

Receive: July 7, 2012
Revise: September 29, 2012
Accepted: October 5, 2012

Small PPQ-injective Modules

S. Wongwai and O. Sthityanak

Department of Mathematics, Faculty of Science and Technology,
Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand
E-mail : wsarun@hotmail.com , oam_st@hotmail.com

Abstract

Let M be a right R – module. A right R – module N is called *small pseudo principally M – injective* (briefly, *small PP – M – injective*) if, every R – monomorphism from a small and principal submodule of M to N can be extended to an R – homomorphism from M to N . In this paper, we give some characterizations and properties of *small PP – Q – injective* modules.

2010 Mathematics Subject Classification: 13C10, 13C11, 13C60.

Keywords and phrases: Principally Quasi-injective Modules, Jacobson radical, Endomorphism Rings

1. Introduction

Let R be a ring. A right R – module M is called *principally injective* (or P – *injective*) [5], if every R – homomorphism from a principal right ideal of R to M can be extended to an R – homomorphism from R to M . Equivalently, $l_M r_R(a) = Ma$ for all $a \in R$. Following [7], a right R – module M is called *principally quasi-injective*, if each R – homomorphism from a principal submodule of M to M can be extended to an endomorphism of M . In [9], a right R – module M is called *small principally injective* (or SP –

injective) if, every R – homomorphism from a small and principal right ideal aR to M can be extended to an R – homomorphism from R to M . A right R – module M is called PPQ – *injective* [13] if, every R – monomorphism from a principal submodule of M to M extends to an endomorphism of M . In this note we introduce the definition of small PPQ – injective modules and give some interesting results on these modules.

Throughout this paper, R will be an associative ring with identity and all modules are unitary right R – modules. For right R – modules M and N , $\text{Hom}_R(M, N)$ denotes the set of all R – homomorphisms from M to N and $S = \text{End}_R(M)$ denotes the endomorphism ring of M . If X is a subset of M the right (resp. left) annihilator of X in R (resp. S) is denoted by $r_R(X)$ (resp. $l_S(X)$). By notations, $N \subset^\oplus M$, $N \subset^e M$, and $N \ll M$ we mean that N is a direct summand, an essential submodule and a superfluous submodule of M , respectively. We denote the Jacobson radical of M by $J(M)$.

Following [1], a submodule K of a right R – module M is *superfluous* (or *small*) in M , abbreviated $K \ll M$, in case for every submodule L of M , $K + L = M$ implies $L = M$. It is clear that $kR \ll R$ if and only if $k \in J(R)$.

2. Small PPQ -injective Modules

Definition 2.1. Let M be a right R – module. A right R – module N is called *small pseudo principally M – injective* (briefly, *small PP – M – injective*) if, every R – monomorphism from a small and principal submodule of M to N can be extended to an R – homomorphism from M to N . M is called *small pseudo principally quasi-injective* (briefly, *small PPQ – injective*) if, it is small PP – M – injective.

Lemma 2.2.

(1) If N is small $PP - M$ -injective, then N is small $PP - X$ -injective for any submodule X of M .

(2) Every direct summand of small $PP - M$ -injective is also small $PP - M$ -injective.

Proof. (1) Let $m \in X$ with $mR \ll X$ and let $\alpha: mR \rightarrow N$ be an R -monomorphism. Since $mR \ll M$ [1, Lemma 5.18], there exists an R -homomorphism $\hat{\alpha}: M \rightarrow N$ such that $\alpha = \hat{\alpha}\iota_1$ where $\iota_1: mR \rightarrow X$ and $\iota_2: X \rightarrow M$ are the inclusion maps. Then $\hat{\alpha}\iota_2$ extends α .

(2) Let N be a small $PP - M$ -injective module, $X \subset^{\oplus} N$, $m \in M$ with $mR \ll M$ and let $\alpha: mR \rightarrow X$ be an R -monomorphism. Let $\varphi: X \rightarrow N$ be the injection map. Since $\varphi\alpha$ is monic, there exists an R -homomorphism $\beta: M \rightarrow N$ such that $\varphi\alpha = \beta\iota$ where $\iota: mR \rightarrow M$ is the inclusion map. Then $\pi\beta$ extends α where $\pi: N \rightarrow X$ is the projection map.

□

Example 2.3. Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$ where F is a field, $M_R = R_R$ and

$$N_R = \begin{pmatrix} F & F \\ 0 & 0 \end{pmatrix}. \text{ Then}$$

(1) N is small $PP - M$ -injective.

(2) N is small PPQ -injective.

Proof. (1) Let $0 \neq x \in F$ and $m = \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix}$. It is clear that only

$mR = \begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix}$ is the nonzero small and principal submodule of M . Let

$\varphi: mR \rightarrow N$ be an R –monomorphism. Since $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in mR$, there exists

$x_{11}, x_{12} \in F$ such that $\varphi\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} \\ 0 & 0 \end{pmatrix}$.

$$\begin{aligned} \text{Then } \varphi\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} &= \varphi\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \\ &= \varphi\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & x_{12} \\ 0 & 0 \end{pmatrix}. \end{aligned}$$

It follows that $x_{11} = 0$.

Define $\hat{\varphi}: M \rightarrow N$ by $\hat{\varphi}\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} ax_{12} & bx_{12} \\ 0 & 0 \end{pmatrix}$ for every $a, b, c \in F$.

It is clear that $\hat{\varphi}$ is an R –homomorphism and $\hat{\varphi}$ extends φ .

Then N is small $PP - M$ –injective.

(2) By Lemma 2.2 (1)

□

A right R –module N is called *small principally M –injective* (briefly, $SP - M$ –injective) [12] if, every R –homomorphism from a small and principal submodule of M to N can be extended to an R –homomorphism from M to N . Two right R –modules M , N are called *mutually SP –injective* if M is $SP - N$ –injective and N is $SP - M$ –injective.

Proposition 2.4. If $M_1 \oplus M_2$ is small PPQ –injective, then M_1 and M_2 are mutually SP –injective.

Proof. Let $a \in M_2$ with $aR \ll M_2$ and let $\varphi: aR \rightarrow M_1$ be an R –homomorphism. Define $\alpha: aR \rightarrow M_1 \oplus M_2$ by $\alpha(x) = (\varphi(x), x)$ for every $x \in aR$. It is clear that α is an R –monomorphism. Since $M_1 \oplus M_2$ is small $PP - M_2$ –injective by Lemma 2.2, there exists an R –homomorphism

$\beta: M_2 \rightarrow M_1 \oplus M_2$ such that $\alpha = \beta \iota$ where $\iota: aR \rightarrow M_2$ is the inclusion map. Let $\pi: M_1 \oplus M_2 \rightarrow M_1$ be the projection map. Then $\varphi = \pi \alpha = \pi \beta \iota$. This proves that M_1 is $SP - M_2$ - injective. The same argument shows that M_2 is $SP - M_1$ - injective.

□

Theorem 2.5. Let M be a right R - module. If every small and principal submodule of M is projective, then every factor module of a small $PP - M$ - injective module is small $PP - M$ - injective.

Proof. Let N be a small $PP - M$ - injective module, X a submodule of N , $mR \ll M$, and let $\varphi: aR \rightarrow N/X$ be an R - monomorphism. Then by assumption, there exists an R - homomorphism $\hat{\varphi}: aR \rightarrow N$ such that $\varphi = \eta \hat{\varphi}$ where $\eta: N \rightarrow N/X$ is the natural R - epimorphism. If $x \in \text{Ker}(\hat{\varphi})$, then $\varphi(x) = \eta \hat{\varphi}(x) = X$ so $x = 0$ which shows that $\hat{\varphi}$ is monic. Since N is a small $PP - M$ - injective, there exists an R - homomorphism $\beta: M \rightarrow N$ which is an extension of $\hat{\varphi}$ to M . Then $\eta \beta$ is an extension of φ to M .

□

Let M be a right R - module with $S = \text{End}_R(M)$. Following [7], write

$$W(S) = \{s \in S: \text{Ker}(s) \subset^e M\}.$$

It is known that $W(S)$ is an ideal of S . A right R - module M is called a *principal self-generator* if every element $m \in M$ has the form $m = \gamma(m_1)$ for some $\gamma: M \rightarrow mR$.

Lemma 2.6. Let M be a principal, small PPQ - injective module. If $\text{Ker}(s) = \text{Ker}(t)$, where $s, t \in S$ with $s(M) \ll M$, then $St \subset Ss$.

Proof. Let $\text{Ker}(s) = \text{Ker}(t)$, where $s, t \in S$ with $s(M) \ll M$. Define $\varphi: s(M) \rightarrow M$ by $\varphi(s(m)) = t(m)$ for every $m \in M$. It is obvious that φ is an R - monomorphism. Since $s(M)$ is a small and principal submodule of M

and M is small PPQ-injective, let $\hat{\varphi}$ be an extension of φ . Then $t = \varphi s = \hat{\varphi} s \in Ss$ and so $St \subset Ss$.

□

Proposition 2.7. Let M be a principal module which is a principal self-generator and $\text{Soc}(M_R) \subset^e M$. If M is small PPQ-injective, then $J(S) \subset W(S)$.

Proof. Let $s \in J(S)$. If $\text{Ker}(s) \not\subset^e M$, then $\text{Ker}(s) \cap N = 0$ for some nonzero submodule N of M . Since $\text{Soc}(M_R) \subset^e M$, $\text{Soc}(M_R) \cap N \neq 0$. Then there exists a simple submodule kR of M such that $kR \subset \text{Soc}(M) \cap N$ [1, Corollary 9.10]. As M is a principal self-generator and kR is simple, $kR = t(M)$ for some $t \in S$. It follows that $\text{Ker}(st) = \text{Ker}(t)$. Since M is a principal module, $J(M) \ll M$ [10, 21.6] and we have $J(S)M \subset J(M)$, it follows that $st(M)$ is a small submodule of M . Since M is small PPQ-injective, $St \subset Sst$ by Lemma 2.6. Write $t = gst$ where $g \in S$. It follows that $(1 - gs)t = 0$ and so $t = (1 - gs)^{-1}0 = 0$, a contradiction.

□

Proposition 2.8. Let M be a principal nonsingular module which is a principal self-generator and $\text{Soc}(M_R) \subset^e M$. If M is small PPQ-injective, then $J(S) = 0$.

Proof. Since $J(S) \subset W(S)$ by Proposition 2.7, we show that $W(S) = 0$.

Let $s \in W(S)$ and let $m \in M$. Define $\varphi: R \rightarrow M$ by $\varphi(r) = mr$ for every $r \in R$. It is clear that φ is an R -homomorphism. Thus

$$\begin{aligned} r_R(s(m)) &= \{r \in R : s(mr) = 0\} \\ &= \{r \in R : mr \in \text{Ker}(s)\} \\ &= \{r \in R : \varphi(r) \in \text{Ker}(s)\} \\ &= \varphi^{-1}(\text{Ker}(s)). \end{aligned}$$

It follows that $\varphi^{-1}(\text{Ker}(s)) \subset^e R$ [3, Lemma 5.8(a)] so $r_R(s(m)) \subset^e R$. Thus $s(m) \in Z(M_R) = 0$ because M is nonsingular. As this is true for all $m \in M$, we have $s = 0$. Hence $W(S) = 0$ as required. \square

Proposition 2.9. Let M be a small PPQ-injective module $m \in M$ and $s \in S$.

(1) If mR is a simple and small right R -module, then Sm is a simple left S -module.

(2) If $s(M)$ is a simple and small right R -module, then Ss is a simple left S -module.

Proof. (1) If A is a nonzero submodule of Sm and $0 \neq \alpha(m) \in A$, then $S\alpha(m) \subset A$. Note that $\alpha(m)R$ is a nonzero homomorphic image of the simple module mR , then $\alpha(m)R$ is simple. It is clear that $\alpha(m)R \ll M$.

Define $\varphi: \alpha(m)R \rightarrow M$ by $\varphi(\alpha(m)r) = s(m)$ for every $r \in R$. Since $\text{Ker}(\varphi) \cap mR = 0$, φ is well-defined. It is clear that φ is an R -homomorphism. Since $\alpha(m)R$ is simple and φ is nonzero, $\text{Ker}(\varphi) = 0$. Then there exists an R -homomorphism $\hat{\varphi} \in S$ is an extension of φ . Hence $m = \hat{\varphi}\alpha(m) \in S\alpha(m)$. It follows that $Sm = S\alpha(m)$ so $A = Sm$.

(2) By the similar proof of (1). \square

Proposition 2.10. Let M be a small PPQ-injective module. If $Sm_1 \oplus \dots \oplus Sm_n$ is direct, $m_i \in M$ with $m_iR \ll M$, ($1 \leq i \leq n$), then any R -monomorphism $\alpha: m_1R + \dots + m_nR \rightarrow M$ has an extension in S .

Proof. Since $\alpha|_{m_iR}$ is monic, for each i , there exists an R -homomorphism $\varphi_i: M \rightarrow M$ such that $\varphi_i(m_i) = \alpha(m_i)$. Since $(\sum_{i=1}^n m_i)R \ll M$,

$(\sum_{i=1}^n m_i)R \subset \sum_{i=1}^n m_i R$ and $\alpha \Big|_{(\sum_{i=1}^n m_i)R}$ is monic, α can be extended to $\varphi: M \rightarrow M$ such that, for any $r \in R$,

$$\varphi(\sum_{i=1}^n m_i) r = \alpha(\sum_{i=1}^n m_i) r.$$

It follows that $\sum_{i=1}^n \varphi(m_i) = \sum_{i=1}^n \varphi_i(m_i)$. Since $S m_1 \oplus \dots \oplus S m_n$ is direct, $\varphi(m_i) = \varphi_i(m_i)$ for all $1 \leq i \leq n$. Therefore φ is an extension of α .

□

Lemma 2.11. Let M be a small PPQ-injective module. If $r_R(m) = r_R(n)$, where $m, n \in M$ with $mR \ll M$, then $Sn \subset Sm$.

Proof. Let $r_R(m) = r_R(n)$, where $m, n \in M$ with $mR \ll M$. Define $\varphi: mR \rightarrow M$ by $\varphi(mr) = nr$ for every $r \in R$. It is obvious that φ is an R -monomorphism. Since M is small PPQ-injective, there exists $\hat{\varphi} \in S$ such that $\hat{\varphi}$ extends φ . Then $n = \varphi(m) = \hat{\varphi}(m) \in Sm$ so $Sn \subset Sm$.

□

Theorem 2.12. Let M be a small PPQ-injective module, $m, n \in M$ with $mR \ll M$.

- (1) If mR embeds in nR , then Sm is an image of Sn .
- (2) If $mR \simeq nR$, then $Sm \simeq Sn$.

Proof. (1) Let $f: mR \rightarrow nR$ be an R -monomorphism. Since M is small PPQ-injective, there exists $\hat{f} \in S$ such that \hat{f} extends f . Let $\sigma: Sn \rightarrow Sm$ defined by $\sigma(s(n)) = \hat{f}(s(m))$ for every $s \in S$. Since $\sigma(s(n)) = sf(m) \in s(nR)$, σ is well-defined. It is clear that σ is an S -homomorphism. Note that $f(m)R = \hat{f}(m)R \ll M$. Since f is monic, $r_R(f(m)) = r_R(m)$ and hence by Lemma 2.11, $Sm \subset Sf(m)$. Then $m \in Sf(m) \subset \sigma(Sn)$.

- (2) Let $f: mR \rightarrow nR$ be an R -isomorphism. Write $f(ma) = n$, $a \in R$. Since M is small PPQ-injective, f can be extended to

$\hat{f} : M \rightarrow M$. Define $\sigma : S_n \rightarrow S_m$ by $\sigma(s(n)) = \hat{f}(s(n)m)$ for every $s \in S$. It is clear that σ is an S -epimorphism. If $s(n) \in \text{Ker}(\sigma)$, then $0 = \sigma(s(n)) = \hat{f}(s(n)m) = s(n)$. This shows that σ is monic.

□

Proposition 2.13. Let M be a principal, small PPQ -injective module. Then $\text{Soc}(M_R) \subset r_M(J(S))$.

Proof. Let mR be a simple submodule of M . Suppose $\alpha(m) \neq 0$ for some $\alpha \in J(S)$. Then $r_R(\alpha(m)) = r_R(m)$ because $r_R(m)$ is maximal. Since M is small PPQ -injective and $\alpha(m)R$ is a small and principal submodule of M , $S_m \subset S\alpha(m)$ by Lemma 2.11. Write $m = \beta\alpha(m)$ where $\beta \in S$. Then $(1 - \beta\alpha)m = 0$ so $m = (1 - \beta\alpha)^{-1}0 = 0$, a contradiction.

□

References

- [1] F. W. Anderson and K. R. Fuller, “Rings and Categories of Modules”, Graduate Texts in Math. No.13, Springer-verlag, New York, 1992.
- [2] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, “Extending Modules”, Pitman, London, 1994.
- [3] A. Facchini, “Module Theory”, Birkhauser Verlag, Basel, Boston, Berlin, 1998.
- [4] S. H. Mohamed and B. J. Muller, “Continuous and Discrete Modules”, London Math. Soc. Lecture Note Series 14, Cambridge Univ. Press, 1990.
- [5] W. K. Nicholson and M. F. Yousif, Principally injective rings, J. Algebra, 174(1995), 77 - 93.
- [6] W. K. Nicholson and M. F. Yousif, Mininjective rings, J. Algebra, 187(1997), 548 - 578.

- [7] W. K. Nicholson, J. K. Park and M. F. Yousif, Principally quasi-injective modules, *Comm. Algebra*, 27:4(1999), 1683 - 1693.
- [8] N. V. Sanh, K. P. Shum, S. Dhompongsa and S. Wongwai, On quasi-principally injective modules, *Algebra Coll.6*: 3(1999), 269 - 276.
- [9] L.V. Thuyet, and T.C.Quynh, On small injective rings, simple-injective and quasi-Frobenius rings, *Acta Math. Univ. Comenianae*, Vol.78(2), (2009), 161 - 172.
- [10] R. Wisbauer, “Foundations of Module and Ring Theory”, Gordon and Breach London, Tokyo e.a., 1991.
- [11] S. Wongwai, On the endomorphism ring of a semi-injective module, *Acta Math. Univ. Comenianae*, Vol.71, 1(2002), 27 - 33.
- [12] S. Wongwai, Small Principally Quasi-injective modules, *Int. J. Contemp. Math. Sciences*, Vol.6, No. 11, 527 - 534.
- [13] Z. Zhu, Pseudo PQ-injective modules, *Trk J Math*, 34(2010), 1- 8.