

**Weak convergence theorem for finding
common fixed points of a families of
nonexpansive mappings and a nonspreading
mapping in Hilbert spaces**

S. Plubtieng¹ and S. Chornphrom

Department of Mathematics, Faculty of Science,
Naresuan University, Phitsanulok 65000, Thailand
E-mail : Somyotp@nu.ac.th

Abstract

In this paper, we introduce an iterative method and prove a weak convergence theorem for finding common fixed points of a families of nonexpansive mappings and a nonspreading mapping in Hilbert spaces. Moreover, we apply our result to finding common element of a solution set of equilibrium problem with a relaxed monotone mapping and a common fixed point set nonspreading mappings. Using the result, we improve and unify several results in fixed point problems and equilibrium problems.

Keywords: Equilibrium problem, Fixed point problem, Nonexpansive mapping, Nonspreading mapping.

1 Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H . Then a mapping $T : C \rightarrow C$ is said to be nonexpansive if $\|Tx - Ty\| \leq \|x - y\|$ for all $x, y \in C$. We denote by $F(T)$ the set of fixed points of T . A mapping F is said to be firmly nonexpansive if

$$\|Fx - Fy\|^2 \leq \langle x - y, Fx - Fy \rangle,$$

¹Corresponding author

for all $x, y \in C$; see, for instance, [2, 5, 6, 15, 17]. On the other hand, a mapping $Q : C \rightarrow C$ is said to be quasi-nonexpansive if $F(Q) \neq \emptyset$ and

$$\|Qx - y\| \leq \|x - y\|,$$

for all $x \in C$ and $y \in F(Q)$, where $F(Q)$ is the set of fixed points of Q . If $T : C \rightarrow C$ is nonexpansive and the set $F(T)$ of fixed points of T is nonempty, then T is quasi-nonexpansive.

Recently, Kohsaka and Takahashi [10] introduced the following nonlinear mapping: Let E be a Hilbert space and let C be a nonempty closed convex subset of E . Then, a mapping $S : C \rightarrow C$ is said to be nonspreading if

$$2\|Sx - Sy\|^2 \leq \|Sx - y\|^2 + \|x - Sy\|^2,$$

for all $x, y \in C$. We know in a Hilbert space that every firmly nonexpansive mapping is nonspreading and that if the set of fixed points of a nonspreading mapping is nonempty, the nonspreading mapping is quasi-nonexpansive; see [10]. Let $A : C \rightarrow H$ be a mapping of C into H is called monotone if

$$\langle Au - Av, u - v \rangle \geq 0 \quad \forall u, v \in C.$$

A mapping $A : C \rightarrow H$ is called λ -inverse-strongly monotone if there exists a positive real number λ such that

$$\langle Au - Av, u - v \rangle \geq \lambda \|Ax - Ay\|^2 \quad \forall u, v \in C.$$

A mapping $T : C \rightarrow H$ is said to be relaxed $\eta - \alpha$ monotone if there exist a mapping $\eta : C \times C \rightarrow H$ and a function $\alpha : H \rightarrow \mathbb{R}$ positively homogeneous of degree p , that is, $\alpha(tz) = t^p \alpha(z)$ for all $t > 0$ and $z \in H$ such that

$$\langle Tx - Ty, \eta(x, y) \rangle \geq \alpha(x - y), \quad \forall x, y \in C,$$

where $p > 1$ is a constant; see [4]. In the case of $\eta(x, y) = x - y$ for all $x, y \in C$, T is said to be relaxed α -monotone. In the case of $\eta(x, y) = x - y$ for all $x, y \in C$ and $\alpha(z) = k\|z\|^p$, where $p > 1$ and $k > 0$, T is said to be p -monotone; see [7, 16, 21]. In fact, in this case, if $p = 2$, then T is a k -strongly monotone mapping. Moreover, every monotone mapping is relaxed $\eta - \alpha$ monotone with $\eta(x, y) = x - y$ for all $x, y \in C$ and $\alpha = 0$.

Let $F : C \times C \rightarrow \mathbb{R}$ be a bifunction. The equilibrium problem for F is to determine its equilibrium points, i.e. the set

$$EP(F) = \{x \in C : F(x, y) \geq 0, \quad \forall y \in C\}.$$

Many problems in physics, optimization, and economics require some elements of $EP(F)$, see [2, 3, 11, 18, 19, 20]. Several iterative methods have been proposed to solve the equilibrium problem, see for instance [3, 18, 19, 20]. In 2005, Combettes and Hirstoaga [3] introduced an iterative scheme for finding the best approximation to the initial data when $EP(F)$ is nonempty and proved a strong convergence theorem.

The variational inequality problem is to find $u \in C$ such that

$$\langle Au, v - u \rangle \geq 0$$

for all $v \in C$. The set of solutions of the variational inequality is denoted by $VI(C, A)$. The generalized equilibrium problem for F and A is to find $x \in C$ such that

$$F(x, y) + \langle Ax, y - x \rangle \geq 0 \quad \text{for all } y \in C. \quad (1.1)$$

Problem (1.1) was introduce by Takahashi and Takahashi [19] and the set of solution of (1.1) is denoted by $GEP(F, A)$. The generalized mixed equilibrium problem for F, ψ and A is to find $x \in C$ such that

$$F(x, y) + \varphi(y) - \varphi(x) + \langle Ax, y - x \rangle \geq 0 \quad \text{for all } y \in C. \quad (1.2)$$

Recently, Wang et al. [22] introduce the generalized mixed equilibrium problem with a relaxed monotone mapping. that is, to find $x \in C$ such that

$$F(x, y) + \langle Tx, \eta(y, x) \rangle + \langle Ax, y - x \rangle \geq 0 \quad \text{for all } y \in C. \quad (1.3)$$

The set of solution of (1.3) is denoted by $GEP(F, T)$.

On the other hand, Halpern [8] introduced the following iterative scheme for approximating a fixed point of T :

$$x_{n+1} = \alpha_n x + (1 - \alpha_n)Tx_n \quad (1.4)$$

for all $n \in \mathbb{N}$, where $x_1 = x \in C$ and $\{\alpha_n\}$ is a sequence of $[0, 1]$. Recently, Aoyama et al. [1] introduced a Halpern type iterative sequence for finding a common fixed point of a countable family of nonexpansive mappings. Let $x_1 = x \in C$ and

$$x_{n+1} = \alpha_n x + (1 - \alpha_n)T_n x_n \quad (1.5)$$

for all $n \in \mathbb{N}$, where C is a nonempty closed convex subset of a Banach space, $\{\alpha_n\}$ is a sequence in $[0, 1]$ and $\{T_n\}$ is a sequence of nonexpansive mappings of C into itself which satisfies the AKTT-condition, that is,

$$\sum_{n=1}^{\infty} \sup\{\|T_{n+1}z - T_n z\| : z \in C\} < \infty. \quad (1.6)$$

They proved that the sequence $\{x_n\}$ defined by (1.5) converges strongly to a common fixed point of $\{T_n\}$.

In this paper, motivated by Plubtieng and Thammathiwat [14], Iemoto and Takahashi [9], Wang et al. [22], we introduce a new iterative sequence and prove a weak convergence theorem for finding common fixed points of a families of non-expansive mappings and a nonspreading mapping in Hilbert spaces. Moreover, we apply our result to finding common element of a solution set of equilibrium problem with a relaxed monotone mapping and a common fixed point set non-spreading mappings.

2 Preliminaries

This section collects some lemmas which will be used in the proofs for the main results in the next section. Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$. In a Hilbert space, it is known that

$$\|\alpha x + (1 - \alpha)y\|^2 = \alpha\|x\|^2 + (1 - \alpha)\|y\|^2 - \alpha(1 - \alpha)\|x - y\|^2.$$

By definition of the metric projection P_C we have known that P_C is a nonexpansive mapping of H onto C and satisfies

$$\|P_C x - P_C y\|^2 \leq \langle P_C x - P_C y, x - y \rangle, \quad \forall x, y \in H.$$

Further, for any $x \in H$ and $y \in C$, $y = P_C x$ if and only if $\langle x - y, y - z \rangle \geq 0$, $\forall z \in C$.

A space X is said to satisfy Opial's condition [12] if for each sequence $\{x_n\}_{n=1}^\infty$ in X which converges weakly to point $x \in X$, we have

$$\liminf_{n \rightarrow \infty} \|x_n - x\| < \liminf_{n \rightarrow \infty} \|x_n - y\|, \quad \forall y \in X, y \neq x$$

and

$$\limsup_{n \rightarrow \infty} \|x_n - x\| < \limsup_{n \rightarrow \infty} \|x_n - y\|, \quad \forall y \in X, y \neq x.$$

Lemma 2.1. [10] *Let H be a Hilbert space, C a nonempty closed convex subset of H . Let S be a nonspreading mapping of C into itself. Then $F(S)$ is closed and convex.*

In order to prove the main result, we shall use the following lemmas in the sequel.

Lemma 2.2. [9] *Let H be a Hilbert space, C a closed convex subset of H , and $S : C \rightarrow C$ a nonspreading mapping with $F(S) \neq \emptyset$. Then S is semiclosed, i.e., $x_n \rightharpoonup u$ and $x_n - Sx_n \rightarrow 0$ imply $u \in F(S)$.*

Lemma 2.3. [13] *Let C be a nonempty bounded closed convex subset of Hilbert space E and $\{T_n\}$ a sequence of mappings of C into itself. Suppose that*

$$\lim_{k,l \rightarrow \infty} \rho_l^k = 0 \quad (2.1)$$

where $\rho_l^k = \sup\{\|T_k z - T_l z\| : z \in C\} < \infty$, for all $k, l \in \mathbb{N}$. Then for each $x \in C$, $\{T_n x\}$ converges strongly to some point of C . Moreover, let T be a mapping from C in to itself defined by

$$Tx = \lim_{n \rightarrow \infty} T_n x, \quad \text{for all } x \in C.$$

Then $\limsup_{n \rightarrow \infty} \{\|Tz - T_n z\| : z \in C\} = 0$.

In fact, Aoyama et al. [1] proved Lemma 2.3 in case the sequence $\{T_n\}$ satisfies the AKTT-condition. We note that if a sequence $\{T_n\}$ satisfies the AKTT-condition then $\{T_n\}$ satisfies the condition (2.1).

3 Weak convergence theorem

In this section, we prove a weak convergence theorem for finding common fixed points of a families of nonexpansive mappings and a nonspreading mapping in a Hilbert space.

Theorem 3.1. *Let H be a real Hilbert space and let C be a nonempty closed convex subset of H . Let S be a nonspreading mapping of C into itself and let $\{T_n\}$ be the sequences of nonexpansive mappings of C into itself such that $F := F(S) \cap (\cap_{n=1}^{\infty} F(T_n))$ is nonempty. Let $\{\alpha_n\} \subset [a, b]$ for some $a, b \in (0, 1)$ such that $\liminf_{n \rightarrow \infty} \alpha_n(1 - \alpha_n) > 0$. Let $\{x_n\}$ be a sequence defined by $x_0 = x \in C$ and*

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) S T_n x_n, \quad n \geq 0. \quad (3.1)$$

Suppose that $\{T_n\}$ satisfy the AKTT-condition, T be the mapping of C into itself defined by $Ty = \lim_{n \rightarrow \infty} T_n y$ for all $y \in C$ such that $F(T) = \cap_{n=1}^{\infty} F(T_n)$ and suppose that for any $v \in F$,

$$\|T_n x_n - v\|^2 \leq \|x_n - v\|^2 - \|x_n - T_n x_n\|^2 + c_n,$$

where $\lim_{n \rightarrow \infty} c_n = 0$. Then $\{x_n\}$ converges weakly to $\hat{z} \in F$.

Proof. Take a point $v \in F$ and put $y_n = T_n x_n$. We shall show that the sequences $\{x_n\}$ is bounded. First, we note that

$$\begin{aligned} \|S y_n - v\| &\leq \|y_n - v\| \\ &= \|T_n x_n - v\| \\ &\leq \|x_n - v\| \end{aligned}$$

and hence

$$\begin{aligned}
\|x_{n+1} - v\|^2 &= \|\alpha_n x_n + (1 - \alpha_n) S y_n - v\|^2 \\
&= \|\alpha_n(x_n - v) + (1 - \alpha_n)(S y_n - v)\|^2 \\
&= \alpha_n \|x_n - v\|^2 + (1 - \alpha_n) \|S y_n - v\|^2 - \alpha_n(1 - \alpha_n) \|S y_n - x_n\|^2 \\
&\leq \alpha_n \|x_n - v\|^2 + (1 - \alpha_n) \|y_n - v\|^2 - \alpha_n(1 - \alpha_n) \|S y_n - x_n\|^2 \\
&\leq \alpha_n \|x_n - v\|^2 + (1 - \alpha_n) \|x_n - v\|^2 - \alpha_n(1 - \alpha_n) \|S y_n - x_n\|^2 \\
&= \|x_n - v\|^2 - \alpha_n(1 - \alpha_n) \|S y_n - x_n\|^2 \\
&\leq \|x_n - v\|^2.
\end{aligned} \tag{3.2}$$

Then $\{\|x_{n+1} - v\|\}$ is a decreasing sequence and therefore $\lim_{n \rightarrow \infty} \|x_n - v\|$ exists. This implies that $\{x_n\}$, $\{T_n x_n\}$, $\{y_n\}$ and $\{S y_n\}$ are bounded. By our assumption, we have

$$\|T_n x_n - v\|^2 \leq \|x_n - v\|^2 - \|x_n - T_n x_n\|^2 + c_n,$$

where $\lim_{n \rightarrow \infty} c_n = 0$. Thus, we note that

$$\begin{aligned}
\|x_{n+1} - v\|^2 &= \|\alpha_n x_n + (1 - \alpha_n) S y_n - v\|^2 \\
&= \|\alpha_n(x_n - v) + (1 - \alpha_n)(S y_n - v)\|^2 \\
&\leq \alpha_n \|x_n - v\|^2 + (1 - \alpha_n) \|S y_n - v\|^2 \\
&\leq \alpha_n \|x_n - v\|^2 + (1 - \alpha_n) \|y_n - v\|^2 \\
&= \alpha_n \|x_n - v\|^2 + (1 - \alpha_n) \|T_n x_n - v\|^2 \\
&\leq \alpha_n \|x_n - v\|^2 + (1 - \alpha_n) (\|x_n - v\|^2 - \|x_n - T_n x_n\|^2 + c_n)
\end{aligned} \tag{3.3}$$

and hence

$$\begin{aligned}
(1 - \alpha_n) \|x_n - T_n x_n\|^2 &\leq \alpha_n \|x_n - v\|^2 + (1 - \alpha_n) \|x_n - v\|^2 \\
&\quad + (1 - \alpha_n) c_n - \|x_{n+1} - v\|^2 \\
&= \|x_n - v\|^2 - \|x_{n+1} - v\|^2 + (1 - \alpha_n) c_n.
\end{aligned}$$

Since $0 < a \leq \alpha_n \leq b < 1$, $c_n \rightarrow 0$ and $\lim_{n \rightarrow \infty} \|x_n - v\|^2 = \lim_{n \rightarrow \infty} \|x_{n+1} - v\|^2$, it follows that

$$\|x_n - T_n x_n\| = \|x_n - y_n\| \rightarrow 0. \tag{3.4}$$

Since $\{y_n\}$ is bounded, there exists a subsequence $\{y_{n_i}\}$ of $\{y_n\}$ which converges weakly to \hat{z} . Without loss of generality, we can assume that $y_{n_i} \rightharpoonup \hat{z}$. By Lemma 2.2, we have $\hat{z} \in F(S)$. Since $\lim_{n \rightarrow \infty} \|x_n - y_n\| \rightarrow 0$ and $y_{n_i} \rightharpoonup \hat{z}$, we get $x_{n_i} \rightharpoonup \hat{z}$.

We shall show that $\hat{z} \in F(T)$. From $\|T_n x_n - x_n\| \rightarrow 0$ and the AKTT-condition, we have $\|T x_n - x_n\| \leq \|T x_n - T_n x_n\| + \|T_n x_n - x_n\| \rightarrow 0$. We next show that $\hat{z} \in F(T)$. Assume $\hat{z} \notin F(T)$. Since $x_{n_i} \rightharpoonup \hat{z}$ and $\hat{z} \neq T\hat{z}$. By the Opials condition, we have

$$\begin{aligned} \liminf_{n \rightarrow \infty} \|x_{n_i} - \hat{z}\| &< \liminf_{n \rightarrow \infty} \|x_{n_i} - T\hat{z}\| \\ &\leq \liminf_{n \rightarrow \infty} \|x_{n_i} - T x_{n_i}\| + \|T x_{n_i} - T\hat{z}\| \\ &\leq \liminf_{n \rightarrow \infty} \|x_{n_i} - \hat{z}\|. \end{aligned}$$

This is a contradiction. So, we get $\hat{z} \in F(T)$. Hence $\hat{z} \in F$. Let $\{x_{n_k}\}$ be another subsequence of $\{x_n\}$ such that $\{x_{n_k}\}$ converges weakly to \bar{z} . We may show that $\hat{z} = \bar{z}$, suppose not. Since $\lim_{n \rightarrow \infty} \|x_n - v\|$ exists for all $v \in F$, it follows by the Opial's condition that

$$\begin{aligned} \lim_{n \rightarrow \infty} \|x_n - \hat{z}\| &= \liminf_{i \rightarrow \infty} \|x_{n_i} - \hat{z}\| < \liminf_{i \rightarrow \infty} \|x_{n_i} - \bar{z}\| = \lim_{n \rightarrow \infty} \|x_n - \bar{z}\| \\ &= \liminf_{k \rightarrow \infty} \|x_{n_k} - \bar{z}\| < \liminf_{k \rightarrow \infty} \|x_{n_k} - \hat{z}\| = \lim_{n \rightarrow \infty} \|x_n - \hat{z}\|. \end{aligned}$$

This is a contradiction. Thus, we have $\hat{z} = \bar{z}$. This implies that $\{x_n\}$ converges weakly to $\hat{z} \in F$. This completes the proof. \square

Corollary 3.2. *Let H be a real Hilbert space and let C be a nonempty closed convex subset of H . Let S be a nonspreading mapping of C into itself and let $\{T_n\}$ be the sequences of firmly nonexpansive mappings of C into itself such that $F := F(S) \cap (\bigcap_{n=1}^{\infty} F(T_n))$ is nonempty. Let $\{\alpha_n\} \subset [a, b]$ for some $a, b \in (0, 1)$ such that $\liminf_{n \rightarrow \infty} \alpha_n(1 - \alpha_n) > 0$. Let $\{x_n\}$ be a sequence defined by $x_0 = x \in C$ and*

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) S T_n x_n, \quad n \geq 0. \quad (3.5)$$

Suppose that $\{T_n\}$ satisfy the AKTT-condition and T be the mappings of C into itself defined by $Ty = \lim_{n \rightarrow \infty} T_n y$ for all $y \in C$ and suppose that $F(T) = \bigcap_{n=1}^{\infty} F(T_n)$. Then $\{x_n\}$ converges weakly to $\hat{z} \in F$.

Proof. Since $\{T_n\}$ is firmly nonexpansive, it follows that

$$\begin{aligned} \|T_n x_n - v\|^2 &= \|T_n x_n - T_n v\|^2 \\ &\leq \langle T_n x_n - v, x_n - v \rangle \\ &= \frac{1}{2} (\|T_n x_n - v\|^2 + \|x_n - v\|^2 - \|x_n - T_n x_n\|^2), \end{aligned}$$

for all $v \in F$ and hence $\|T_n x_n - v\|^2 \leq \|x_n - v\|^2 - \|x_n - T_n x_n\|^2$. This implies that $\{T_n x_n\}$ satisfying condition in Theorem 3.1. So, we obtain the desired result by using Theorem 3.1. \square

4 Applications

In this section, using Theorem 3.1, we prove weak convergence theorem for finding a common element of the set of solutions of equilibrium problem with a relaxed monotone mapping and the fixed point set of a nonspreading mapping in Hilbert space. Before, proving our theorems, we need the following lemmas. For solving the equilibrium problem for a bifunction $F : C \times C \rightarrow \mathbb{R}$, let us assume that F satisfies following conditions:

- (A1) $F(x, x) = 0$ for all $x \in C$.
- (A2) F is monotone, that is, $F(x, y) + F(y, x) \leq 0$ for all $x, y \in C$.
- (A3) for each $x, y, z \in C$. $\lim_{t \downarrow 0} F(tz + (1-t)x, y) \leq F(x, y)$.
- (A4) for each $x \in C$, $y \mapsto F(x, y)$ is convex and lower semicontinuous.

The following lemma appears implicitly in [2].

Lemma 4.1. [2] *Let C be a nonempty closed convex subset of H and let F be a bifunction of $C \times C$ into \mathbb{R} satisfying (A1)-(A4). Let $r > 0$ and $x \in H$. Then, there exists $z \in C$ such that*

$$F(z, y) + \frac{1}{r} \langle y - z, z - x \rangle \geq 0 \text{ for all } y \in C.$$

The following lemma was also given in [3].

Lemma 4.2. [3] *Assume that $F : C \times C \rightarrow \mathbb{R}$ satisfies (A1)-(A4). For $r > 0$ and $x \in H$, define a mapping $T_r : H \rightarrow C$ as follows:*

$$T_r(x) = \{z \in C : F(z, y) + \frac{1}{r} \langle y - z, z - x \rangle \geq 0, \forall y \in C\}$$

for all $z \in H$. Then, the following hold:

- (1) T_r is single-valued;
- (2) T_r is firmly nonexpansive, i.e., for any $x, y \in H$, $\|T_r x - T_r y\|^2 \leq \langle T_r x - T_r y, x - y \rangle$;
- (3) $F(T_r) = EP(F)$;
- (4) $EP(F)$ is closed and convex.

Lemma 4.3. [22] Let H be a real Hilbert space and let C be a nonempty bounded closed convex subset of H . Let $T : C \rightarrow H$ be an η -hemicontinuous and relaxed $\eta - \alpha$ monotone mapping and let Φ be a bifunction from $C \times C \rightarrow \mathbb{R}$ satisfying (A1), (A2), and (A4). Let $r > 0$ and define a mapping $T_r : H \rightarrow C$ as follows:

$$T_r(x) = \{z \in C : \Phi(z, y) + \langle Tz, \eta(y, z) \rangle + \frac{1}{r} \langle y - z, z - x \rangle \geq 0, \forall y \in C\}$$

for all $x \in H$. Assume that

- (i) $\eta(x, y) + \eta(y, x) = 0$, for all $x, y \in C$;
- (ii) for any fixed $u, v \in C$, the mapping $x \mapsto \langle T_v, \eta(x, u) \rangle$ is convex and lower semicontinuous and the mapping $x \mapsto \langle T_u, \eta(v, x) \rangle$ is lower semicontinuous;
- (iii) $\alpha : H \rightarrow \mathbb{R}$ is weakly lower semicontinuous;
- (iv) for any $x, y \in C$, $\alpha(x - y) + \alpha(y - x) \geq 0$.

Then, the following holds:

- (1) T_r is single-valued;
- (2) T_r is firmly nonexpansive, i.e., for any $x, y \in H$, $\|T_r x - T_r y\|^2 \leq \langle T_r x - T_r y, x - y \rangle$;
- (3) $F(T_r) = EP(\Phi, T)$;
- (4) $EP(\Phi, T)$ is closed and convex.

Theorem 4.4. Let C be a nonempty closed convex subset of a real Hilbert space H . Let $\psi : C \times C \rightarrow \mathbb{R}$ satisfying (A1)-(A4). Let T be η -hemicontinuous and relaxed $\eta - \alpha$ monotone mapping of C into H and let S be a nonspreading mapping of C into itself such that $F := F(S) \cap EP(\psi, T) \neq \emptyset$. Suppose $x_0 = x \in C$ and define the sequence $\{x_n\}$ and $\{y_n\}$ by

$$\begin{cases} \psi(y_n, y) + \langle Ty_n, \eta(y, y_n) \rangle + \frac{1}{r_n} \langle y - y_n, y_n - x_n \rangle \geq 0, \forall y \in C, \\ x_{n+1} = \alpha_n x_n + (1 - \alpha_n) S y_n, \end{cases}$$

for all $n \in \mathbb{N}$, where $\{r_n\} \in (0, \infty)$ with $\sum_{n=1}^{\infty} |r_{n+1} - r_n| < \infty$ and $\{\alpha_n\} \subset [a, b]$ for some $a, b \in (0, 1)$ with $\liminf_{n \rightarrow \infty} \alpha_n(1 - \alpha_n) > 0$. Then $\{x_n\}$ converges weakly to $\hat{z} \in F$.

Proof. Setting $T_n \equiv T_{r_n}$ in Theorem 3.1 and putting $y_n = T_{r_n}x_n$. Let $v \in F$ and let B be a bounded subset of C . For $n \in \mathbb{N}$, let $z_n = T_{r_n}z$. we first prove that

$$\sum_{n=1}^{\infty} \sup \{ \|T_{r_{n+1}}z - T_{r_n}z\| : z \in B \} < \infty \quad (4.1)$$

for any bounded subset B of C . We note that

$$\psi(z_n, y) + \langle Tz_n, \eta(y, z_n) \rangle + \frac{1}{r_n} \langle y - z_n, z_n - z \rangle \geq 0 \quad (4.2)$$

for all $y \in C$ and

$$\psi(z_{n+1}, y) + \langle Tz_{n+1}, \eta(y, z_{n+1}) \rangle + \frac{1}{r_{n+1}} \langle y - z_{n+1}, z_{n+1} - z \rangle \geq 0 \quad (4.3)$$

for all $y \in C$. Setting $y = z_{n+1}$ in (4.2) and $y = z_n$ in (4.3), we have

$$\psi(z_n, z_{n+1}) + \langle Tz_n, \eta(z_{n+1}, z_n) \rangle + \frac{1}{r_n} \langle z_{n+1} - z_n, z_n - z \rangle \geq 0$$

and

$$\psi(z_{n+1}, z_n) + \langle Tz_{n+1}, \eta(z_n, z_{n+1}) \rangle + \frac{1}{r_{n+1}} \langle z_n - z_{n+1}, z_{n+1} - z \rangle \geq 0.$$

Adding the two inequalities and by (A2), we have

$$\langle Tz_n - Tz_{n+1}, \eta(z_{n+1}, z_n) \rangle + \left\langle z_{n+1} - z_n, \frac{z_n - z}{r_n} - \frac{z_{n+1} - z_n}{r_{n+1}} \right\rangle \geq 0.$$

Thus, we have

$$\left\langle z_{n+1} - z_n, \frac{z_n - z}{r_n} - \frac{z_{n+1} - z_n}{r_{n+1}} \right\rangle \geq \langle Tz_{n+1} - Tz_n, \eta(z_{n+1}, z_n) \rangle$$

and hence

$$\begin{aligned} \langle z_{n+1} - z_n, z_n - z_{n+1} \rangle &+ \left\langle z_{n+1} - z_n, \left(1 - \frac{r_n}{r_{n+1}}\right)(z_{n+1} - z) \right\rangle \\ &\geq \langle Tz_{n+1} - Tz_n, \eta(z_{n+1}, z_n) \rangle \end{aligned} \quad (4.4)$$

Since T is relaxed $\eta - \alpha$ monotone mapping and $r > 0$, we have

$$-\|z_{n+1} - z_n\|^2 + \left\langle z_{n+1} - z_n, \left(1 - \frac{r_n}{r_{n+1}}\right)(z_{n+1} - z) \right\rangle \geq r\alpha(z_{n+1} - z_n). \quad (4.5)$$

Similarly, by exchanging the position of z_{n+1} and z_n in (4.4), we get

$$\begin{aligned} \langle z_n - z_{n+1}, z_{n+1} - z_n \rangle &+ \left\langle z_n - z_{n+1}, \left(1 - \frac{r_{n+1}}{r_n}\right)(z_n - z) \right\rangle \\ &\geq \langle Tz_n - Tz_{n+1}, \eta(z_n, z_{n+1}) \rangle. \end{aligned} \quad (4.6)$$

and hence

$$-\|z_n - z_{n+1}\|^2 + \left\langle z_n - z_{n+1}, \left(1 - \frac{r_{n+1}}{r_n}\right)(z_n - z) \right\rangle \geq r\alpha(z_n - z_{n+1}). \quad (4.7)$$

Adding (4.5) and (4.7), we have

$$\begin{aligned} 2\|z_{n+1} - z_n\|^2 &\leq \left\langle z_{n+1} - z_n, \left(1 - \frac{r_n}{r_{n+1}}\right)(z_{n+1} - z) \right\rangle \\ &\quad + \left\langle z_{n+1} - z_n, \left(\frac{r_{n+1}}{r_n} - 1\right)(z_n - z) \right\rangle \\ &\leq \|z_{n+1} - z_n\| \left|1 - \frac{r_n}{r_{n+1}}\right| \|z_{n+1} - z\| \\ &\quad + \|z_{n+1} - z_n\| \left|1 - \frac{r_{n+1}}{r_n}\right| \|z_n - z\|. \end{aligned}$$

Thus $\|z_{n+1} - z_n\| \leq \frac{1}{2} \left[\left|1 - \frac{r_n}{r_{n+1}}\right| \|z_{n+1} - z\| + \left|1 - \frac{r_{n+1}}{r_n}\right| \|z_n - z\| \right]$. Without loss of generality, let us assume that there exists a real number b such that $r_n > b > 0$ for all $n \in \mathbb{N}$. Then

$$\begin{aligned} \|T_{r_{n+1}}z - T_{r_n}z\| &= \|z_{n+1} - z_n\| \\ &\leq \frac{1}{2} \left[\frac{1}{r_{n+1}} |r_{n+1} - r_n| \|T_{r_{n+1}}z - z\| + \frac{1}{r_n} |r_n - r_{n+1}| \|T_{r_n}z - z\| \right] \\ &\leq \frac{1}{2} \left[\frac{1}{b} |r_{n+1} - r_n| \|T_{r_{n+1}}z - z\| + \frac{1}{b} |r_n - r_{n+1}| \|T_{r_n}z - z\| \right]. \end{aligned}$$

Let $u \in EP(\psi, T)$ and $M = \sup \{ \|z - u\| : z \in B \}$. Then

$$\begin{aligned} \|T_{r_{n+1}}z - z\| &\leq \|T_{r_{n+1}}z - u\| + \|u - z\| \\ &= \|T_{r_{n+1}}z - T_{r_{n+1}}u\| + \|u - z\| \\ &\leq 2\|z - u\|. \end{aligned}$$

Similarly, we note that $\|T_{r_n}z - z\| \leq 2\|z - u\|$. Thus, we have

$$\begin{aligned}\|T_{r_{n+1}}z - T_{r_n}z\| &\leq \frac{1}{2} \left[\frac{1}{b} |r_{n+1} - r_n| \|T_{r_{n+1}}z - z\| + \frac{1}{b} |r_n - r_{n+1}| \|T_{r_n}z - z\| \right] \\ &\leq \frac{1}{2} \left[\frac{4M}{b} |r_{n+1} - r_n| \right] \\ &= \frac{2M}{b} |r_{n+1} - r_n|.\end{aligned}$$

Hence $\sup \{\|T_{r_{n+1}}z - T_{r_n}z\| : z \in B\} \leq \frac{2M}{b} |r_{n+1} - r_n|$. Since $\sum_{n=1}^{\infty} |r_{n+1} - r_n| < \infty$, we obtain $\sum_{n=1}^{\infty} \sup \{\|T_{r_{n+1}}z - T_{r_n}z\| : z \in B\} < \infty$. By Lemma 2.3, we define a mapping T by $Tx = \lim_{n \rightarrow \infty} T_{r_n}x$ for all $x \in C$.

Next, we prove that $F(T) = \cap_{n=1}^{\infty} F(T_{r_n})$. It is easy to see that $\cap_{n=1}^{\infty} F(T_{r_n}) \subset F(T)$. Let $w \in F(T)$. For $n \in \mathbb{N}$, let $w_n = T_{r_n}w$. Then

$$\psi(w_n, y) + \langle Tw_n, \eta(y, w_n) \rangle + \frac{1}{r_n} \langle y - w_n, w_n - w \rangle \geq 0$$

for all $y \in C$. By (A2), we obtain $\frac{1}{r_n} \langle y - w_n, w_n - w \rangle \geq \psi(y, w_n) + \langle Tw_n, \eta(w_n, y) \rangle$ for all $y \in C$. Since $w_n \rightarrow w$ and from (A4), we have $0 \geq \psi(y, w) + \langle Tw, \eta(w, y) \rangle$ for all $y \in C$. Put $u_t = ty + (1-t)w$ for all $t \in (0, 1]$ and $y \in C$. Thus, we note that

$$\begin{aligned}0 &= \psi(u_t, u_t) + \langle Tw, \eta(u_t, u_t) \rangle \\ &= \psi(ty + (1-t)w, ty + (1-t)w) + \langle Tw, \eta(ty + (1-t)w, u_t) \rangle \\ &\leq t\psi(ty + (1-t)w, y) + (1-t)\psi(ty + (1-t)w, w) + t\langle Tw, \eta(y, u_t) \rangle \\ &\quad + (1-t)\langle Tw, \eta(w, u_t) \rangle \\ &= t[\psi(ty + (1-t)w, y) + \langle Tw, \eta(y, u_t) \rangle] \\ &\quad + (1-t)[\psi(ty + (1-t)w, w) + \langle Tw, \eta(w, u_t) \rangle] \\ &\leq t[\psi(ty + (1-t)w, y) + \langle Tw, \eta(y, u_t) \rangle].\end{aligned}$$

So, $\psi(ty + (1-t)w, y) + \langle Tw, \eta(y, u_t) \rangle \geq 0$ for all $y \in C$. Letting $t \rightarrow 0^+$ and using (A3), we obtain $\psi(w, y) + \langle Tw, \eta(y, w) \rangle \geq 0$ for all $y \in C$. Thus $w \in EP(\psi, T)$. It follows that $w \in \cap_{n=1}^{\infty} F(T_{r_n})$ and it is easy to see that

$$\|T_{r_n}x_n - v\|^2 \leq \|x_n - v\|^2 - \|x_n - T_{r_n}x_n\|^2.$$

Thus $\{T_{r_n}x_n\}$ satisfying condition in Theorem 3.1. So, we obtain the desired result by using Theorem 3.1. \square

Acknowledgement

The authors would like to thank the referees for the insightful comments and suggestions. Moreover, the authors gratefully acknowledge the Thailand Research Fund Master Research Grants (TRF-MAG, MRG-WII515S029) for funding this paper.

References

- [1] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. *Nonlinear Anal.* 67 (2007) 2350-2360.
- [2] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, *Math. Student* 63 (1994) 123-145.
- [3] P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, *J. Nonlinear Convex Anal.* 6 (2005) 117-136.
- [4] Y. P. Fang and N. J. Huang, Variational-like inequalities with generalized monotone mappings in Banach spaces, *J. Optim. Theo. Appl.* 118, no. 2 (2003) 327-338.
- [5] K. Goebel and W.A. Kirk, *Topics in Metric Fixed Point Theory*, Cambridge University Press, Cambridge, 1990.
- [6] K. Geobel and S. Reich, *Uniform Convexity, Hyperbolic Geometry and Non-expansive Mappings*, Marcel Dekker inc. New York, 1984.
- [7] D. Goeleven and D. Motreanu, Eigenvalue and dynamic problems for variational and hemivariational inequalities, *Comm. Appl. Nonl. Anal.* 3, no. 4(1996) 121.
- [8] B. Halpern, Fixed point of nonexpanding maps, *Bull. amer. Math. Soc.* 73 (1967) 957-961.
- [9] S. Iemoto and W. Takahashi, Approximating common fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space, *Nonlinear Analysis* (2009), doi:10.1016/j.na.2009.03.064.
- [10] F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, *Arch. Math.* 91(2008) 166-177.

- [11] A. Moudafi and M. Thera, Proximal and Dynamical Approaches to Equilibrium Problems, in: Lecture Notes in Economics and Mathematical Systems, 477 (1999) 187-201.
- [12] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73(1967) 595-597.
- [13] S. Plubtieng and T. Thammathiwat, A viscosity approximation method for finding a common fixed point of nonexpansive and firmly nonexpansive mappings in hilbert spaces. Thai. J. Math. 6 (2008) 377-390.
- [14] S. Plubtieng and T. Thammathiwat, A viscosity approximation method for finding a common solution of fixed point and equilibrium problems in Hilbert spaces. J. Glob. Optimum, (2010) doi:10.1007/s10898-010-9583-z.
- [15] S. Reich and D. Shoikhet, Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces, Imperial College Press, London, 2005.
- [16] A. H. Siddiqi, Q. H. Ansari, and K. R. Kazmi, On nonlinear variational inequalities, Indian Journal of Pure and Applied Mathematics. 25, no. 9 (1994) 969-973.
- [17] W. Takahashi, Nonlinear Functional Analysis-Fixed Point Theory and its Applications, Yokohama Publishers, Yokohama, 2000.
- [18] A. Tada and W. Takahashi, Strong convergence theorem for an equilibrium problem and a nonexpansive mapping, J. Optim. Theory Appl. 133 (2007) 359-370.
- [19] S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007) 506-515.
- [20] S. Takahashi and W. Takahashi, Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, Nonlinear Anal. 69 (2008) 1025-1033.
- [21] R. U. Verma, Nonlinear variational inequalities on convex subsets of Banach spaces, Appl. Math. Letters. 10, no. 4 (1997) 25-27.
- [22] S. Wang, G. Marino, F. Wang, Strong Convergence Theorems for a Generalized Equilibrium Problem with a Relaxed Monotone Mapping and a Countable Family of Nonexpansive Mappings in a Hilbert Space, Fixed Point Theory and Applications (2010), doi:10.1155/2010/230304.