
Received 03rd June 2020, 

Revised 08th December 2020, 

Accepted 15th December 2020 

DOI: 10.14456/past.2021.2 

Almost Type of Simulation Functions Results 

Paiwan Wongsasinchai 
Department of Mathematics, Faculty of Science and Technology,  
Rambhai Barni Rajabhat University, Chanthaburi, Thailand. 

E-mail: paiwan252653@gmail.com 

Abstract 

In this paper, we introduce common point theorems for almost type simulation functions and a complete 

metric framework. We investigated both the existence and uniqueness of common fixed points of such mappings. 

We used an example to illustrate the main result observed. Our main results cover several existing results in the 

corresponding literature. 
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1. Introduction  

The fixed problem can be considered a 

simple equation ϒ𝜂 = 𝜂. In almost all scientific 

disciplines, most of the issues can be converted into 

fixed point equations. The first fixed point theorem 

was announced in Banach’s thesis in 1922 (1), in the 

setting of complete normed space, which can be 

described as the abstraction of the successive 

approximation method. 

Theorem 1.1 (1) Let (𝛬, 𝑑) be a complete 

metric space and ϒ be a self-mapping on the set 𝛬 such 

that there exists 𝜌 ∈ [0,1) ,  

𝑑(ϒ𝜂, ϒ𝜎) ≤ 𝜌𝑑(𝜂, 𝜎) for all 𝜂, 𝜎 ∈ Λ.  (1.1)  

Then, ϒ has a unique fixed point in 𝛬. 

Theorem 1.2 (3) Let (𝛬, 𝑑) be a complete 

metric space and a self-mapping ϒ on the set 𝛬 be an 

almost contraction, that is, a mapping for which there 

exist 𝛿 ∈ [0,1) and there exist 𝐿 ≥ 0such that  

𝑑(ϒ𝜂, ϒ𝜎) ≤ 𝛿𝑑(𝜂, 𝜎) + 𝐿𝑑(𝜎, ϒ𝜂), ∀𝜂, 𝜎 ∈ Λ. (1.2) 

Then, 

(i) 𝐹𝑖𝑥(ϒ) ≠ ∅, where  

 𝐹𝑖𝑥(ϒ) = {𝜂 ∈ 𝛬:ϒ𝜂 = 𝜂};  

(ii) For any 𝜂0 ∈ 𝛬, the Picard iteration {𝜂𝑛} given by 

 𝜂𝑛+1 = ϒ𝜂𝑛   for each  𝑛 ≥ 0 converges to some  

 𝜂 ∗∈ 𝐹𝑖𝑥(ϒ); 

(iii) The following estimate holds 

𝑑(𝜂𝑛+𝑖−1, 𝜂 ∗) ≤
𝛿𝑖

1−𝛿
𝑑(𝜂𝑛, 𝜂𝑛−1), ∀𝑛 ≥ 0, 𝑖 ≥ 1. 

Babu et al. [5] defined the class of mappings satisfying 

condition (B) as follows: 

Definition 1.3 (5) Let (Λ, 𝑑)  be a metric 

space and a self-mapping ϒ on Λ is said to satisfy 

condition (B) if there exist a constant 𝛿 ∈ (0,1) and 

there exists 𝐿 ≥ 0 such that   

𝑑(ϒ𝜂, ϒ𝜎) ≤ 𝛿𝑑(𝜂, 𝜎) + 𝐿𝐾(𝜂, 𝜎),∀𝑛, 𝜎 ∈ Λ, (1.3) 

where  

𝐾(𝜂, 𝜎) = 𝑚𝑖𝑛{ 𝑑(𝜂, ϒ𝜂), 𝑑(𝜎, ϒ𝜎), 
𝑑(𝜂, ϒ𝜎), 𝑑(𝜎, ϒ𝜂)}.  

They proved a fixed point theorem for such mappings 

in complete metric spaces. They also discussed quasi-

contraction, almost contraction, and mappings class 

that satisfy condition (B) in detail. 

Khojasteh et al. (6) originated the notion of 

𝑍 -contractions using a specific family of functions 

called simulation functions. Subsequently, many 

researchers generalized this idea in many ways (8-24) 

and proved many interesting results in the arena of 

fixed point theory. Recently, Heidary et al. (7) 

proposed a new notion, the 𝜓 -simulation function. 

The notion of the 𝑍𝜓-contraction covers several 

distinct types of contraction, including the 𝑍 -

contraction that was defined in (6). We denote Ψ: =
{𝜓: ℝ0

+ → ℝ0
+|𝜓 is continuous and nondecreasing, and 

𝜓(𝑟) = 0 ⇔ 𝑟 = 0}. 
Definition 1.4 (7) We say that 𝜁: ℝ0

+ ×
ℝ0

+ → ℝ is a 𝜓 -simulation function, if there exists 

𝜓 ∈ Ψ such that: 

(𝜁1)𝜁(𝑝, 𝑞) < 𝜓(𝑞) − 𝜓(𝑝) for all  𝑝, 𝑞 > 0; 
(𝜁2) if {𝑝𝑛}, {𝑞𝑛} are sequences in (0, ∞) such that 

𝑙𝑖𝑚
𝑛→∞

𝑝𝑛 = 𝑙𝑖𝑚
𝑛→∞

𝑞𝑛 > 0 implies 𝑙𝑖𝑚 𝑠𝑢𝑝
𝑛→∞

𝜁(𝑝𝑛, 𝑞𝑛) < 0. 

Let 𝑍𝜓 be the set of all 𝜓 -simulation 

functions. Note that if we take 𝜓 as an identity 
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mapping, then 𝜓 -simulation function becomes a 

simulation function in the sense of (6). 

Example 1.5. (7) Let  𝜓 ∈ Ψ 

(i) 𝜁1(𝑝, 𝑞) = 𝑘𝜓(𝑞) − 𝜓(𝑝) for all 𝑝, 𝑞 ∈ [0, ∞),  

 where 𝑘 ∈ [0,1). 
(ii) 𝜁2(𝑝, 𝑞) = 𝜑(𝜓(𝑞)) − 𝜓(𝑝) for all  

 𝑝, 𝑞 ∈ [0, ∞), where 𝜑 is a self-mapping from  

 [0, ∞) to [0, ∞) so that 𝜑(0) = 0 and for each  

 𝑞 > 0, 𝜑(𝑞) < 𝑞, 
𝑙𝑖𝑚 𝑠𝑢𝑝

𝑝→𝑞
𝜑(𝑞) < 𝑞. 

(iii) 𝜁3(𝑝, 𝑞) = 𝜓(𝑞) − 𝜑(𝑞) − 𝜓(𝑝) for all  

𝑝, 𝑞 ∈ [0, ∞) where 𝜓: [0, ∞) → [0, ∞) is a 

mapping such that, for each 𝑞 > 0,  
𝑙𝑖𝑚 𝑖𝑛𝑓

𝑝→𝑞
𝜑(𝑝) < 0. 

It is clear that 𝜁1, 𝜁2, 𝜁3 ∈ 𝑍𝜓. 

Motivated and inspired by Babu et al.(5), 

Khojasteh et al. (6) and Heidary et al. (7), we define 

an Almost type simulation functions in metric spaces. 

2. Main Results 

Firstly, we present the following definition, 

which will be used in our main results. 

Definition 2.1. Let (𝛬, 𝑑) be a metric space. 

We say that a pair of mappings ϒ, 𝛷: 𝛬 → 𝛬 is an 

almost type simulation functions whenever there is a 

constant 𝐿 ≥ 0, for all 𝜂, 𝜎 ∈ 𝛬, such that 

1

2
𝑚𝑖𝑛{ 𝑑(𝜂, ϒ𝜂), 𝑑(𝜎, Φ𝜎)} ≤ 𝑑(𝜂, 𝜎) implies 

𝜁(𝑑(ϒ𝜂, Φ𝜎), 𝐷(𝜂, 𝜎) + 𝐿𝐾(𝜂, 𝜎)) ≥ 0, (2.1) 

where 

𝐷(𝜂, 𝜎) = 𝑚𝑎𝑥 {𝑑(𝜂, 𝜎),
[1+𝑑(𝜂,ϒ𝜂)]𝑑(𝜎,𝛷𝜎)

1+𝑑(𝜂,𝜎)
} and 

𝐾(𝜂, 𝜎) = 𝑚𝑖𝑛{𝑑(𝜂, ϒ𝜂), 𝑑(𝜎, 𝛷𝜎), 𝑑(𝜂, 𝛷𝜎), 𝑑(𝜎, ϒ𝜂)}.  

Lemma 2.2. Let (𝛬, 𝑑) be a metric space 

and ϒ, 𝛷: 𝛬 → 𝛬 be two selfmaps. Assume that the 

pair (ϒ, 𝛷) is an almost type of simulation functions. 

Then 𝑢 is a fixed point of ϒ if and only if 𝑢 is a fixed 

point of 𝛷. In that case, 𝑢 is a common fixed point of 

ϒ and 𝛷, and 𝑢 is unique.  

Proof. Let 𝑢 be a fixed point of ϒ, i.e., ϒ𝑢 =
𝑢. Now, we prove that 𝑢 is a fixed point of 𝛷. Assume 

that 𝑑(𝑢, 𝛷𝑢) > 0 Thus from (2.1) we have 

0 =
1

2
𝑚𝑖𝑛{ 𝑑(𝑢, ϒ𝑢), 𝑑(𝑢, Φ𝑢)} ≤ 𝑑(𝑢, 𝑢). (2.2) 

This implies 

𝜁(𝑑(ϒ𝑢, Φ𝑢), 𝐷(𝑢, 𝑢) + 𝐿𝐾(𝑢, 𝑢)) ≥ 0. (2.3) 

By (𝜁1), we have 

𝜓(𝑑(ϒ𝑢, 𝛷𝑢)) < 𝜓(𝐷(𝑢, 𝑢) + 𝐿𝐾(𝑢, 𝑢)).  
Therefore, 

𝑑(ϒ𝑢, Φ𝑢) < 𝐷(𝑢, 𝑢) + 𝐿𝐾(𝑢, 𝑢), (2.4) 

 

where 

𝐷(𝑢, 𝑢) = 𝑚𝑎𝑥 {𝑑(𝑢, 𝑢),
[1 + 𝑑(𝑢, ϒ𝑢)]𝑑(𝑢, 𝛷𝑢)

1 + 𝑑(𝑢, 𝑢)
} 

= 𝑑(𝑢, 𝛷𝑢) 

and 
𝐾(𝑢, 𝑢) = 𝑚𝑖𝑛{𝑑(𝑢, ϒ𝑢), 𝑑(𝑢, 𝛷𝑢), 𝑑(𝑢, 𝛷𝑢), 𝑑(𝑢, ϒ𝑢)} = 0. 
Hence, using the values of 𝐷(𝑢, 𝑢) and 𝐾(𝑢, 𝑢) in 

(2.4), we obtain 𝑑(𝑢, 𝛷𝑢) < 𝑑(𝑢, 𝛷𝑢) + 𝐿0, which is 

a contradiction. Therefore 𝑢 = 𝛷𝑢. So, 𝑢 is a fixed 

point of 𝛷. Same the way, it is easy to see that if 𝑢  is 

a fixed point of 𝛷 then 𝑢 is a fixed point of ϒ also. 

Next, we prove that 𝑢 is a unique common fixed point 

of ϒ and 𝛷. Let 𝑢 and 𝑣 be two common fixed points 

of ϒ and 𝛷 such that 𝑑(𝑢, 𝑣) > 0. Thus from (2.1),  

we have 

0 =
1

2
𝑚𝑖𝑛{ 𝑑(𝑢, ϒ𝑢), 𝑑(𝑣, Φ𝑣)} ≤ 𝑑(𝑢, 𝑣). (2.5) 

This implies 

𝜁(𝑑(ϒ𝑢, Φ𝑣), 𝐷(𝑢, 𝑣) + 𝐿𝐾(𝑢, 𝑣)) ≥ 0. (2.6) 

By (𝜁1) , we have 

𝜓(𝑑(ϒ𝑢, 𝛷𝑣)) < 𝜓(𝐷(𝑢, 𝑣) + 𝐿𝐾(𝑢, 𝑣)). 
Therefore, 

𝑑(ϒ𝑢, Φ𝑣) < 𝐷(𝑢, 𝑣) + 𝐿𝐾(𝑢, 𝑣), (2.7) 

where 

𝐷(𝑢, 𝑣) = 𝑚𝑎𝑥 {𝑑(𝑢, 𝑣),
[1 + 𝑑(𝑢, ϒ𝑢)]𝑑(𝑣, 𝛷𝑣)

1 + 𝑑(𝑢, 𝑣)
} 

= 𝑑(𝑢, 𝑣) 

and 
𝐾(𝑢, 𝑣) = 𝑚𝑖𝑛{𝑑(𝑢, ϒ𝑢), 𝑑(𝑣, 𝛷𝑣), 𝑑(𝑢, 𝛷𝑣), 𝑑(𝑣, ϒ𝑢)} = 0. 

Hence, using the values of 𝐷(𝑢, 𝑣) and 𝐾(𝑢, 𝑣) in 

(2.7), we obtain  

( , ) ( , ) 0d u v d u v L  +  , 
which is a contradiction. We conclude that 𝑑(𝑢, 𝑣) = 0, 

i.e., 𝑢 = 𝑣 and the theorem is proven. 

Theorem 2.3. Let (𝛬, 𝑑) be a complete 

metric space and ϒ, 𝛷: 𝛬 → 𝛬 be two selfmaps. 

Assume that the pair (ϒ, 𝛷) is an almost type of 

simulation functions. Then 𝑢 is a unique common 

fixed point of ϒ and 𝛷.  

Proof. Let 𝑢0 ∈ 𝛬 be an arbitrary point. We 

define a sequence {𝑢𝑛} ⊂ 𝛬 by 𝑢2𝑛+1 = ϒ𝑢2𝑛 and 

𝑢2𝑛+2 = 𝛷𝑢2𝑛+1  for 𝑛 = 0,1,2, . .. 
We note that 
1

2
𝑚𝑖𝑛{ 𝑑(𝜂, ϒ𝜂), 𝑑(𝜎, 𝛷𝜎)} ≤ 𝑑(𝜂, 𝜎) 

if and only if either 
1

2
𝑑(𝜂, ϒ𝜂) ≤ 𝑑(𝜂, 𝜎)} or 

1

2
𝑑(𝜎, 𝛷𝜎) ≤ 𝑑(𝜂, 𝜎)}. 

Assume that 𝑢2𝑛 = 𝑢2𝑛+1for some 𝑛, then 𝑢2𝑛 = ϒ𝑢2𝑛. 

So, 𝑢2𝑛 is a fixed point of ϒ. Thus, by Lemma 2.2, we 

have 𝑢2𝑛 is a fixed point of 𝛷 also 𝑢2𝑛 is a common fixed 

point of ϒ and 𝛷. Same the way, if 𝑢2𝑛+1 = 𝑢2𝑛+2 then 

𝑢2𝑛+1 is a fixed point of 𝛷. Using Lemma 2.2, we have 

𝑢2𝑛+1 is a common fixed point of ϒ and 𝛷. Without loss 
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of generality, we can assume that 𝑑(𝑢𝑛, 𝑢𝑛+1) > 0 for 

𝑛 = 0,1,2, . .. From (2.1), we get 
1

2
𝑚𝑖𝑛{ 𝑑(𝑢2𝑛 , ϒ𝑢2𝑛), 𝑑(𝑢2𝑛+1, 𝛷𝑢2𝑛+1)} ≤ 𝑑(𝑢2𝑛 , 𝑢2𝑛+1). 

This implies 
𝜁(𝑑(ϒ𝑢2𝑛, 𝛷𝑢2𝑛+1), 𝐷(𝑢2𝑛 , 𝑢2𝑛+1) + 𝐿𝐾(𝑢2𝑛 , 𝑢2𝑛+1)) ≥ 0.  

By (𝜁1), we have 

𝜓(𝑑(ϒ𝑢2𝑛, 𝛷𝑢2𝑛+1)) < 𝜓(𝐷(𝑢2𝑛, 𝑢2𝑛+1) +
𝐿𝐾(𝑢2𝑛, 𝑢2𝑛+1)). (2.8) 

Therefore, 

𝑑(ϒ𝑢2𝑛, Φ𝑢2𝑛+1) < 𝐷(𝑢2𝑛, 𝑢2𝑛+1) +
𝐿𝐾(𝑢2𝑛, 𝑢2𝑛+1), (2.9) 

where 

𝐷(𝑢2𝑛 , 𝑢2𝑛+1) 

     = 𝑚𝑎𝑥 {𝑑(𝑢2𝑛, 𝑢2𝑛+1),
[1+𝑑(𝑢2𝑛,ϒ𝑢2𝑛)]𝑑(𝑢2𝑛+1,𝛷𝑢2𝑛+1)

1+𝑑(𝑢2𝑛,𝑢2𝑛+1)
} 

     = 𝑚𝑎𝑥 {𝑑(𝑢2𝑛, 𝑢2𝑛+1),
[1+𝑑(𝑢2𝑛,𝑢2𝑛+1)]𝑑(𝑢2𝑛+1,𝑢2𝑛+2)

1+𝑑(𝑢2𝑛,𝑢2𝑛+1)
} 

     = 𝑚𝑎𝑥{𝑑(𝑢2𝑛 , 𝑢2𝑛+1), 𝑑(𝑢2𝑛+1, 𝑢2𝑛+2)}, 
so that  

𝐷(𝑢2𝑛 , 𝑢2𝑛+1) 

     = 𝑚𝑎𝑥{𝑑(𝑢2𝑛 , 𝑢2𝑛+1), 𝑑(𝑢2𝑛+1, 𝑢2𝑛+2)} 

and  

𝐾(𝑢2𝑛, 𝑢2𝑛+1) 

     = 𝑚𝑖𝑛 {
𝑑(𝑢2𝑛, ϒ𝑢2𝑛), 𝑑(𝑢2𝑛+1, 𝛷𝑢2𝑛+1),
𝑑(𝑢2𝑛, 𝛷𝑢2𝑛+1), 𝑑(𝑢2𝑛+1, ϒ𝑢2𝑛)

} 

     = 𝑚𝑖𝑛 {
𝑑(𝑢2𝑛, 𝑢2𝑛+1), 𝑑(𝑢2𝑛+1, 𝑢2𝑛+2),
𝑑(𝑢2𝑛, 𝑢2𝑛+2), 𝑑(𝑢2𝑛+1, 𝑢2𝑛+1)

} 

     = 0. 
Hence, using the values of 𝐷(𝑢2𝑛, 𝑢2𝑛+1) 

and𝐾(𝑢2𝑛, 𝑢2𝑛+1)  in (2.9), we obtain  

2 1 2 2 2 2 1 2 1 2 2( , ) max{ ( , ), ( , )} 0.n n n n n nd u u d u u d u u L+ + + + + +

 (2.10) 

If 𝑑(𝑢2𝑛, 𝑢2𝑛+1) < 𝑑(𝑢2𝑛+1, 𝑢2𝑛+2) for some 𝑛, then 

from (2.10), we have  

𝑑(𝑢2𝑛+1, 𝑢2𝑛+2) < 𝑑(𝑢2𝑛+1, 𝑢2𝑛+2) 

which is a contradiction. Therefore, 

𝑑(𝑢2𝑛+1, 𝑢2𝑛+2) < 𝑑(𝑢2𝑛 , 𝑢2𝑛+1) 

and 

𝐷(𝑢2𝑛 , 𝑢2𝑛+1) = 𝑑(𝑢2𝑛 , 𝑢2𝑛+1) 

Hence, from (2.8), we have 

𝜓(𝑑(𝑢2𝑛+1, 𝑢2𝑛+2)) < 𝜓(𝑑(𝑢2𝑛, 𝑢2𝑛+1)). (2.11) 

Same the way, we have 

𝜓(𝑑(𝑢2𝑛+2, 𝑢2𝑛+3)) < 𝜓(𝑑(𝑢2𝑛+1, 𝑢2𝑛+2)). (2.12)  

Therefore from (2.11) and (2.12), we have 
𝜓(𝑑(𝑢𝑛+1, 𝑢𝑛+2)) < 𝜓(𝑑(𝑢𝑛, 𝑢𝑛+1)) for 𝑛 = 0,1,2, . .. 
which implies that 

𝑑(𝑢𝑛+1, 𝑢𝑛+2) ≤ 𝑑(𝑢𝑛 , 𝑢𝑛+1) for 𝑛 = 0,1,2, . . . , 𝑛. 

 (2.13) 

Hence, the sequence {𝑑(𝑢𝑛, 𝑢𝑛+1)} is a non-

increasing and bounded below. Then it is convergent 

and there exists a real number 𝛼 ≥ 0 such that  

𝛼 = 𝑙𝑖𝑚
𝑛→∞

𝑑(𝑢𝑛 , 𝑢𝑛+1). (2.14)  

To prove that 𝛼 = 0, assume 𝛼 > 0. For 𝑛 ≥ 0,  

we consider 
1

2
𝑚𝑖𝑛{𝑑(𝑢2𝑛, ϒ𝑢2𝑛), 𝑑(𝑢2𝑛+1, 𝛷𝑢2𝑛+1)} 

=
1

2
𝑚𝑖𝑛{𝑑(𝑢2𝑛, 𝑢2𝑛+1), 𝑑(𝑢2𝑛+1, 𝑢2𝑛+2)} 

 ≤ 𝑑(𝑢2𝑛 , 𝑢2𝑛+1). 
This implies  

𝜁(𝑑(𝑢2𝑛+1, 𝑢2𝑛+2), 𝑑(𝑢2𝑛, 𝑢2𝑛+1) ≥ 0.  
Hence,  

𝑙𝑖𝑚 𝑠𝑢𝑝
𝑛→∞

𝜁(𝑑(𝑢2𝑛+1, 𝑢2𝑛+2), 𝑑(𝑢2𝑛 , 𝑢2𝑛+1) ≥ 0. 

Using (2.14), we obtain  

𝑙𝑖𝑚
𝑛→∞

𝑑(𝑢2𝑛+1, 𝑢2𝑛+2) = 𝛼 > 0. (2.15)  

Using (𝜁2) with 𝑝𝑛 = 𝑑(𝑢2𝑛+1, 𝑢2𝑛+2) and 𝑞𝑛 =
𝑑(𝑢2𝑛, 𝑢2𝑛+1), we have 

𝑙𝑖𝑚 𝑠𝑢𝑝
𝑛→∞

𝜁(𝑑(𝑢2𝑛+1, 𝑢2𝑛+2), 𝑑(𝑢2𝑛 , 𝑢2𝑛+1) < 0, 

which is a contradiction. Therefore, 

𝑙𝑖𝑚
𝑛→∞

𝑑(𝑢𝑛, 𝑢𝑛+1) = 0. (2.16)  

We know prove that {𝑢𝑛}is a Cauchy sequence. On 

the contrary suppose that {𝑢𝑛} is not Cauchy. Then 

there is an 𝜀 > 0 and sequences of integers {2𝑚𝑘}and 
{2𝑛𝑘} with 𝑚𝑘 > 𝑛𝑘 > 𝑘 such that  

𝑑(𝑢2𝑚𝑘
, 𝑢2𝑛𝑘

) ≥ 𝜀 and 𝑑(𝑢2𝑚𝑘−2, 𝑢2𝑛𝑘
) < 𝜀. (2.17) 

Case(i): We will prove 𝑙𝑖𝑚
𝑘→∞

𝑑(𝑢2𝑚𝑘
, 𝑢2𝑛𝑘

) = 𝜀. From 

(2.17), we have 𝜀 ≤ 𝑑(𝑢2𝑚𝑘
, 𝑢2𝑛𝑘

). Taking limit 

infimum as 𝑘 → ∞, we obtain  

𝜀 ≤ lim 𝑖𝑛𝑓
𝑘→∞

𝑑(𝑢2𝑚𝑘
, 𝑢2𝑛𝑘

). (2.18)  

We consider  
𝑑(𝑢2𝑚𝑘

, 𝑢2𝑛𝑘
) ≤ 𝑑(𝑢2𝑚𝑘

, 𝑢2𝑚𝑘−2) + 𝑑(𝑢2𝑚𝑘−2, 𝑢2𝑛𝑘
) 

       < 𝑑(𝑢2𝑚𝑘
, 𝑢2𝑚𝑘−2) + 𝜀. 

Taking limit superior as 𝑘 → ∞, we obtain  

lim 𝑠𝑢𝑝
𝑘→∞

𝑑(𝑢2𝑚𝑘
, 𝑢2𝑛𝑘

) ≤ 𝜀. (2.19)  

Using (2.18) and (2.19), we obtain 

𝑙𝑖𝑚
𝑘→∞

𝑑(𝑢2𝑚𝑘
, 𝑢2𝑛𝑘

) = 𝜀.  

Same the way we prove the following:  

Case(ii): 𝑙𝑖𝑚
𝑘→∞

𝑑(𝑢2𝑚𝑘
, 𝑢2𝑛𝑘+1) = 𝜀.  

Case(iii): 𝑙𝑖𝑚
𝑘→∞

𝑑(𝑢2𝑚𝑘+1, 𝑢2𝑛𝑘
) = 𝜀. 

Case(iv): 𝑙𝑖𝑚
𝑘→∞

𝑑(𝑢2𝑚𝑘+1, 𝑢2𝑛𝑘+1) = 𝜀. 
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Case(v): 𝑙𝑖𝑚
𝑘→∞

𝑑(𝑢2𝑚𝑘+1, 𝑢2𝑛𝑘+2) = 𝜀. 

Now, from the definition of 𝐷(𝜂, 𝜎), we have 

𝑙𝑖𝑚
𝑘→∞

𝐷(𝑢2𝑚𝑘
, 𝑢2𝑛𝑘−1) 

= 𝑙𝑖𝑚
𝑘→∞

𝑚𝑎𝑥 {

𝑑(𝑢2𝑚𝑘
, 𝑢2𝑛𝑘−1),

[1 + 𝑑(𝑢2𝑚𝑘
, ϒ𝑢2𝑚𝑘

)]𝑑(𝑢2𝑛𝑘−1, 𝛷𝑢2𝑛𝑘−1)

1 + 𝑑(𝑢2𝑚𝑘
, 𝑢2𝑛𝑘−1)

}

= 𝑙𝑖𝑚
𝑘→∞

𝑚𝑎𝑥 {

𝑑(𝑢2𝑚𝑘
, 𝑢2𝑛𝑘−1),

[1 + 𝑑(𝑢2𝑚𝑘
, 𝑢2𝑚𝑘+1)]𝑑(𝑢2𝑛𝑘−1, 𝑢2𝑛𝑘−1)

1 + 𝑑(𝑢2𝑚𝑘
, 𝑢2𝑛𝑘−1)

}

= 𝜀 

and 

𝑙𝑖𝑚
𝑘→∞

𝐾(𝑢2𝑚𝑘
, 𝑢2𝑛𝑘−1) 

= 𝑙𝑖𝑚
𝑘→∞

𝑚𝑖𝑛 {
𝑑(𝑢2𝑚𝑘

, ϒ𝑢2𝑚𝑘
), 𝑑(𝑢2𝑛𝑘−1, 𝛷𝑢2𝑛𝑘−1),

𝑑(𝑢2𝑚𝑘
, 𝛷𝑢2𝑛𝑘−1), 𝑑(𝑢2𝑛𝑘−1, ϒ𝑢2𝑚𝑘

)
}

= 𝑙𝑖𝑚
𝑘→∞

𝑚𝑖𝑛 {
𝑑(𝑢2𝑚𝑘

, 𝑢2𝑚𝑘+1), 𝑑(𝑢2𝑛𝑘−1, 𝑢2𝑛𝑘
),

𝑑(𝑢2𝑚𝑘
, 𝑢2𝑛𝑘

), 𝑑(𝑢2𝑛𝑘−1, 𝑢2𝑚𝑘+1)
}

= 0. 
Taking 𝑘 sufficiently large with 𝑚𝑘 > 𝑛𝑘 > 𝑘 and 

since {𝑑(𝑢𝑛, 𝑢𝑛+1)}is a non-increasing, 

𝑑(𝑢2𝑚𝑘
, ϒ𝑢2𝑚𝑘

) = 𝑑(𝑢2𝑚𝑘
, ϒ𝑢2𝑚𝑘+1)             

           ≤ 𝑑(𝑢2𝑛𝑘
, 𝑢2𝑛𝑘+1) 

           ≤ 𝑑(𝑢2𝑛𝑘−1, 𝑢2𝑛𝑘
) 

           ≤ 𝑑(𝑢2𝑛𝑘−1, 𝛷𝑢2𝑛𝑘−1). 

So, 

1

2
𝑚𝑖𝑛{𝑑(𝑢2𝑚𝑘

, ϒ𝑢2𝑚𝑘
), 𝑑(𝑢2𝑛𝑘−1, Φ𝑢2𝑛𝑘−1)} 

     =
1

2
𝑑(𝑢2𝑚𝑘

, ϒ𝑢2𝑚𝑘
) 

     ≤ 𝑑(𝑢2𝑚𝑘
, 𝑢2𝑚𝑘+1). (2.20) 

Using (2.16), there exists 𝑘1 ∈ ℕ such that for any𝑘 >
𝑘1, 

𝑑(𝑢2𝑚𝑘
, 𝑢2𝑚𝑘+1) <

𝜀

2
. 

Also, there exists 𝑘2 ∈ ℕsuch that for any 𝑘 > 𝑘2,  

𝑑(𝑢2𝑛𝑘−1, 𝑢2𝑛𝑘
) <

𝜀

2
. 

Thus, for any 𝑘 > 𝑚𝑎𝑥{𝑘1, 𝑘2}and 𝑚𝑘 > 𝑛𝑘 > 𝑘, 

we have  

𝜀 ≤ 𝑑(𝑢2𝑛𝑘
, 𝑢2𝑚𝑘

) 

   ≤ 𝑑(𝑢2𝑛𝑘
, 𝑢2𝑛𝑘−1) + 𝑑(𝑢2𝑛𝑘−1, 𝑢2𝑚𝑘

) 

   ≤
𝜀

2
+ 𝑑(𝑢2𝑛𝑘−1, 𝑢2𝑚𝑘

), 

which implies that 
𝜀

2
≤ 𝑑(𝑢2𝑛𝑘−1, 𝑢2𝑚𝑘

). 

For any 𝑘 > 𝑚𝑎𝑥{𝑘1, 𝑘2}  𝑘 and 𝑚𝑘 > 𝑛𝑘 > 𝑘, 

𝑑(𝑢2𝑚𝑘
, 𝑢2𝑚𝑘+1) <

𝜀

2
 

 ≤ 𝑑(𝑢2𝑛𝑘−1, 𝑢2𝑚𝑘
). 

Therefore, from (2.20), we have 
1

2
𝑚𝑖𝑛{𝑑(𝑢2𝑚𝑘

, ϒ𝑢2𝑚𝑘
), 𝑑(𝑢2𝑛𝑘−1, 𝛷𝑢2𝑛𝑘−1)} 

   =
1

2
𝑑(𝑢2𝑚𝑘

, 𝑢2𝑚𝑘+1) 

   ≤ 𝑑(𝑢2𝑛𝑘−1, 𝑢2𝑚𝑘
). 

This implies 

𝜁 (
𝑑(ϒ𝑢2𝑚𝑘

, 𝛷𝑢2𝑛𝑘−1),

𝐷(𝑢2𝑚𝑘
, 𝑢2𝑛𝑘−1) + 𝐿𝐾(𝑢2𝑚𝑘

, 𝑢2𝑛𝑘−1)
) ≥ 0.  

By (𝜁1) , we have 

𝜓(𝑑(ϒ𝑢2𝑚𝑘
, 𝛷𝑢2𝑛𝑘−1)) < 𝜓(𝐷(𝑢2𝑚𝑘

, 𝑢2𝑛𝑘−1) +

𝐿𝐾(𝑢2𝑚𝑘
, 𝑢2𝑛𝑘−1)).  

Since 𝜓 is nondecreasing, we get  

𝑑(ϒ𝑢2𝑚𝑘
, 𝛷𝑢2𝑛𝑘−1) < 𝐷(𝑢2𝑚𝑘

, 𝑢2𝑛𝑘−1) +

𝐿𝐾(𝑢2𝑚𝑘
, 𝑢2𝑛𝑘−1)).  

Thus,  

𝑙𝑖𝑚 𝑠𝑢𝑝
𝑘→∞

𝑑(𝑢2𝑚𝑘+1, 𝑢2𝑛𝑘
) 

< 𝑙𝑖𝑚 𝑠𝑢𝑝
𝑘→∞

𝐷(𝑢2𝑚𝑘
, 𝑢2𝑛𝑘−1) + 𝐿𝑙𝑖𝑚 𝑠𝑢𝑝

𝑘→∞
𝐾(𝑢2𝑚𝑘

, 𝑢2𝑛𝑘−1) 

and then 𝜀 < 𝜀, which is a contradiction. Therefore, 
{𝑢𝑛} is a Cauchy sequence in 𝛬. Since (𝛬, 𝑑) is a 

complete metric space, we have {𝑢𝑛} is convergent to 

some point 𝑢 in 𝛬. Therefore  

𝑢 = 𝑙𝑖𝑚
𝑛→∞

𝑢2𝑛+1 = 𝑙𝑖𝑚
𝑛→∞

ϒ𝑢2𝑛 and  

𝑢 = 𝑙𝑖𝑚
𝑛→∞

𝑢2𝑛+2 = 𝑙𝑖𝑚
𝑛→∞

𝛷𝑢2𝑛+1.  

Hence,  

𝑙𝑖𝑚
𝑛→∞

ϒ𝑢2𝑛 = 𝑢 = 𝑙𝑖𝑚
𝑛→∞

𝛷𝑢2𝑛+1. 

We assume that ϒ is continuous. Since 𝑢2𝑛 → 𝑢 as 

𝑛 → ∞ , we have ϒ𝑢2𝑛 → ϒ𝑢 as 𝑛 → ∞. Hence  

0 ≤ 𝑑(𝑢, ϒ𝑢) ≤ (𝑑(𝑢, ϒ𝑢2𝑛) + 𝑑(ϒ𝑢2𝑛, ϒ𝑢)) → 0 as 

𝑛 → ∞, so that 𝑑(𝑢, ϒ𝑢) = 0. Thus, 𝑢 is a fixed point 

of ϒ. Now by Lemma 2.2, we have 𝑢 is a unique 

common fixed point of ϒ and 𝛷. Same the way, we 

can prove that 𝑢 is a unique common fixed point of ϒ 

and 𝛷 whenever 𝛷 is continuous. 
Example Let 𝑋 = [0,2] be endowed with 

the usual metric. Define a mapping ϒ, 𝛷: 𝑋 → 𝑋 as  ϒ, 

𝛷 = 2 − 𝜂  for all 𝜂 ∈ 𝑋. Then, ϒ and 𝛷 are not a 𝑍 -

contraction with respect to 𝜁 where for all  𝑡, 𝑠 ∈ [0, ∞) 

𝜁(𝑡, 𝑠) = 𝛼𝑠 − 𝑡, 𝛼 ∈ [0,1). 
For all 𝜂 ≠ 𝜎,  we get 
1

2
𝑚𝑖𝑛{ 𝑑(𝜂, ϒ𝜂), 𝑑(𝜎, 𝛷𝜎)} 

=
1

2
𝑚𝑖𝑛{|𝜂 − (2 − 𝜂)|, |𝜎 − (2 − 𝜎)|} 

=
1

2
𝑚𝑖𝑛{|𝜂 − 2 + 𝜂|, |𝜎 − 2 + 𝜎|} 

=
1

2
𝑚𝑖𝑛{|2𝜂 − 2|, |2𝜎 − 2|} 

≤ |𝜂 − 𝜎| 
= 𝑑(𝜂, 𝜎). 
And 

𝜁(𝑑(ϒ𝜂, 𝛷𝜎), 𝑑(𝜂, 𝜎)) 

= 𝛼|𝜂 − 𝜎| − |2 − 𝜂 − (2 − 𝜎)| 
= 𝛼|𝜂 − 𝜎| − |𝜂 − 𝜎| 
< |𝜂 − 𝜎| − |𝜂 − 𝜎| 
= 0. 

Now, we show that ϒ and Φ are a modified 

almost 𝑍 -contraction with respect to 𝜁. 

𝜁(𝑑(ϒ𝜂, Φ𝜎), 𝐷(𝜂, 𝜎) + 𝐿𝐾(𝜂, 𝜎)) 
= 𝛼[|𝐷(𝜂, 𝜎) + 𝐿𝐾(𝜂, 𝜎)|] − |2 − 𝜂 − (2 − 𝜎)| 
= 𝛼[|𝐷(𝜂, 𝜎) + 𝐿𝐾(𝜂, 𝜎)|] − |𝜂 − 𝜎|, 
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where 

𝐷(𝜂, 𝜎) 

     = 𝑚𝑎𝑥 {|𝜂 − 𝜎|,
[1 + |𝜂 − (2 − 𝜂)|]|𝜎 − (2 − 𝜎)|

1 + |𝜂 − 𝜎|
} 

    = 𝑚𝑎𝑥 {|𝜂 − 𝜎|,
[1+|2𝜙−2|]|2𝜂−2|

1+|𝜂−𝜎|
} 

and 

𝐷(𝜂, 𝜎) 

    = 𝑚𝑖𝑛 {
|𝜂 − (2 − 𝜂)|, |𝜎 − (2 − 𝜎)|,
|𝜂 − (2 − 𝜎)|, |𝜎 − (2 − 𝜂)|

} 

     = 𝑚𝑖𝑛{|2𝜂 − 2|, |2𝜎 − 2|, |2𝜂 − 2|, |𝜂 + 𝜎 − 2|} 
     = 𝑚𝑖𝑛{|2𝜂 − 2|, |2𝜎 − 2|, |𝜂 + 𝜎 − 2|}. 
We deduce that 

𝜁(𝑑(ϒ𝜂, Φ𝜎), 𝐷(𝜂, 𝜎) + 𝐿𝐾(𝜂, 𝜎)) 

    = 𝛼 [𝑚𝑎𝑥 {|𝜂 − 𝜎|,
[1+|2𝜂−2|]|2𝜎−2|

1+|𝜂−𝜎|
} 

         + 𝐾 𝑚𝑖𝑛 {
|2𝜂 − 2|, |2𝜎 − 2|,

|𝜂 + 𝜎 − 2|
}] − |𝜂 − 𝜎|. 

Thus, we get two cases :  

Cases(i): If 𝜂 = 𝜎, then 

𝜁(𝑑(ϒ𝜂, Φ𝜎), 𝐷(𝜂, 𝜎) + 𝐿𝐾(𝜂, 𝜎)) 

     = 𝛼 [
[1 + |2𝜂 − 2|]

|2𝜂 − 2| + 𝐿|2𝜂 − 2|
] 

     ≥ 0. 
Cases(ii): Suppose that 𝜂 > 𝜎.  
Then 

𝜁(𝑑(ϒ𝜂, Φ𝜎), 𝐷(𝜂, 𝜎) + 𝐿𝐾(𝜂, 𝜎)) 

     = 𝛼
[1 + |2𝜂 − 2|]|2𝜎 − 2|

1 + |𝜂 − 𝜎|
+ 𝛼𝐿|2𝜎 − 2| − |𝜂 − 𝜎|. 

We choose 𝛼 =
1

2
 and 𝐿 = 6, then we get  

𝜁(𝑑(ϒ𝜂, Φ𝜎), 𝐷(𝜂, 𝜎) + 𝐿𝐾(𝜂, 𝜎)) 

     =
1

2

[1 + |2𝜂 − 2|]|2𝜎 − 2|

1 + |𝜂 − 𝜎|
+ 3|2𝜎 − 2| − |𝜂 − 𝜎|. 

Thus, all of the conditions of Theorem 2.3 

are satisfied. Thus, ϒ and Φ have a unique common 

fixed point 𝑢 = 1. 
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