 

Step6: Plot the Cut-offs     ,U V   in the 
evidence plots, then the two dimensional 
scatterplot was segregated into 4 quadrants. The 
following evidence plot shows the classification of 
quadrants and it’s inference. 
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Figure 1 – Evidence plot
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Quadrant-I 
Any observation plotted in the 1st quadrant will be 
the outlier in both the spaces,because those 
observations are far away from the both the axes 
and remote in the spaces. Moreover,the result of 
the test of significance shows,the co-ordinates 
in this quandrant is independently more than the 
predetermined cut-off at 5% or 1% significance 
level.  

Quadrant-II 
The observations plotted in this quandrant will be 
the outlier in Y-space and the result of the test of 
significance shows, the U-co-ordinate in this quadrant 
are independently more than the predetermined 
cut-off at 5% or 1% significance level and the V-
co-ordinate are statistically insignificant. 

Quadrant-III 
The observations plotted in this quandrant are 
inliers in Y-space and at the same time it is an 
leverage point in the X-space. Moreover,the result 
of the test of significance shows,the co-ordinates 
in this quadrant is independently less than the 
predetermined cut-off at 5% or 1% significance 
level and the authors believe the observations in 
this quadrant may have a chance to be influential. 

Quadrant-IV 
The observations plotted in this quandrant will be 
the influential (leverage or outlier) in X-space and 
the result of the test of significance shows,the U-
co-ordinates in this quadrant are statistically 
insignificant and the V-co-ordinates are statistically 
significant at 5% or 1% level. 

Step7: Now consider the plotted observations in 
the classified quadrants are groups  and verify the 
significance of co-ordinates in each group by using 
(    1 pni tU  and   npiV ,  follows the beta 
distribution. 

Step8: If the U and V co-ordinates are significant 
at 5% or   1% level in 1st Quadrant, then the 
observation is said to be outliers in both spaces. If 
U-coordinates are significant in the 2nd Quadrant, 
then the observation is treated as an outlier in Y-
space. Similarly, if both U-V coordinates are 
insignificant in the 3rd Quadrant, then the 
observation is considered as inliers in both the 
spaces and it may have a chance to be an 
influential or leverage point.  As far as 4th 
Quadrant is a concern, the V-Coordinates are 
statistically significant, then the observations are 
treated as influential in the X-space.     
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Table 1 Significant two-tail percentage points of Internal studentized residual at pr     05.005.0,  npii rr  
n p 

1 2 3 4 5 6 7 8 9 10 
3 15.56186 - - - - - - - - - 
4 4.96828 46.98756 - - - - - - - - 
5 3.55808 10.06304 63.53102 - - - - - - - 
6 3.04144 5.96451 12.79392 75.91436 - - - - - - 
7 2.77655 4.56935 7.26929 14.89824 86.24870 - - - - - 
8 2.61586 3.88431 5.40370 8.29430 16.68392 95.31810 - - - - 
9 2.50806 3.48083 4.49206 6.06790 9.17503 18.26740 103.50854 - - - 
10 2.43074 3.21595 3.95693 4.98051 6.64399 9.96267 19.70747 111.04207 - - 
11 2.37257 3.02909 3.60651 4.34230 5.40721 7.16267 10.68334 21.03874 118.05997 - 
12 2.32722 2.89034 3.35980 3.92438 4.68084 5.79347 7.63966 11.35260 22.28363 124.65867 
13 2.29086 2.78333 3.17692 3.63014 4.20489 4.98866 6.15019 8.08437 11.98066 23.45767 
14 2.26106 2.69830 3.03606 3.41202 3.86958 4.46087 5.27394 6.48389 8.50302 12.57466 
15 2.23619 2.62914 2.92427 3.24399 3.62088 4.08875 4.69881 5.54158 6.79890 8.90000 
16 2.21513 2.57179 2.83344 3.11065 3.42920 3.81255 4.29300 4.92260 5.79484 7.09829 
17 2.19705 2.52348 2.75818 3.00229 3.27702 3.59955 3.99157 4.48551 5.13482 6.03604 
18 2.18136 2.48222 2.69483 2.91251 3.15330 3.43033 3.75895 4.16062 4.66841 5.33729 
19 2.16763 2.44658 2.64077 2.83693 3.05077 3.29270 3.57404 3.90973 4.32149 4.84319 
20 2.15550 2.41549 2.59409 2.77243 2.96441 3.17857 3.42355 3.71017 4.05342 4.47544 
21 2.14471 2.38812 2.55340 2.71674 2.89070 3.08242 3.29870 3.54767 3.84007 4.19110 
22 2.13505 2.36386 2.51760 2.66819 2.82705 3.00031 3.19347 3.41279 3.66625 3.96469 
23 2.12635 2.34219 2.48587 2.62547 2.77153 2.92938 3.10356 3.29904 3.52190 3.78012 
24 2.11848 2.32273 2.45755 2.58761 2.72268 2.86749 3.02587 3.20182 3.40011 3.62678 
25 2.11131 2.30515 2.43212 2.55382 2.67937 2.81302 2.95806 3.11777 3.29597 3.49734 
26 2.10477 2.28920 2.40916 2.52347 2.64071 2.76472 2.89836 3.04438 3.20590 3.38661 
27 2.09877 2.27465 2.38832 2.49608 2.60599 2.72159 2.84539 2.97975 3.12722 3.29081 
28 2.09325 2.26134 2.36934 2.47121 2.57463 2.68284 2.79809 2.92240 3.05791 3.20710 
29 2.08815 2.24910 2.35196 2.44856 2.54618 2.64784 2.75558 2.87115 2.99639 3.13333 
30 2.08343 2.23782 2.33599 2.42782 2.52024 2.61608 2.71718 2.82509 2.94140 3.06782 
40 2.05018 2.15982 2.22715 2.28837 2.34833 2.40878 2.47067 2.53469 2.60137 2.67124 
60 2.01861 2.08795 2.12916 2.16569 2.20061 2.23497 2.26929 2.30389 2.33900 2.37477 
80 2.00341 2.05410 2.08375 2.10973 2.13429 2.15820 2.18182 2.20537 2.22900 2.25280 
100 1.99446 2.03441 2.05756 2.07770 2.09663 2.11493 2.13291 2.15073 2.16849 2.18628 
120 1.98858 2.02153 2.04051 2.05696 2.07235 2.08717 2.10167 2.11599 2.13021 2.14439 
∞ 1.9599 1.9599 1.9599 1.9599 1.9599 1.9599 1.9599 1.9599 1.9599 1.9599 

  p-no.of predictors  n-Sample Size               
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Table 2 Significant two-tail percentage points of Internal studentized residual at pr     01.001.0,  npii rr  
n p 

1 2 3 4 5 6 7 8 9 10 
3 77.96327 - - - - - - - - - 
4 11.46022 235.40271 - - - - - - - - 
5 6.53034 23.21222 318.28371 - - - - - - - 
6 5.04353 10.94698 29.51148 380.32293 - - - - - - 
7 4.35521 7.57721 13.34171 34.36548 432.09685 - - - - - 
8 3.96341 6.09282 8.96079 15.22295 38.48448 477.53358 - - - - 
9 3.71176 5.27397 7.04613 10.06222 16.83942 42.13704 518.56681 - - - 
10 3.53689 4.75939 5.99533 7.81230 11.01752 18.28501 45.45883 556.30902 - - 
11 3.40846 4.40752 5.33739 6.57922 8.48160 11.87764 19.60769 48.52965 591.46797 - 
12 3.31020 4.15230 4.88873 5.80782 7.09216 9.08748 12.66861 20.83602 51.40121 624.52675 
13 3.23263 3.95896 4.56400 5.28209 6.22295 7.55855 9.64701 13.40607 21.98873 54.10934 
14 3.16985 3.80757 4.31845 4.90174 5.63049 6.60179 7.99078 10.17045 14.10031 23.07893 
15 3.11800 3.68587 4.12644 4.61421 5.20179 5.94940 6.95392 8.39630 10.66457 14.75860 
16 3.07447 3.58594 3.97228 4.38943 4.87765 5.47715 6.24659 7.28512 8.78003 11.13419 
17 3.03740 3.50244 3.84583 4.20899 4.62420 5.11995 5.73432 6.52671 7.59918 9.14548 
18 3.00546 3.43165 3.74027 4.06101 4.42071 4.84054 5.34667 5.97719 6.79284 7.89883 
19 2.97765 3.37087 3.65084 3.93750 4.25379 4.61613 5.04332 5.56114 6.20829 7.04716 
20 2.95322 3.31813 3.57411 3.83286 4.11444 4.43199 4.79957 5.23541 5.76552 6.42946 
21 2.93159 3.27193 3.50758 3.74310 3.99637 4.27822 4.59950 4.97358 5.41872 5.96137 
22 2.91230 3.23114 3.44933 3.66526 3.89507 4.14790 4.43235 4.75857 5.13982 5.59457 
23 2.89499 3.19485 3.39791 3.59712 3.80722 4.03606 4.29065 4.57888 4.91070 5.29946 
24 2.87938 3.16236 3.35220 3.53698 3.73030 3.93904 4.16901 4.42649 4.71915 5.05694 
25 2.86522 3.13310 3.31129 3.48351 3.66241 3.85408 4.06345 4.29563 4.55665 4.85411 
26 2.85233 3.10663 3.27447 3.43567 3.60204 3.77907 3.97099 4.18204 4.41705 4.68197 
27 2.84053 3.08255 3.24115 3.39260 3.54801 3.71236 3.88934 4.08251 4.29583 4.53404 
28 2.82970 3.06055 3.21086 3.35364 3.49937 3.65264 3.81670 3.99460 4.18960 4.40556 
29 2.81973 3.04039 3.18320 3.31822 3.45537 3.59888 3.75168 3.91637 4.09573 4.29293 
30 2.81050 3.02183 3.15785 3.28587 3.41536 3.55023 3.69312 3.84632 4.01219 4.19337 
40 2.74610 2.89449 2.98640 3.07032 3.15276 3.23608 3.32160 3.41027 3.50284 3.60007 
60 2.68576 2.77864 2.83412 2.88343 2.93065 2.97717 3.02369 3.07065 3.11833 3.16697 
80 2.65700 2.72455 2.76423 2.79905 2.83200 2.86410 2.89585 2.92752 2.95932 2.99137 
100 2.64017 2.69324 2.72410 2.75099 2.77627 2.80074 2.82478 2.84862 2.87240 2.89622 
120 2.62911 2.67282 2.69806 2.71996 2.74045 2.76021 2.77954 2.79864 2.81761 2.83653 
∞ 2.5758 2.5758 2.5758 2.5758 2.5758 2.5758 2.5758 2.5758 2.5758 2.5758 

  p-no.of predictors n-Sample Size               
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Table 3 Significant two-tail percentage points of V at pr     05.005.0,  npii VV  
n p 

1 2 3 4 5 6 7 8 9 10 
3 .81650 .06406 - - - - - - - - 
4 .86603 .27042 .04330 - - - - - - - 
5 .89443 .42757 .20000 .03513 - - - - - - 
6 .91287 .53356 .33630 .16738 .03044 - - - - - 
7 .92582 .60762 .43779 .28880 .14732 .02728 - - - - 
8 .93541 .66179 .51380 .38369 .25789 .13330 .02496 - - - 
9 .94281 .70297 .57225 .45756 .34686 .23554 .12276 .02315 - - 
10 .94868 .73528 .61839 .51613 .41789 .31944 .21833 .11443 .02170  
11 .95346 .76129 .65565 .56351 .47540 .38763 .29789 .20451 .10763 .02049 
12 .95743 .78266 .68635 .60255 .52275 .44370 .36343 .28033 .19309 .10193 
13 .96077 .80053 .71206 .63524 .56235 .49049 .41797 .34343 .26563 .18342 
14 .96362 .81569 .73389 .66300 .59593 .53008 .46396 .39646 .32652 .25308 
15 .96609 .82872 .75266 .68685 .62475 .56399 .50324 .44155 .37809 .31196 
16 .96825 .84002 .76896 .70756 .64975 .59334 .53715 .48036 .42226 .36214 
17 .97014 .84993 .78326 .72572 .67164 .61901 .56673 .51410 .46051 .40538 
18 .97183 .85869 .79589 .74175 .69096 .64162 .59276 .54371 .49396 .44304 
19 .97333 .86648 .80713 .75602 .70814 .66171 .61583 .56990 .52347 .47613 
20 .97468 .87345 .81720 .76880 .72351 .67967 .63642 .59323 .54969 .50546 
21 .97590 .87974 .82628 .78031 .73735 .69581 .65491 .61415 .57316 .53164 
22 .97701 .88543 .83449 .79073 .74987 .71041 .67162 .63302 .59429 .55515 
23 .97802 .89060 .84197 .80021 .76125 .72367 .68677 .65012 .61341 .57639 
24 .97895 .89533 .84880 .80886 .77164 .73577 .70059 .66570 .63080 .59567 
25 .97980 .89967 .85506 .81680 .78116 .74686 .71324 .67994 .64668 .61326 
26 .98058 .90366 .86083 .82411 .78993 .75705 .72487 .69302 .66125 .62937 
27 .98131 .90735 .86615 .83085 .79801 .76645 .73558 .70507 .67466 .64419 
28 .98198 .91076 .87109 .83710 .80550 .77515 .74550 .71620 .68704 .65786 
29 .98261 .91393 .87567 .84290 .81246 .78323 .75469 .72652 .69852 .67051 
30 .98319 .91689 .87994 .84831 .81893 .79075 .76325 .73612 .70917 .68225 
40 .98742 .93813 .91062 .88714 .86540 .84463 .82445 .80464 .78508 .76565 
60 .99163 .95906 .94086 .92536 .91106 .89744 .88426 .87139 .85873 .84622 
80 .99373 .96941 .95581 .94424 .93359 .92346 .91367 .90413 .89477 .88554 
100 .99499 .97558 .96473 .95550 .94701 .93894 .93116 .92358 .91615 .90884 
120 .99582 .97968 .97065 .96298 .95592 .94922 .94276 .93647 .93031 .92426 
  1 

.86603 .27042

 .04330 

.89443 .42757

 .20000

 .03513 

.91287 .53356

 .33630

1 1 1 1 1 1 1 1 1 

 p-no.of predictors n-Sample Size 
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Table 4 Significant two-tail percentage points of V at pr     01.001.0,  npii VV  
n p 

1 2 3 4 5 6 7 8 9 10 
3 .81650 .01282 - - - - - - - - 
4 .86603 .12217 .00866 - - - - - - - 
5 .89443 .25429 .08944 .00702 - - - - - - 
6 .91287 .36371 .19667 .07460 .00609 - - - - - 
7 .92582 .44900 .29277 .16776 .06555 .00545 - - - - 
8 .93541 .51565 .37240 .25439 .14925 .05925 .00499 - - - 
9 .94281 .56859 .43761 .32852 .22882 .13600 .05452 .00463 - - 
10 .94868 .61144 .49137 .39091 .29831 .21003 .12585 .05080 .00434 - 
11 .95346 .64673 .53617 .44350 .35786 .27562 .19540 .11775 .04776 .00410 
12 .95743 .67625 .57396 .48816 .40885 .33256 .25767 .18355 .11107 .04522 
13 .96077 .70129 .60620 .52645 .45276 .38191 .31227 .24296 .17369 .10544 
14 .96362 .72277 .63400 .55956 .49084 .42483 .36002 .29546 .23059 .16530 
15 .96609 .74140 .65819 .58844 .52411 .46241 .40191 .34172 .28121 .22000 
16 .96825 .75770 .67942 .61383 .55340 .49552 .43885 .38257 .32608 .26891 
17 .97014 .77208 .69820 .63632 .57936 .52487 .47162 .41882 .36593 .31249 
18 .97183 .78486 .71492 .65636 .60251 .55106 .50085 .45115 .40147 .35138 
19 .97333 .79629 .72989 .67433 .62328 .57455 .52706 .48015 .43332 .38622 
20 .97468 .80657 .74339 .69053 .64201 .59574 .55070 .50628 .46202 .41758 
21 .97590 .81586 .75560 .70521 .65898 .61494 .57212 .52993 .48798 .44593 
22 .97701 .82431 .76672 .71857 .67443 .63241 .59160 .55145 .51157 .47167 
23 .97802 .83202 .77687 .73078 .68855 .64838 .60941 .57110 .53310 .49514 
24 .97895 .83908 .78618 .74198 .70150 .66303 .62573 .58911 .55283 .51663 
25 .97980 .84558 .79474 .75229 .71343 .67651 .64076 .60568 .57096 .53637 
26 .98058 .85157 .80265 .76181 .72444 .68897 .65463 .62097 .58769 .55457 
27 .98131 .85711 .80997 .77063 .73464 .70050 .66747 .63513 .60317 .57139 
28 .98198 .86226 .81678 .77882 .74412 .71122 .67940 .64827 .61753 .58700 
29 .98261 .86705 .82311 .78645 .75294 .72119 .69051 .66050 .63089 .60151 
30 .98319 .87152 .82902 .79357 .76118 .73050 .70087 .67191 .64335 .61504 
40 .98742 .90384 .87186 .84523 .82096 .79803 .77597 .75449 .73342 .71262 
60 .99163 .93605 .91467 .89689 .88073 .86551 .85091 .83675 .82291 .80932 
80 .99373 .95209 .93604 .92270 .91059 .89920 .88830 .87773 .86743 .85733 
100 .99499 .96170 .94885 .93818 .92850 .91940 .91069 .90227 .89406 .88602 
120 .99582 .96810 .95739 .94850 .94043 .93285 .92561 .91861 .91179 .90511 
  1 1 1 1 1 1 1 1 1 1 

 p-no.of predictors n-Sample Size 



Sci. & Tech. RMUTT J. Vol.6 No.2 (2016)  129 

5. Numerical Results and Discussion 
In this section, the authors shown a 

numerical study of evaluating the outliers based on 
the internal studentized residual of the ith 
observation in a regression model. For this, the 
authors fitted stepwise linear regression models 
with different set of predictors in a Brand equity 
study. The data in the study comprised of 18 
different attributes about a car brand and the data 
was collected from 275 car users.  

A well-structured questionnaire was 
prepared and distributed to 300 customers and the 
questions were anchored at five point likert scale 
from 1 to 5.After the data collection is over, only 
275 completed questionnaires were used for 
analysis. The stepwise regression results reveals 4 
nested models were extracted from the regression 
procedure by using IBM SPSS version 22. For 
each model, the internal studentized residual were 
computed, comparison of the proposed approach 
with the traditional Weisberg test of identifying the 
outliers are discussed through the following tables.

Table 5 Identification of Outliers based on Traditional Weisberg test  

Model p 
df 

 2n p   

Traditional Weisberg test 

Critical 
t  0.05  

(n) 
 * 0.05it t  

Critical 
t  0.01  

(n) 
 01.0* tti   

1 1 272 1.96872 13 2.90292 11 

2 2 271 1.96876 13 2.90301 10 

3 3 270 1.96879 14 2.90310 10 

4 4 269 1.96882 13 2.90319 10 

  p-no.of predictors    n=275       
1

* 22 1i i it r n p n p r


           df-degrees of freedom 
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Table 6 Identification of Outliers based on Proposed approach at 5% significance level 

Model p 

Joint test X-Y space 

Critical  
r  0.05  

        (n) 

 0.05ir r  
(n) 

aGroup-1 
(n) 

bGroup-2 

(n) 

Group-3 

(n) 

Group-4 

1  1.97228 13 6 7 - 
 

 

- 
2 1 1.98626 13 8 5 - 

 

- 

3 2 1.99419 14 6 8 - 
 

- 

4 3 2.00097 13 6 7 - 
 

- 

p-no.of predictors    n=275    a (t-ratio) p-value<0.05 & (V-test) p-value<0.05   b (t-ratio) p-value<0.05
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Evidence plots of the Fitted Models at level5% Significance 
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Table 7  Identification of Outliers based on Proposed approach at 1% level 

Model p 

Joint test X-Y space 

Critical  
r  0.01  

(n) 
 0.01ir r  

(n) 
aGroup-1 

(n) 
bGroup-2 

(n) 
cGroup-3 

(n) 
dGroup-4 

1 1 2.59869 11 7 4 - 
 

- 

2 2 2.61714 12 9 2 - 
 

1 

3 3 2.62760 12 6 5 1 
 

- 

4 4 2.63656 10 7 3 - 
 

- 

p-no.of predictors  n=275     a (t-ratio) p-value<0.01 & (V-test) p-value<0.01     b (t-ratio) p-value<0.01         
c (t-ratio) p-value>0.01 & (V-test) p-value>0.01     d( V-test) p-value<0.01  
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Evidence plots of the Fitted Models at 1% Significance level 
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Table 5 clearly visualizes the result of the 
identification of outliers based on traditional 
Weisberg test. From the 4 fitted multiple 
regression models, the Weisberg test helps to 
identify 13 outliers in model-1, model-2 and 
model-4 at the 5% level of significance 
respectively. Similarly it helps to identifies 11 
outliers in model-1, 10 outliers in model-2, model3 
and model 4 at 1% level of significance. The test 
results emphasis these identified outliers only 
exists in Y-space and not in X-Space. On the other 
hand, table 6 and table 7, exhibits the result of the 
identification of outliers based on the proposed 
approach. From table 6, based on the proposed 
distribution of internal studentized residual, the 
authors identified 13 outliers in model-1, model-2 
and model-4 at the 5% level of significance. 
Similarly, in model-4 the authors identified 14 
outliers at 5% level of significance. These 
identified outliers may be the outliers in both the 
spaces. Because the distribution of the proposed 
test statistic incorporates the information about the 
Y-space as well as the X-space. But the authors 
visualize heuristic evidences of each observations 
and its position thought the evidence plot. Out of 
13 outliers in model-1, 6 observations are outliers 
in both the spaces and it is significant at the 5% 
level based on the result of both tests (t and V 
test). Similarly, 7 observations are outliers in Y-
space and the result of the t-test confirms the 
significance at the 5% level. Similarly, out of 13 
outliers in model-2, 8 were significantly plotted in 
the first quadrant and remaining 5 were 

significantly plotted in the second quadrant. These 
show 8 observations are outliers in both the space 
and 5 observations are outliers in Y-space. From, 
Model-3 out of 14 outliers, 6 were significantly 
outlying in both the spaces and 8 observations are 
statistically significant and consider to be an 
outlier in Y-space only. Finally, in model-4, out of 
13 outliers, 6 observations are statistically significant 
and consider to be outliers in both the spaces and 7 
observations are significant outliers in Y-space. 
From table 7, based on the proposed approach, the 
authors identified 11 outliers in model-1, 12 
outliers in model-2, 3 and 10 outliers in model-4 
respectively. Based on the evidence plot, Out of 
the 11 outliers in model-1, 7 observations are 
statistically significant at the 1% level and consider to 
be the outliers in both the spaces. In model-2 there 
are 12 outliers, where 9 observations are outliers in 
both the spaces, 2 observations are outliers in Y-
space and 1 observation is influential in X-space. 
As far as model-3 is concerned, among the 12 
outliers, 6 observations are outlier in both the 
spaces, 5 observations are outlier in Y-space and 1 
observation is an influential leverage point 
significantly placed in the third quadrant. In 
model-4 there are 10 outliers, where 7 observations 
are outliers in both the spaces and 3 observations 
are outliers in Y-space. From the above discussion 
the authors explored and identified some 
advantages of the proposed approach over the use 
of traditional approach of evaluating the outliers 
using internal studentized residuals. At first the 
proposed distribution of the internal studentized 
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residual comprised of the distribution assumption 
of both the Y-space and X-space. The evidence 
plot clearly visualizes the position and outlying 
nature of the observations in the spaces. Hence, the 
simultaneous use of internal studentized residual 
with the evidence plot gave mores insights of the 
outliers existing in a multiple regression model. 

6. Conclusion 

 From the previous sections, the authors 
proposed the exact distribution of the Internal 
studentized residuals which comprised of 
distribution of X and Y space along with the 
evidence plot to evaluate the outliers in a multiple 
linear regression model. At first, the exact 
distribution of the internal studentized residual was 
derived and the authors visualized the density 
function in terms of the Gauss hypergeometric 
function with two shape parameters namely p and 
n. Moreover,the critical percentage points of 
internal studentized residual at 5 %, 1% level of 
significance and it is utilized to evaluate the 
outliers. The evidence plots along with the test of 
significance (t-test and V-test) helps us to exactly 
visualize the position of the identified outliers in 
the spaces. Finally, the proposed approach is more 
systematic and scientific because it helps to 
identify the outliers in both spaces and the results 
were superior when compared it with the 
traditional approach. So, the authors conclude the 
proposed approaches over rides the use of 

traditional approach and we believe that the 
proposed approaches took the process of 
identifying the outliers to the next level which 
helps the statisticians to exactly identify the remote 
observations in the functional data. 
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