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Abstract 

In this paper, we define the -k Jacobsthal -S matrix and -k Jacobsthal -W matrix. After, by using 
this matrix representation, we obtain some identities and the Binet’s formula for -k Jacobsthal numbers.  
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1. Introduction 
In the recent years, several recurrence 

sequences of positive integers have been object of 
study for many researchers. The most prominent 
examples are the Fibonacci sequences and Lucas 
sequences. The Fibonacci sequences and Lucas 
sequences are famous for possessing wonderful and 
amazing properties.  

The Fibonacci sequences is represented by
 nF and defined by the following recurrence: 

1 2 , for 2n n nF F F n                      (1) 
with initial conditions

0 0F  and
1 1F  .  

Similarly, the classical Lucas sequences is 
represented with  nL and defined by 

1 2 , for 2n n nL L L n        (2) 
with initial conditions 

0 2L  and 
1 1.L  Terms of 

the Fibonacci sequences and Lucas sequences are 
called Fibonacci numbers and Lucas numbers 
respectively.  

On the other hand, other recurrence 
sequences of positive integers that also important 
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are the sequences of Jacobsthal and Jacobsthal-
Lucas that first studied by Horadam [3]. The 
Jacobsthal sequences represented by nJ and 
defined by the following recurrence: 

1 22 ,for 2n n nJ J J n          (3) 
with initial conditions

0 0J  and
1 1J  . Similarly, 

the Jacobsthal-Lucas sequences is represented with 

 nj and defined by the following recurrence: 

1 22 ,for 2n n nj j j n        (4) 
with initial conditions 

0 2j  and
1 1j  . 

These sequences have been studied and some it’s 
basic properties are known; (see [3-4]). There are a 
lot of identities of Fibonacci, Lucas, Jacobthal and 
Jacobthal-Lucas numbers have been presented in 
the literatures; (see [10-11, 14]).  

It is well-known that many identities 
concerning Fibonacci, Lucas, Jacobsthal and 
Jacobsthal-Lucas numbers can be proved by using 
Binet’s formula, induction and matrix.  

In 1960, Charles H. King studied on the 
following Fibonacci Q -matrix  

1 1

1 0
Q

 
  
 

 

He showed that det( ) 1.Q    and 
1

1

,
n nn

n n

F F
Q

F F





 
  
 

 for 1.n   

This property provides an alternates proof of 
Cassini’s Fibonacci formula:   

2

1 1 ( 1)n

n n nF F F     .   (5) 
The above equalities demonstrate that there is very 
close link between the matrices and Fibonacci 
numbers [10]  

From the idea of Charles H. King, in 2008, 
Koken and Bozkurt [9] defined the Jacobsthal      
F-matrix and Jacobsthal M-matrix as follows: 

1 2

1 0
F

 
  
 

 and 3 2

1 2
M

 
  
 

 respectively. 

and they also have demonstrated a very close link 
between these matrices and Jacobsthal numbers. 

More generally, there are some relations 
between the integer sequences and matrices [6-10, 
12-13].  

Very recently, Fibonacci, Lucas, Jacobsthal 
and Jacobsthal-Lucas sequences were generalized 
for any positive real number k. Also the study of 
the k-Fibonacci sequences, the k-Jacobsthal 
sequences and the k-Jacobsthal-Lucas sequences 
appeared (see [1-2, 5]).  

Let k be any positive real numbers. 
The k -Jacobsthal sequence [5], is defined by  

, , 1 , 22  k n k n k nJ kJ J , for 2n  (6) 
with 

,0 0kJ ,
,1 1kJ . 

The first few terms of 
, 0{ } k n nJ  are 

2 30,1, , 2, 4 k k k k  and so on. Terms of this 
sequence are called k -Jacobsthal numbers.   

If 1,k then the classical Jacobsthal 
sequence is obtained.

0 10, 1 J J and 

1 22  n n nJ J J  for 2n  

0{ } {0,1,1,3,5,11,...} n nJ  
Binet’s formula for the thn k-Jacobsthal numbers is 
defined by 

1 2

,

1 2

n n

k n

r r
J

r r





   (7) 

where
 

1 2,  r r are the roots of the characteristic 
equation: 
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2 2 x kx  and 1 2r r ; 
2

1

8

2

 


k k
r ,

2

2

8

2

 


k k
r   which gives  

2

1 2 1 2 1 2, 2, 8      r r k r r r r k  (8) 

The k-Jacobsthal-Lucas sequence [1], is defined by  

, , 1 , 22  k n k n k nj kj j , for 2n  (9) 
with ,0 2kj , 

,1 kj k . 
The first few terms of 

, 0{ }k n nj 
are 

2 32, , 4, 6k k k k     and so on. Terms of this 
sequence are called k-Jacobsthal-Lucas numbers.  

If 1,k then the classical Jacobsthal-Lucas 
sequence is obtained. 

0 12, 1 j j and 
1 22  n n nj j j  for 2n  

0{ } {2,1,5,7,17,...} n nj . 
Binet’s formula for the thn k-Jacobsthal-Lucas 
numbers is defined by 

, 1 2 n n

k nj r r                 (10) 
where

 
1 2,  r r are the roots of the characteristic 

equation as in (8). 
 In [1] and [5] Cassini formulas of k-
Jacobsthal and k-Jacobsthal-Lucas numbers are 
given by 

2 1

, 1 , 1 , ( 1) 2 ,n n

k n k n k nJ J J 

                 (11) 
2 1 2

, 1 , 1 , ( 2) ( 8).n

k n k n k nj j j k

           (12) 
Motivated by Koken and Bozkurt [9] and 

the research going on in this direction, in this 
paper, we defined k-Jacobsthal S-matrix by            

2

1 0

k
S

 
  
 

                (13) 

It is easy to see that, it can be written 

  , 1 ,

, , 1

,
k n k n

k n k n

J J
S

J J





   
   

      

  

 

and  

  , 1 ,

, , 1

,
k n k n

k n k n

j j
S

j j





   
   

      

 

where
,k nJ and 

,k nj are the thn  k-Jacobsthal and k-
Jacobsthal-Lucas numbers, respectively.  

Moreover, we also defined k-Jacobsthal W-
matrix by            

 
2 1 2

2

k k
W

k

 
  
 

.               (14) 

By using matrices representation (13) and 
(14), we obtain some identities and the Binet’s 
formula for -k Jacobsthal numbers. The results 
presented in this paper, extend some previous 
results in the literature.  

2. The Matrix Representation 
 In this section, we present two different 
matrix representation of -k Jacobsthal numbers 
which is called -k Jacobsthal -S matrix and -k

Jacobsthal -W matrix. By using this matrix 
representations we obtain the determinants and 
elements of nS and ,nW  also we get Cassini 
formula for -k Jacobsthal numbers. After, we 
calculate the generalized characteristic roots and 
Binet’s formula of the matrix Sn. Finally, we get 
some identities for the k-Jacobsthal numbers by 
using these matrices. 

Throughout this paper, ,k nJ and 
,k nj denote 

the thn  k-Jacobsthal and k-Jacobsthal-Lucas 
numbers. 
Theorem 2.1 Let S be a matrix as in (13). Then 

, 1 ,

, , 1

2
,

2

k n k nn

k n k n

J J
S

J J





 
  
 

  for 1.n       (15) 
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Proof.  We will use the principle of mathematical 

induction. Since ,2 ,11

,1 ,0

22
,

21 0

k k

k k

J Jk
S

J J

  
    
   

 

we obtain that the results is true for 1.n   Next, 
we assume that it is true for any positive integer 

,n m  that is 
, 1 ,

, , 1

2
.

2

k m k mm

k m k m

J J
S

J J





 
  
 

 

Now, we show that it is true for 1.n m  Then 
we can write   

1

, 1 ,

, , 1

, 1 , , 1

, , 1 ,

, 2 , 1

, 1 ,

2 2

2 1 0

2 2

2 2

2
,

2

m m

k m k m

k m k m

k m k m k m

k m k m k m

k m k m

k m k m

S S S

J J k

J J

kJ J J

kJ J J

J J

J J







 



 





   
    

  

 
  

 

 
  
 

 

and the results follows.     

Corollary 2.2 For all positive integers ,n the 
following equalities hold: 

(i) det( ) ( 2) ,n nS    
(ii) 2 1

, 1 , 1 , ( 1) 2 .n n

k n k n k nJ J J 

      

Proof.   Since det( ) 2,S   we get that 
 det( ) det( ) ( 2) .

nn nS S    It follows from the 
determinant of nS  in (15) and (i) that 

2

, 1 , 1 ,2 2 ( 2) .n

k n k n k nJ J J       
It implies that  

2 1

, 1 , 1 , ( 1) 2 .n n

k n k n k nJ J J 

       

 

 

Theorem 2.3 Let n be an integer and 0.n   Then 
the well-known Binet’s formula of the k-Jacobsthal 
number is 

1 2

,

1 2

,
n n

k n

r r
J

r r





  

where 
2

1

8

2

 


k k
r  and 

2

2

8

2

 


k k
r   . 

Proof. Let S be a matrix as in (13). Then the 
characteristic polynomial of the matrix S is  

2
det( ) ,

1

k
S I







 


 

which yields the two eigenvalues 
1 1r   , 

2 2r  , 

where  
2

1

8

2

 


k k
r  and 

2

2

8

2

 


k k
r .  

If we calculate the eigenvectors of matrix S  
corresponding to the eigenvalues

1 , 
2 , we obtain

1 1( ,1)v r  and 
2 2( ,1),v r respectively. Then we 

can diagonalizable of matrix S by  
1 ,D Q SQ  

where        1 2

1 2( , ) ,
1 1

T T
r r

Q v v
 

   
 

  

and then we have    
1

1 2

2

0
diag( , ) .

0

r
D

r
 

 
   

 
 

Furthermore, we obtain  
 1.S QDQ  
From properties of similar matrices, we can write 

1.n nS QD Q                 (16) 
where n  is any positive integer.  
By (15) and (16), we get 

1 1

1 2 1 2

, 1 , 1 2 1 2

1 1
, , 1 1 2 1 2

1 2 1 2

2
2

.
2

2

n n n n

k n k n

n n n n
k n k n

r r r r

J J r r r r

J J r r r r

r r r r

 



 


  
 

         
 

   

 

Thus, the proof is completed.    
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Consequently, limiting ratio of the 
successive k-Jacobsthal number is 

1 1
, 1 1 2

, 1 2

1

lim lim

.

n n
k n

n nn n
k n

J r r

J r r

r

 


 








 

Theorem 2.4 The generalized characteristic roots 
of nS are 

2

, ,

1 2

8
,

2

k n k nj k J
 

 
  

where 
1  and 

2 denote the characteristic root of 
nS . 

Then,  1 2

,

1 2

n n

k n

r r
J

r r





 and , 1 2 ,n n

k nj r r  where 

2

1

8

2

k k
r

 
 and 

2

2

8

2

k k
r

 
 . 

Proof.  Form (15), we get that the characteristic 
polynomial of  nS  is 

2 2

, 1 , 1 , 1 , 1 ,det( ) ( 2 ) 2( ).n

k n k n k n k n k nS I J J J J J          

 Since , 1 , 1 ,2k n k n k nJ J j    and      
2 1

, 1 , 1 , ( 1) 2 ,n n

k n k n k nJ J J 

     we get  
2 1

,

2

,

det( ) 2( 1) 2

( 2) .

n n n

k n

n

k n

S I j

j

  

 

    

   
 

Thus, the characteristic equation of nS  is  
2

, ( 2) 0n

k nj                      (17) 
and we get the characteristic roots as following : 

2

, ,

1 2

4( 2)
, .

2

n

k n k nj j
 

  
  

Since 2 2 2

, ,4( 2) ( 8) ,n

k n k nj k J     we obtain  
2

, ,

1 2

8
, .

2

k n k nj k J
 

 
  

Consequently,  
2

, ,

1

8

2

k n k nn
j k J

r
 

  and 
2

, ,

2

8

2

k n k nn
j k J

r
 

 , 

where 1 2,r r are eigenvalues of matrix .S Then we 
have 

1 2

,

1 2

n n

k n

r r
J

r r





  and  

, 1 2 .n n

k nj r r     

 From matrix equation (15), we can write, 
, 1 ,

, 1 , 1

, , 1, 1

, 1 , 1

2

.
2

k n k n

n
k n k n

k n k nk n

k n k n

J J

J JS

J JJ

J J



 



 

 
 
 
 
 
  

 

Since , 1

1

,

lim ,
k n

n
k n

J
r

J




 it follows that 

2
1 11 1

1, 1 1

2 22
lim .

22

n

n
k n

kr rr rS

rJ r


   
    

  
   

If we compute the determinant of both sides, we 
reach the characteristic equation of the k-Jacobsthal 

-S matrix as follows: 
2

1 1 2 0.r kr    

Theorem 2.5 Let W be a matrix as in (14). Then  
,2 1 ,2

,2 ,2 1

2
,

2

k n k nn

k n k n

J J
W

J J





 
  
 

  

for 1.n   

Proof.  It can be show easily by induction on .n    

Corollary 2.6 For any positive integers n , the 
following equalities hold: 

(i) 2det( ) 2 ,n nW   
(ii) 2 2 1

,2 1 ,2 1 ,2 2 .n

k n k n k nJ J J 

     

Proof. The proof is similar to Corollary 2.2           

Theorem 2.7 Let m and n be a positive integer. 
Then, the following relation between the -k

Jacobsthal and -k Jacobsthal-Lucas numbers 

, , 1, , , , 12k n m k m k n k m k nj J j J j     
is valid. 
Proof. It follows from the definition of the -k

Jacobsthal-Lucas numbers that 
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, 1 ,

, , 1

.
k n k n

k n k n

j j
S

j j





   
   

   
               (18) 

Multiply both side of (18) with mS , we get 
, 1 ,1

, , 1

.
k n k nm m

k n k n

j j
S S

j j

 



   
   

   
 

Using (15), we obtain 
, 1 , 2 , , 1 , 1

, , 1 , , , 1

2

2

k n m k m k n k m k n

k n m k m k n k m k n

j J j J j

j J j J j

    

  

   
   

   
 

which implies that  

, , 1 , , , 12 ,k n m k m k n k m k nj J j J j     

and the proof is completed.                                    

Theorem 2.8 Let m and n be positive integers. 
Then, the following equalities hold: 

(i) 
, , , 1 , 1 ,2 ,k m n k m k n k m k nJ J J J J     

(ii) 
,2 , , 1 , , 1 , ,2 ,k n k n k n k n k n k n k nJ J J J J J j     

(iii)  2 2

,2 1 , 1 ,2 ,k n k n k nJ J J    
(iv) 1

, , , 1 , 1 ,( 1) 2 .n n

k m n k m k n k m k nJ J J J J

       

Proof. Let S be a matrix as in (13).  
Since m n m nS S S  , we get 

, 1 ,

, , 1

, 1 , 1 , , , 1 , , , 1

, , 1 , 1 , , , , 1 , 1

2

2

2 2( 2 )
.

2 2( 2 )

k m n k m n

k m n k m n

k m k n k m k n k m k n k m k n

k m k n k m k n k m k n k n k m

J J

J J

J J J J J J J J

J J J J J J J J

  

  

   

   

 
 
 

  
  

  

Thus, equalities (i), (ii) and (iii) are easily seen. 
Next, we note that  

 

, 1 ,

, , 1

2 21
.

2

k n k nn

n
k n k n

J J
S

J J





 
  

  
 

Since ,m n m nS S S  we get 

 

, 1 ,

, , 1

, 1 , 1 , , , 1 , , , 1

, , 1 , 1 , , , , 1 , 1

2

2

2( ) 2( )1
.

2( ) 2( )2

k m n k m n

k m n k m n

n

k m k n k m k n k m k n k m k n

n
k m k n k m k n k m k n k m k n

J J

J J

J J J J J J J J

J J J J J J J J

  

  

   

   

 
 
 

    
  

   

and (iv) immediately seen.                                  

 

3. Conclusion 
In this paper, we introduced -k Jacobsthal 

-S matrix and -k Jacobsthal -W matrix. After, by 
using this matrix representation, we obtain some 
identities and the Binet’s formula for -k Jacobsthal 
numbers. The results presented in this paper, 
extend some previous results in the literature. 
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