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Abstract 

 In this paper, we present generalized identities involving common factors of k-generalized 

Fibonacci, k-Jacobsthal and k-Jacobsthal-Lucas numbers and related identities. Binet’s formula will employ 
to obtain the identities. 

Keywords: generalized Fibonacci numbers, Jacobsthal numbers, Jacobsthal-Lucas numbers, k-generalized 

Fibonacci numbers, k-Jacobsthal numbers, k-Jacobsthal-Lucas numbers, Binet’s formula 

1. Introduction 
It is well-known that the Fibonacci 

sequence is the most prominent example of 
recurrence sequences of positive integers. It has 
been studied by many researchers for a long time to 
get intrinsic theory and applications of this 

numbers in many research areas as Physics, 
Engineering, Architecture, Nature and Art. 

On the other hand, other recurrence 
sequences of positive integers that also important 
are the sequences of Jacobthal and Jacobthal-
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Lucas. These sequences have been studied and 
some its basic properties are known; (see [3-4]).  

 There are a lot of identities of Fibonacci, 
Lucas, Jacobthal and Jacobthal-Lucas numbers 
have been presented in the literatures; (see [6-7, 9-
11]).  

More recently, Fibonacci, Lucas, Jacobsthal 
and Jacobsthal-Lucas sequences were generalized 
for any positive real number k. Also the study of 
the k-Fibonacci sequences, the k-Jacobsthal 
sequences and the k-Jacobsthal-Lucas sequences 
appeared (see [1-2, 5, 7]).  

Motivated by the research going on in 
this direction, in this paper, we present generalized 

identities involving common factors of k-
generalized Fibonacci, k-Jacobsthal and k-
Jacobsthal-Lucas numbers and Binet’s formula will 
employ to obtain the identities. 

2. Preliminaries 
 In this section, we will introduce some 
known results and notations that will be used in our 
main results.  
 Throughout this paper, let k be any positive 
real number. 
The k-generalized Fibonacci sequence [8] is 
defined by  
 

, , 1 , 22 ,for 2k n k n k nU kU U n         (2.1) 
with ,0 ,12, 0 k kU U .  
The first few terms of , 0{ } k n nU  are 

22,0,4,4 ,4 8k k  and so on. Terms of this 
sequence are called k-generalized Fibonacci 
numbers. 

If 1,k then the classical generalized 
Fibonacci sequence is obtained. 

0 12, 0 U U  
and 

1 22 ,for 2   n n nU U U n . 

0{ } {2,0,4,4,12,20,...} n nU . 
Binet’s formula for the thn k-generalized Fibonacci 
numbers is defined by 

1 1

1 2

,

1 2

4
 




n n

k n

r r
U

r r
,              (2.2) 

where 1 2,  r r are the roots of the characteristic 
equation 

2 2 x kx  and 1 2r r ; 
2

1

8

2

 


k k
r ,

2

2

8

2

 


k k
r   which gives  

2

1 2 1 2 1 2, 2, 8      r r k r r r r k           (2.3)                                       
The k -Jacobsthal sequence [5], is defined by  

, , 1 , 22  k n k n k nJ kJ J , for 2n    (2.4) 
with 

,0 0kJ ,
,1 1kJ . 

The first few terms of 
, 0{ } k n nJ  are 

2 30,1, , 2, 4 k k k k    and so on. Terms of this 
sequence are called k -Jacobsthal numbers.  

 If 1,k then the classical Jacobsthal 
sequence is obtained. 

0 10, 1 J J and 
1 22  n n nJ J J  for 2n  

0{ } {0,1,1,3,5,11,...} n nJ  
Binet’s formula for the thn k-Jacobsthal numbers is 
defined by 

1 2

,

1 2

n n

k n

r r
J

r r





                                  (2.5) 

where
 

1 2,  r r are the roots of the characteristic 
equation as in (2.3). 
The k-Jacobsthal-Lucas sequence [1], is defined by  

, , 1 , 22  k n k n k nj kj j , for 2n       (2.6) 
with ,0 2kj , ,1 kj k . 
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The first few terms of 
, 0{ }k n nj 

are 
2 32, , 4, 6k k k k     and so on. Terms of this 

sequence are called k-Jacobsthal-Lucas numbers.  
If 1,k then the classical Jacobsthal-

Lucas sequence is obtained. 

0 12, 1 j j and 
1 22  n n nj j j  for 2n  

0{ } {2,1,5,7,17,...} n nj . 
Binet’s formula for the thn k-Jacobsthal-Lucas 
numbers is defined by 

, 1 2 n n

k nj r r                              (2.7) 
where

 
1 2,  r r are the roots of the characteristic 

equation as in (2.3). 

3.  Main Results 
 In this section we present generalized 
identities involving common factors of k-
generalized Fibonacci, k-Jacobsthal and k-
Jacobsthal-Lucas numbers. We shall use the 
Binet’s formula for the k-generalized Fibonacci, k-
Jacobsthal and k-Jacobsthal-Lucas numbers for 
derivation. 

Theorem 3.1 
 ,2 ,2 ,4 ,4 ,n

k n p k n k n p k pU j U U      (3.1) 

where 0n and 0p . 

Proof: 

 
2 1 2 1

2 21 2
,2 ,2 1 2

1 2

4 1 4 1 1 1
21 2 1 2

1 2

1 2 1 2

4 1 4 1 1 1
21 2 1 2

1 2 1 2

2

,4 ,

,4 ,

4

4 4( )

4 ( 2) 4

( 2)

4

n p n p
n n

k n p k n

n p n p p p
n

n p n p p p
n

n

k n p k p

n

k n p k

r r
U j r r

r r

r r r r
r r

r r r r

r r r r

r r r r

U U

U U

   



     

     






 



    
    

    

    
     

    

  

  .p

 

 

Corollary 3.2 
   ,2 ,2 ,4 1 , 14 4 ,n

k n p k n k n p k pU j J J        (3.2) 

where 0n  and 1.p   

Theorem 3.3  
  2 1

,2 ,2 1 ,4 1 , 12 ,n

k n p k n k n p k pU j U U

      ,      (3.3) 
where 0n  and 1.p   
Proof.  

 
2 1 2 1

2 1 2 11 2
,2 ,2 1 1 2

1 2

4 4 2 2
2 11 2 1 2

1 2

1 2 1 2

4 4 2 2
2 11 2 1 2

1 2 1 2

2 1

,4 1 , 1

,4

4

4 4( )

4 ( 2) 4

( 2)

n p n p
n n

k n p k n

n p n p p p
n

n p n p p p
n

n

k n p k p

k n

r r
U j r r

r r

r r r r
r r

r r r r

r r r r

r r r r

U U

U

   
 

 

   


   




  


 



    
    

    

    
     

    

  

 2 1

1 , 12 .n

p k pU

  

 

Corollary 3.4  

 2 1

,2 ,2 1 ,4 , 24 2 ,n

k n p k n k n p k pU j J J

     (3.4)  

where 0n  and 2.p   

Theorem 3.5 
2 1

,2 ,2 ,4 , 22 ,n

k n k n p k n p k pU j U U

          (3.5) 
where 0n and 0p . 
Proof: 

 
2 1 2 1

2 21 2
,2 ,2 1 2

1 2

4 1 4 1 1 1
2 11 2 1 2

1 2

1 2 1 2

4 1 4 1 1 1
2 11 2 1 2

1 2 1 2

2 1

,4 , 2

,4

4

4 4( )

4 ( 2) 4

( 2)

n n
n p n p

k n k n p

n p n p p p
n

n p n p p p
n

n

k n p k p

k n

r r
U j r r

r r

r r r r
r r

r r r r

r r r r

r r r r

U U

U

 
 



     


     




 


 



    
    

    

    
     

    

  

 2 1

, 22 .n

p k pU

 

 

Corollary 3.6 
     2 1

,2 ,2 ,4 1 , 14 2 ,n

k n k n p k n p k pU j J J

        (3.6) 
where 0n and 0p . 
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Theorem 3.7 

 ,2 1 ,2 ,4 1 , 14 ,n

k n k n p k n p k pU j U U       (3.7) 
where 0n and 0p . 
Proof: 

 
2 2

2 21 2
,2 1 ,2 1 2

1 2

4 4
21 2 1 2

1 2

1 2 1 2

4 4
21 2 1 2

1 2 1 2

2

,4 1 , 1

,4 1 , 1

4

4 4( )

4 ( 2) 4

( 2)

4 .

n n
n p n p

k n k n p

n p n p p p
n

n p n p p p
n

n

k n p k p

n

k n p k p

r r
U j r r

r r

r r r r
r r

r r r r

r r r r

r r r r

U U

U U

 

 

 

 

  

  


 



    
    

    

    
     

    

  

 

 

Corollary 3.8 

 ,2 1 ,2 ,4 ,4 4 ,n

k n k n p k n p k pU j J J      (3.8) 

where 0n and 0p . 

 Theorem 3.9 

,2 , ,3 ,( 2) ,n

k n p k n k n p k n pU j U U              (3.9) 
where 0n and 0p  . 
Proof. 

2 1 2 1

1 2
,2 , 1 2

1 2

3 1 3 1 1 1

1 2 1 2
1 2

1 2 1 2

4 ( )

4 4( )

n p n p
n n

k n p k n

n p n p n p n p
n

r r
U j r r

r r

r r r r
r r

r r r r

   



       


 



  
   

  

 

3 1 3 1 1 1

1 2 1 2

1 2 1 2

,3

4 4( 2)

( 2) .

n p n p n p n p
n

n

k n p n p

r r r r

r r r r

U U

       

 

  
    

  

  

 

Corollary 3.10

 ,2 , ,3 1 , 14 ( 2) ,n

k n p k n k n p k n pU j J J       (3.10) 

where 0n and 1.p   

Theorem 3.11 
1

, ,2 ,3 , 2( 2) ,n

k n k n p k n p k n pU j U U

        (3.11) 
where 0n and 0p  . 
 

Proof. 
1 1

2 21 2
, ,2 1 2

1 2

3 1 3 1 1 1
11 2 1 2

1 2

1 2 1 2

3 1 3 1 1 1
11 2 1 2

1 2 1 2

1

,3 , 2

4 ( )

( )
4 4( )

( )
4 ( 2) 4

( 2) .

n n
n p n p

k n k n p

n p n p n p n p
n

n p n p n p n p
n

n

k n p k n p

r r
U j r r

r r

r r r r
r r

r r r r

r r r r

r r r r

U U

 
 



       


       




  


 



 
 

 

 
  

 

  

 

Corollary 3.12 

 1

, ,2 ,3 1 , 14 ( 2) ,n

k n k n p k n p k n pU j J J

        (3.12) 

where 0n and 0p  . 

Theorem 3.13 
1 2

,4 1 , 1 1 2 ,2 ,24 4 ( ) ,n

k n p k p k n k n pj j r r J U

       (3.13) 
where 0n and 1p  . 
Proof: 

 

2

1 2 ,2 ,2

2 2 2 1 2 1
2 1 2 1 2

1 2

1 2 1 2

4 1 4 1 2 1 1

1 2 1 2 1 2

( )

( ) 4

4 ( ) ( )

k n k n p

n n n p n p

n p n p n p p

r r J U

r r r r
r r

r r r r

r r r r r r



   

     



   
    

   

   

 
4 1 4 1 2 1 1

1 2 1 2

,4 1 , 1

1

,4 1 , 1

4( ( 2) ( ))

4( 4 )

4 4 .

n p n p n p p

n

k n p k p

n

k n p k p

r r r r

j j

j j

     

  



  

    

 

 

 

Theorem 3.14 
2 1 2

,4 1 , 1 1 2 ,2 ,24 2 ( ) ,n

k n p k p k n p k nj j r r J U

       (3.14) 

where 0n and 1p  . 
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Proof: 

 

2

1 2 ,2 ,2

2 2 2 1 2 1
2 1 2 1 2

1 2

1 2 1 2

4 1 4 1 2 1 1 1

1 2 1 2 1 2

4 1 4 1 2 1 1 1

1 2 1 2

2 1

,4 1 , 1

,4 1

( )

( ) 4

4 ( ) ( )

4( ( 2) ( ))

4( 2 )

4

k n p k n

n p n p n n

n p n p n p p

n p n p n p p

n

k n p k p

k n p

r r J U

r r r r
r r

r r r r

r r r r r r

r r r r

j j

j



   

      

      



  

 



   
    

   

   

    

 

 2 1

, 12 .n

k pj



 

Theorem 3.15 
1 2

,4 1 , 1 1 2 , , ,24 4 ( ) ,n

k n p k p k n k n k n pj j r r J j U

      (3.15) 
where 0n and 1p  . 
Proof: 

 

 

2

1 2 , , ,2

2 1 2 1
2 1 2 1 2

1 2 1 2

1 2 1 2

2 2 2 1 2 1

1 2 1 2

4 1 4 1 2 1 1

1 2 1 2 1 2

4 1 4 1 2 1 1

1 2 1 2

( )

( ) ( ) 4

4( )( )

4 ( ) ( )

4 ( 2) ( )

k n k n k n p

n n n p n p
n n

n n n p n p

n p n p n p p

n p n p n p p

r r J j U

r r r r
r r r r

r r r r

r r r r

r r r r r r

r r r r



   

   

     

     



    
     

    

  

   

    

 ,4 1 , 1

1

,4 1 , 1

4 4

4 4 .

n

k n p k p

n

k n p k p

j j

j j

  



  

 

 

 
 For different values of p  Theorem 3.1 to 
Theorem 3.14 can be expressed for even and odd 
k -generalized Fibonacci, k -Jacobsthal and k -
Jacobsthal-Lucas numbers. 

4. Conclusion 
 In this paper, by using the Binet’s 
formula we obtained some generalized identities 
involving common factors of k -generalized 
Fibonacci, k -Jacobsthal and k -Jacobsthal-Lucas 
numbers. The results presented in this paper extend 
some previous results in the literature. 
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