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Abstract

This paper presents opinion classification of politics during the government revolution in Thailand

using associative classification. The opinions are classified from Facebook statuses written in Thai which are

complex. Features of the statuses are extracted by using positive and negative words that are collected from

social networking websites. Using feature association based on associative classification leads to the resulting

rules for opinion classification with specifying the confidence of either positive or negative opinion. The

experimental results show that associative classification can give accuracy to 77.75% for political opinion

classification.
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