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Abstract

This paper proposed the exact distribution of internal studentized residual which used to evaluate
the outliers in X and Y space in linear multiple regression analysis. The authors explored the relationship
between the internal studentized residual in terms of two independent t-ratio, F-ratio’s and they show the
derived density function of the residual in terms of Gauss hyper-geometric function. Moreover, the new form
of the distribution is symmetric, first two moments of the distribution are derived and the authors computed
the critical points of internal studentized residual at 5% and 1% significance level for different sample sizes
and varying number of predictors. Evidence plots were also proposed to evaluate the exact position and
location of the outliers. Finally, the numerical example shows the results extracted from the proposed
approaches are more scientific, systematic in identifying the outliers in both spaces(X and Y) and its

exactness gives more insights than the traditional Weisberg test.
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1. Introduction and Related work

A studentized residual is the quotient
resulting from the division of a residual by an
estimate of its standard deviation. Typically the
standard deviations of residuals in a sample vary
greatly from one data point to another even when
the errors all have the same standard deviation,
particularly in regression analysis; thus it does not
make sense to compare residuals at different data
points without first studentizing. It is a form of a
Student's t-statistic, with the estimate of error
varying between points. This is an important
technique in the detection of outliers. It is named
in honor of William Sealey Gosset, who wrote
under the pseudonym Student, and dividing by an
estimate of scale is called studentizing, in analogy
with standardizing and normalizing. Studentization, is
the adjustment consisting of division of a first-
degree statistic derived from a sample, by a
sample-based estimate of a population standard
deviation. The term is also used for the
standardisation of a higher-degree statistic by
another statistic of the same degree (Kendall and
Stuart [15]). José A. Diaz-Garcia, et al., [14] find
the distributions of normalized, standardized and
studentized (internally and externally studentized)
residuals, assuming normal and elliptical
distributions. In addition, they propose an
alternative approach to the results published by
Ellenberg [10] and Beckman and Trusell [13], The
distribution of an arbitrary studentized residual and

effects of updating in multiple regression. In least-

squares fitting it is important to understand the
influence which a data y value will have on each
fitted y value. A projection matrix known as the
hat matrix contains this information and, together
with the studentized residuals, provides a means of
identifying exceptional data points (Hoaglin and
Welsch, [12]). The studentized residuals, ¢, , (i.e.
the residual divided by its standard deviation) have
been recommended (Behnken and Draper [2],
Davies and Hutton [8], Huber [13]) as more
appropriate than the standardized residuals (i.e.,
the residual divided by the square root of the mean
square for error) for detecting outliers. Also,
approximate critical values for the maximum
absolute studentized residual are available (Lund,
[19]). Cook [5] has been the first to establish a
simple measure, D, that incorporates information
from the X-space and Y-space used for assessing
the influential observations in regression models.
The problem of outliers or influential data in the
multiple or multivariate linear regression setting
has been thoroughly discussed with reference to
parametric regression models by the pioneers
namely Cook [5], Cook and Weisberg [7], Belsley
et al. [4] and Chatterjee and Hadi [6] respectively.
In non-parametric regression models, diagnostic
results are quite rare. Among them, Eubank [11],
Silverman [20], Thomas [21], and Kim [16]
studied residuals, leverages, and several types of
Cook’s distance in smoothing splines, and Kim
and Kim [17], Kim et.al [18] proposed a type of

Cook’s distance in kernel density estimation and in
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local polynomial regression. The phrase ‘influence
measures’ has glimpsed a great surge of research
interests. The developments of different measures
are investigated to identify the influential
observation from the early criteria of Cook’s to the
present and a definition about influence, which
appears most suitable, is given by Belsley et al.
[4]. Cook’s statistical diagnostic measure is a
simple, unifying and general approach for judging
the local influence in statistical models. As far as
the influence measures concern in the literature,
the procedures were designed to detect the
influence of observations on a specific regression
result. However, Hadi [1], proposed a diagnostic
measure called Hadi’s influence function to
identify the overall potential influence which
possesses several desirable properties that many of
the frequently used diagnostics do not generally
possess such as invariance to location and scale in
the response variable, invariance to non-singular
transformations of the explanatory variables, it is
an additive function of measures of leverage and of
residual error, and it is monotonically increasing in
the leverage values and in the squared residuals.
Recently, D;az-Garc;a and Gonzélez—Far;as [9]
modified the classical cook’s distance with
generalized Mahalanobis distance in the context of
multivariate elliptical linear regression models and
they also establish the exact distribution for
identification of outlier data points. Considering
the above reviews, the authors proposed the exact
distribution of internal studentized residual which

need to exactly identify the Outlying data points in

both spaces with the help of the evidence plots and

it is discussed in the subsequent sections.

2. Relationship among Internal studentized

residual, student’s-t and F-ratio
The multiple linear regression model

with ‘p’ regressors and random error is given by
Y=Xpj+e -

Where (Yl) is the vector of values of the dependent

variable, X is full column rank matrix of

(nx( p+1))

predictors, g is the vector of beta co-efficients
(p+1)x1)

or partial regression co-efficients and & is the
vector of error followed normal distribution N
(0, crezln) From (1), statisticians concentrate and
give importance to the error diagnostics such as
outlier detection, identification of leverage points
and evaluation of influential observations. Several
error diagnostics techniques exist in the literature
proposed by statisticians, but studentized residual
attracts the statisticians to scrutinize the outliers in
the Y-space. Studentization can be done in two
ways namely internal studentization and external
studentization of the regression residuals. Many
authors believe internal studentization of the
residual which followed approximate student’s t-
distribution with n—p-2 degrees of freedom and
Weisberg  [22] provided a  monotonic
transformation of the internally studentized
residual which followed the exact t-distribution.
All the works in the literature show that the

transformation of residuals to any forms which

always helps to evaluate the outliers in Y-space.
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Some authors like Cook [5] and Hadi [1] proposed
measures to find the influential observations and
potential outliers in the X-space as well as in the
Y-space. The authors of this paper argue that the
internal  studentized residual comprised of
information about the position of each observation
in the X-space and the Y-space and traditionally
the general form of the internal studentized

residual (7;) of the i" observation is given as

= €j _(2)

", I-h,

~ . . Jth . .
Where ¢ is the estimated i" regression residual,

Se is the unbiased standard deviation of the
estimated residuals and (hii) is the hat values or
the diagonal elements of the hat matrix
(H=x(XX)Ix)which involves the set of
predictors respectively. Usually, the (r;) was
compared with critical values of student’s t-ratio
forn—p-2degrees of freedom and if the
computed (rl-) exceeds, then the observation is
said to be an outlier in the Y-space. The authors’

redefined internal studentized residual is the ratio

of the two terms namely (;i/seJ and

(1-h,)"* ,where the first term conveys information
about the individual observation in the Y-space

and latter term visualizes the position of the
observations in the X-space. If the [;/SE] is close
to 0, then (7;) approaches zero, then the
observation is an inlier in Y-space and if [;i/se] is
very large, then (7;) will also become very large,

then the observation is far away and it is said to be

an outlier in Y-space. Similarly, we know the hat

values lie between 1/n and 1 and it is used to
evaluate the influential observations in the X-
space. If the hat values close to 1/n, then the
residual and error variance of each observation
will be larger and the observation will be remote or
formally it will be an influential in X-space.
Similarly, if it is close to 1, then the residual of the
particular observation will be smaller and it is said
to be a leverage point. This hat values always
played a vital role in reflecting the information
about the position of the observation in the X-
space. Rewrite (2) in terms of the true standard

deviation (o‘e) of the residual as

A'/o‘
n:ﬁie _(3)

1
(Se /Ue) 1-hy
From (3) if (n-p-1) sj /05 follows chi-square
distribution with n— p-1 degrees of freedom,

%2 then ei/ o, follows normal distribution

(n-p-1

with mean 0 and variance 1 and the quantum

S, /o, is equal to f;((er b_1) /(n-p-1). Therefore

(3) will be further modified as

20\ 2e oy | (N=p=1)
L0 ey TTPTY -4
\’ — @

r =
i

Where z =€ /o,

From (4), we know ratio (z‘ /m )
followed student’s t-distribution with n—p-1
degrees of freedom, z,(n— p 1) and by definition
it is equal to the student’s-t ratio, then (4) can be

written as

r=——_"2 -9
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From (5), it is the most important form identified
by the authors. The t-ratio explained the position
of the observation in the Y-space and the hat
values represents the status of the observations in
the X-space. The explanation of the above
discussion is given detailed in section 4.
Traditionally, statisticians always concentrating on
the distribution of the dependent variable and the
residual and they completely ignore the
distribution of the predictor set. Over the past
decades, studentized residual are frequently used
to identify the outliers in Y-space and it is the first
attempt made by the authors and they proved that
the internal studentized residual comprised of the
information about the both spaces (X-space and Y-
space). If we incorporate and consider the
distribution of dependent, predictor set simultaneously,
we can use the internal studentized residual as a
measure to evaluate and identify the outliers in
both the spaces. In order to prove this
scientifically, we proposed the exact distribution of
the internal studentized residual by utilizing the
relationship among the internally studentized
residual (ri) , t-ratio and hat elements (hii) . From
(5), the terms t; and hii are independent, because
the computation of (ti) involves the error term
&~ N(o,cf) and hii values involves the set of
predictors (H =X(X'X)*X') . Therefore, from the
property of least squares E(eX)=0,so0 #; and &;
are also uncorrelated and independent. Using this
assumption, we identify the distribution of #4;;
based on the relationship proposed by Belsley et al

[4] and they showed when the set of predictors in a

linear regression model followed the multivariate

normal  distribution  with

(n—p)(h; ~@/m)
S U | A =
(P-DA-hy) (p-Ln-p)

(u,%,), then

-(6)

From (6) it follows the F-distribution with
(p-1n-p)degrees of freedom and it can be written

in an alternative form as

[@v10-pR ey o

h.
(D 0-PIF 1)

In order to derive the exact distribution of (ri),
substitute (7) in (5), we get the r in terms of the
independent t-ratio and F-ratio which followed
n-p-1 and (p-1n-p) degrees of freedom
respectively and the relationship is given as

t.

_ i(n-p-1) -(®

I’i
n-1 p-1
JT[”(“ﬁFi(p—Ln—p)]J

From (8), it can be further simplified and ) is

expressed in terms of independent t-ratio and beta
variable 9, of the first kind by using the following

facts

1 (252 254) -9
1P Atz 2
n—p i(p-Ln-p)

Then, without loss of generality (9) can be written

as

t
__i(n-p-1 -
o (n-1)/n)e. (1o

Based on the identified relationship from (10), the
authors derived the exact distribution of the
internal studentized residual and it is discussed in

the next section.
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3. Exact Distribution of Internal Studentized

Residual

Using the technique of two-dimensional
Jacobian of transformation, J, the joint probability
density function of the t-ratio and the beta variable

of Kind-1 namely ¢:

i 6’i were transformed into

density function of 7; and it is given as

f(ri’ui):f<ti’9i)|J|

From (11), we know t; and 6 are independent

-(1D)

then rewrite (11) as

f(5,u)=1(4)f(6)I

-(12)

Using the change of variable technique, substitute
6 =uj in (12) we get

ti(n— p-1)

T iy

Then partially differentiate (13) and compute the

-(13)

Jacobian determinant in (12) as

CRRIOIE S I
W

CRRIONC NI
Y

From (15), we know t; and ¢ are independent,
then the density function of the joint distribution of

t; and @ is given as

—p—1 1
e
1 t
7:.6,)= - {H' I
/n—p—lB(*,n P j n—p—l1
2 2
| L P,
X 62 a-6):2

-(16)
where —o0<t <+0, 0<6,<1,n,p>0,
B(a,b) =
and

-(17)
Then substitute (16) and (17) in (15) in terms of
the substitution of u; ,we get the joint distribution

of 2 and u; as

1
fr,u)=
s 1 n-p-1
n—p—lB(f, j
2 2
[t
e
x| 1+ LU
n-p-1 n
1 =t o n-
x it (1-u) s —u ]
)
B _—
2 2
-(18)
where —oo < <400, 0<uj<1,np>0 and

}n -1
|3 = ,/[—u . Rearrange (18) and integrate with
n 1

respect to u:, we get the marginal distribution of

roas £(r)=2(p.n)

n-p-1 1
1 n-pd 1y r,z n-1 ’(T‘f;]
Jui 2 (1-u)? | 1+— (—)ui
o n-p-1\ n

-(19)

Where -« <r < +0,n, p>0,n> pand

J
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A(pn) =

We know, from (17) and (18)

-(20)
Then substitute (20) in (19) and arrange the terms,
we get the density function of 7; as
(o) -+Go0 (o (00)-, 00)

-2D
where —o <r <+4o0,n,p>0,n>p and

oo [l )

\Jn(n—p—l) ; 2

o (r;ip.n) B(F_)Zlil)((nn_l) n_r‘;_l}

2’ 2

§ F[B’—p+2;7l;in(n—p—l)(i]j

L2 2 2 (n-1) \r
n-p+l

-2 ([ni—l\ r? ]_( 2 )

Q,(v;p.n)= B(U,EJL n Jn-p-1

2 2

F| NP+l -p+3.3. n(n—p—l)(i

o2 2 2 -y (¢
From (21), it is the density function of internal
studentized residual (7;) which is symmetric in

nature and it involves two auxiliary functions

namely Ql (r_ p, n) . Qz (r_; P, n) which exhibits in

terms of Gauss hyper-geometric function ( F )
21

and the normalizing constant 2(p,n) in terms of

. 1 n-p-1
beta functions namely B(—, ),
2
n-p p-1 .
B( ,—) with two shape parameters ( p,n),

2 2

where 7 is the sample size and p is the number of
predictors used in a multiple linear regression

model. In order to know the location and

B e ML

dispersion of internal studentized residual, the
authors derived the first two moments in terms of
mean, variance from (8) and it is shown as follows.
Using (8), take expectation and substitute the
moments of independent t-ratio and F-ratio, we get

the first moment of 1 as

E(l’i)=E(ti)E[\/nL_l(1+np:;F|)] -@)

E(r)=0 -(23)

From (23), if the moment of the internal
studentized residual is zero ( E (rl )=0 ), then the
second moment is equal to its variance. Hence, the
square (8) on both sides, then take expectation and
substitute the appropriate second order moments of
independent t-ratio

and F-ratio, we get the

variance of the 7; is given as

v()-e(?) e () o

-1

P E(ﬁ))

n-p

~ n(n-3)(n-p-1)
(n-1)(n-p-2)(n-p-3)

- (24)

V()= (r?)

As a proposed approach, the authors adopted the
test of significance approach of evaluating and
identifying the outliers in a sample. The approach
is to derive the critical points of the internal
studentized residual by using the following

relationship from (8) and it is given as

n p-1

Eum%“*ﬁupo(“Jan*npﬁumm(“
-(29)
From (25), for different combination of values of
(p,n) and the significance  probability
p, (|r|| >y (a)) =a, we computed the critical

points of internal studentized residual. If the
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sample size is very large (n — ), then the
limiting distribution of r; followed standard
normal distribution with mean 0 and variance 1.
By using the critical points, we can test the
significance of the outliers in a multiple linear
regression model. The following tables 1,2 exhibits
the significant percentage points of the distribution
of internal studentized residual for varying sample
size(n) and the number of predictors (p) at 5% and
1% significance () calculated by using the

software IBM SPSS 22 based on the relationship

equation from (25) .

4. Heuristic evidences and Evidence plots
The proposed exact distribution helps to
evaluate the outliers in a multiple regression
model, but it fails to reveals the exact position of
the observations in the X-space or Y-space or in
both. For this, the author visualizes heuristic
evidences and by using the evidence plots along
with test of significance approach, we can identify
groups in the observations. We recommend to use
a two-dimensional scatter plot to find the
evidences of the observation being exact outliers in
both spaces. Consider the absolute value of the
quantum ‘é. ‘ /' Sg is the representation of the Y-
space and (1—h;; )1/2 is the good proxy of the X-
space. Plot the values (|é| | / Se) and (1-h; )1/2
in the two-dimensional space and classify the plots
of observations into groups in the spaces by using
a predetermined cut-off. From (10) if

U = (é_ /s ) follows the t-distribution with n-p-
i i e

1 degrees of freedom and V, = (l—hii )1/2 follows
the beta distribution with shape parameters p and
n, then the following steps need to classify the
observations by using the evidence plots and it is

given as follows.

Stepl: Run a multiple linear regression analysis
and compute the internal studentized residuals

from (2).

Step2: Use the proposed distribution of internal
studentized residual and evaluate the outliers at 5%

and 1% level of significance.

Step3: Compute the estimated unstandardized

residuals (éi), unbiased standard deviation of the

residuals (S )and the hat values (h“ ) }

Step4: Calculate the new variables U, = (éi / Se)
and V; =(1—h;; )2, then plot lUi| and V; ina
two-dimensional scatter plot by these variables are

proxies of the Y-space and X-space respectively.

Step5: We know U; and V; are independent,
then determine the cut-off separately for both the
variables at 5% and 1% level of significance
(U ~t, ., (a) and Vi(pyn)(a) follows beta
distribution-refer Table 3 and 4) where ¢ is the

upper alpha point of the distributions respectively.

Step6: Plot the Cut-offs (U (a),v(a)) in the
evidence plots, then the two dimensional
scatterplot was segregated into 4 quadrants. The
following evidence plot shows the classification of

quadrants and it’s inference.
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Figure 1 — Evidence plot
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Quadrant-1

Any observation plotted in the 1% quadrant will be
the outlier in both the spaces,because those
observations are far away from the both the axes
and remote in the spaces. Moreover,the result of
the test of significance shows,the co-ordinates
in this quandrant is independently more than the
predetermined cut-off at 5% or 1% significance

level.

Quadrant-II

The observations plotted in this quandrant will be
the outlier in Y-space and the result of the test of
significance shows, the U-co-ordinate in this quadrant
are independently more than the predetermined
cut-off at 5% or 1% significance level and the V-

co-ordinate are statistically insignificant.

Quadrant-IIT

The observations plotted in this quandrant are
inliers in Y-space and at the same time it is an
leverage point in the X-space. Moreover,the result
of the test of significance shows,the co-ordinates
in this quadrant is independently less than the
predetermined cut-off at 5% or 1% significance
level and the authors believe the observations in

this quadrant may have a chance to be influential.

Quadrant-1V

The observations plotted in this quandrant will be
the influential (leverage or outlier) in X-space and
the result of the test of significance shows,the U-
co-ordinates in this quadrant are statistically
insignificant and the V-co-ordinates are statistically

significant at 5% or 1% level.

Step7: Now consider the plotted observations in
the classified quadrants are groups and verify the
significance of co-ordinates in each group by using
(U; ~t(n,p,1)(a) and Vi(p'n)(a) follows the beta

distribution.

Step8: If the U and V co-ordinates are significant
at 5% or 1% level in 1% Quadrant, then the
observation is said to be outliers in both spaces. If
U-coordinates are significant in the 2" Quadrant,
then the observation is treated as an outlier in Y-
space. Similarly, if both U-V coordinates are
insignificant in the 3¢ Quadrant, then the
observation is considered as inliers in both the
spaces and it may have a chance to be an
influential or leverage point. As far as 4"
Quadrant is a concern, the V-Coordinates are
statistically significant, then the observations are

treated as influential in the X-space.
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Table 1 Significant two-tail percentage points of Internal studentized residual at p, (]r,| > ri(p'n)(0.0S)):0.0S

! 1 2 3 4 5 6 7 8 9 10

3 15.56186 - - - - - - - - -

4 4.96828 46.98756 - - - - - - - -

5 3.55808 10.06304 63.53102 - - - - - - -

6 3.04144 5.96451 12.79392 75.91436 - - - - - -

7 2.77655 4.56935 7.26929 14.89824 86.24870 - - - - -

8 2.61586 3.88431 5.40370 8.29430 16.68392 95.31810 - - - -

9 2.50806 3.48083 4.49206 6.06790 9.17503 18.26740 103.50854 - - -

10 2.43074 3.21595 3.95693 4.98051 6.64399 9.96267 19.70747 111.04207 - -

11 237257 3.02909 3.60651 4.34230 5.40721 7.16267 10.68334 21.03874 118.05997 -

12 2.32722 2.89034 3.35980 3.92438 4.68084 5.79347 7.63966 11.35260 22.28363 124.65867
13 2.29086 2.78333 3.17692 3.63014 4.20489 4.98866 6.15019 8.08437 11.98066 23.45767
14 2.26106 2.69830 3.03606 3.41202 3.86958 4.46087 5.27394 6.48389 8.50302 12.57466
15 223619 2.62914 292427 3.24399 3.62088 4.08875 4.69881 5.54158 6.79890 8.90000
16 221513 2.57179 2.83344 3.11065 3.42920 3.81255 4.29300 4.92260 5.79484 7.09829
17 2.19705 2.52348 2.75818 3.00229 3.27702 3.59955 3.99157 4.48551 5.13482 6.03604
18 2.18136 2.48222 2.69483 291251 3.15330 343033 3.75895 4.16062 4.66841 5.33729
19 2.16763 2.44658 2.64077 2.83693 3.05077 3.29270 3.57404 3.90973 432149 4.84319
20 2.15550 2.41549 2.59409 2.77243 2.96441 3.17857 3.42355 3.71017 4.05342 4.47544
21 2.14471 2.38812 2.55340 271674 2.89070 3.08242 3.29870 3.54767 3.84007 4.19110
22 2.13505 2.36386 2.51760 2.66819 2.82705 3.00031 3.19347 3.41279 3.66625 3.96469
23 2.12635 2.34219 248587 2.62547 2.77153 2.92938 3.10356 3.29904 3.52190 3.78012
24 2.11848 2.32273 245755 2.58761 2.72268 2.86749 3.02587 3.20182 3.40011 3.62678
25 2.11131 230515 243212 2.55382 2.67937 2.81302 2.95806 3.11777 3.29597 349734
26 2.10477 2.28920 2.40916 2.52347 2.64071 276472 2.89836 3.04438 3.20590 3.38661
27 2.09877 2.27465 2.38832 2.49608 2.60599 272159 2.84539 2.97975 3.12722 3.29081
28 2.09325 226134 2.36934 247121 2.57463 2.68284 2.79809 2.92240 3.05791 3.20710
29 2.08815 2.24910 235196 2.44856 2.54618 2.64784 2.75558 2.87115 2.99639 3.13333
30 2.08343 223782 2.33599 242782 2.52024 2.61608 271718 2.82509 2.94140 3.06782
40 2.05018 2.15982 222715 2.28837 2.34833 2.40878 2.47067 2.53469 2.60137 2.67124
60 2.01861 2.08795 2.12916 2.16569 2.20061 223497 2.26929 2.30389 2.33900 237477
80 2.00341 2.05410 2.08375 2.10973 2.13429 2.15820 2.18182 2.20537 2.22900 2.25280
100 1.99446 2.03441 2.05756 2.07770 2.09663 2.11493 2.13291 2.15073 2.16849 2.18628
120 1.98858 2.02153 2.04051 2.05696 2.07235 2.08717 2.10167 2.11599 2.13021 2.14439
0 1.9599 1.9599 1.9599 1.9599 1.9599 1.9599 1.9599 1.9599 1.9599 1.9599

p-no.of predictors n-Sample Size
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Table 2 Significant two-tail percentage points of Internal studentized residual at p, (]r,| > ri(p'n)(o.01)):o.01

1 2 3 4 5 6 8 9 10
3 77.96327 - - - - - - - - -
4 11.46022 23540271 - - - - - - - -
5 6.53034 23.21222 318.28371 - - - - - - -
6 5.04353 10.94698 29.51148 380.32293 - - - - - -
7 4.35521 7.57721 13.34171 34.36548 432.09685 - - - - -
8 3.96341 6.09282 8.96079 15.22295 38.48448 477.53358 - - - -
9 371176 527397 7.04613 10.06222 16.83942 42.13704 518.56681 - - -
10 3.53689 4.75939 5.99533 7.81230 11.01752 18.28501 4545883 556.30902 - -
11 3.40846 4.40752 5.33739 6.57922 8.48160 11.87764 19.60769 48.52965 591.46797 -
12 3.31020 4.15230 4.88873 5.80782 7.09216 9.08748 12.66861 20.83602 5140121 624.52675
13 3.23263 3.95896 4.56400 5.28209 6.22295 7.55855 9.64701 13.40607 21.98873 54.10934
14 3.16985 3.80757 431845 4.90174 5.63049 6.60179 7.99078 10.17045 14.10031 23.07893
15 3.11800 3.68587 4.12644 4.61421 5.20179 5.94940 6.95392 8.39630 10.66457 14.75860
16 3.07447 3.58594 3.97228 4.38943 4.87765 5.47715 6.24659 7.28512 8.78003 11.13419
17 3.03740 3.50244 3.84583 4.20899 4.62420 5.11995 573432 6.52671 7.59918 9.14548
18 3.00546 343165 3.74027 4.06101 4.42071 4.84054 5.34667 5.97719 6.79284 7.89883
19 2.97765 3.37087 3.65084 3.93750 4.25379 461613 5.04332 5.56114 6.20829 7.04716
20 2.95322 331813 3.57411 3.83286 4.11444 443199 4.79957 5.23541 5.76552 6.42946
21 293159 327193 3.50758 3.74310 3.99637 427822 4.59950 4.97358 541872 5.96137
22 291230 323114 3.44933 3.66526 3.89507 4.14790 443235 4.75857 5.13982 5.59457
23 2.89499 3.19485 3.39791 3.59712 3.80722 4.03606 4.29065 4.57888 4.91070 5.29946
24 2.87938 3.16236 3.35220 3.53698 3.73030 3.93904 4.16901 4.42649 4.71915 5.05694
25 2.86522 3.13310 331129 3.48351 3.66241 3.85408 4.06345 4.29563 4.55665 4.85411
26 2.85233 3.10663 327447 3.43567 3.60204 3.77907 3.97099 4.18204 4.41705 4.68197
27 2.84053 3.08255 3.24115 3.39260 3.54801 3.71236 3.88934 4.08251 4.20583 4.53404
28 2.82970 3.06055 3.21086 3.35364 3.49937 3.65264 3.81670 3.99460 4.18960 4.40556
29 2.81973 3.04039 3.18320 331822 3.45537 3.59888 375168 391637 4.09573 4.29293
30 2.81050 3.02183 3.15785 3.28587 3.41536 3.55023 3.69312 3.84632 4.01219 4.19337
40 2.74610 2.89449 2.98640 3.07032 3.15276 3.23608 3.32160 3.41027 3.50284 3.60007
60 2.68576 2.77864 2.83412 2.88343 2.93065 297717 3.02369 3.07065 3.11833 3.16697
80 2.65700 2.72455 2.76423 2.79905 2.83200 2.86410 2.89585 292752 2.95932 299137
100 2.64017 2.69324 272410 2.75099 2.77627 2.80074 2.82478 2.84862 2.87240 2.89622
120 2.62911 2.67282 2.69806 2.71996 2.74045 2.76021 2.77954 2.79864 2.81761 2.83653
0 2.5758 2.5758 2.5758 2.5758 2.5758 2.5758 2.5758 2.5758 2.5758 2.5758

p-no.of predictors n-Sample Size
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Table 3 Significant two-tail percentage points of V at p, (Vi > Vi(pyn)(0.0S)) =0.05

n
1 2 3 4 5 6 7 8 9 10

3 .81650 06406 - - - - - - - -

4 .86603 27042 04330 - - - - - - -

5 .89443 42757 .20000 03513 - - - - - -

6 91287 53356 33630 16738 03044 - - - - -

7 .92582 60762 43779 28880 14732 02728 - - - -

8 .93541 66179 51380 38369 25789 13330 .02496 - - -

9 .94281 70297 57225 45756 34686 23554 12276 02315 - -

10 .94868 73528 61839 51613 41789 31944 21833 11443 .02170

11 .95346 76129 65565 56351 47540 38763 .29789 .20451 10763 02049
12 .95743 78266 68635 60255 52275 44370 .36343 .28033 19309 10193
13 .96077 80053 71206 63524 56235 49049 41797 34343 .26563 18342
14 .96362 81569 73389 66300 .59593 .53008 46396 .39646 .32652 .25308
15 .96609 .82872 75266 68685 62475 56399 .50324 44155 37809 31196
16 .96825 84002 76896 70756 64975 59334 53715 .48036 42226 36214
17 .97014 84993 78326 72572 67164 61901 .56673 51410 46051 40538
18 97183 85869 79589 74175 69096 64162 .59276 .54371 .49396 44304
19 .97333 .86648 .80713 75602 70814 66171 61583 .56990 .52347 47613
20 .97468 87345 81720 76880 72351 67967 .63642 .59323 54969 50546
21 .97590 87974 .82628 78031 73735 69581 .65491 61415 57316 53164
22 .97701 88543 83449 79073 74987 71041 67162 .63302 .59429 55515
23 .97802 89060 84197 80021 76125 72367 .68677 65012 61341 57639
24 .97895 89533 84880 80886 77164 73577 .70059 .66570 .63080 59567
25 .97980 .89967 .85506 81680 78116 74686 71324 .67994 64668 61326
26 .98058 90366 86083 82411 78993 75705 .72487 .69302 66125 .62937
27 .98131 90735 86615 83085 79801 76645 73558 .70507 67466 .64419
28 .98198 91076 87109 83710 .80550 77515 .74550 .71620 .68704 65786
29 .98261 91393 87567 84290 81246 78323 75469 72652 69852 .67051
30 98319 91689 87994 84831 .81893 79075 76325 73612 70917 68225
40 .98742 93813 91062 88714 86540 84463 .82445 .80464 .78508 .76565
60 .99163 .95906 94086 92536 91106 89744 .88426 .87139 85873 84622
80 .99373 96941 95581 94424 93359 92346 91367 90413 89477 .88554
100 .99499 97558 96473 95550 94701 93894 93116 92358 91615 90884
120 .99582 97968 97065 96298 95592 94922 .94276 .93647 .93031 .92426
o0 1 1 1 1 1 1 1 1 1 1

p-no.of predictors n-Sample Size




128 Sci. & Tech. RMUTT J. Vol.6 No.2 (2016)

Table 4 Significant two-tail percentage points of V at p, (\/i > Vi(pyn)(0.01)) =0.01

n

1 2 3 4 5 6 7 8 9 10
3 .81650 .01282 - - - - - - - -
4 .86603 12217 .00866 - - - - - - -
5 .89443 .25429 .08944 .00702 - - - - - -
6 91287 .36371 .19667 07460 00609 - - - - -
7 .92582 44900 29277 .16776 .06555 .00545 - - - -
8 .93541 51565 .37240 .25439 .14925 .05925 .00499 - - -
9 .94281 .56859 43761 32852 22882 .13600 .05452 .00463 - -
10 .94868 .61144 49137 39091 29831 .21003 .12585 05080 00434 -
11 .95346 .64673 .53617 44350 35786 27562 19540 11775 04776 .00410
12 .95743 .67625 .57396 48816 40885 .33256 25767 18355 11107 .04522
13 96077 70129 .60620 52645 45276 .38191 31227 .24296 17369 .10544
14 96362 72277 .63400 .55956 .49084 42483 36002 .29546 23059 16530
15 96609 .74140 .65819 58844 52411 46241 40191 34172 28121 .22000
16 96825 75770 .67942 61383 55340 49552 43885 38257 32608 26891
17 97014 77208 .69820 63632 .57936 .52487 47162 41882 36593 31249
18 97183 .78486 71492 65636 60251 .55106 .50085 45115 40147 35138
19 97333 79629 72989 67433 62328 .57455 .52706 48015 43332 38622
20 97468 .80657 74339 69053 .64201 .59574 .55070 50628 46202 41758
21 97590 81586 75560 70521 65898 61494 57212 .52993 48798 44593
22 97701 .82431 76672 71857 67443 .63241 .59160 55145 S1157 A7167
23 97802 .83202 17687 73078 68855 .64838 60941 57110 53310 49514
24 .97895 .83908 78618 74198 70150 .66303 .62573 58911 55283 .51663
25 .97980 84558 79474 75229 71343 .67651 .64076 60568 .57096 53637
26 .98058 85157 .80265 76181 72444 .68897 .65463 62097 58769 55457
27 98131 85711 .80997 17063 73464 .70050 66747 .63513 60317 57139
28 98198 .86226 81678 17882 74412 1122 .67940 .64827 61753 .58700
29 .98261 .86705 82311 18645 75294 72119 69051 .66050 .63089 .60151
30 98319 87152 .82902 79357 76118 .73050 70087 67191 64335 .61504
40 98742 .90384 87186 84523 .82096 .79803 17597 75449 73342 71262
60 .99163 .93605 91467 .89689 88073 .86551 .85091 83675 82291 .80932
80 .99373 .95209 .93604 92270 91059 .89920 .88830 .87773 86743 .85733
100 .99499 96170 94885 93818 92850 .91940 91069 90227 .89406 .88602
120 .99582 96810 95739 94850 94043 .93285 92561 91861 91179 .90511
(00) 1 1 1 1 1 1 1 1 1 1

p-no.of predictors n-Sample Size
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5. Numerical Results and Discussion

In this section, the authors shown a
numerical study of evaluating the outliers based on
the internal studentized residual of the "
observation in a regression model. For this, the
authors fitted stepwise linear regression models
with different set of predictors in a Brand equity
study. The data in the study comprised of 18

different attributes about a car brand and the data

was collected from 275 car users.

A well-structured questionnaire was
prepared and distributed to 300 customers and the
questions were anchored at five point likert scale
from 1 to 5.After the data collection is over, only
275 completed questionnaires were used for
analysis. The stepwise regression results reveals 4
nested models were extracted from the regression
procedure by using IBM SPSS version 22. For
each model, the internal studentized residual were
computed, comparison of the proposed approach
with the traditional Weisberg test of identifying the

outliers are discussed through the following tables.

Table 5 Identification of Outliers based on Traditional Weisberg test

Traditional Weisberg test
af
Model | p ( ) Critical (n) Critical (n)
n-p-2 . .
£(0.05) |'t,|>1(0.05) £(0.01) ‘ ti‘ >1(0.02)
1 1 272 1.96872 13 2.90292 11
2 2 271 1.96876 13 2.90301 10
3 3 270 1.96879 14 2.90310 10
4 4 269 1.96882 13 2.90319 10

p-no.of predictors  n=275 *ti = ri\/(n— p—Z)(n— p—l—l’i2 )71

df-degrees of freedom
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Table 6 Identification of Outliers based on Proposed approach at 5% significance level

Joint test X-Y space
Model p Critical (n) (n) (n) (n) (n)
r (0'05) |r|| > r(0.0S) *Group-1 IbGroup-Z Group-3 | Group-4
1 1.97228 13 6 7 -
2 1 1.98626 13 8 5 -
3 2 1.99419 14 6 8 -
4 3 2.00097 13 6 7 -

p-no.of predictors n=275 ° (t-ratio) p-value<0.05 & (V-test) p-value<0.05 ® (t-ratio) p-value<0.05
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Table 7 Identification of Outliers based on Proposed approach at 1% level

Joint test X-Y space
Model Critical (n) (n) (n) (n) (n)
_ r|>r(0.01) |, ¢
I’(O 01) | || ( ) Group-1 hGroup-z Group-3 dGl‘Ollp'4
1 2.59869 11 7 4 ) -
2 2.61714 12 9 2 ) 1
3 2.62760 12 6 > 1 -
4 2.63656 10 7 3 ) -

p-no.of predictors n=275

¢ (t-ratio) p-value>0.01 & (V-test) p-value>0.01

* (t-ratio) p-value<0.01 & (V-test) p-value<0.01

( V-test) p-value<0.01

® (t-ratio) p-value<0.01
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Evidence plots of the Fitted Models at 1% Significance level
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Table 5 clearly visualizes the result of the
identification of outliers based on traditional
Weisberg test. From the 4 fitted multiple
regression models, the Weisberg test helps to
identify 13 outliers in model-1, model-2 and
model-4 at the 5% level of significance
respectively. Similarly it helps to identifies 11
outliers in model-1, 10 outliers in model-2, model3
and model 4 at 1% level of significance. The test
results emphasis these identified outliers only
exists in Y-space and not in X-Space. On the other
hand, table 6 and table 7, exhibits the result of the
identification of outliers based on the proposed
approach. From table 6, based on the proposed
distribution of internal studentized residual, the
authors identified 13 outliers in model-1, model-2
and model-4 at the 5% level of significance.
Similarly, in model-4 the authors identified 14
outliers at 5% level of significance. These
identified outliers may be the outliers in both the
spaces. Because the distribution of the proposed
test statistic incorporates the information about the
Y-space as well as the X-space. But the authors
visualize heuristic evidences of each observations
and its position thought the evidence plot. Out of
13 outliers in model-1, 6 observations are outliers
in both the spaces and it is significant at the 5%
level based on the result of both tests (t and V
test). Similarly, 7 observations are outliers in Y-
space and the result of the t-test confirms the
significance at the 5% level. Similarly, out of 13
outliers in model-2, 8 were significantly plotted in

the first quadrant and remaining 5 were

significantly plotted in the second quadrant. These
show 8 observations are outliers in both the space
and 5 observations are outliers in Y-space. From,
Model-3 out of 14 outliers, 6 were significantly
outlying in both the spaces and 8 observations are
statistically significant and consider to be an
outlier in Y-space only. Finally, in model-4, out of
13 outliers, 6 observations are statistically significant
and consider to be outliers in both the spaces and 7
observations are significant outliers in Y-space.
From table 7, based on the proposed approach, the
authors identified 11 outliers in model-1, 12
outliers in model-2, 3 and 10 outliers in model-4
respectively. Based on the evidence plot, Out of
the 11 outliers in model-1, 7 observations are
statistically significant at the 1% level and consider to
be the outliers in both the spaces. In model-2 there
are 12 outliers, where 9 observations are outliers in
both the spaces, 2 observations are outliers in Y-
space and 1 observation is influential in X-space.
As far as model-3 is concerned, among the 12
outliers, 6 observations are outlier in both the
spaces, 5 observations are outlier in Y-space and 1
observation is an influential leverage point
significantly placed in the third quadrant. In
model-4 there are 10 outliers, where 7 observations
are outliers in both the spaces and 3 observations
are outliers in Y-space. From the above discussion
the authors explored and identified some
advantages of the proposed approach over the use
of traditional approach of evaluating the outliers
using internal studentized residuals. At first the

proposed distribution of the internal studentized



Sci. & Tech. RMUTT J. Vol.6 No.2 (2016)

137

residual comprised of the distribution assumption
of both the Y-space and X-space. The evidence
plot clearly visualizes the position and outlying
nature of the observations in the spaces. Hence, the
simultaneous use of internal studentized residual
with the evidence plot gave mores insights of the

outliers existing in a multiple regression model.

6. Conclusion

From the previous sections, the authors
proposed the exact distribution of the Internal
studentized residuals which comprised of
distribution of X and Y space along with the
evidence plot to evaluate the outliers in a multiple
linear regression model. At first, the exact
distribution of the internal studentized residual was
derived and the authors visualized the density
function in terms of the Gauss hypergeometric
function with two shape parameters namely p and
n. Moreover,the critical percentage points of
internal studentized residual at 5 %, 1% level of
significance and it is utilized to evaluate the
outliers. The evidence plots along with the test of
significance (t-test and V-test) helps us to exactly
visualize the position of the identified outliers in
the spaces. Finally, the proposed approach is more
systematic and scientific because it helps to
identify the outliers in both spaces and the results
were superior when compared it with the
traditional approach. So, the authors conclude the

proposed approaches over rides the use of

traditional approach and we believe that the
proposed approaches took the process of
identifying the outliers to the next level which
helps the statisticians to exactly identify the remote

observations in the functional data.
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