

Quasi-small P-injective Modules

S. Wongwai

Department of Mathematics, Faculty of Science and Technology,

Rajamangala University of Technology Thanyaburi, Thailand

e-mail : wsarun@hotmail.com

Abstract

Let M be a right R -module. A right R -module N is called M -small principally injective (briefly, M -small P -injective) if, every R -homomorphism from an M -cyclic small submodule of M to N can be extended to an R -homomorphism from M to N . In this paper we give some characterizations and properties of quasi-small principally injective modules.

Keywords : Quasi-small P-injective Modules and Endomorphism Rings.

2000 Mathematics Subject Classification : 16D50, 16D70, 16D80

1 Introduction

Throughout this paper, R will be an associative ring with identity and all modules are unitary right R -modules. For right R -modules M and N , $\text{Hom}_R(M, N)$ denotes the set of all R -homomorphisms from M to N and $S = \text{End}_R(M)$ denotes the endomorphism ring of M . A submodule X of M is said to be M -cyclic submodule of M if it is the image of an element of S . If X is a subset of M the right (resp. left) annihilator of X in R (resp. S) is denoted by $r_R(X)$ (resp. $l_S(X)$). By notations, $N \subset^\oplus M$, $N \subset^e M$, and $N \ll M$ we mean that N is a direct summand, an essential submodule and a superfluous submodule of M , respectively. We denote the Jacobson radical of M by $J(M)$.

Let R be a ring. A right R -module M is called *principally injective* (or *P-injective*), if every R -homomorphism from a principal right ideal of R to M can

be extended to an R -homomorphism from R to M . Equivalently, $l_M r_R(a) = Ma$ for all $a \in R$. This notion was introduced by Camillo [2] for commutative rings. In [5], Nicholson and Yousif studied the structure of principally injective rings and gave some applications. In [9], L.V. Thuyet, and T.C. Quynh, introduced a small principally injective module, a right R -module M is called *small principally injective* (briefly, *SP-injective*) if, every R -homomorphism from a small and principal right ideal aR to M can be extended to an R -homomorphism from R to M . If R_R is an *SP*-injective module, then we call R is a *right SP-injective ring*. In this note we introduce the definition of quasi-small principally injective modules and give some interesting results on these modules.

2 Quasi-small P-injective Modules

Recall that a submodule K of a right R -module M is *superfluous* (or *small*) in M , abbreviated $K \ll M$, in case for every submodule L of M , $K + L = M$ implies $L = M$.

Definition 2.1. Let M be a right R -module. A right R -module N is called *M -small principally injective* (briefly, *M -small P-injective*) if, every R -homomorphism from an M -cyclic small submodule of M to N can be extended to M . Equivalently, for any endomorphism s of M with $s(M) \ll M$, every R -homomorphism from $s(M)$ to N can be extended to an R -homomorphism from M to N .

A right R -module M is called *quasi-small principally injective* (briefly, *quasi-small P-injective*) if it is M -small *P-injective*.

Lemma 2.2. Let M and N_i ($1 \leq i \leq n$) be right R -modules. Then $\bigoplus_{i=1}^n N_i$ is M -small *P-injective* if and only if N_i is M -small *P-injective* for each $i = 1, 2, \dots, n$.

Proof. The necessity is trivial. For the sufficiency, it is enough to prove the result for $n = 2$, let $s \in S$ with $s(M) \ll M$, and $\alpha : s(M) \rightarrow N_1 \bigoplus N_2$ be an R -homomorphism. Since N_1 and N_2 are M -small *P-injective*, there exists R -homomorphisms $\alpha_1 : M \rightarrow N_1$ and $\alpha_2 : M \rightarrow N_2$ such that $\alpha_1 \iota = \pi_1 \alpha$ and $\alpha_2 \iota = \pi_2 \alpha$ where π_1 and π_2 are the projection maps from $N_1 \bigoplus N_2$ to N_1 and N_2 , respectively, and $\iota : s(M) \rightarrow M$ is the inclusion map. Set $\hat{\alpha} = \iota_1 \alpha_1 + \iota_2 \alpha_2 : M \rightarrow N_1 \bigoplus N_2$. Thus it is clear that $\hat{\alpha}$ extends α . \square

Theorem 2.3. The following conditions are equivalent for a projective module M :

- (1) Every M -cyclic small submodule of M is projective.
- (2) Every factor module of an M -small *P-injective* module is M -small *P-injective*.

(3) *Every factor module of an injective R -module is M -small P -injective.*

Proof. (1) \Rightarrow (2) Let N be an M -small P -injective module, X a submodule of N , $s(M) \ll M$, and let $\alpha : s(M) \rightarrow N/X$ be an R -homomorphism. Then by (1), there exists an R -homomorphism $\varphi : s(M) \rightarrow N$ such that $\alpha = \eta\varphi$ where $\eta : N \rightarrow N/X$ is the natural R -epimorphism. Since N is M -small P -injective, φ can be extended to an R -homomorphism $\beta : M \rightarrow N$. Then $\eta\beta$ is an extension of α to M .

(2) \Rightarrow (3) is clear.

(3) \Rightarrow (1) Let $s(M) \ll M$, $\gamma : A \rightarrow B$ be an R -epimorphism, and let $\varphi : s(M) \rightarrow B$ be an R -homomorphism. Embed A in an injective module E [1, 18.6]. Then $B \simeq A/\text{Ker}(\gamma)$ is a submodule of $E/\text{Ker}(\gamma)$ so by hypothesis, φ can be extended to $\hat{\varphi} : M \rightarrow E/\text{Ker}(\gamma)$. Since M is projective, $\hat{\varphi}$ can be lifted to $\beta : M \rightarrow E$. It is clear that $\beta(s(M)) \subset A$. Therefore we have lifted φ . \square

Theorem 2.4. *Let M be a right R -module and $S = \text{End}_R(M)$. Then the following conditions are equivalent:*

- (1) M is quasi-small P -injective.
- (2) $l_S(\text{Ker}(s)) = Ss$ for all $s \in S$ with $s(M) \ll M$.
- (3) $\text{Ker}(s) \subset \text{Ker}(t)$, where $s, t \in S$ with $s(M) \ll M$, implies $St \subset Ss$.
- (4) $l_S(\text{Ker}(s) \cap \text{Im}(t)) = l_S(\text{Im}(t)) + Ss$ for all $s, t \in S$ with $s(M) \ll M$.
- (5) If $\alpha : s(M) \rightarrow M$, $s \in S$ with $s(M) \ll M$, then $\alpha s \in Ss$.

Proof. (1) \Rightarrow (2) Let $s \in S$ with $s(M) \ll M$ and let $f \in l_S(\text{Ker}(s))$. Then $\text{Ker}(s) \subset \text{Ker}(f)$, so there exists an R -homomorphism $\varphi : s(M) \rightarrow N$ such that $\varphi s = f$. Since $s(M) \ll M$ and M is quasi-small P -injective, there exists an R -homomorphism $\hat{\varphi} : M \rightarrow M$ such that $\hat{\varphi}\iota = \varphi$, where $\iota : s(M) \rightarrow M$ is the inclusion map. Therefore $f = \hat{\varphi}s \in Ss$. The other inclusion is clear.

(2) \Rightarrow (1) Let $s \in S$ with $s(M) \ll M$, and $\varphi : s(M) \rightarrow M$ be an R -homomorphism. Then $\varphi s \in S$ and $\varphi s \in l_S(\text{Ker}(s))$. By assumption, $\varphi s = us$ for some $u \in S$. This shows that M is quasi-small P -injective.

(2) \Rightarrow (3) If $\text{Ker}(s) \subset \text{Ker}(t)$, where $s, t \in S$ with $s(M) \ll M$, then $l_S(\text{Ker}(t)) \subset l_S(\text{Ker}(s))$. Since $St \subset l_S(\text{Ker}(t))$ and by (2), we have $l_S(\text{Ker}(s)) = Ss$ so $St \subset Ss$.

(3) \Rightarrow (4) Let $s, t \in S$ with $s(M) \ll M$ and let $u \in l_S(\text{Ker}(s) \cap \text{Im}(t))$. Then $u(\text{Ker}(s) \cap \text{Im}(t)) = 0$ so $\text{Ker}(st) \subset \text{Ker}(ut)$. Since $st(M) \subset s(M)$, $st(M) \ll M$ and hence $Sut \subset Sst$ by (3). Write $ut = vst$ where $v \in S$. Then $(u - vs)t = 0$,

and therefore, $u - vs \in l_S(Im(t))$ it follows that $u \in l_S(Im(t)) + Ss$. The other inclusion is clear.

(4) \Rightarrow (5) Put $t = 1_M$ in (4), then we have $\alpha s \in l_S(Ker(s)) = l_S(Ker(s) \cap Im(1_M)) = l_S(Im(1_M)) + Ss = Ss$.

(5) \Rightarrow (1) Clear. \square

Corollary 2.5. [9, Lemma 2.2] *The following conditions are equivalent for a Ring R :*

- (1) R is SP -injective.
- (2) $lr(a) = Ra$ for all $a \in J(R)$.
- (3) $r(a) \subset r(b)$, where $a \in J(R)$, $b \in R$ implies $Rb \subset Ra$.
- (4) $l(r(a) \cap bR) = l(b) + Ra$ for all $a \in J(R)$ and $b \in R$.
- (5) If $\alpha : aR \rightarrow R$, $a \in J(R)$, is an R -homomorphism, then $\alpha(a) \in Ra$.

Example 2.6. Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$ where F is a field, $M_R = \begin{pmatrix} F & F \\ 0 & 0 \end{pmatrix}$. Then M is quasi-small P -injective.

Proof. It is clear that only $N = \begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix}$ is the nonzero small M -cyclic submodule of M . Let $s \in S = End_R(M)$ such that $s(\begin{pmatrix} F & F \\ 0 & F \end{pmatrix}) \subset \begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix}$. Since $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, $s(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}) = \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix}$ for some $0 \neq x \in F$. Then for each $a, b \in F$, $s(\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}) = s[\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}] = s(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}) \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Then $s = 0$ it follows that $l_S(Ker(s)) = 0 = Ss$. This shows that M is quasi-small P -injective. \square

Lemma 2.7. Any direct summand of a quasi-small P -injective module is again quasi-small P -injective.

Proof. Let M be a quasi-small P -injective module, $M = A \oplus B$, $s \in End_R(A)$ with $s(A) \ll A$ and let $\alpha : s(A) \rightarrow A$ be an R -homomorphism. Note that $s(A) \ll M$ [1, Lemma 5.18]. Define $s' : M \rightarrow M$ by $s'(a + b) = s(a)$ and $\alpha' : s'(M) \rightarrow M$ by $\alpha'(s'(a + b)) = \alpha(s(a))$. It is clear that s' and α' are R -homomorphisms and $s'(M) \ll M$. Since M quasi-small P -injective, there exists an R -homomorphism $\varphi : M \rightarrow M$ such that $\alpha' = \varphi\iota$ where $\iota : s'(M) \rightarrow M$ is the inclusion map. Let $\hat{\alpha}$ be the restriction of φ to A . Then $\hat{\alpha}$ is an extension of α . \square

A right R -module M is called *co-Hopfian* [3] if any injective endomorphism of M is an isomorphism. A right R -module M is called weakly *co-Hopfian* if any injective endomorphism f of M is essential; that is, $f(M) \subset^e M$.

Proposition 2.8. *Let M be a quasi-small P -injective module. If X is an M -cyclic and essential submodule of M and M is weakly co-Hopfian, then X is weakly co-Hopfian.*

Proof. Let f be an injective endomorphism of X . Then there exists an R -homomorphism $g : M \rightarrow M$ such that $\iota f = g\iota$ where $\iota : X \rightarrow M$ is the inclusion map. It is obvious that $\text{Ker}(g) \cap X = 0$, so $\text{Ker}(g) = 0$. Hence g is monic, so $g(X) \subset^e M$ by [3, Corollary 1.2.]. It follows that $f(X) \subset^e X$. Therefore X is weakly co-Hopfian. \square

Proposition 2.9. *Let M be a quasi-small P -injective module and $s_i \in S$ with $s_i(M) \ll M$, $(1 \leq i \leq n)$.*

- (1) *If $Ss_1 \oplus \dots \oplus Ss_n$ is direct, then any R -homomorphism $\alpha : s_1(M) + \dots + s_n(M) \rightarrow M$ has an extension in S .*
- (2) *If $s_1(M) \oplus \dots \oplus s_n(M)$ is direct, then $S(s_1 + \dots + s_n) = Ss_1 + \dots + Ss_n$.*

Proof. (1) Since M is quasi-small P -injective, for each i , there exists an R -homomorphism $\varphi_i : M \rightarrow M$ such that $\varphi_i s_i(m) = \alpha s_i(m)$ for all $m \in M$. Since $(\sum_{i=1}^n s_i)(M) \ll M$ and $(\sum_{i=1}^n s_i)(M) \subset \sum_{i=1}^n s_i(M)$, α can be extended to $\varphi : M \rightarrow M$ such that, for any $m \in M$,

$$\varphi\left(\sum_{i=1}^n s_i\right)(m) = \alpha\left(\sum_{i=1}^n s_i\right)(m).$$

It follows that $\sum_{i=1}^n \varphi s_i = \sum_{i=1}^n \varphi_i s_i$. Since $Ss_1 \oplus \dots \oplus Ss_n$ is direct, $\varphi s_i = \varphi_i s_i$ for all $(1 \leq i \leq n)$. Therefore φ is an extension of α .

(2) Let $\alpha_1 s_1 + \dots + \alpha_n s_n \in Ss_1 + \dots + Ss_n$. For each i , define $\varphi_i : (s_1 + \dots + s_n)(M) \rightarrow M$ by $\varphi_i((s_1 + \dots + s_n)(m)) = s_i(m)$ for every $m \in M$. Since $s_1(M) \oplus \dots \oplus s_n(M)$ is direct, φ_i is well-defined, so it is clear that φ_i is an R -homomorphism. By assumption and $(s_1 + \dots + s_n)(M) \ll M$, there exists $\widehat{\varphi}_i \in S$ which is an extension of φ_i . Then

$$s_i = \varphi_i(s_1 + \dots + s_n) = \widehat{\varphi}_i(s_1 + \dots + s_n) \in S(s_1 + \dots + s_n).$$

Consequently, $\alpha_1(s_1) + \dots + \alpha_n(s_n) \in S(s_1 + \dots + s_n)$. This shows that $Ss_1 + \dots + Ss_n \subset S(s_1 + \dots + s_n)$. The other inclusion always holds. \square

Proposition 2.10. *Let M be a quasi-small P -injective module and $s_1(M) \oplus \dots \oplus s_n(M)$ a direct sum of small and fully invariant M -cyclic submodules of M . Then for any fully invariant small submodule A of M , we have*

$$A \cap (s_1(M) \oplus \dots \oplus s_n(M)) = (A \cap s_1(M)) \oplus \dots \oplus (A \cap s_n(M)).$$

Proof. Always $(A \cap s_1(M)) \oplus \dots \oplus (A \cap s_n(M)) \subset A \cap (s_1(M) \oplus \dots \oplus s_n(M))$. Let $a = \sum_{i=1}^n s_i(m_i) \in A \cap (s_1(M) \oplus \dots \oplus s_n(M))$. Let $\pi_k : \bigoplus_{i=1}^n s_i(M) \rightarrow s_k(M)$ be the projection map. Since, for each i , $s_i(M)$ is small and fully invariant, $Ss_i(M) \subset s_i(M)$ so $\bigoplus_{i=1}^n Ss_i$ is direct. Then by Proposition 2.9, π_k has an extension $\widehat{\pi_k}$ in S . It follows that $s_i(m_i) = \widehat{\pi_i}(a) \in A \cap s_i(M)$. Therefore $a \in \bigoplus_{i=1}^n (A \cap s_i(M))$. \square

References

- [1] F. W. Anderson and K. R. Fuller, “Rings and Categories of Modules,” Graduate Texts in Math. No.13, Springer-verlag, New York, 1992.
- [2] V. Camillo, *Commutative rings whose principal ideals are annihilators*, Portugal Math., 46(1989), 33–37.
- [3] A. Haghany and M. R. Vedadi, *Modules whose injective endomorphisms are essential*, J. Algebra, 243(2001), 765–779.
- [4] S. H. Mohamed and B. J. Müller, “Continuous and Discrete Modules,” London Math. Soc. Lecture Note Series 14, Cambridge Univ. Press, 1990.
- [5] W. K. Nicholson and M. F. Yousif, *Principally injective rings*, J. Algebra, 174(1995), 77–93.
- [6] W. K. Nicholson, J. K. Park and M. F. Yousif, *Principally quasi-injective modules*, Comm. Algebra, 27:4(1999), 1683–1693.
- [7] N. V. Sanh, K. P. Shum, S. Dhompongsa and S. Wongwai, *On quasi-principally injective modules*, Algebra Coll. 6: 3(1999), 269–276.
- [8] L. Shen and J. Shen *Small injective rings*, arXiv: Math., RA/0505445 v.1 (2005).
- [9] L.V. Thuyet, and T.C. Quynh, *On small injective rings, simple-injective and quasi-Frobenius rings*, Acta Math. Univ. Comenianae, Vol.78(2), (2009) pp. 161-172.
- [10] R. Wisbauer, “Foundations of Module and Ring Theory,” Gordon and Breach London, Tokyo e.a., 1991.
- [11] S. Wongwai, *On the endomorphism ring of a semi-injective module*, Acta Math. Univ. Comenianae, Vol.71,1(2002), pp. 27-33.

[12] S. Wongwai, *Small Principally Quasi-injective modules*, Int. J. Contemp. Math. Sciences, Vol.6, no. 11, 527-534.