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บทคัดย่อ  

 บทความนี้น าเสนอการแจกแจงแบบใหม่ทีเ่รียกว่า การแจกแจงผลต่างเอกซ์โพเนนเชยีลแบบสัดส่วน 
ซ่ึงมีฟังก์ชันความหนาแน่นของความน่าจะเปน็คือ 
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แบบสัดส่วน ได้แก่ ค่าคาดหวัง ความแปรปรวน ฟังก์ชันก่อก าเนิดโมเมนต ์และลิมิตของการแจกแจงที่จดุ 
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ค ำส ำคัญ: การแจกแจงเอกซ์โพเนนเชียลและการแจกแจงผลต่างเอกซ์โพเนนเชียลแบบสัดส่วน  

Abstract 

 In this paper we introduce a new distribution, called proportional exponential difference (PED) 
distribution, such that its probability density function is in the form: 
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where 0  และ 1 1
2 2

(0, ) ( ,1)  . We study some properties of PED distribution such as expected 
value, variance,  moment generating function and its limit at 1

2
0,  and 1. 

Keywords: exponential distribution, PED distribution. 

1. Introduction 
 The positive random variable X is called 
an  exponential distribution with parameter 0  , 

denoted by exp( ),X  and its probability 
density function is in the form  
              ( ; ) ,          0.xf x e x             (1) 
 Expected value and variance of the 
exponential distribution with parameter   are 

obtained by 1


 and  

2

1


, respectively. In 

addition, its moment generating function is 
satisfied 

M(t)  ,        t < ,






 t

 

(these proof see in [3,4]). 
The exponential distribution is widely 

applied for data modeling  in several phenomena 
such as actuarial science, life time data and waiting 
time problems. Therefore, the extension of 
exponential distribution is an interested problem 
because it maybe not suitable for some models. 
Thus, many researchers are interested in the 
extension of exponential distribution for describing 
the interested models. For example, Gupta and 
Kundu [1,2] introduced an extension of the 
exponential distribution called the generalized 
exponential (GE) distribution and exponentiated 
exponential  (EE) distribution which is clarified in 
term of the probability density function: 
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where 0   and 0.   
 In 2013, Oguntunde, et al.[6] described 
the sum of two independent exponentially 
distributed random variables, Z X Y  where 

1exp( )X  and 2exp( ).Y   The probability 
density function is obtained by 
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Our goal is to introduce a new 
distribution which is constructed by the difference 
of exponential function and study its behaviors. 

2. Definition and Notation  
Firstly, we shall present the motivation 

of our research. A new distribution is constructed 
by the difference of exponential functions as 
following form 
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function is decreasing, so we obtain that 
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This leads to the new distribution defined as 
follows: 

Definition 1 Let 0  and  1
2

(0,1) .   
A positive random variable X is called a 
proportional exponential difference (PED) 
distribution with proportional parameter  and 
scale parameter  , denoted by 

PED( , ),X    if  its probability density 
function (pdf) satisfies 
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Theorem 1 Let PED( , ).X   Then the 
cumulative distribution function (cdf) of X is 
obtained by 
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So we have done. 

 
Fig. 1 and Fig. 2 show the pdf and cdf of PED on 
various values of parameters. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Fig. 1 The probability density function of the PED (0.2,0.6) (blue), PED (0.4,1) (green),  
PED (0.6,1.5) (red), PED (0.8,2.5) (sky blue). 
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3. Some Properties of PED distribution 
In this section, we shall study the 

expected value, variance, moment generating 
function of PED distribution and limit properties 
of proportional parameter. 

3.1 Moment generating function 
Theorem 2 Let PED( , ).X    Then the 
corresponding moment generating function of X is 
obtained by 
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Proof. The result of Theorem 2 is derived as 
follows: 
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 This completes the proof. 

 

Theorem 3 Let PED( , ).X   Then,  
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Proof. We will prove Theorem 3 by mathematical 
induction.  
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Obviously, equation (2) holds for 1.n    
Now assume that equation (2) is true for 
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which proves equation (2) for 1n k   and 
concludes the proof. 

Corollary 4 If PED( , )X   and 
exp( )Y  then 
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Fig. 2 The cumulative distribution function of the PED (0.2,0.6) (blue), PED (0.4,1) (green),  

PED (0.6,1.5) (red), PED (0.8,2.5) (sky blue). 
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3.2 Expected value and Variance 

Theorem 5 The expected value of random variable 
PED( , )X    is 
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Theorem 6  The variance of random variable 
PED( , )X   is 
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3.3 Limit properties of proportional 
parameter 

From the definition of PED distribution 
as mentioned in section 2, we found that the set of 
proportional parameter  is quite strange because 
the points 1

2
0,  and 1 are not defined for our 

distribution. However, we can treat these points as 
removable point of continuity of function. 
 

Theorem 7 Let PED( , ).X   Then 
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Theorem 8 Let 0  and f  be a probability 
density function as mentioned in Section 2. For 
each 0x . Then 

 
1
2

2 2 21
2

lim ( ; , ) 2 4 . 


    


 x xf x e xe  

Proof. Let 0x be given.  

Since  1

1
2

lim (1 ) 0
 
 


 

 


  

x x

e e and 

1
2

1 2 0lim





  , by using the L'Hospital's Rule 

(see [5]), we obtain that 

 

  
  

 

1

1 1
2 2

1 1
2(1 )

1
2

2

2

2

(1 )

(1 )

2

2

2 1 2 1

2

2 4

2

2 2 21
2

1 2
lim ( ; , ) lim

lim

 

2 4 .

x x

x x
x

x x
x

x

x

e e

e e

e e

x x e

x e

x x

f x

e xe

 
 

 
  



 
  









 

 







 



 

 













 


 
  



 





 

 

 
  

 










   





 






 
 






 














 

This completes the proof. 
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From Theorem 7 and 8, we extend the set of 
proportional parameter of PED distribution from  

 1
2

(0,1)   to [0,1]  as following form 
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4. Conclusion 
We propose a new distribution which is 

more complex distribution than exponential 
distribution because PED( , )   is closed to 
exponential distribution as mentioned in Theorem 
7 when parameter  approaches 0 or 1. Thus PED 
distribution is a generalized exponential 
distribution. Moreover, we found that the limit of 
PED( , )  has the probability density function 
in the term of average of exponential and gamma 
distributions as shown in Theorem 8. Finally, we 
expect that the PED distribution shall be attracted 
to modeling and some analysis in actuarial science, 
finance and related fields for statistical inferences. 
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