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Abstract

In this short note, we answer an open problem posed by B. Sroysang [1]. That is,
we show that the only solutions (x, y, z) in non-negative integers to the Diophantine
equation 2x + 31y = z2 are (3, 0, 3) and (7, 2, 33).
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1 Introduction

In [2], Sroysang showed that the Diophantine equation 8x + 19y = z2 has a unique
solution (x, y, z) = (1, 0, 3) in non-negative integers. At the end of his paper, he posed
the following question ‘‘What is the set of all solutions (x, y, z) for the Diophantine
equation 8x + 17y = z2 where x, y and z are non-negative integers?’’. The answer has
been addressed by Rabago in [3]. He showed that the only solution to the Diophantine
equation 8x + 17y = z2 are (1, 0, 3), (1, 1, 5), (2, 1, 9), and (3, 1, 23). On the other hand,
Sroysang [4], studied the Diophantine equation 3x + 5y = z2 and showed that this
equation has a unique non-negative integer solution (1, 0, 2). In a paper by Suvarnamani,
Singta and Chotchaisthit [5], the two Diophantine equations 4x+7y = z2 and 4x+11y =
z2 have been shown to contain no non-negative integer solution. They used Catalan’s
conjecture, which is proven to be true by Mihailescu [6] in 2004, to prove their claim.
In this note we answer the question raised by Sroysang in [1]. More precisely, we show
that the Diophantine equation 2x + 31y = z2 has exactly two solutions in non-negative
integers, i.e. (x, y, z) = (3, 0, 3), (7, 2, 33).
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2 Main Results

We first prove a helpful Lemma.

Lemma 2.1. Let n be a non-negative integer. Then, 32|(312n+1+1) and 64|(312n+1+
33), or equivalently, 312n+1 + 1 = 32l for some odd natural number l.

Proof. For n = 0, we have 32|(311+1). Suppose 32|(312k+1+1) for some natural number
k, i.e. 312k+1 + 1 = 32l, l a natural number. Then 312(k+1)+1 + 1 = 961(312k+1) + 1 =
961(312k+1 + 1)− 960 = 961(32l)− 960 = 32(961l − 30). Thus, 32|312k+1 + 1.

On the other hand, for n = 0, 64|(311 + 33). We assume that 64|(312k+1 + 33),
where k is a natural number, i.e. 312k+1+33 = 64l, for some natural number l. Hence,
312(k+1)+1 + 33 = 961(312k+1) + 33 = 961(312k+1 + 33) − 31680 = 961(64l) − 31680 =
64(961l − 495). Therfore, 64|(312k+1 + 33). It follows that 64 - (312k+1 + 1). Here we
conclude that 312k+1+1 = 32l, for some odd natural number l, proving the theorem.

Now we proceed to our main results.

Theorem 2.2. The Diophantine equation 2x+31y = z2 has exactly two solutions in
non-negative integers, i.e. (x, y, z) = (3, 0, 3), (7, 2, 33).

Proof. The case when z = 0 is obvious so we only consider the following possibilities.

Case 1. x = 0. Suppose 2x+31y = z2 is possible in non-negative integers x, y, z for
x = 0. Then we have 31y = z2− 1 = (z+1)(z− 1). Letting α+β = y, α < β, we obtain
2 = (z+1)−(z−1) = 31α−1(31β−α−1). Hence, α = 1 and so, 31β−1 = 3, a contradiction.

Case 2. y = 0. If y = 0 then z2−1 = (z+1)(z−1) = 2x. So, 2 = (z+1)− (z−1) =
2α(2β−α − 1), where α + β = x, and α < β. Hence, α = 1 and it follows that β = 2.
Thus, x = 3 and z = 3. This gives us a solution (x, y, z) = (3, 0, 3) to 2x + 31y = z2.

Case 3. x, y, z > 0. We divide this case into two subcases.

Subcase 3.1 We first treat the case when x = 1. So, suppose that 2x + 31y = z2 is
possible in non-negative integers x, y, z for x = 1. Note that 31y + 2 ≡ 3 (mod 4) if y is
even, and 31y + 2 ≡ 1 (mod 4) if y is odd. But, z2 ≡ 0, 1 (mod 4). So, y must be odd.
Then we have, 312n+1+2 = z2, where n is a natural number. So, it is either z = 4k+1
or z = 4k + 3, k = 0 or a natural number.

For z = 4k+1, we have 312n+1+2 = (4k+1)2 = 16k2+8k+1. Then, 312n+1+1 =
8k(2k + 1) and this implies that

k(2k + 1) =
312n+1 + 1

8
= 4

(
312n+1 + 1

32

)
.

Note that by Lemma 2.1, (312n+1+1)/32 is odd. So, k = 4 and 2k+1 = (312n+1+1)/32.
Hence, 2(4) + 1 = (312n+1 + 1)/32. It follows that, 312n+1 = 287, a contradiction.



Sci. & Tech. RMUTT J. Vol.3 No.1 (2013) 43

For z = 4k+3, we have 312n+1+2 = (4k+3)2 = 16k2+24k+9. Then, 312n+1+1 =
16k2 + 24k + 8 = 8(2k2 + 3k + 1) and this implies that

(k + 1)(2k + 1) =
312n+1 + 1

8
= 4

(
312n+1 + 1

32

)
.

Again, by Lemma 2.1, (312n+1+1)/32 is odd. Hence, k = 3 and 2k+1 = (312n+1+1)/32
and this follows that 2(3) + 1 = (312n+1 + 1)/32. Thus, 312n+1 = 223, which is also a
contradiction. Therefore, 31y + 2 = z2, is impossible for non-negative integers y and z.

Subcase 3.2 For the case x ≥ 2 we have 31y + 2x ≡ 1 (mod 4) if y is even and
31y + 2x ≡ 3 (mod 4) if y is odd. So, y must be even since z2 ≡ 0, 1 (mod 4). Let
y = 2n, then z2 − (31n)2 = 2x. It follows that 2 · 31n = (z+31n)− (z− 31n) = 2β − 2α,
α + β = x and α < β. Hence, 2α−1(2β−α − 1) = 2β−1 − 2α−1 = 31n. This implies that,
α = 1 and 2β−1 − 1 = 31n. But, the RHS can be expressed as (32− 1)n = (25 − 1)n =
(26−1 − 1)n. Thus, 2β−1 − 1 = (26−1 − 1)n. Therefore, we can see immediately that
n = 1 and β = 6. From these, we’ll obtain x = 7 and y = 2. This gives us the value
z = 2α + 31n = 21 + 311 = 33. Here we conclude that (x, y, z) = (7, 2, 33) is a solution
of the Diophantine equation 2x+31y = z2. Now, if n > 1 then 2β−1− 31n = 1 is clearly
impossible due to Catalan’s conjecture. This completes the proof of the theorem.

Corollary 2.3. If n is a natural number different from one then, the Diophantine
equation 2x + 31y = w2n has no solution in non-negative integers.

Proof. Let n ̸= 1 be a natural number and suppose that the Diophantine equation
2x + 31y = (wn)2 has a solution in non-negative integers. We let z = wn, then we have
2x + 31y = z2. By Theorem 2.2, z ∈ {3, 33}. Hence, wn = 3 or wn = 33. These are
possible only when n = 1, a contradiction. Thus, 2x + 31y = w2n has no solution in
non-negative integers.
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