PROGRESS IN APPLIED
., SCIENCE AND TECHNOLOGY

Vol.11 No.1 (2021): 25-37

ISSN (Print): 2730-3012
ISSN (Online): 2730-3020

Faculty of Science and Technology
Rajamangala University of Technology Thanyaburi

Received 26™ January 2021,
Revised 02" February 2021,
Accepted 28" February 2021

DOI: 10.14456/past.2021.8

<.php/past

Viscosity Approximation Methods for Split Equilibrium
Problem and Fixed Point Problem for Finite Family of
Nonexpansive Mappings in Hilbert Spaces

Jitsupa Deepho?, Poom Kumam? and Pakeeta Sukprasert®”

L Faculty of Science, Energy and Environment, King Mongkut’s University of Technology
North Bangkok, Rayong Campus (KMUTNB-Rayong), 19 Moo 11, Tambon Nonglalok,
Amphur Bankhai, Rayong 21120, Thailand

2 King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha Uthit Road,
Bang Mod, Thung Khru, Bangkok 10140, Thailand

% Department of Mathematics and Computer Science, Faculty of Science and Technology,
Rajamangala University of Technology Thanyaburi (RMUTT), Rungsit-Nakorn Nayok Road,
Klong 6, Thanyaburi, Thailand

*E-mail: pakeeta_s@rmutt.ac.th

Abstract

In this paper, we present a new iterative scheme bases on the hybrid viscosity approximation method
and the hybrid steepest-descent method for finding a common element of the set of common fixed points of a finite

family of nonexpansive mappings and the split equilibrium problem in Hilbert spaces.
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1. Introduction
Throughout the paper unless otherwise

stated, let H and H, be real Hilbert spaces
with inner product (.,.) and norm ||| . Let C and Q
be nonempty closed convex subset of real Hilbert
spaces H,and H,. Let {x } beasequencein H,,
then X, — X (respectively, X, —=—> X ) denotes
strong (respectively, weak) convergence of {x } to
apoint x e H,.

A mapping S:C —C iscalled
nonexpansive,

[sx—sy| <|x -y, ¥x yeC. (1.1)

The fixed point problem (in short, FPP) for
the mapping S:C — Cistofind x € C such that

SX = X. 1.2)

The solution set of FPP (1.2) is denoted by Fix(S).
In 1967, Halpern (1) considered the
following explicit iterative process:

X =au+l-a)Sx,vn>0, (1.3)

n+!

where U is a given point and S:C —>C is
nonexpansive. He prove that strong convergence
of {x } to a fixed point of S provide that ¢ =n"’
with 6 (0,1).

In 2003, Xu (2) introduced the following
iterative process:

x,=au+@—a,D)sSx, vn=0, (1.4)

n+!

where {an} isasequence in (0,2). He prove the above
sequence {x }converges strongly to the unique
solution of the

minimization problem  with

C =Fix(S): mi”XEc%<Dxxx>—<XvU>l where D is

a strongly positive bounded linear operator on H .
In 2006, Marino and Xu (3) considered
the following viscosity iterative method:

X, ,=oyf(x)+(l-aA)Sx,vn=>0, (15)
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where f is a contraction on H . They proved
the above sequence {x }converges strongly to the

unique solution of the variational inequality
<(A—yf)x',x—x'>20,VXe Fix(S). (1.6)

In 2001, Yamada et al. (4) considered the
following hybrid steepest-descent iterative method:

X ., = SX —uA F(SX ) @7

where F is k — Lipschitzian continuous and 7 —
strongly monotone operator with k > 0,7 >0 and

2n . .
0 < # < —. Under some appropriate conditions, the
k

above sequence {x } converges strongly to the

unique solution of the variational inequality
<F(x*),x—x*> >0, Vx e Fix(S). (1.8)

In (5), Tian considered the following
general viscosity type iterative method:

X, =ayf(x)+( —upa F)Sx ,vn=0. (19)

Under certain approximate conditions, the above
sequence {x }converges strongly to a fixed point

of S, which solve the variational inequality

<(;/f—yF)x',x—x*>£O,VXeFix(S). (1.10)

In (6), Zhou and Wang proposed a simple
explicit iterative algorithm for finding a solution of
variational inequality over the set of common
fixed points of a finite family nonexpansive mappings.
They introduced an explicit scheme as follows:
Theorem 1.1. Let H be a real Hilbert space and

F:H > H be an k — Lipschitzian continuous and
n—strongly monotone mapping with k >0 and

n>0.Let {Si}iN:1 be N nonexpansive of H such that

C:erFix(S,)¢¢. For any point x, e H, define a

sequence {x } as follows:

X, =(1-2 4F)SySn 41 St X, VN 20, (1.11)

2 ] :
where u e (0—77) and S" =(1—o0,)l1 +0.S, for
kZ

i=12,...,N. When the parameters satisfy
appropriate conditions, the sequence {x } converges

strongly to the unique solution of the variational
inequality

<Ax*,y—x*>20,VyeC. (1.12)

where A:H — H is anonlinear mapping.

Recently, Zhang and Yang (7) proposed an
explicit iterative algorithm based on the viscosity
method for finding a solution for a class of variational
inequalities over the common fixed points set of a
finite family of nonexpansive mappings as follows:
Theorem 1.2. Let H be a real Hilbert space and

F:H —>H be an k — Lipschitzian continuous and
7 —strongly monotone mapping with k >0 and

n>0.Let {S }" be N nonexpansive self-mappings

N

of H such that C =NFix(S;) #¢and V be an
i=1

p—  Lipschitzian on H with p>0.

For any point X, € H, define a sequence {x }as
follows manner:

X, = oV (%) + (1 = 2, 4F )} Sy s 81 X, (1.13)

2
where 0 < yp < with T:‘U(ZI]flukz),o<,U<_77,
kZ

S'=d-o)l+0.S, for i=12,..,N and

o e (g, ¢,) forsome ¢,,¢, €(0,1).
When the parameters satisfy appropriate conditions,
the sequence {x } converges strongly to the unique

solution of the variational inequality
* . N
((uF - V)X x=x)20,vx e NFix(S,). (L114)

Let F :CxC — R be a bifunction.
The equilibrium problem for F is to find such that
z € C such that
F(z,y)>0,vyeC. (1.15)

The set of all solutions of (1.15) is denoted by EP(F)
i.e.,

EP(F)={zeC:F(z,y)20,VyeC}. (116)
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Many problems in physics, optimization, and
economics can be reduced to find the solution of
(1.16); see (9-12).

In 1997, Combettes and Hirstoaga (13)
introduced an iterative scheme of finding the solution

(1.15) under the assumption that EP(F) is non-

empty. Later on, many iterative algorithms are
considered to find the element of

Fix(S)MEP(F); see (14-16).

Recently, some new problems called split
variational inequality problems are considered by
some authors. Censor et al. (17) initially studied this
class of split variational inequality problem.
Let H, and H, be two real Hilbert spaces. Given the
operators f :H; — H, and g:H, —» H,, bounded
linear operator A:H, — H,, and nonempty closed

convex subsets CcH; and QcH,,the split

variational inequality problem is formulated as
follows:

find a point x e C such that
(f(X)x-x)20,vxeC (1.17)
and such that

y = AX eQ solve <g(y*), y— y*> >0,vyeQ.
(1.18)

After investigating the algorithm of Censor
et al. (17), Moudafi (21) introduced a new iterative
scheme to solve the following split monotone
variational inclusion:

find a point X e H, such that
Oe f(x*)+Bl(x*) (1.19)
and such that

y =AX eH, solve (g(y)+ Bz(y*)> (1.20)

where B:H; — 2™is a set-valued mappings for
i=12.

In 2013, Kazmi and Rizvi (22) considered a
new class of split problem called split equilibrium

problem. Let F:CxC —»R and F,:QxQ —» R
be nonlinear bifunctions and A:H; - H, be a
bounded linear operator, then the split equilibrium
problem (SEP) is to find X e C such that

F(X,X)>0,vxeC, (1.21)
and such that
y =AX €Q solve F,(y',y)>0,vy eQ. (1.22)

When looked separately, (1.21) is the
classical equilibrium problem (EP) (1.15), and we

denoted its solution set by EP (Fl). The SEP (1.21)
and (1.22) constitutes a pair of equilibrium problems

which have to be solved so that the image y* =AX
under a given bounded linear operator A, of the
solution X~ of the EP (1.21) in H is the solution of

another EP (1.22) by EP(F,).
The solution set SEP (1.21) and (1.22) is
denoted by T = {x" € EP(F): AX" < EP(F,)}.

In 2012, He (8) proposed the new algorithm
for solving split equilibrium problem and investigated
the convergence behavior in several ways including
both weak and strong convergence. Moreover, they
gave some examples and mentioned that there exist
many SEPs and the new methods for solving it further
need to be explored in the future.

Later, in 2013, Kazmi and Rizvi (22)
considered the iterative method to compute the
common approximaten solution of a split equilibrium
problem, a variational inequality problem and a fixed
point problem for a nonexpansive mapping in the
framework of real Hilbert spaces. They generated the
sequence iteratively as follows:

U, =T (%, +EA'(T, = = 1)AX,),
Yo = PC (un _ﬂ’nDun)’
Xn+1 = anv+ﬂnxn +7Syn’

(1.23)

In this paper, motivated by above works, we
introduced a new iterative algorithm like viscosity
approximation and investigated fixed points of
nonexpansive mappings and solutions of split
equilibrium problem (1.21) and (1.22) by the
following modified iterative scheme;

u, :Tr::1(xn +§A*(Tr::2 - I)Axn)!
X = AV (%) + B %, +[(A= )1 — e, D] x
KOK? o KU, VR 1,

N-17°° 1%n

(1.24)

where {an}and {B,} are two sequences in (0,1).

Strong convergence theorem for common elements
are established in Hilbert spaces.
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2. Preliminaries
Let H, be areal Hilbert space. Then

Ix=yI* = X" =" =2(x-y.y), (2.1)
Ix=y[* <[ +2(y. x+y), 2.2)
Iax=@=2)y[ = Ax] +@- Ayl 2.3)
—A@=A) -y

forall x,y e H, and y €[0,1].
We recall some concepts and results which are needed
in sequel. A mapping P, is said to be metric

projection of H, onto C if for every point x e H,,

there exists a unique nearest point in C denoted by
P.X such that

Ix=Px|<[x-y]. vy eC. @.4)

It is well known that P, is a nonexpansive
mapping and is characterized by the following
property:

2
[P-x=Pey| <(x-y,P.x=P.y),vx,y e H,. (25)

Moreover, PCX is characterized by the following

properties:

(x=P:X,y—Py)<0, (2.6)
X =1 = x=Px +ly = Pex", @7
vxeH,, yeC,

[ox=) = (Pex=Poy)l’ 8

2=y ~[Pex=Pey[" . vx.y e Hy,
It is known that every nonexpansive operator
S :H, — H, satisfies, for all (X,y)e H,xH,,

the inequality

((x=5x) = (y~Sy), Sy —Sx) 2.9)
1

< >lsx=x-y-yI".

and therefore, we get, for all (x,y) e H, x Fix(S),

(x=5xy-5) = Zsx -, (210)

(see, e.g., Theorem 3 in (24) and Theorem 1 in (25)).

Lemma 21. (18) Let F:CxC—>R be
a bifunction satisfying the following assumptions:

(i) F(x,y)>0,vxeC;

(ii) F is monotone. i.e.,
F(x,y)+F(y,x)<0,VxeC;

(iii) F is upper hemicontinuous, i.e., for each
X, Y,z eC,

limsup F(tz + @-t)x,y) < F(x,y); (2.11)

t—0

(iv) For each x € C fixed, the function
y = F(X,y) isconvex and lower semicontinuous;

(v) Fixed r >0 and z € C, there exists a nonempty
compact convex subset K of H;and xe Cn K
such that

F(y,x)+1<y—x,x—z>sO,VyeC\K. (2.12)
r

Lemma 2.2. (13) Assume that the bifunctions
F:CxC — R satisfying Lemma 2.1. For r >0

andforall x € H,, define amapping T%:H, —C
as follows:

zeC:FR(zy)

Th(X)={ 1

. (213
+F<y—z,z—x>20,VyeC @13

Then, the following hold:
(i) T is nonempty and single-valued.

R, -
(ii) T, is firmly nonexpansive, i.e.,

||TrFl x-Thy

2
| (2.14)
< <TrF1X—TrF1y, X—= y> ’ VX, y € Hl'

(iii) Fix(T,") = EP(F).

(iv) EP(F,) is closed and convex.

Lemma 2.3. (23) Let F : CxC — R be a bifunction
satisfying Lemma 2.1 hold and let Tfl be defined as in
Lemma 2.2 for r > O.

Let x,y e H;, and 1,1, >0.Then

L-h

21

Toy-TAx <[y-x|+ -
2

ey @
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Lemma 2.4. (19)
(i) The composite of finitely many averaged mappings

is averaged. That is, if each of the mappings {Ki}i“:1
is averaged, then so is the composite K_,..., K.
In particular, if K1 is a,- averaged and K, is a,-
averaged, where ¢, a, € (0,1), then both KK,
and K, K, are o, =, + o, —aqy1,.
(ii) If the mappings {Ki}i“:1 are averaged and have
a common fixed point, then

AFiX(K,) = Fix(K, ... K, )
In particular, if N =2, we have

Fix(K,) nFix(K,) =

Fix(K,K,) = Fix(K,K,).
Lemma 2.5. (20) Let A be a number in (0,1] and let
>0, Let F:H—>H be a k- Lipschitzian
continuous and 7 -strongly monotone mapping with
k >0and 5 >0. Associating with a nonexpansive
mapping K:H — H, define the mapping
K*:H>H by

K*x = Kx— AuF (Kx),Vx e H.

2
Then K” is a contraction provide u < k_? that is

||K’"x— Kly” <@-Ar)|x-y|. vx,yeH,
where 7 =1—/1- 1(2n - uk?) €(0,).

Lemma 2.6. (27) Let {x} and {z } be bounded
sequences in a Banach space X and let {5 }be a
sequence in [0,1] with

0<liminf g <limsup 8 <1.

@
n- n—-w

Suppose  x ., =(1-p)z, +pBx for all
integers n>0 and

limsup, ., (1z,.. = z.] = [%.. = x,]) <0
Then, lim,, [z, - X, =0.

Lemma 2.7. (26) Let E be an inner product space.
Then, forany X,y,Z€ E and «, B, €[0,1] with
a+ f+y =1 wehave
lax-+ By + | = alx + By +7[f
~aplx=yI ~arlx-2 - prly-7".
Lemma 2.8. (20) Let H be a Hilbert space, C be

a closed convex subset of Hand S:C — C be
a nonexpansive mapping with Fix(S) = ¢. If {x }

is a sequence in C weakly converging to X € C

and {(1-S)x } converges strongly to yeC,
then (I -S)x=y.
Lemma 29. (20) Let {a} be a sequence of

nonnegative numbers satisfying the condition
a_ <(l-o)a,+0,0,vnz1

where {5}, {gn} are sequences of real numbers such that

(1) {6} =[0,1] and ig — o0, OF equivalently,

n=1
1%1(1—5”) —lim f{l(l—ak) —0;
(i) limsup,_,, 6, <0 or ié & IS convergent.

n=1

Then, lima, =0.

n—ow

3. Main Results
Theorem 3.1. Let H, and H,be two real Hilbert

spaces and let C c H, and Q < H, be nonempty

closed convex subsets. Let A:H, —>H, be a
bounded linear operator. Let F,, h1 :CxC —> R and
F,,h,:QxQ—>R are bhifunctions satisfying
Lemma 2.1 and F, is upper semicontinuous. Let

{Ki}i“‘:1 be a finite family of nonexpansive mappings
on H, suchthat ~Fix(K )T 4.
Let D:H, — H bea k- Lipschitzian continuous

and 7 - strongly monotone mapping with k >0 and

n>0and V:H —Hbe a p- Lipschitzian

continuous mapping with p>0. Let 0< 4 < 2—727
k

and O<yp<r7,where 7=1—/1—u(2n—uk?).

Suppose that {¢ }and {g } are two sequences in
(0,1). For a given X, € C arbitrarily, let the
iterative sequences {u }and {x } be generated by
iterative algorithm:

U, =T (%, +EA'(T= ~1)Ax,),

X = 2NV (X)) + X, (3.1)
+H@A- ) -, uDIKL K 4., KUy, VN 2 1,
where K, =(1-c')l+o'K, for i=12,...,Nand
o, €(&,&) for some &8 € (0,),{r,} = (0,),

fe [o%j L is the spectral radius of the operator

A'Aand A" is the adjoint of A. Assume that the
following conditions are satisfied
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a, =0 and Z“n = 0!

n=1
(C2) 0<liminf__ B <limsup,_ B, <1
(C3) liminf__ rn >0 and lim |,
(C4) lim o |=0fori=12...,N

Then, the sequence {x } generated by (3.1)

(€D tim,_,,

-r|=0;

n—oo n+1

N —
converges strongly to X e N Fix(K, )T, where
i=1
HD+ )X

is the unique solutlon of the variational inequality

X =P, (I

a le( Ki)

(uD-)X" x—x) ZO,VXG%FiX(KI)ml:.
Proof We prove Theorem 3.1 for N :.72,
since our methods easily deduce the general case.
Since D:H, — H, isa k - Lipschitzian
continuous and 7z - strongly monotone mapping,
and V :H, — H, isa p - Lipschitzian continuous
mapping, we have

(1t = uD)x—(1 = uD)y|

=)= y| —2u(x~y, Dx-Dy)

+u*||Dx— Dy||2

<@-2un+u’k?) |x-y|

<@-o7 [x-y[f,
where ¢ zl_m and hence
FT%FIX(K”AF(I _#D+}/V)X_Pi%F|x(K‘)mF(I —uD+V)y
<[ =D+ )x=(1 - uD+ )y
<@yl ol ]
=@1-(z-m)|x-VY].
forall X,y € H,.Therefore,
P, (I —uD+yV) is a contraction of H,;

ir:\lFix(Ki)mI‘
into itself, which implies that there exists a unique
element X~ € H, such that

x =P, (I —uD+ V)X,

Step 1. First we will prove that {x } is bounded. Since

N — —
penFix(K )N, ie, penl, and
i=1

wehave p=T"p and Ap =T "™Ap. We estimate

Ju, = P =[5 (x, + A" D Ax) -~ p
<[x, + A" ~nyax, - p|

F
T

3.2)

+2§<xn -p AT - I)Axn>.
Thus, we have

Ju, = pI" <[, ~ pIf
+§2 <(Tr::2 _I)Axn'AA*(Tr::z _I)Axn> (3.3)
+2& (%, = p, AT, ~ A, ).

Now, we have

E (5 = 1)Ax,, AR'(TF — 1) Ax,)
<LE((TF - 1)AX,, (T - 1)AX, ) (3.4)
=Le|T7 -

Denoting A = 2§<Xn -p, A*(Tr"FZ -1 )Axn>
and using (2.10), we have

A=2£(x,-p A (TR - DAX,)
26(A(x, = p), A (T = 1)Ax,)
2 Ax, = p)+(T= = 1)Ax,
(T = 1A, A (T = 1)AX, (3.5)

r
2
n

n

= {TFzAx—Ap(er 1)Ax >_ F2

e 1]

Using (3.3), (3.4) and (3.5), we obtain

Fz

I/\

_|)

)

(5~ 1)Ax, . (36)

Ju, = oI <%, - pIf

Since 56[0 1) we obtain
T

Ju, = oI <[, - oI 37)

Indeed, taking into account the control conditions
(C1) and (C2), we may assume, without loss
generality, that ¢, <1— g forall n>1.
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Now, by Lemma 2.4, we have p e Fix(K,K,). It follows that
From (3.1), (3.7) and Lemma 2.5, then
‘ 21— 1L, H _‘ X — X, H
— (24 + n+: n+:
[%,.2 = P < ﬁ[ﬂw(xm)w uDK3 K]
=l V(X)) + B, % +[A—- B —a,uDIK;Klu, - KK/ p n+ (3.9)
=, [V (x,) - uD(p)]+ B, (X, - p) +1ix”ﬁ [yHDKanlnun +y\N(xn)H]
+H{= B - &, uDIKFK U, ~[(A- )1 - 2, uDIKIK ' p o .
<a, |V (%) - uD(P)|+ B, |, - P “" KK MU, - KK, +‘ Unt *UnH *‘ Xai1 *XnH-
aﬂ n n
[' g ﬂDj K KU, Note that
+1-£4,) !
—[l - n uD]KQKfp |K3*K I, ~ KKy,
wr <|K5HK M, = KK U |+ KK, - KK, | (3.10)
<0015 -l Al ot R
, <[|Ki 0, —Klu [+ K5 7K - KK,
+a, [V (x,) - 4D(p)| (3.8)
<=, -, 0)|[%, — pl+ B, [x, -~ p] and
+a, [V (x,) - uD(p)] |K ™, =K,
<@-a,)[x, = pl+ar [V (x) -V (p)]
=|a-ct )u, +ot Ku —(1-oi)u, —orKu
+a, H}’V(p)*/lD(P)H || n+1/%n n+1" *1%n n/*n n'*1%n
<@-a,0)x - |+ aplx, ~ p|+a, |V (p) - D(p)] =|(=chs+ o), + (ohu, — Ky,
V (p) - 1D
-0l ol o) D120 <lona+ o (ol + K, ).
_ Since lim o . —o|=0 for i=12 and
< max{Hx" - p“’w} n—o | < n+l n
T=w {un}’{Klun} are bounded, we see that
It follows from (3.8) and mathematics induction that | " o ) (3.11)
i K" u, —K/u, |[=0. .
N (p)-4D(p) Moo [[F2 Uy = By
%, =PIl < maX{xl— e (LR L
Therefore {x } is bounded. We also obtain that {u }, |S|i<n:illz:<rly, Wnge:(
1+ nun _ n nun
{V(x,)},{Ku, }are all bounded. 2 : ) 2 : ) i )
= ||(7O-n+l +o, )Kl u, + (Gn+1un — 0, ) KZKl u,
Step 2. We will show that lim___|x,., — x| = 0. <|ots+ o2 |(JKu, |+ [k K, )
Indeed, set x ., = Bx, +(1-4,)z,,Vn=1. which implies that
Then from the definition of z_, we obtain
X .~ Bx. lim, K7 K}, - KK u, | =0. (3.12)
"1-p
Observe that Since u, =T (x, +EA"(T? —1)Ax,) and
Xr|+ 7/Bn+ Xn+ Xn+ _ﬂnxn ' * ’
L~ = zl_ﬁ - ]:_l_ﬁ Una :Tr::jl(xnﬂ +§A (I—r:izl - I)AXn+1)‘
n+l n
iy ns it follows from Lemma 2.3 that
— an+17/v (Xn+1) + [(1_ ﬂnﬂ) - an+1/uD] KZ 1Kl 1un+1
1_ﬂn+1
_ any\/ (Xn) +[(l_ﬂn)| _anIUD]K; Klnun
1_ﬂn
= [V (x,.,) - DK K] M, ]
l_ﬂml

aﬂ n n
+ o [HDKEK U, = ()]

n

n+lpe n+l, n+lpe N+l N n n+lpe n+l
+K; KU, = KK U, + K KU, = KK .
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s =t

Xy =% + LA (T = DA, — AT (T7 = 1)Ax ]
Tril (Xn+1 + éA*(Tr,E - I)Axml)
_(Xn+1 + SEA*(Tr,E -1 )Axml)

=X, HEN A% = X,)

+6, (3.13)

<

I
+ ‘1— L
rn+1

<

X

n+l

A

Tr::: Axn+1 7Tr:: : AXn

1
< {mel - XnHz _Z'fHAXrHl - AXHHZ +§2 HAH4 mel - XHHZ}2

e

1
< - 22 A+ £ A P = DA P,
Ao, +<,
= A= EJAD s =Xl ENA %0 =%, Al 6,
< ||X"+1 - X"||+ §"A"O_n +gn’

n+l

+5HAH{HAXM—AXHH+

h K
1=\ [T Ay — AX
I +1

where
- ._‘1_r_n TEAX - AX
n- fa Y+ n+l
rn+1
and
1 r Tr:f]1 (Xn+1 + éAt (TrE - I)Axn+1)
G, =[1-— . .
rn+1 _(Xml + ‘fA (Tr:j - I)Axn+1)

Using (3.11), (3.12) and (3.13), we get

"Zn+1 -z, " _||Xn+1 - Xn"

2ot [V (x,.)]|+ DK K,

1_ /Bn+1
w7V eI

an
+ §||A||crn +g,.

<

]

(3.14)

+ [ #[PKiK]u,

l_ﬂn

+| KK U, - KK,

From conditions (C1), (C2), (C3) and (3.12), we get
Iimsupn»w (Hzmi —Z, H _Hxn+1 =X, H)

<limsup, . {1“““[yw(xm)wDK;“K:“uM ]
_ﬂnﬂ

+lix“ﬁ [ 2| DKIK G [+ 7V O]

K3 K Y, - KK U, [+ €[ Alo, + 6, } = 0.

By Lemma 2.6, we have

lim, . [z, —x,] =0. (3.15)

Consequently, we obtain from
X = ﬂnxn +(1_ﬂn)zn » We gEt

Xoop = Xp = ﬁn(xn - Xn)+ (1_ﬁn)(zn - Xn)  then

lim,, [%p = X[ =1lim, . @- B,)|z, = X,[ =0.(3.16)

Step 3. We will show that

H n n
lim K;Klu, —u,|[=0.

-
Since

Xon =NV (%) + B, %, +[(1- B)| —a,uDIK K/ u,,
we have

X, — Ky Klu, [ =

X, — X

n n
X~ Kz Kl Uy

n+l
= "Xn — Xt an7V (Xn) + /ann

+H{@- )1 -2, uDIK K U, KK/ u,

X=Xt an7V (Xn) _an/uDKZH Klnun +ﬁnxn
+K2n Klnun _ﬂn Kzn Klnun - Kanlnun

<%, = X+ @,

WV (x,)— uDKJK U,

+4. 11X, = K;Ku, |l
that is
X, —KJKu, [ < ﬁ"xn =X
+ =22V (%,) - DK K, .
1-5,
From (3.16) and conditions (C1)-(C2), we get
lim,__ ||x, —KJKu,|[=0. (3.17)
From (2.2), (3.7) and (3.8) we get
[%,.. = ol
a, V(X)) + B X, :

+H(A- B ) - a,uDIK;K U, - p
an[}/v(xn)_ﬂD(p)]+ﬂn(Xn - K;Klnun)

+(I _an/uD)K;Klnun _(I _amuD)K;Kln p

2

2

(1 —a, uD)K KU, — (1 —a, uD)K K p
+8, (%, —KIK!u,)

+2a, (WV (%,) = uD(P), %,.. = P)

(- 2, uD)KFK U, — (1 - e, uD)KIKS
|+
+2at, |7V (x,) = uD(p)||[%,.. = P

< [(l—anr)] Ju, = P+ 8, %, — KiK'y,
+2a, [V (%,) = uD(P)|[%... — P|

< (Ju, - pl+ y
+2at, [V (%,) = D (P)[X,.1 — P
=|u, - p||2 +{|x, — KJKu, ’
X, — K;K/u,

+2an ||7V (Xn) - luD( p)||||Xn+1 - p"

|

npen
Xn_KZKlun

T

npen
Xn_KzKlun

+2|u, - p| (3.18)
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Observe that Then
2 ca-Lofms - nax,[
Ju, =Pl =[x, + A7 =D AX) T : : o
" " " o <[ =PI =l =PI + 2w, = plx, KKy,
— ~
< (U, = px, +EA (T = 1)Ax, — p) e~ KK, |+ 2a, [V (%)~ 4D(P)] ¥, P (3:20)
1 . '
= §{||un —p| +[x, +¢£A (T2 —1)AX, - p||2 < (% =PI+ s = I %o = %,
o E 2 +2|u, = p|||%, - K;KJu,
_"(un - p) _[Xn +§A (Tr"2 - I)Axn - p]" } 2
2 2 iK1, 22, [ 0) - DO, Bl
1 [llus =l +x, -~ el since
- E _ Y — (TR _ 2
=% —EA (T 1A%, E0-LE)> 0.a, 0|, ~ %, >0,
1
= {lu =l +1, - o %~ K3KLu, | -0
; btai
—|:||Un—Xn||2+§2||A*(Tr::2—|)AXn 2 as N — oo, We obtain
=26 (U, =%, AT (TS = DA} lim, ., (T -1) Ax,[ = 0. (3.21)

Hence, we obtain

Ju, = I <l =PI ~flu, x|

2 (3.19)
+2&|| AU, = x|

AT DA

2

Next, we will show that lim . =0.

From (3.6) and (3.18), we obtain

(T2 = 1Ax,

[ = pIf

< [(1— a,7)||u, - p||+ A,
+2at, |2V (%,) = #D(P)[%,.. — P
<[ Ju, = pl- @ u, - pll+ @-a,)
+2a, ||V (%,) = D (p)[[[%,.. = P
<(Ju, - pll+ y
+2at, |7V (%,) = 4D (P)[%,.. = P
=[u, = pIf +2[u, - plx, - KKy,
X, — KIKu [+ 26, [V (%,) = #D (P[0 - P
<[, = pIf +&LE-D|TF - 1yAx, [
X, — K;Ku,
“+2a, [V (x,) ~ D)%, ~ P
=[x, — pf —@-LO|T A,

X — Kzn Klnun

n n
Xy — KZ Kl u,

;

n n
X, — K;K/'u,

T

X = K; Klnun

+

+2[u, - p

+

Xy — K;Klnun

+2[u, - p

2
+

Xy — KZHKlnun

+2a, [V (%,) = D(P)[[ X1 = B

Next, we will show "mnﬁw"Un—Xn":O- From
(3.18) and (3.19), we get

%1~ ol

<[u, = pl +2]u, - p]

npen
Xn_KZKlun

2
+

X, — KJK]u,
+2a, [V (%,) = uD(p)[%,.. — P
<[%, =PI ~flu, =,

+2& || AU, = x)[|(T.Z = 1) Ax,
+2||u, = pfx, = KSKu, [ +[x, — K;K U,

+2an "}/V (Xn) - /UD( p)||||Xn+1 - p"
It follows that

2

+

Ju, = [

L e
+2& [ AU, = x,)|[|[(T.2 = 1) Ax,
+2|u, = p|l|x, — KoKy, [+{|x, — KiK. u,
+2a, [V (%,) = uD(p)| %, — P (3.22)
< (1% = PlI= 0 = P %y = X0

+28[| AU, x| = D Ax,
+2|u, = p|||x, — KK u, [+{|x, - K7 K u,

+2an "7\/ (Xn) - ,uD( p)"llxml - p"
From condition (C1), (3.16), (3.17) and (3.21),

2

+

2

+
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we obtain w0 ®
unv - KZ Kl un-
lim,.,..Ju, - %, =0. G2 o, —KIK,
Since

"Kzn K].nun —Uu,

n n
s"K2 Kiu, — X,

+[x, —u,[. 3:24)
From (3.17) and (3.23), we also have

lim, .. [K;K}u, —u,|=0. (3.25)

N —
Step 4. We will prove that w e N Fix(K ) N T.
i=1

N
Step 4.1 Weshall show that w e N Fix (K ).
i=1

Since {gi} is bounded for j =1,2, we can

assume that JL S o' as j— o, Where
, o

0<¢& <o <& <1 fori=1,2 Define
K’=@1-o)l+0.K,i=12.

Note that

HKik"x— K"x

=[a-ot x+ ol Kix-@-o' )x- o K|
<o, — ot |(IX] +1Kx])-

Hence, we deduce that

limsup

j—ooxeB

[Klx—Kx| =0, (3.26)

where B is an arbitrary bounded subset of H.
Since

Fix(Kf)m Fix(K;)
=Fix(K,)NFix(K,)# ¢

and

K/ is o' -averaged for j =1,2, by Lemma 2.4,
we know that

Fix (K, K;") = Fix(K;") N Fix(K]"). Since

n n ]
kKDY, - KK,

(3.27)
+

o0 n; o0 0
Kz Kljunj - Kz K1 unI

<

n n
U, = K,’ Kl’unj

n ©
Kzlun - KZ un

+sup

xeB’

where B' is a bounded subset including {Kf'un } and

+sup||K1”u— K, u
xeB"

B” is a bounded subset including {Un } , we have from

(3.25) and (3.26) that
limsupju, —K;Ku,

j—ooxeB

=0.

From Lemma 2.8, we have W e FiX(K;Kw).

1

Step 4.2 We shall show that w e T.
First, we will show w e EP(F,).

Since u, :Trlen, we have

Fl<un,y>+r£<y—un,un—xn>20,VyeC.

n

It follows from the monotonicity of F1 that

1
r_<y_un’un _Xn>Z Fl(y!un)'

and hence replacing n by n,, we get

<y_uni'unlr;)(nl >2 Fl(yvuni)'

since ||u, - x, | — O,||K2" Klu, —u,

and X, —~—>Ww, a8 N — oo, We get u, —“>w and

—0

Uy =%y _y 0 It follows by Lemma 2.1 (iv) that

r-r'i

0>F(y,w),vweC. For t with O0<t<l1
and yeC, let y =ty+(@-t)w. Since
yeC,weC, y,€C, and hence,
F,(y,,w) <0. So, from Lemma 2.1 (i) and (iv),

we have

we have

0= Fl(yt' yt)

< tFl(yt ' y) + (1_t)F1(yth) < t(yt’ yt)
Therefore, 0 < Fl(yt,y)_ From Lemma 2.1 (iii),

we have 0 < F (w, y). This implies that
we EP(F).
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Next, we show that Aw e EP(F,). Since
Ju, = x,] = 0,u,—~—>w as n—oco,and {x} is
bounded, there exists a subsequence {Xn } of {x"}
such that X, —“>w, and since A is bounded linear
operator, o Ax, —2 5 Aw.

. A

Now, setting m, = Axnk _Trnk Axnk'
It follows from (3.21) that lim, m,, =0 and
Ax, —m, :T,FZ AX, . Therefore, from Lemma 2.2,

3 k g k

we have
F, <Axnk -m,, z>

+i<z —(Ax, —m, ), (Ax, —m, )—Ax, >
r

>(0,vVzeQ.
Since F, is upper semicontinuous, taking lim sup
to above inequality as k — oo and using condition
(C3), we obtain

F,(Aw,2)>0,vz Q.

which means that Aw € EP(F,) and hence weT.

N —
Therefore, we get we NFix(K )T
i=1 '

Step 5. Finally, we prove that the sequence {x }
converge strongly to

x =P, (1 =uD+N\)X
AFix(K; )T

which is the unique solution of the variational
inequality

<(yD—yV)x*,x—x*>20,

N _ (3.28)

Vx e nFix(K,)NT.
i=1

Next, we claim that
limsup ((uD -V )x',x-x,) <0,
where x =P, (I =uD+ V)X,
rwaix(Ki )nr
Since {u }is bounded, there exists a subsequence

{u }of {u_} which converges weakly to w. From
(3.25), we obtain
KZK{u, ——w & n—x.
Since y' = p, (I —uD+pV)xX", we have
T

NFix(K;)n

i=1

limsup
nN—oo

<(ﬂD—7V)x',x*—xn>

= |imsup<(yD—yV)x*,x*—un>
n—o

=limsup((uD-)x X -u, )

jow

= <(HD
From (2
X

n+l T

+[(1_ﬂn)| _an;LlD]Ké1 Klnun
- )1 - 2, uDIKIKX
5,06 —X)+ [ B)1 — o, uDIKIKL,
_[(1_ﬂn)| _anluD]K;KfX*

<

X

—yV)x*,x*—w>£O.
.2), (3.1), (3.7) and Lemma 2.5, we have

2

*

a, V(%) + B.x, +[L- B —a, uDIKJK u, — X"

an[}/v (Xn) _IUD(X*)]+ ﬂn (Xn - X*)

2

2

+2a, (W (%,) = #D(X'), X, =X')

s{/}n X

[@- ) —a,uD]K, K u,
@~ B —a,uDIKJK X"

*

X ||+

n

:

+2, (P (%) = uD(X"), Xy =X')

"

_['_1 2

X, =X [+ @-4,)

an n n
(I—l_ﬂ yDjKZKlun
}2

n

% ,uDJ KUK X

" Fh

2, (P (%) =V (X), X0y = X')
+2a, (P (X') = uD(X'), X, — X' )

<{4,
+20,yp

Xy — X*||+ (1_ﬂn _anr)

w1 2
v, =X}

*

X

%, =X

Xo1 —

+2a, (P (X') = uD(X'), X, — X' )

S{ﬂn

+an7p(

X, — x*||+ (1—ﬂn)[1—£j

u —x

:

17ﬁn

«]|2 «]|2
X, —X " F [ Xy — X "

+2a, (P (X') = uD(X'), X,., — X' )

- (-a,0)

+a,1p

«[|2 «|2
X, — X || +a, 7%, — X ||

Xnyg — X*"2 + 2an <7/V (X*) —,LID(X*), KXoy — X*>'

2
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This implies that

[0 =

n+l

2

*

2
Q) rap X — X

1_an7/p

2a “ . .
+ =0 (W (x) = uD(X), X, — X )
1_an7p
2 _ . 2.2 .
= 1—7“ ey X, — L X, =X i
I-app 1-ap
2, - - -
+ n V(X)—uD(X),X ., —X
Hﬂyp(y ()= 4D(x), %, =X") (3.29)
- l_Z(T—yp)an « P
- 1_an7p !
a,7°M,
L 2Ar=pp)e, | 2(r=1p)
l—dn}/p 1

(W () = uD(x'), X, =X)
T=y)p

=@-6)[x X[ +8,0,.
where
Ml:sup{ Xn _X*"Z nzl},é‘n :M
1_an7p
and
a,7’M, 1 - * -
o, =—0 1 4+ — }/V(X )_ﬂD(X )YXn+ —-X ).
2(z-1p) f—7p< )

It can see that 5 _, i5 _ ., and
n=1
limsup o, <0.Hence, by Lemma 2.9,

the sequence {x } converges strongly to X
This is complete the proof.

Corollary 3.1. Let H, and H,be two real Hilbert
spaces and let C < H, and Q < H, be nonempty

closed convex subsets. Let A:H, —> H,be a
bounded linear operator. Let F, h1 :CxC —> R and
F,h,:QxQ >R are

bifunctions  satisfying

Lemma 2.1and h,, h, are monotone and F, is upper
D:H —>Hbe a k-
Lipschitzian continuous and 7 - strongly monotone
mapping with k>0 and >0,V :H — H be
a p - Lipschitzian continuous mapping with p > 0.

semicontinuous. Let

2
Let O<,u<k—727 and O<yp<rz, where

7 =1—1- u(2n - uk?).

For a given X, € C arbitrarily, let the iterative
sequences {u } and {x } be generated by iterative
algorithm:

u, :Tr"':1 (Xn _I—éA*(Tr"F2 - I)Axn)v
Xn+1 = anyv (Xn) + ﬂn Xn (330)
H@A@-pB) -, uDlu,,¥n =1,

where {r.} < (0,), fe(o.lj. L is the spectral
L

radius of the operator A"A and A" is the adjoint
of A. Assume that the following conditions are
satisfied:

€1 lim,_,, a,=0and > a =oo;
n=1

(C2) 0<liminf__ B, <limsup, . B, <1

(C3) liminf,_ r >0 and lim___|r.,—r|=0;

Then, the sequence {x} generated by (3.30)

converges strongly to x e ml_“, which solves the

variational inequality
<(,LJD—7/V)X*,X—X*>ZO,VX€F.

Proof Put Kx=Xx for all i=12,...,Nand

Xe€H,,and take the finite family of sequences

{Ui}iN:l in (&,&,)for some &, &, e (0,1)such that

n

limlo: ,~o'|=0 forall i=1,2,...,N. In this case,
KIK? ,,...,K is the identity mapping | of H,.

It can see that the all conditions of Theorem 3.1
are satisfied. Then conclusion of Corollary 3.1 is
obtained.

4. Conclusions

In this paper, we first propose a modified
iterative scheme (3.1) in Theorem 3.1 and then we
prove some strong convergence of the sequence {x }

generated by (3.1) to a common solution of the set of
fixed points of a finite family of nonexpansive
mappings and the split equilibrium problem in Hilbert
spaces. We divide the proof into 5 steps and our
theorem is extend and improve the corresponding
results of Kazmi and Rizvi (22).
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