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Abstract  

In this paper, we present a new iterative scheme bases on the hybrid viscosity approximation method 

and the hybrid steepest-descent method for finding a common element of the set of common fixed points of a finite 

family of nonexpansive mappings and the split equilibrium problem in Hilbert spaces.  
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1. Introduction  

Throughout the paper unless otherwise 

stated, let 
1

H  and 
2

H  be real Hilbert spaces  

with inner product ,   and norm   . Let C and Q  

be nonempty closed convex subset of real Hilbert 

spaces 
1H and 

2H .  Let  nx  be a sequence in 
1

H , 

then 
nx x→  (respectively, 

w

n
x x⎯⎯→  ) denotes 

strong (respectively, weak) convergence of  
n

x  to  

a point 
1
.x H  

A mapping :S C C→   is called  

nonexpansive,  

, , .Sx Sy x y x y C−  −    (1.1) 

The fixed point problem (in short, FPP) for 

the mapping  :S C C→ is to find x C  such that  

.Sx x=  (1.2) 

The solution set of FPP (1.2) is denoted by Fix(S).  

In 1967, Halpern (1) considered the 

following explicit iterative process: 

1
( ) , 0,1

n n nn
x u Sx n 

+
= +  −  (1.3) 

where u  is a given point and :S C C→  is 

nonexpansive. He prove that strong convergence  

of  
n

x  to a fixed point of S provide that 
n

n



−

=  

with ( )0,1 .    

In 2003, Xu (2) introduced the following 

iterative process:  

1
( ) , 0,1

n n nn
x u Sx nD 

+
= +  −  (1.4) 

where  n  is a sequence in ( )0,1 .  He prove the above 

sequence  
n

x converges strongly to the unique 

solution of the minimization problem with 

( ) :C Fix S=
1

min , , ,
2

x C Dx x x u −  where D  is 

a strongly positive bounded linear operator on H . 

In 2006, Marino and Xu (3) considered  
the following viscosity iterative method: 

1
( ) ( ) , 0,

n n n n n
x f x I A Sx n  

+
= + −    (1.5) 
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where f  is a contraction on H . They proved  

the above sequence  
n

x converges strongly to the 

unique solution of the variational inequality 

* *

, 0, ( ).( )A f x x x x Fix S− −     (1.6) 

In 2001, Yamada et al. (4) considered the 

following hybrid steepest-descent iterative method: 

1
( ),

nn n n
x Sx F Sx

+
= −  (1.7) 

where F  is k − Lipschitzian continuous and  −  

strongly  monotone  operator with 0, 0k    and 

2

2
0 .

k


   Under some appropriate conditions, the 

above sequence  
n

x  converges  strongly to the 

unique solution of the variational inequality 

* *
( ), 0, ( ).F x x x x Fix S−      (1.8) 

In (5), Tian considered the following 

general viscosity type iterative method: 

1
( ) ( ) , 0.

n n n nn
x f x Sx nI F  

+
= +  −   (1.9) 

Under certain approximate conditions, the above 

sequence  
n

x converges strongly to a fixed point  

of S , which solve the variational inequality 

( ) ( )* *
, 0, .f F x x x x Fix S − −     (1.10) 

In (6), Zhou and Wang proposed a simple 

explicit iterative algorithm for finding a solution of 

variational inequality over the set of common                   

fixed points of a finite family nonexpansive mappings. 

They introduced an explicit scheme as follows: 

Theorem 1.1. Let H be a real Hilbert space and 

:F H H→  be an k − Lipschitzian continuous and 

 − strongly monotone mapping with 0k   and 

0  . Let  
1

N

i i
S

=
be N nonexpansive of H such that 

( )
1

.
N

i
i

C Fix S 
=

=    For any point 
0

,x H define a 

sequence  
n

x  as follows: 

( )
1 1 11 , , 0,,

n n

n n N

N N nx S S nF S x 
+ −= −    (1.11) 

where ( )2

2
0,

k


  and ( )1n i

i n i

i

nS I S= +−  for 

1, 2, , .i N=  When the parameters satisfy 

appropriate conditions, the sequence  
n

x  converges 

strongly to the unique solution of the variational 

inequality 

**
, 0, .Ax y x y C−     (1.12) 

where :A H H→ is a nonlinear mapping. 

Recently, Zhang and Yang (7) proposed an 

explicit iterative algorithm based on the viscosity 

method for finding a solution for a class of variational 

inequalities over the common fixed points set of a 

finite family of nonexpansive mappings as follows: 

Theorem 1.2. Let H be a real Hilbert space and 

:F H H→  be an k − Lipschitzian continuous and 

 − strongly monotone mapping with 0k   and 

0  . Let  
1

N

i i
S

=
be N  nonexpansive self-mappings 

of H  such that 
1

( )
N

i
iC Fix S 

=

=   and V  be an 

 −  Lipschitzian on H  with 0.    

For any point 
0

,x H  define a sequence  
n

x as 

follows manner: 

1 1 1, ,( ) ( ) ,
n

n n N

n n n N N nx SV x I F S x   
+ −= + −  (1.13) 

where 0     with 
2

2
2( )

2
0, ,k

k
  


−=    

( )1 ,
n i i

i n n i
S I S = − +  for 1, 2, ,i N=  and 

1 2( ),i

n
    for some ( )

1 2
, 0,1 .    

When the parameters satisfy appropriate conditions, 

the sequence  
n

x  converges strongly to the unique 

solution of the variational inequality  

*

1

*
, 0, ( ).( )

N

i
iF V x x x Fixx S 

=

− −     (1.14) 

Let :F C C → be a bifunction.  

The equilibrium problem for F is to find such that 
z C such that 

( ), 0, .F z y y C    (1.15) 

The set of all solutions of (1.15) is denoted by EP(F) 

i.e., 

 ( ) : ( , ) 0, .EP F z C F z y y C   =  (1.16) 
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Many problems in physics, optimization, and 

economics can be reduced to find the solution of 

(1.16); see (9-12).  

In 1997, Combettes and Hirstoaga (13) 

introduced an iterative scheme of finding the solution 

(1.15) under the assumption that ( )EP F  is non-

empty. Later on, many iterative algorithms are 

considered to find the element of 

( ) ( )S EP FFix  ; see (14-16). 

Recently, some new problems called split 

variational inequality problems are considered by 

some authors. Censor et al. (17) initially studied this 

class of split variational inequality problem.  

Let 
1H  and 

2H  be two real Hilbert spaces. Given the 

operators 
1 1:f H H→  and 

2 2: ,g H H→  bounded 

linear operator 
1 2: ,A H H→  and nonempty closed 

convex subsets 
1C H  and 

2 ,Q H the split 

variational inequality problem is formulated as 

follows:  

find a point 
*

x C  such that 

**
( ), 0,f x x x x C−     (1.17) 

and such that  

* *
y Ax Q=   solve 

* *
( ), 0, .g y y y y Q−   

 (1.18) 

After investigating the algorithm of Censor 

et al. (17), Moudafi (21) introduced a new iterative 

scheme to solve the following split monotone 

variational inclusion: 

find a point 
*

1x H  such that  

( ) ( )* *

10 f x B x +  (1.19) 

and such that  

* *

2Hy Ax =   solve ( ) ( )* *

2g y B y+  (1.20) 

where : 2 iH

iB H → is a set-valued mappings for 

1, 2.i =   

In 2013, Kazmi and Rizvi (22) considered a 

new class of split problem called split equilibrium 

problem. Let 
1 :F C C →  and 

2 :F Q Q →  

be nonlinear bifunctions and 
1 2:A H H→  be a 

bounded linear operator, then the split equilibrium 

problem (SEP) is to find 
*

x C  such that 

1

*
0, ,( , )F x Cx x     (1.21) 

and such that 

* *
y Ax Q=   solve 

*

2 0,( , ) .F y y y Q    (1.22) 

When looked separately, (1.21) is the 

classical equilibrium problem (EP) (1.15), and we 

denoted its solution set by ( )1 .EP F  The SEP (1.21) 

and (1.22) constitutes a pair of equilibrium problems 

which have to be solved so that the image 
* *

y Ax=  

under a given bounded linear operator A , of the 

solution 
*x  of the EP (1.21) in 

1H is the solution of 

another EP (1.22) by ( )2 .EP F  

The solution set SEP (1.21) and (1.22) is 

denoted by  * *

1 2
( ) : ( ) .x EP F Ax EP F=    

In 2012, He (8) proposed the new algorithm 

for solving split equilibrium problem and investigated 

the convergence behavior in several ways including 

both weak and strong convergence. Moreover, they 

gave some examples and mentioned that there exist 

many SEPs and the new methods for solving it further 

need to be explored in the future. 

Later, in 2013, Kazmi and Rizvi (22) 

considered the iterative method to compute the 

common approximaten solution of a split equilibrium 

problem, a variational inequality problem and a fixed 

point problem for a nonexpansive mapping in the 

framework of real Hilbert spaces. They generated the 

sequence iteratively as follows: 

1 2*

1

( ( ) ),

( ),

,

n n

F F

n r n r n

n C n n n

n n n n n

u T x A T I Ax

y P u Du

x v x Sy





  +

 = + −


= −
 = + +


 (1.23) 

In this paper, motivated by above works, we 

introduced a new iterative algorithm like viscosity 

approximation and investigated fixed points of 

nonexpansive mappings and solutions of split 

equilibrium problem (1.21) and (1.22) by the 

following modified iterative scheme; 

1 2*

1

1 1

( ( ) ),

( ) [(1 ) ]

, , , 1,

n n

F F

n r n r n

n n n n n n n

n n n

N N n

u T x A T I Ax

x V x x I D

K K K u n



     +

−

 = + −


= + + − − 


 

 (1.24) 

where  
n

 and  n  are two sequences in (0,1).  

Strong convergence theorem for common elements 

are established in Hilbert spaces. 
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2. Preliminaries  

Let 
1H  be a real Hilbert space. Then 

2 2 2
2 , ,x y x y x y y− = − − −  (2.1) 

2 2
2 , ,x y x y x y−  + +  (2.2) 

2 2 2

2

(1 ) (1 )

(1 ) ,

x y x y

x y

   

 

− − = + −

− − −

 (2.3) 

for all 
1,x y H  and  0,1 .y  

We recall some concepts and results which are needed 

in sequel. A mapping 
CP is said to be metric 

projection of 
1H onto C if for every point 

1x H , 

there exists a unique nearest point in C  denoted by 

CP x  such that 

, .Cx P x x y y C−  −    (2.4) 

It is well known that 
CP  is a nonexpansive 

mapping and is characterized by the following 

property: 

2

1, , , .C C C CP x P y x y P x P y x y H−  − −    (2.5) 

Moreover, 
CP x  is characterized by the following 

properties: 

, 0,C Cx P x y P y− −   (2.6) 

2 2 2

1

,

, ,

C Cx y x P x y P x

x H y C

−  − + −

  

 (2.7) 

2

2 2

1

( ) ( )

, , ,

C C

C C

x y P x P y

x y P x P y x y H

− − −

 − − −  

 
(2.8)

 

It is known that every nonexpansive operator 

1 1:S H H→  satisfies, for all 
1 1( , ) ,x y H H   

the inequality 

2

( ) ( ),

1
( ) ( ) ,

2

x Sx y Sy Sy Sx

Sx x Sy y

− − − −

 − − −

 (2.9) 

and therefore, we get, for all 
1( , ) ( ),x y H Fix S   

21
, ,

2
x Sx y Sx Sx x− −  −  (2.10) 

(see, e.g., Theorem 3 in (24) and Theorem 1 in (25)). 

Lemma 2.1. (18) Let :F C C →  be  
a bifunction satisfying the following assumptions: 

(i) ( , ) 0, ;F x y x C    

(ii) F is monotone. i.e., 

( , ) ( , ) 0, ;F x y F y x x C+     

(iii) F is upper hemicontinuous, i.e., for each 

, , ,x y z C  

0

( (1 ) , ) ( , );limsup
t

F tz t x y F x y
→

+ −   (2.11) 

(iv) For each x C  fixed, the function 

( , )y F x y→  is convex and lower semicontinuous; 

(v) Fixed 0r   and ,z C there exists a nonempty 

compact convex subset K  of 
1H and x C K   

such that  

( , ) 0, \ .
1

,F y x y C Ky x x z
r

+   − −  (2.12) 

Lemma 2.2. (13) Assume that the bifunctions 
:F C C →  satisfying Lemma 2.1. For 0r   

and for all 
1,x H  define a mapping 1

1:
F

rT H C→

as follows: 

1

1( , ):

( ) .1
, 0,

F

r

F z yz C

T x
y z z x y C

r
+

 
 

=  
− −    

 

 (2.13) 

Then, the following hold: 

(i) 1F

rT is nonempty and single-valued. 

(ii) 1F

rT is firmly nonexpansive, i.e., 

1 1

1 1

2

1, , , .

F F

r r

F F

r r

T x T y

T x T y x y x y H

−

 − −  

 (2.14) 

(iii) 1

1( ) ( ).
F

rFix T EP F=  

(iv) 
1( )EP F is closed and convex. 

Lemma 2.3. (23) Let :F C C → be a bifunction 

satisfying Lemma 2.1 hold and let 1F

rT be defined as in 

Lemma 2.2 for 0.r    

Let 
1, ,x y H  and 

1 2, 0.r r  Then 

1 1 1

2 1 2

2
2 1

2

.
F F F

r r r

r r
T y T x y x T y y

r

−
−  − + −  (2.15) 
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Lemma 2.4. (19) 

(i) The composite of finitely many averaged mappings 

is averaged. That is, if each of the mappings  
1

N

i i
K

=

is averaged, then so is the composite 
1, , .NK K  

In particular, if 
1K  is 

1 - averaged and 
2K  is 

2 - 

averaged, where 
1 2, (0,1)   , then both 

1 2K K  

and 
2 1K K  are 

1 2 1 2.n    = + −  

(ii) If the mappings  
1

N

i i
K

=
 are averaged and have  

a common fixed point, then  

1
1

( ) ( , , ).
N

i N
i

Fix K Fix K K
=
 =  

In particular, if 2,N = we have  

1 2( ) ( )Fix K Fix K =  

1 2 2 1( ) ( ).Fix K K Fix K K=  

Lemma 2.5. (20) Let   be a number in (0,1] and let 

0.   Let :F H H→  be a k - Lipschitzian 

continuous and  -strongly monotone mapping with 

0k  and 0.   Associating with a nonexpansive 

mapping : ,K H H→  define the mapping 

:K H H


→  by 

( ), .K x Kx F Kx x H = −    

Then K


 is a contraction provide 
2

2

k


  , that is 

(1 ) , , ,K Kx y x y x y H  −  − −     

where 21 1 (2 ) (0,1).k   = − − −   

Lemma 2.6. (27) Let  
n

x  and  
n

z  be bounded 

sequences in a Banach space X  and let  
n

 be a 

sequence in [0,1]  with  

0 lim inf lim sup 1.
n

n

n n
 

→
→

     

Suppose 
1

(1 )
n n n n n

x z x 
+
= − +  for all 

integers 0n   and 

( )1 1
limsup 0.

n nn n nz z x x
+ +→ − − −   

Then, lim 0.n n nz x→ − =  

Lemma 2.7. (26) Let E  be an inner product space. 

Then, for any , ,x y z E  and , , [0,1]     with 

1,  + + =  we have 

2 2 2 2

2 2 2
.

x y z x y z

x y x z y z

     

  

+ + = + +

− − − − − −

 

Lemma 2.8. (20) Let H  be a Hilbert space, C  be  

a closed convex subset of H and :S C C→  be  

a nonexpansive mapping with ( ) .Fix S   If  
n

x  

is a sequence in C weakly converging to x C  

and  ( )
n

I S x−  converges strongly to ,y C   

then ( ) .I S x y− =  

Lemma 2.9. (20) Let  
n

a  be a sequence of 

nonnegative numbers satisfying the condition 

1
1,(1 ) ,

n n n n n
na a  

+
  − +  

where    ,
n n

  are sequences of real numbers such that 

(i)   [0,1]
n

   and 

1

,n

n




=

=  or equivalently,  

1 1
(1 ) lim (1 ) 0;n k

n n k
 

 

= → =
 − =  − =  

(ii) limsup 0n n→   or 

1

n n

n

 


=

 is convergent. 

Then, lim 0.n
n

a
→

=  

3. Main Results  

Theorem 3.1. Let 
1

H  and 
2

H be two real Hilbert 

spaces and let 
1

C H  and 
1

Q H be nonempty 

closed convex subsets. Let 
1 2

:A H H→  be a 

bounded linear operator. Let 
1 1 :,F C Ch  →  and 

2 2 :,F Q Qh  →  are bifunctions satisfying 

Lemma 2.1 and 
2F  is upper semicontinuous. Let 

 
1

N

i i
K

=
be a finite family of nonexpansive mappings 

on 
1

H  such that ( )
1

.
N

i
i

Fix K 
=

   

Let 
1 1

:D H H→ be a k - Lipschitzian continuous 

and  - strongly monotone mapping with 0k   and 

0,  and 
1 1

:V H H→ be a  - Lipschitzian 

continuous mapping with 0.   Let 
2

2
0

k


   

and  0 ,   where  21 1 (2 ).k   = − − −  

Suppose that  
n

 and  n  are two sequences in 

(0,1).  For a given 
0x C arbitrarily, let the 

iterative sequences  nu and  nx  be generated by 

iterative algorithm: 
1 2*

1

1 1

( ( ) ),

( )

[(1 ) ] , , , 1,

n n

F F

n r n r n

n n n n n

n n n

n n N N n

u T x A T I Ax

x V x x

I D K K K u n



  

  

+

−

 = + −


= +

+ − −  

 
(3.1)

 

where (1 )i i

i n n iK I K = − +  for 1, 2, ,i N= and 

1 2( , )i

n    for some  1 2, (0,1), (0, ),nr      

1
0, ,

L


 
 
 

L  is the spectral radius of the operator

*A Aand *A  is the adjoint of .A  Assume that the 

following conditions are satisfied 
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(C1) lim 0n n→ =  and 

1

;
n

n




=

=   

(C2) 0 liminf limsup 1;n n n n → →    

(C3) liminf 0n nr→   and 
1lim 0;n n nr r→ + − =  

(C4) 
1lim 0i

n n n → + − =  for 1, 2, , .i N=  

Then, the sequence  
n

x  generated by (3.1) 

converges strongly to ( )
1

* ,
N

i
i

x Fix K
=

   where 

( )
1

* *( )N

i
i

Fix K

x P I D V x 
=
 

= − +   

is the unique solution of the variational inequality 

( ) ( )
1

* *
, 0, .

N

i
i

D V x x x Fix Kx 
=

− −   

Proof We prove Theorem 3.1 for 2,N =   

since our methods easily deduce the general case. 

Since 
1 1

:D H H→  is a k - Lipschitzian  

continuous and   - strongly monotone mapping,  

and 
1 1

:V H H→  is a  - Lipschitzian continuous 

mapping, we have 
2

2

22

22 2

22

( ) ( )

2 ,

(1 2 )

(1 ) ,

I D x I D y

x y x y Dx Dy

Dx Dy

k x y

x y

 





 



− − −

= − − − −

+ −

 − + −

 − −

 

where 21 1 (2 )k   = − − −  and hence 

( ) ( )
1 1

( ) ( )

( ) ( )

(1 )

(1 ( )) ,

N N

i i
i i

Fix K Fix K

P I D V x P I D V y

I D V x I D V y

x y x y

x y

   

   

 

 

= =
   

− + − − +

 − + − − +

 − − + −

= − − −

for all 1, .x y H Therefore,  

( )
1

( )N

i
i

Fix K

P I D V 
=
 

− +  is a contraction of 1H

into itself, which implies that there exists a unique 

element 
*

1x H  such that 

( )

*

1

*( ) .N

i
i

Fix K

x P I D V x 
=
 

= − +  

Step 1. First we will prove that  
n

x  is bounded. Since 

( )
1

N

i
i

p Fix K
=

  , i.e., p  , and  

we have 1

n

F

rp T p=  and 2 .
n

F

rAp T Ap=  We estimate 

1 2

2

2

2

22 *

2
*

22 2 *

*

( ( ) )

( )

( )

2 , ( ) .

n n

n

n

n

F F

n r n r n

F

n r n

F

n r n

F

n r n

u p T x A T I Ax p

x A T I Ax p

x p A T I Ax

x p A T I Ax









− = + − −

 + − −

 − + −

+ − −

 
(3.2)

 

Thus, we have 

2 2

2

2 2

2 *

*

( ) , ( )

2 , ( ) .

n n

n

n n

F F

r n r n

F

n r n

u p x p

T I Ax AA T I Ax

x p A T I Ax





−  −

+ − −

+ − −

 
(3.3)

 

Now, we have 

2 2

2 2

2

2 *

2

2
2

( ) , ( )

( ) , ( )

( ) .

n n

n n

n

F F

r n r n

F F

r n r n

F

r n

T I Ax AA T I Ax

L T I Ax T I Ax

L T I Ax







− −

 − −

= −

 
(3.4)

 

Denoting 2*: 2 , ( )
n

F

n r nx p A T I Ax = − −   

and using (2.10), we have 

 

2

2

2

2 2

2 2 2

2 2

2

*

*

*

2

2 2

2

2 , ( )

2 ( ), ( )

( ) ( )
2

( ) , ( )

2 , ( ) ( )

1
2 ( ) ( )

2

( ) .

n

n

n

n n

n n n

n n

n

F

n r n

F

n r n

F

n r n

F F

r n r n

F F F

r n r n r n

F F

r n r n

F

r n

x p A T I Ax

A x p A T I Ax

A x p T I Ax

T I Ax A T I Ax

T Ax Ap T I Ax T I Ax

T I Ax T I Ax

T I Ax













 = − −

= − −

− + −
=

− − −

= − − − −

 
 − − − 

 

 − −

 
(3.5)

 

Using (3.3), (3.4) and (3.5), we obtain 

2
22 2

( 1) ( ) .
n

F

n n r nu p x p L T I Ax −  − + − − (3.6) 

Since 1
0, ,

L


 
 
 

we obtain 

2 2
.n nu p x p−  −  (3.7) 

Indeed, taking into account the control conditions 

(C1) and (C2), we may assume, without loss 

generality, that 
2 1 n  − for all 1.n    
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Now, by Lemma 2.4, we have ( )2 1 .p Fix K K  

From (3.1), (3.7) and Lemma 2.5, then 

1

2 1 2 1

2 1 2 1

2 1

2 1

( ) [(1 ) ]

[ ( ) ( )] ( )

[(1 ) ] [(1 ) ]

( ) ( )

1
(1 )

1

n

n n n n

n n n n n n n

n n n n

n n n n

n n n n n

n n n n

n nn
n

n

n

n nn

n

x p

V x x I D K K u K K p

V x D p x p

I D K K u I D K K p

V x D p x p

I D K K u

I D K K p

     

   

     

   












+ −

= + + − − −

= − + −

+ − − − − −

 − + −

 
− 

− 
+ −

 
− − 

− 

 (1 ) 1
1

( ) ( )

(1 )

( ) ( )

(1 ) ( ) ( )

( ) ( )

(1 ) ( ) ( )

( ) ( )
[1 ( )] ( )

n
n n n n

n

n n

n n n n n

n n

n n n n

n

n n n n n

n n n

u p x p

V x D p

x p x p

V x D p

x p V x V p

V p D p

x p x p V p D p

V p D p
x p

 
 



  

   

  

   

  

      

 
     

 

 
− − − + − 

− 

+ −

 − − − + −

+ −

 − − + −

+ −

 − − + − + −

−
= − − − + −

−

( ) ( )
max , .

n

V p D p
x p

 

 

−
 −

−

 
 
 

 

(3.8)

 

It follows from (3.8) and mathematics induction that 

1 1

( ) ( )
max , , 1,2, .n

V p D p
x p x p n

 

 
+

 − 
−  −  = 

− 

Therefore  n
x  is bounded. We also obtain that  ,

n
u

   1( ) ,
n n

V x K u are all bounded. 

Step 2. We will show that  
1lim 0.n n nx x→ + − =  

Indeed, set  
1 (1 ) , 1.n n n n nx x z n + = + −     

Then from the definition of ,nz  we obtain 

1

1

n n n

n

n

x x
z





+
−

=
−

 

Observe that 

2 1 1

1

1
1

1 1

1 1 1 1 2 1 1

1

2 1

1 11
1 2 1 1

1

2 1

1

2

1 1

( ) [(1 ) ]

1

( ) [(1 ) ]

1

[ ( ) ]
1

[ ( )]
1

n nn n n

n n

n
n n

n n

n n n n n

n

n n

n n n n n

n

n nn
n n

n

n nn
n n

n

n

x xx x
z z

V x I D K K u

V x I D K K u

V x DK K u

DK K u V x

K K



 

    



    




 




 



+ + +

+

+
+

+ +

+ + + + +

+

+ ++
+ +

+

+

−−
=

− −
− −

+ − −
=

−

+ − −
−

−

= −
−

+ −
−

+ 1 1 1 1 1

1 1 2 1 2 1 2 1 .n n n n n n n

n n n nu K K u K K u K K u+ + + + +

+ − + −

  

It follows that 

1 1

1 11
1 2 1 1

1

2 1

1 1

2 1 2 1 1 1

( )
1

( )
1

.

n n n n

n nn
n n

n

n nn
n n

n

n n n n

n n n n n n

z z x x

V x DK K u

DK K u V x

K K u K K u u u x x


 




 



+ +

+ ++
+ +

+

+ +

+ +

− − −

  +
 −

 + +
 −

+ − + − − −

(3.9)

 

Note that 

1 1

2 1 2 1

1 1 1 1

2 1 2 1 2 1 2 1

1 1

1 1 2 1 2 1

n n n n

n n

n n n n n n n n

n n n n

n n n n n n

n n n n

K K u K K u

K K u K K u K K u K K u

K u K u K K u K K u

+ +

+ + + +

+ +

−

 − + −

 − + −

 (3.10)
 

and  

( )

1

1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1

1 1

1 1

(1 ) (1 )

( ) ( )

.

n n

n n

n n n n n n n n

n n n n n n n

n n n n

K u K u

u K u u K u

u u K u

u K u

   

   

 

+

+ +

+ +

+

−

= − + − − −

= − + + −

 + +

 

Since 
1lim 0i

n n n → + − =  for 1, 2i =  and 

   1,
n nK uu  are bounded, we see that 

1

1 1lim 0.n n

n n nK u K u+

→ − =  (3.11) 

Similarly, we get 

( )

1

2 1 2 1

2 2 2 2

1 1 1 2 1

2 2

1 1 2 1

( ) ( )

n n n n

n n

n n

n n n n n n n

n n

n n n n

K K u K K u

K u u K K u

K u K K u

   

 

+

+ +

+

−

= − + + −

 + +

 

which implies that 

1

2 1 2 1lim 0.n n n n

n n nK K u K K u+

→ − =  (3.12) 

Since 1 2*( ( ) )
n n

F F

n r n r nu T x A T I Ax= + −  and  

1 2

1 1

*

1 1 1( ( ) )
n n

F F

n r n r nu T x A T I Ax
+ ++ + += + − ,  

it follows from Lemma 2.3 that 
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2 2

1 1

1 2

1 1

2

1

2 2

1

1

* *

1 1

*

1 1

*
1 1 1

*

1 1

1

2 2 42

1 1

[ ( ) ( ) ]

( ( ) )
1

( ( ) )

( )

2

n n

n n

n

n n

n n

F F

n n r n r n

F F

r n r n
n

F
n n r n

n n n n

F F

r n r n n

n n n n

u u

x x A T I Ax A T I Ax

T x A T I Axr

r x A T I Ax

x x A A x x

A T Ax T Ax

x x Ax Ax A x









 

 

+ +

+ +

+

+

+

+ +

+ +

+ + +

+ +

+

+ +

−

 − + − − −

+ −
+ −

− + −

 − + −

+ − +

 − − − + 

1

1

1
2 2

1

1 1 1

1

1
2 4 22 2

1 1

1

(1 2 )

n

n n

Fn
n n r n n n

n

n n n n

n n

x

r
A Ax Ax T Ax Ax

r

A A x x A x x

A

 

  

  

+

+

+ + +

+

+ +

−

  
+ − + − − + 

  

 − + − + −

+ +  

(3.13)

 
2 2

1 1

1

(1 )

,

n n n n n n

n n n n

A x x A x x A

x x A

    

  

+ +

+

= − − + − + +

 − + +

where  

2

1 1 1

1

: 1
n

Fn
n r n n

n

r
T Ax Ax

r


+ + +

+

= − −  

and 
1 2

1 1

2

1

*

1 1

*

1 1 1

( ( ) )
: 1 .

( ( ) )

n n

n

F F

r n r n
n

n F

n n r n

T x A T I Axr

r x A T I Ax






+ +

+

+ +

+ + +

+ −
= −

− + −

 

Using (3.11), (3.12) and (3.13), we get 

1 1

1 11
1 2 1 1

1

2 1

1

2 1 2 1

( )
1

( )
1

.

n n n n

n nn
n n

n

n nn
n n

n

n n n n

n n n n

z z x x

V x DK K u

DK K u V x

K K u K K u A


 




 



  

+ +

+ ++
+ +

+

+

− − −

  +
 −

 + +
 −

+ − + +

 

(3.14)

  

From conditions (C1), (C2), (C3) and (3.12), we get 

( )



1 1

1 11
1 2 1 1

1

2 1

1

2 1 2 1

limsup

limsup ( )
1

( )
1

0.

n n n n n

n nn
n n n

n

n nn
n n

n

n n n n

n n n n

z z x x

V x DK K u

DK K u V x

K K u K K u A


 




 



  

→ + +

+ ++
→ + +

+

+

− − −


  +  −

 + +
 −

+ − + + =

By Lemma 2.6, we have 

lim 0.n n nz x→ − =  (3.15) 

Consequently, we obtain from  

1 (1 )
n nn n nx x z + −= + , we get  

1 (1 )( ) ( )
n nn n n n n nx x x x z x + −− = − + − , then  

1lim (1 )lim 0.
nn n n n n nx x z x→ + → −− = − = (3.16) 

Step 3. We will show that 

2 1lim 0.n n

n n nK K u u→ − =  

Since  

1 2 1( ) [(1 ) ] ,n n

n n n n n n n nx V x x I D K K u     + = + + − −  

we have 

2 1 1 1 2 1

1

2 1 2 1

1 2 1

2 1 2 1 2 1

1 2 1

2 1

( )

[(1 ) ]

( )

( )

,

n n n n
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
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
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 − + −
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that is 

2 1 1
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1

1

1
( ) .

n

n

n
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n n

n n

x K K u x x

V x DK K u






 

+
−

−

−  −

+ −

 

From (3.16) and conditions (C1)-(C2), we get 

2 1lim 0.n n

n n nx K K u→ − =  (3.17) 

From (2.2), (3.7) and (3.8) we get 
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( ) ( )

( ) ( )
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Observe that 







1 2 1

2

2

2

2

22 *

*

22 *

2
*

2 2

2
*

2 2

2 2

( ( ) )

, ( )

1
( )

2

( ) [ ( ) ]

1

2 ( )

1

2

n n n

n

n

n

n

F F F

n r n r n r

F

n n r n

F

n n r n

F

n n r n

n n

F

n n r n

n n

n n

u p T x A T I Ax T p

u p x A T I Ax p

u p x A T I Ax p

u p x A T I Ax p

u p x p

u x A T I Ax

u p x p

u x A













− = + − −

 − + − −

= − + + − −

− − − + − −

 − + − 
=  

− − − −  

= − + −

−  − +



2

2

2
*

*

( )

2 , ( ) .

n

n

F

r n

F

n n r n

T I Ax

u x A T I Ax

−

− − −

 

Hence, we obtain 

2

2 2 2

2
*2 ( ) ( ) .

n

n n n n

F

n n r n

u p x p u x

A u x A T I Ax

−  − − −

+ − −

 
(3.19)

 

Next, we will show that 2
2

lim ( ) 0.
n

F

n r nT I Ax→ − =  

From (3.6) and (3.18), we obtain 

( )

2

1

2

2 1

1

2

2 1

1

2

2 1

1

2

2 1

2

2 1

(1 )

2 ( ) ( )

(1 )

2 ( ) ( )

2 ( ) ( )

2

2

n

n n

n n n n n

n n n

n n

n n n n n n

n n n

n n

n n n

n n n

n n

n n n n

n n

n n n

x p

u p x K K u

V x D p x p

u p u p x K K u

V x D p x p

u p x K K u

V x D p x p

u p u p x K K u

x K K u V

  

  

  

  

  

 

+

+

+

+

−

  − − + −
 

+ − −

  − − − + − −
 

+ − −

 − + −

+ − −

= − + − −

+ − +

2

2

1

22

2 1

2

2 1 1

22

2 1

2

2 1

1

( ) ( )

( 1) ( )

2

2 ( ) ( )

(1 ) ( )

2

2 ( ) ( ) .

n

n

n n

F

n r n

n n

n n n

n n

n n n n n

F

n r n

n n

n n n

n n

n n

n n n

x D p x p

x p L T I Ax

u p x K K u

x K K u V x D p x p

x p L T I Ax

u p x K K u

x K K u

V x D p x p



 

  

 

  

+

+

+

− −

 − + − −

+ − −

+ − + − −

= − − − −

+ − −

+ −

+ − −

 

Then 

( )

2
2

2 2

1 2 1

2

2 1 1

1 1

2 1

2

2 1 1

(1 ) ( )

2

2 ( ) ( )

2

2 ( ) ( ) .

n

F

r n

n n

n n n n n

n n

n n n n n

n n n n

n n

n n n

n n

n n n n n

L T I Ax

x p x p u p x K K u

x K K u V x D p x p

x p x p x x

u p x K K u

x K K u V x D p x p

 

  

  

+

+

+ +

+

− −

 − − − + − −

+ − + − −

 − + − −

+ − −

+ − + − −

 

(3.20)

 

Since  

1

2 1

(1 ) 0, 0, 0,

0

n n n

n n

n n

L x x

x K K u

   +−  → − →

− →

 

as n→ , we obtain  

( )2lim 0.
n

F

rn nT I Ax→ − =  (3.21) 

Next, we will show lim 0.nn nu x→ − =  From 

(3.18) and (3.19), we get 

2

2

1

2

2 1

2

2 1

1

2 2

2

2 1 2 1

1

2

2 ( ) ( )

2 ( ) ( )

2

2 ( ) ( ) .

n

n

n n

n n n n

n n

n n

n n n

n n n

F

n n r n

n n n n

n n n n n

n n n

x p

u p u p x K K u

x K K u

V x D p x p

x p u x

A u x T I Ax

u p x K K u x K K u

V x D p x p

  



  

+

+

+

−

 − + − −

+ −

+ − −

 − − −

+ − −

+ − − + −

+ − −

 

It follows that 

( )

2

2

2

2 2

1

2

2 1 2 1

1

1 1

2

2 1 2 1

1

2 ( ) ( )

2

2 ( ) ( )

2 ( ) ( )

2

2 ( ) ( ) .

n

n

n n

n n

F

n n r n

n n n n

n n n n n

n n n

n n n n

F

n n r n

n n n n

n n n n n

n n n

u x

x p x p

A u x T I Ax

u p x K K u x K K u

V x D p x p

x p x p x x

A u x T I Ax

u p x K K u x K K u

V x D p x p



  



  

+

+

+ +

+

−

 − − −

+ − −

+ − − + −

+ − −

 − − − −

+ − −

+ − − + −

+ − −

 

(3.22)

 

From condition (C1), (3.16), (3.17) and (3.21),  
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we obtain 

lim 0.nn nu x→ − =  (3.23) 

Since 

2 1 2 1 .n n n n

n n n n n nK K u u K K u x x u−  − + −  (3.24) 

From (3.17) and (3.23), we also have 

2 1 0.lim n n

n nn K K u u→ − =  (3.25) 

Step 4. We will prove that ( )
1

.
i

N

i

Fixw K
=

   

Step 4.1 We shall show that ( )
1

.
i

N

i

Fixw K
=

  

Since   ik  is bounded for 1, 2,i =  we can  

assume that 
j

i i

k
 


→  as  j → , where 

1 2
0 1

i
  


     for 1, 2.i =  Define 

(1 ) , 1, 2.
i i

i i
K I K i 



 
= − + =  

Note that 

( )

(1 ) (1 )

.

j

j j

j

k

i i

i i i i

k k i i

i i

k i

K x K x

x K x x K x

x K x

   

 



 



−

= − + − − −

 − +

 

Hence, we deduce that 

limsup 0,jk

i i
j x B

K x K x

→ 

− =  (3.26) 

where B is an arbitrary bounded subset of .H   

Since 

( ) ( )

( ) ( )

1 2

1 2

Fix Fix

Fix Fix

K K

K K 

 

=  
  

and  

iK  is i
- averaged for 1, 2,i =  by Lemma 2.4,  

we know that  

( ) ( ) ( )2 1 2 1 .Fix Fix FixK K K K   =   Since 

2 1

2 1

2 1 2 1

2 1 2 1

2 1 2 2

1 1

sup

sup ,

j j

j j

j j

j j j

j j

j

j j

j j j

j j

n n

n n

n n

n n n

n n

n

n n

n n n

n n n n
x B

n

x B

u K K u

u K K u

K K u K K u

K K u K K u

u K K u K u K u

K u K u

 



  









−

 −

+ −

+ −

 − + −

+ −

(3.27) 

where B  is a bounded subset including  1

j

j

n

n
K u and 

B is a bounded subset including  
j

n
u , we have from 

(3.25) and (3.26) that  

2 1limsup 0.
j jn n

j x B

u K K u 

→ 

− =  

From Lemma 2.8, we have ( )2 1
.w Fix K K

 
  

Step 4.2 We shall show that .w  

First, we will show 
1( ).w EP F   

Since 1 ,
n

F

n r nu T x= we have 

1

1
, , 0, .n n n n

n

F u y y u u x y C
r

+ − −   
 

It follows from the monotonicity of 1F  that 

( )1

1
, , ,n n n n

n

y u u x F y u
r

− −   

and hence replacing n  by ,in  we get 

( )1, , .i i

i i

i

n n

n n

n

u x
y u F y u

r

−
− 

 

Since 
2 10, 0n n

n n n nu x K K u u− → − →  

and  ,w

nx w⎯⎯→  as  ,n →  we get  
i

w

nu w⎯⎯→  and 

0.i i

i

n n

n

u x

r

−
→ It follows by Lemma 2.1 (iv) that 

10 ( , ), .F y w w C    For t  with 0 1t   

and ,y C  let (1 ) .ty ty t w= + −  Since 

, ,y C w C   we have ,ty C  and hence, 

1( , ) 0.tF y w   So, from Lemma 2.1 (i) and (iv),  

we have 

1

1 1

0 ( , )

( , ) (1 ) ( , ) ( , ).

t t

t t t t

F y y

tF y y t F y w t y y

=

 + − 
 

Therefore, 
10 ( , ).tF y y  From Lemma 2.1 (iii),  

we have 
10 ( , ).F w y  This implies that 

1( ).w EP F  
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Next, we show that 
2( ).Aw EP F Since 

0, w

n n nu x u w− → ⎯⎯→  as ,n → and  
n

x  is  

bounded, there exists a subsequence  nk
x  of   

n
x  

such that ,
k

w

nx w⎯⎯→  and since A  is bounded linear 

operator, so .
k

w

nAx Aw⎯⎯→  

Now, setting  2 .
k k n kk

F

n n r nm Ax T Ax= −  

It follows from (3.21) that lim 0
kk nm→ =  and 

2 .
k k n kk

F

n n r nAx m T Ax− = Therefore, from Lemma 2.2, 

we have 

2 ,

1
( ), ( )

0, .

k k

k k k k k

k

n n

n n n n n

n

F Ax m z

z Ax m Ax m Ax
r

z Q

−

+ − − − −

  

 

Since 
2F  is upper semicontinuous, taking lim sup  

to above inequality as k →  and using condition 

(C3), we obtain 

2 , 0, .F Aw z z Q    

which means that 
2( )Aw EP F  and hence .w  

Therefore, we get ( )
1

.
i

N

i
Fixw K

=
   

Step 5. Finally, we prove that the sequence  
n

x  

converge strongly to  

( )

*

1

*( )N

i
i

Fix K

x P I D V x 
=
 

= − +  

which is the unique solution of the variational 

inequality 

( )

( )

* *

1

, 0,

.
N

i
i

D V x x x

x Fix K

 

=

− −

  



 (3.28) 

Next, we claim that 

( ) *

, 0,lim sup
n

n

D V x x x 
→

− −   

where 
( )

*

1

*
( ) .N

i
i

Fix K

x P I D V x 

=

 

= − +  

Since  
n

u is bounded, there exists a subsequence 

 n j
u of   

n
u  which converges weakly to w. From 

(3.25), we obtain 

2 1 j

wn n

nK K u w⎯⎯→  as .n→   

Since 
( )

*

1

*( ) ,N

i
i

Fix K

x P I D V x 
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 

= − + we have 
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*

*

*

*

*

*

*

*
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,

,

limsup
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limsup
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j
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n
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n
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 
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=
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From (2.2), (3.1), (3.7) and Lemma 2.5, we have 
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+

+

−
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1
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+
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+
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*
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n
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x
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This implies that   

( )

2

1

2
2

*

* * *

1

2 2
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(1 )

1

2
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1

2
1

1 1

n n
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n

n

n
n

n
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   
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
 
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    

   

+

+

−
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−
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−

− 
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1

2
*

2
( ) ( ),

1

2
1

1

n
n

n

n

n

n

V x D x x x

x x


 

 

  

 
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−

− 
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 (3.29) 
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2

1

* * *

1

2
*

22( )

1 1
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n

n

n

n

n n n n

M

V x D x x x

x x

 

   

 
 
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  

+

 
 

−−  
+  

−  + − −
 − 
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where 

 
2

*

1

2( )
sup : 1 ,

1

n
n n

n

M x x n
  


 

−
= −  =

−
 

and  

( )

2
* * *1

1

1
( ) ( ), .

2

n
n n

M
V x D x x x

 
  

   
+= + − −

− −

 

It can see that 

1

0,n n

n

 


=

→ =  and  

limsup 0.n
n


→

 Hence, by Lemma 2.9,  

the sequence  
n

x  converges strongly to *.x   

This is complete the proof. 

Corollary 3.1. Let 
1

H  and 
2

H be two real Hilbert 

spaces and let 
1

C H  and 
1

Q H be nonempty 

closed convex subsets. Let 
1 2

:A H H→ be a 

bounded linear operator. Let 
1 1 :,F C Ch  →  and 

2 2 :,F Q Qh  →  are bifunctions satisfying 

Lemma 2.1 and 
1 2,h h  are monotone and 

2F  is upper 

semicontinuous.  Let 
1 1

:D H H→ be a k −  

Lipschitzian continuous and  - strongly monotone 

mapping with 0k   and 0, 
1 1

:V H H→ be  

a  - Lipschitzian continuous mapping with 0.   

Let 
2

2
0

k


   and  0 ,    where 

21 1 (2 ).k   = − − −   

For a given 
0x C arbitrarily, let the iterative 

sequences  
n

u  and  
n

x  be generated by iterative 

algorithm: 

1 2*

1

( ( ) ),

( )

[(1 ) ] , 1,

n n

F F

n r n r n

n n n n n

n n n

u T x A T I Ax

x V x x

I D u n



  

  

+

 = + −


= +
+ − −  


 
(3.30)

 

where   (0, ),nr   1
0, ,

L


 
 
 

L  is the spectral 

radius of the operator *A A  and *A  is the adjoint  

of .A  Assume that the following conditions are 

satisfied: 

(C1) lim 0n n→ =  and 

1

;
n

n




=

=   

(C2) 0 liminf limsup 1;n n n n → →    

(C3) liminf 0n nr→   and 
1lim 0;n n nr r→ + − =  

Then, the sequence  
n

x  generated by (3.30) 

converges strongly to 
* ,x   which solves the 

variational inequality 

( ) * *
, 0, .D V x x x x − −    

Proof  Put 
iK x x=  for all 1, 2, ,i N= and 

1,x H and take the finite family of sequences 

 
1

N
i

n i


=

 in 
1 2( , )  for some 

1 2, (0,1)   such that 

1lim 0i i

n n
n

 +
→

− =  for all 1, 2, , .i N=  In this case, 

1 1, ,n n n

N NK K K−
 is the identity mapping I of 

1.H   

It can see that the all conditions of Theorem 3.1  

are satisfied. Then conclusion of Corollary 3.1 is 

obtained. 

4. Conclusions  

In this paper, we first propose a modified 

iterative scheme (3.1) in Theorem 3.1 and then we 

prove some strong convergence of the sequence  
n

x  

generated by (3.1) to a common solution of the set of 

fixed points of a finite family of nonexpansive 

mappings and the split equilibrium problem in Hilbert 

spaces. We divide the proof into 5 steps and our 

theorem is extend and improve the corresponding 

results of Kazmi and Rizvi (22). 
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