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Abstract
In this paper, we introduce common point theorems for almost type simulation functions and a complete
metric framework. We investigated both the existence and uniqueness of common fixed points of such mappings.
We used an example to illustrate the main result observed. Our main results cover several existing results in the

corresponding literature.
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1. Introduction

The fixed problem can be considered a
simple equation Yn =n. In almost all scientific
disciplines, most of the issues can be converted into
fixed point equations. The first fixed point theorem
was announced in Banach’s thesis in 1922 (1), in the
setting of complete normed space, which can be
described as the abstraction of the successive
approximation method.

Theorem 1.1 (1) Let (A, d) be a complete
metric space and Y be a self-mapping on the set A such
that there exists p € [0,1) ,

d(Yn,Yo) < pd(n,o) foralln,o € A. (1.2)

Then, Y has a unique fixed point in A.

Theorem 1.2 (3) Let (A, d) be a complete
metric space and a self-mapping Y on the set A be an
almost contraction, that is, a mapping for which there
exist § € [0,1) and there exist L > 0Osuch that

d(Yn,Yo) < 8d(n,0) + Ld(o,Yn),Vn,0d € A. (1.2)

Then,

(i) Fix(Y) # @, where
Fix(Y) = {n € &:Yn =n};

(ii) Foranyng € 4, the Picard iteration {n,,} given by
Nn+1 = Y7, foreach n > 0 converges to some
1 *€ Fix(Y);

(iii) The following estimate holds

A(ai1,1 %) S = d (1 Tue), ¥ 2 0,0 2 1.

Babu et al. [5] defined the class of mappings satisfying

condition (B) as follows:

Definition 1.3 (5) Let (A,d) be a metric
space and a self-mapping Y on A is said to satisfy
condition (B) if there exist a constant § € (0,1) and
there exists L > 0 such that

d(Yn,Yo) < 6d(n,0) + LK(n,0),vyn,o € A, (1.3)

where
K, o) = min{d(n,Yn),d(c,Yo),
d(n,Yo),d(o,Yn)}.
They proved a fixed point theorem for such mappings
in complete metric spaces. They also discussed quasi-
contraction, almost contraction, and mappings class
that satisfy condition (B) in detail.
Khojasteh et al. (6) originated the notion of
Z -contractions using a specific family of functions
called simulation functions. Subsequently, many
researchers generalized this idea in many ways (8-24)
and proved many interesting results in the arena of
fixed point theory. Recently, Heidary et al. (7)
proposed a new notion, the i -simulation function.
The notion of the Z,-contraction covers several
distinct types of contraction, including the Z -
contraction that was defined in (6). We denote W: =
{: RY > RE | is continuous and nondecreasing, and
Y(r)=0er=0}
Definition 1.4 (7) We say that {: R} x
R — R is a ¥ -simulation function, if there exists
Y € W such that:
(€4, q) <y(q) —(p) forall p,q > 0;
(¢,) if {pn}, {qn} are sequences in (0, o) such that
iimpn = iimqn > 0implies lim supl(pn, ) < 0.
—00 — 00 n-oo

Let Z, be the set of all ¢ -simulation
functions. Note that if we take i as an identity
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mapping, then i -simulation function becomes a
simulation function in the sense of (6).
Example 1.5. (7) Let Yy € ¥
() Spq) = kyp(q) —y(p) forall p, q € [0, ),
where k € [0,1).
(i) & @) = e(q) —Y(p) forall
p,q € [0,0), where ¢ is a self-mapping from
[0, ) to [0, o) so that ¢ (0) = 0 and for each
q9>0,¢0(q) <gq
limsupp(q) < q.
-q

p
(i) G3(.q) =Y(@) —e(@ —@)  for all
p,q €[0,0) where 1:[0,00) = [0,00) iS a
mapping such that, for each g > 0,

liminfe(p) < 0.
p—=q
Itis clear that {1, {5, {5 € Zy,
Motivated and inspired by Babu et al.(5),
Khojasteh et al. (6) and Heidary et al. (7), we define
an Almost type simulation functions in metric spaces.

2. Main Results

Firstly, we present the following definition,
which will be used in our main results.

Definition 2.1. Let (4, d) be a metric space.
We say that a pair of mappings Y,®:4 - A is an
almost type simulation functions whenever there is a
constant L = 0, for all n, o € A, such that

smin{d(n,Yn),d(a, ®o)} < d(1, o) implies

{(d(Yn, ®0),D(n,0) + LK(n,0)) =0, (2.1)
where

_ [L+d(n,Yn)]d(0,20)
D(n,0) = max {d(r), 0)’71+d(n,o) }and

K, 0) = min{d(n,Yn),d(o, Pa),d(n, ®a),d(s,Yn)}.

Lemma 2.2. Let (A,d) be a metric space
and Y,®: A - A be two selfmaps. Assume that the
pair (Y, ®) is an almost type of simulation functions.
Then u is a fixed point of Y if and only if u is a fixed
point of @. In that case, u is a common fixed point of
Y and @, and u is unique.

Proof. Let u be a fixed pointof Y, i.e., Yu =
u. Now, we prove that u is a fixed point of @. Assume
that d (u, @u) > 0 Thus from (2.1) we have

0 = -min{d(u, Yu),d(w, dw)} < d(ww).  (22)
This implies

2(d(Yu, du), D(w,u) + LK (w, 1)) = 0. (2.3)
By (¢1), we have

Y(d(Yu, du)) < P(D(u,u) + LK (u,u)).

Therefore,

d(Yu, ®u) < D(u,u) + LK (u, u), (2.4)

where

D(u,u) = max {d(u, w), [1+dQwYwld(, ‘pu)}

1 +du,u)
=d(u,du)
and
K (u,u) = min{d(u, Yu), d(u, ®u), d(u, ®u), d(u, Yu)} = 0.
Hence, using the values of D(u,u) and K(u,u) in
(2.4), we obtain d(u, ®u) < d(u, u) + L0, which is
a contradiction. Therefore u = @u. So, u is a fixed
point of @. Same the way, it is easy to see that if u is
a fixed point of @ then u is a fixed point of Y also.
Next, we prove that u is a unique common fixed point
of Yand @. Let u and v be two common fixed points
of Y'and @ such that d(u, v) > 0. Thus from (2.1),
we have

0= %min{d(u, Yu),d(v, ®v)} < d(u,v). (2.5)

This implies
{(d(Yu, ®v),D(u,v) + LK (u,v)) = 0. (2.6)
By (¢;) , we have

Y(d(Yu, ®v)) < Y(D(u,v) + LK (u, v)).
Therefore,

d(Yu, ®v) < D(u,v) + LK (u,v), @7)
where
D(u,v) = max {d(u, V), [1+ dl(ziﬁsgl]i()v, (pv)}

=d(u,v)
and
K (u,v) = min{d(u, Yu), d(v, ®v),d(u, dv),d(v,Yu)} = 0.
Hence, using the values of D(u,v) and K(u,v) in
(2.7), we obtain

d(Yu,v) <d(u,v)+LO ,
which is a contradiction. We conclude that d(u, v) = 0,
i.e., u = v and the theorem is proven.

Theorem 2.3. Let (4,d) be a complete
metric space and Y,®:4 - A be two selfmaps.
Assume that the pair (¥,®) is an almost type of
simulation functions. Then u is a unique common
fixed point of Y and &.

Proof. Let u, € A be an arbitrary point. We
define a sequence {u,} c A by uypy; = Yu,, and
Upn42 = ®U2n+] forn = 0,1,2,. -

We note that

%min{d(n,Yn), d(o,®0)} <d(n,0)

if and only if either

2d(,Yn) < d(n,0)} or 5 d(o,®0) < d(1,0)}.
Assume that u,,, = u,,4for some n, then w,,, = Yu,,.
S0, uy, is a fixed point of Y. Thus, by Lemma 2.2, we
have u,,, is a fixed point of @ also u,,, isacommon fixed
point of ¥ and @. Same the way, if w1 = Uypqo then

U4 IS a fixed point of @. Using Lemma 2.2, we have
U4 1S @ common fixed point of Y and &@. Without loss
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of generality, we can assume that d(u,, u,.;) > 0 for
n=0,1,2,...From (2.1), we get
%min{d(ulanuZ‘n):d(u2n+lr¢u2n+l)} < d(Uzp Unt1)-
This implies

C(d(Yuzn, Pusni1), D (Uan, Upn+1) + LK (Un, Uzne1)) 2 0.
By ({1), we have

Y(AdYuon, Pusps1)) < YD Uz, Usns1) +
LK (Uyn, Uan+1))- (2.8)

Therefore,

d(Yuzp, Puppy1) < D(Usp, Uonsr) +
LK (Uzn, Upns1): (2.9)

where
D (uzp, Upns1)
= max {d(uZn'u2n+l),

[1+d(u2nlvu2n)]d(u2n+l:d’u2n+1)}

1+d(uznuan+1)
[1+duonUont1)]1d(Uon+1,U2n+2)
= max {d(uZn, Upn+1)s
1+d(UznUon+1)

= max{d (U, Uons1), d(Uon+1, Uons2)}
so that
D(uan u2n+1)
= max{d (U, Uzn41), d(Uon+1, Uans2)}
and
K(uan u2n+1)
— mi {d (Uan, Ytion), d(Uans1, ¢u2n+1):}
d(uzn, Pusny1), d(Uopsr, Yion)
— mi {d(uzn» Upn+1), dUaps1s u2n+2):}
d(uan, Uzny2), d(Uans1, Uons1)

=0.
Hence, wusing the values of
andK (usp, Uons) in (2.9), we obtain

D (Uyn, Upn1)

A (Upp1:Uzn,p) <mMax{d (U, Uyy,1), d (Ugg,g, Upy, 2 )3+ LO.

(2.10)

If d(uop, Uons1) < d(Uony1, Usnsn) TOr some n, then
from (2.10), we have

o d(Uangy, Uopan) < d(Uongr, Uons2)
which is a contradiction. Therefore,

d(Uans1, Uons2) < d(Uon, Uony1)
and

D (uzn, Usns1) = d(Uan, Usns1)
Hence, from (2.8), we have

Y(d(Uans1, Uons2)) < P(d(Uon, Uzpt1))- (2.11)

Same the way, we have

Y(d (U4 Une3)) < P(d(Uonsr, Uone2)).  (2.12)

Therefore from (2.11) and (2.12), we have

Y(d(Uns1, Uns2)) < P(d(Up, upy)) forn =0,1,2,..
which implies that

d(Uns1, Unsr) < d(Uy, upyr) forn=0,12,...,n0.
(2.13)

Hence, the sequence {d (uy, Un4+1)} isanon-
increasing and bounded below. Then it is convergent
and there exists a real number a > 0 such that

a = limd(uy, Upy)- (2.14)
n—-oo

To prove that @ =0, assume a >0. For n >0,
we consider

I
Emm{d (Uan, Yion), d(Uans 1, Plions1)}

1
=3 min{d (Uzn, Upn+1), d (Uons1, Urn42)}

_S .d(uz_n: u2n+1)-
This implies
¢(d(uans1, Uons2), d(Ugn, Upng1) = 0.
Hence,
lim supd(d(Uon+1, Uan+2), A (Upn, Uppy1) = 0.

Using (2.14§Twe obtain

limd(uypi1, Uspsr) = a > 0. (2.15)
n—oo

Using (¢p) with p, = d(Uans Usnss) and g, =
d(uan u2n+1), we have
lim supl(d (Uyns1, Upnsa), A (Unp, Uy ) < 0,
n—oo

which is a contradiction. Therefore,
limd(up, upse1) = 0. (2.16)
n—oo

We know prove that {u,}is a Cauchy sequence. On
the contrary suppose that {u,} is not Cauchy. Then
there is an € > 0 and sequences of integers {2m,, }and
{2n; } with m;, > n, > k such that

AUz, Uzn,) = € aNd d(Uzm, —2, Uzp,) < €. (2.17)

Case(i): We will provelgimd(uz,nk,uznk) = ¢&. From
(2.17), we have & < d(uym,, Usp,)- Taking limit
infimum as k — oo, we obtain

e < lim infduym,, Usn,)- (2.18)
k—oo
We consider
d(Uamy Uomy,) < AUy Uamy—2) + & (Uamy—2) Uany)
< d(U2mk,U2mk_2) + &
Taking limit superior as k — o, we obtain

lim supd(Usm,, Uon,) < €. (2.19)
k—oo

Using (2.18) and (2.19), we obtain
Igi’gd(Uka:uan) =é&
Same the way we prove the following:
Case(ii): }gi@d(uzmk,umkﬁ) =c.
Case(iii): Igirgd(ukaH,uan) =e.

Case(iv): limd(ukaH,uanH) = E&.
k—oo
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Case(v): limd(uam+1, Uany+2) = €
Now, from the definition of D(n, ), we have
IEL@D (Uomy Uany—1)
d(uka'uan—l)'
= Igl_zlo max < [1 + d(uam,, Yiom, )1d (WUan, -1, PUon,—1)
1+ d(uzmy, Uang—1)
d(ukarU'an—l);
= lim max § [1 + damy, Womye )14 (any—1, Uany 1)
1+ d(Uamy, Uang-1)

=¢
and
Igi%K(uka' uan— 1)
=i . {d(u2mk' Yuka)' d(uan—lr q)uan—l)'}
= lim min

k—co d(Uamy, Puon,-1), d(Uany -1, Yiom,)

=i . {d(u2mkfu2mk+l)rd(uan—l'uan)'}
= lim min

k—oo d(Uamy Uany)» A(Uong—1, Uomy+1)
=0.

Taking k sufficiently large with m; > n;, >k and
since {d(uy, u,41)}is a non-increasing,
d(uka'Yuka) = d(ukalYu2mk+l)

< d(wany, Uang+1)

< d(wany-1, Uomy)

< d(uany-1, Plign,—1)-
So,

1
7 min{d (Womy, Yitomy), d (W, —1, PUsn, 1)}

I
= 5 d (u2mk' Yuka)
< d(Uamy Uamy +1)- (2.20)

Using (2.16), there exists k; € N such that for anyk >
kq,

d(Uamy Uomy+1) < 5
Also, there exists k, € Nsuch that for any k > k,,

d Uz, -1, Uzn,) < ok
Thus, for any k > max{k,, k,}and my > n; > k,
we have

S d(u2nkru2mk)
< d(Uany, Usny—1) + d(Uony—1, Uom, )
&
< 5+ d(uany-1, Uomy),
which implies that
&
7= d(Upn, -1, Usm, )-
For any k > max{kq, k,} kand m; > n;, >k,
&
d(uka; u2mk+l) < E
< d(Uany—1, Uom,)-
Therefore, from (2.20), we have

L
) mln{d (Uamye Yuom,), d(Uon,—1, d)uan—l)}

1
= 5 d(uka, u2mk+1)

< d(Ugny—1, Uamy,)-

This implies

{( d(Yugm,, Puan,—1), ) >0,
D (uzimy Uany—1) + LK (Uamy, Uomy—1)

By (¢;) , we have

Y(AdYuzm,, Pon,—1)) < YD Uom,, Uop,—1) +

LK (uamy Uany—1))-

Since 1 is nondecreasing, we get

d(Yuymy, Pion,—1) < D(Uamy, Usn,-1) +

LK (uzmy Uany—1))-

Thus,
lim supd(u2mk+1,u2nk)
k—oo
< liTll;l SUpD Uy Upye—1) + Lli;n SUPK (Uamyo Un-1)

and then & < &, which is a contradiction. Therefore,
{u,} is a Cauchy sequence in A. Since (4,d) is a
complete metric space, we have {u,} is convergent to
some point u in A. Therefore
u = limuyp, = limYu,, and

n—oco n—oo
u = limuypyn = limPuyy .

n—oco n—oo
Hence,

limYuy, = u = lim®uy, .
n—co n—oo
We assume that Y is continuous. Since u,, — u as
n—-o , we have Yu,, » Yu as n — . Hence
0<d(uYu) < (dW,Yuy,) +dYuy,, Yu)) - 0 as
n — oo, S0 that d(u, Yu) = 0. Thus, u is a fixed point
of Y. Now by Lemma 2.2, we have u is a unique
common fixed point of Y and &. Same the way, we
can prove that u is a unique common fixed point of Y
and @ whenever @ is continuous.
Example Let X = [0,2] be endowed with
the usual metric. Define amapping Y, ®: X —» X as Y,
@ =2—n foralln € X. Then, Y and @ are nota Z -
contraction with respect to { where forall ¢, s € [0, %)
{(t,s)=as—t,a€[0,1).

Forall n # o, we get

1

Emin{ d(,Yn),d(o,®0)}
1

=5min{ln = 2-mllo =2 -0}
1

= Emin{ln =2+7lle-2+0l}

1
= Emin{|2n —=2|,120 = 2|}

<In-ol
=d(n, o).
And

{(d(Yn, @0),d(n,0))
=alp—ol-[2-n—-(2 -0l
=aln—oa|—In—ol
<I|n-oal-1In-oal
=0.
Now, we show that Y and & are a modified

almost Z -contraction with respect to ¢.

¢(d(Yn, ®0o),D(n,0) + LK(n,0))

=a[ID(n,0) + LK, )] = 12— n— @2 - o)

= 06[|D(77r0) + LK(’?‘ J)l] - |T] - o-lr
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where
D(n,0)

=maxy|n—ol,

[1+1n-Q-mlllo—(©2~-0a)|
1+ |n—ol
= _ 5| [LHR2e-2012n-2]
- max{ln al, 1+|n-0| }
and
G —plle -0
(=2 =l lo— —a,}
=min
{In— Q- lo—Q2-nl
=min{[2n - 2|,120 - 2|,12n = 2|, In + o — 2}
=min{|2n - 2[,[20 - 2|,|n + 0 — 2|}.
We deduce that
C(d(Yn, ®0),D(n,0) + LK(n, J))
_ [1+]2n-2[]120-2|
= a|max{n - of, A
|21 —z|,|2a—z|,}] o]
I +0—2| s
Thus, we get two cases :
Cases(i): If n = a, then
{(d(Yn,®a),D(n,0) + LK(n,0))
—af, U+ 2
[2n — 2| + L|2n — 2|
> 0.
Cases(ii): Suppose thatn > o.
Then
¢(d(Yn, ®0),D(n,0) + LK(n,0))
=220 =2l
=a T+ —ol alL|2o n—ol.
We choose a = % and L = 6, then we get
{(d(Yn, ®0),D(n,0) + LK(n,0))
11+ 27 -2]]]20 - 2|
) 1+ |n—ol
Thus, all of the conditions of Theorem 2.3
are satisfied. Thus, Y and & have a unique common
fixed pointu = 1.

+Kmin{

+ 3|20 -2|—In —oal.
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