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Abstract

In this short note, we answer an open problem posed by B. Sroysang [1]. That is,
we show that the only solutions (z,y, 2) in non-negative integers to the Diophantine
equation 2% + 31Y = 22 are (3,0, 3) and (7,2, 33).
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1 Introduction

In [2], Sroysang showed that the Diophantine equation 8% + 19¥ = 22 has a unique
solution (z,y,z) = (1,0, 3) in non-negative integers. At the end of his paper, he posed
the following question ‘“What is the set of all solutions (z,vy,z) for the Diophantine
equation 8% + 17Y = 22 where z,y and z are non-negative integers?”. The answer has
been addressed by Rabago in [3]. He showed that the only solution to the Diophantine
equation 8 + 17Y = 22 are (1,0,3),(1,1,5),(2,1,9), and (3,1,23). On the other hand,
Sroysang [4], studied the Diophantine equation 3% 4+ 5Y = 22 and showed that this
equation has a unique non-negative integer solution (1,0, 2). In a paper by Suvarnamani,
Singta and Chotchaisthit [5], the two Diophantine equations 4% +7Y = 22 and 4% +11Y =
22 have been shown to contain no non-negative integer solution. They used Catalan’s
conjecture, which is proven to be true by Mihailescu [6] in 2004, to prove their claim.
In this note we answer the question raised by Sroysang in [1]. More precisely, we show
that the Diophantine equation 2% + 31¥ = 22 has exactly two solutions in non-negative
integers, i.e. (z,y,z)=(3,0,3),(7,2,33).
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2 Main Results

We first prove a helpful Lemma.

Lemma 2.1. Let n be a non-negative integer. Then, 32|(312"*14+1) and 64|(3127 1+
33), or equivalently, 31271 + 1 = 32[ for some odd natural number l.

Proof. For n = 0, we have 32|(31' +1). Suppose 32|(31%**!141) for some natural number
k, i.e. 312kt 4+ 1 = 32], [ a natural number. Then 312(:+D+1 4 1 — 961(312k+1) 41 =
961(312F1 1+ 1) — 960 = 961(321) — 960 = 32(9611 — 30). Thus, 32|312k+1 41

On the other hand, for n = 0, 64|(31' 4 33). We assume that 64|(31%*+! 4 33),
where k is a natural number, i.e. 312#*1 433 = 641, for some natural number [. Hence,
312(k+D+1 1 33 — 961(31%F+1) 4 33 = 961(31%F+1 4+ 33) — 31680 = 961(641) — 31680 =
64(9611 — 495). Therfore, 64|(312*1 + 33). Tt follows that 64 { (31%**! + 1). Here we
conclude that 312*+1 41 = 321, for some odd natural number [, proving the theorem. [J

Now we proceed to our main results.

Theorem 2.2. The Diophantine equation 2% + 31Y = 22 has exactly two solutions in
non-negative integers, i.e. (x,y,z) = (3,0,3),(7,2,33).

Proof. The case when z = 0 is obvious so we only consider the following possibilities.

Case 1. 2 = 0. Suppose 2% + 31¥ = 22 is possible in non-negative integers x, y, z for
x = 0. Then we have 31Y = 22 — 1 = (2 +1)(z — 1). Letting a + 8 = y,a < 3, we obtain
2= (2+1)—(2—1) = 31°71(319~>—1). Hence, a = 1 and so, 31°~! = 3, a contradiction.

Case 2. y=0.Ify =0then 22— 1= (z+1)(z—1) =2%. S0,2= (z+1)—(2—1) =
20(20=® — 1), where a + 8 = z, and a < . Hence, a = 1 and it follows that 8 = 2.
Thus, = 3 and z = 3. This gives us a solution (z,y, z) = (3,0,3) to 2% + 31Y = 22,

Case 3. r,y,z > 0. We divide this case into two subcases.

Subcase 3.1 We first treat the case when « = 1. So, suppose that 2% 4+ 31¥ = 22 is
possible in non-negative integers x,y, z for x = 1. Note that 31¥ +2 = 3 (mod 4) if y is
even, and 31Y + 2 = 1 (mod 4) if y is odd. But, 22 = 0,1 (mod 4). So, y must be odd.
Then we have, 312"*1 + 2 = 22, where n is a natural number. So, it is either z = 4k + 1
or z =4k + 3, £k = 0 or a natural number.

For z = 4k + 1, we have 31?2"*! + 2 = (4k +1)? = 16k% + 8k + 1. Then, 3121 41 =
8k(2k 4 1) and this implies that

12n+1 1 12n+1 1
k(2kz+1):3+:4<3+).

8 32

Note that by Lemma 2.1, (312771 4+1)/32 is odd. So, k = 4 and 2k+1 = (3121 +1)/32.
Hence, 2(4) + 1 = (312" +1)/32. It follows that, 312"*! = 287, a contradiction.
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For z = 4k + 3, we have 312" 42 = (4k +3)? = 16k? + 24k +9. Then, 312"t +1 =
16k? + 24k + 8 = 8(2k? + 3k + 1) and this implies that
312n+1 + 1 312n+1 4 1
=4 .
8 < 32 )

(k+1)(2k+1) =

Again, by Lemma 2.1, (312"*14+1) /32 is odd. Hence, k = 3 and 2k+1 = (31271 4+1)/32
and this follows that 2(3) + 1 = (312" 4 1)/32. Thus, 31?"*! = 223, which is also a
contradiction. Therefore, 31¥ + 2 = 22, is impossible for non-negative integers y and z.

Subcase 3.2 For the case x > 2 we have 31Y + 2% = 1 (mod 4) if y is even and
31Y + 2% = 3 (mod 4) if y is odd. So, y must be even since 2?2 = 0,1 (mod 4). Let
y = 2n, then 22 — (317)2 = 2%, It follows that 2-31" = (2 +31") — (z — 31") = 26 — 22
a+ B =z and a < B. Hence, 27126~ — 1) = 26=1 — 20~1 — 31" This implies that,
a =1 and 2°~! — 1 = 31". But, the RHS can be expressed as (32 — 1)" = (2> — 1)" =
(26=1 — 1)™. Thus, 26=! — 1 = (26=1 — 1)". Therefore, we can see immediately that
n =1 and § = 6. From these, we’ll obtain x = 7 and y = 2. This gives us the value
z =294 31" = 2! + 31! = 33. Here we conclude that (z,y,z) = (7,2,33) is a solution
of the Diophantine equation 2% 4+ 31Y = 22. Now, if n > 1 then 271 — 31" = 1 is clearly
impossible due to Catalan’s conjecture. This completes the proof of the theorem. [

Corollary 2.3. If n is a natural number different from one then, the Diophantine
equation 2% + 31Y = w?" has no solution in non-negative integers.

Proof. Let n # 1 be a natural number and suppose that the Diophantine equation
2% 4+ 31Y = (w")? has a solution in non-negative integers. We let z = w", then we have
2% 4+ 31Y = 22. By Theorem 2.2, z € {3,33}. Hence, w"™ = 3 or w” = 33. These are
possible only when n = 1, a contradiction. Thus, 2% + 31¥ = w?" has no solution in
non-negative integers. O
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