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Abstract 
This research proposed the iteration method for finding a common fixed point of an infinite 

family of nonexpansive mappings and two inverse strongly accretive mappings in 𝒒-uniformly smooth 

Banach spaces. Furthermore, our method can also solve a new general variational inequality system and 

its strong convergence theorem is proved under some appropriate conditions. Our result improves and 

extends the previous outcomes in the literature. 
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1. Introduction  

Throughout this research, let 𝐸 be a 

real Banach space. We recall that 𝐸 is called:  

• uniformly convex if for each 𝜖 ∈ (0,2] there 

exists  𝛿 > 0 such that for any 𝑥, 𝑦 ∈ 𝑈 where 

𝑈 = {𝑥 ∈ 𝐸: ∥ 𝑥 ∥= 1} then ∥ 𝑥 − 𝑦 ∥≥ 𝜖,  
∥

𝑥+𝑦

2
∥≤ 1 − 𝛿 holds.  

• smooth if for each 𝑥, 𝑦 ∈ 𝑈,  lim𝑡→0
∥𝑥+𝑡𝑦∥−∥𝑥∥

𝑡
  

exists. 

• uniformly smooth if lim𝜏→0
𝜌(𝜏)

𝜏
= 0, where 

the modulus of smoothness of 𝐸 is the 

mapping  𝜌: [0, ∞) → [0, ∞)  defined by  

𝜌(𝜏) = sup {
1

2
(∥ 𝑥 + 𝑦 ∥ +∥ 𝑥 − 𝑦 ∥) − 1 ∶ 

𝑥, 𝑦 ∈ 𝐸, ∥ 𝑥 ∥= 1, ∥ 𝑦 ∥= 𝜏},  
• q-uniformly smooth if for each 1 < 𝑞 ≤ 2 

there exists 𝑐 > 0 such that modulus of 

smoothness 𝜌(𝜏) ≤ 𝑐𝜏𝑞 , ∀𝜏 > 0. 

Let 𝐸∗ be a dual space of 𝐸. The 

generalized duality mapping  𝐽𝑞: 𝐸 → 2𝐸∗
, 𝑞 > 1 

is defined by  

𝐽𝑞(𝑥) = {𝑓 ∈ 𝐸∗: ⟨𝑥, 𝑓⟩ =∥ 𝑥 ∥𝑞 , 

∥ 𝑓 ∥=∥ 𝑥 ∥𝑞−1}, 

for all 𝑥 ∈ 𝐸.  

If 𝑞 = 2, the mapping 𝐽q = 𝐽2 = 𝐽 is said to be 

the normalized duality. For all 𝑥 ∈ 𝐸, the 

properties of mapping 𝐽𝑞 are shown as follow: 

(i) 𝐽𝑞(𝑥) =∥ 𝑥 ∥𝑞−2 𝐽2(𝑥), 𝑥 ≠ 0; 

(ii) 𝐽𝑞(𝑡𝑥) = 𝑡𝑞−1𝐽𝑞(𝑥), 𝑡 ≥ 0; 

(iii) 𝐽𝑞(−𝑥) = −𝐽𝑞(𝑥). 

We know that the mapping 𝐽𝑞 is single-valued if 

𝐸 is smooth and can be written by 𝑗𝑞 (1, 2). 

Let 𝐶 ⊂ 𝐸 be a nonempty closed 

convex subset. A fixed point problem is to find a 

set of fixed points of a mapping 𝑇: 𝐶 → 𝐶 denoted 

by 𝐹(𝑇) where 𝐹(𝑇) = {𝑥 ∈ 𝐶|𝑇𝑥 = 𝑥}. 
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Let {𝑇𝑛: 𝐶 → 𝐶}𝑛=1
∞  be a sequence of 

an infinite family of mappings such that 

∩𝑛=1
∞ 𝐹(𝑇𝑛) ≠ ∅. {𝑇𝑛} is said to satisfy the 

𝐴𝐾𝑇𝑇-condition (3), if  

∑

∞

𝑛=1

sup
𝜔∈𝐵

∥ 𝑇𝑛+1𝜔 − 𝑇𝑛𝜔 ∥< ∞, 

for all bounded subset 𝐵 of 𝐶.  

A mapping 𝑇: 𝐶 → 𝐶 is called nonexpansive if 

for each 𝑥, 𝑦 ∈ 𝐶 such that  

∥ 𝑇𝑥 − 𝑇𝑦 ∥≤∥ 𝑥 − 𝑦 ∥.  
A mapping 𝐴: 𝐶 → 𝐶 is called Lipschitzian if for 

each 𝑥, 𝑦 ∈ 𝐶, 𝐿 > 0 such that  

∥ 𝐴𝑥 − 𝐴𝑦 ∥≤ 𝐿 ∥ 𝑥 − 𝑦 ∥. 

A mapping 𝐴: 𝐶 → 𝐸 is called 𝛽-strongly 

accretive if for each 𝑥, 𝑦 ∈ 𝐶, 𝛽 > 0 there exists 

𝑗𝑞(𝑥 − 𝑦) ∈ 𝐽𝑞(𝑥 − 𝑦) such that  

〈𝐴𝑥 − 𝐴𝑦, 𝑗𝑞(𝑥 − 𝑦)〉 ≥ 𝛽 ∥ 𝑥 − 𝑦 ∥𝑞. 

A mapping 𝐴: 𝐶 → 𝐸 is called 𝛽-inverse strongly 

accretive, if for any 𝑥, 𝑦 ∈ 𝐶, 𝛽 > 0 there exists 

𝑗𝑞(𝑥 − 𝑦) ∈ 𝐽𝑞(𝑥 − 𝑦) such that 

⟨𝐴𝑥 − 𝐴𝑦, 𝑗𝑞(𝑥 − 𝑦)⟩ ≥ 𝛽 ∥ 𝐴𝑥 − 𝐴𝑦 ∥𝑞 . 

A mapping 𝑄: 𝐶 → 𝐷, 𝐷 ⊂ 𝐶 is called sunny if  

𝑄(𝑄𝑥 + 𝑡(𝑥 − 𝑄𝑥)) = 𝑄𝑥, 
where 𝑄𝑥 + 𝑡(𝑥 − 𝑄𝑥), 𝑥 ∈ 𝐶 and 𝑡 ≥ 0. 𝑄 is 

called retraction if 𝑄𝑥 = 𝑥, ∀𝑥 ∈ 𝐷. If 𝑄 is a 

retraction form  𝐶 onto 𝐷 then 𝑄 is called sunny 

nonexpansive retraction form 𝐶 onto 𝐷 (4-6).  

Nowadays, variational inequality is 

one of the most attractive problems due to its 

widely use applications in many disciplines such 

as economics, engineering, medical sciences , 

operation research, structural analysis and many 

others. Undoubtedly, the algorithms for solving 

this problem have been studied and improved 

continuously not only in theoretical way but also 

in practical approach. Many authors endeavor to 

reach their goals in real world applications, see 

(7-16) and the related reference therein.  

The famous classical variational 

inequality problem in the framework of 2-

uniformly smooth Banach spaces was published 

in 2006 by Aoyama et al. (17) which is to find a 

point 𝑥∗ ∈ 𝐶 such that  

〈𝐴𝑥, 𝑗(𝑥 − 𝑥∗)〉 ≥ 0 (1.1) 

for all 𝑥 ∈ 𝐶. In 2010, Yao et al. (18) generated 

the system of variational inequalities in 2-

uniformly smooth Banach spaces for finding 

(𝑥∗, 𝑦∗) ∈ 𝐶 × 𝐶 satisfying the following 

conditions: 

{
〈(𝐼 − 𝜆𝐴)𝑦∗ − 𝑥∗, 𝑗(𝑥 − 𝑥∗)〉 ≤ 0, ∀𝑥 ∈ 𝐶,
〈(𝐼 − 𝜎𝐵)𝑥∗ − 𝑦∗, 𝑗(𝑥 − 𝑦∗)〉 ≤ 0, ∀𝑥 ∈ 𝐶.

 (1.2) 

Later, in 2013, Song and Ceng (19) generalized 

the framework to a 𝑞-uniformly smooth Banach 

spaces and solve the problem of finding 

(𝑥∗, 𝑦∗) ∈ 𝐶 × 𝐶 such that  

{
〈(𝐼 − 𝜆𝐴)𝑦∗ − 𝑥∗, 𝑗𝑞(𝑥 − 𝑥∗)〉 ≤ 0, ∀𝑥 ∈ 𝐶,

〈(𝐼 − 𝜎𝐵)𝑥∗ − 𝑦∗, 𝑗𝑞(𝑥 − 𝑦∗)〉 ≤ 0, ∀𝑥 ∈ 𝐶.

 (1.3) 

Recently, in 2020, Wang and Pan (20) proposed 

the general variational inequality system in a 2-

uniformly smooth Banach spaces:  

{
⟨(𝐼 − 𝜆𝐴)[𝑡𝑥∗ + (1 − 𝑡)𝑦∗] − 𝑥∗, 𝑗(𝑥 − 𝑥∗)⟩ ≤ 0,

∀𝑥 ∈ 𝐶,
〈(𝐼 − 𝜎𝐵)𝑥∗ − 𝑦∗, 𝑗(𝑥 − 𝑦∗)〉 ≤ 0, ∀𝑥 ∈ 𝐶.

 

 (1.4) 

Due to its significance and the 

motivation for solving the system of variational 

inequalities (1.4), we extended their framework 

to 𝑞-uniformly smooth Banach spaces and 

therefore our mention variational system is 

stated as follow:  

{

⟨(𝐼 − 𝜆𝐴)[𝑡𝑥∗ + (1 − 𝑡)𝑦∗] − 𝑥∗, 𝑗𝑞(𝑥 − 𝑥∗)⟩ ≤ 0,

∀𝑥 ∈ 𝐶,
〈(𝐼 − 𝜎𝐵)𝑥∗ − 𝑦∗, 𝑗𝑞(𝑥 − 𝑦∗)〉 ≤ 0, ∀𝑥 ∈ 𝐶.

 (1.5) 

2. Preliminaries 

In this section, we recall some well 

known lemmas that will be used to support our 

proof in the next part. 

Lemma 2.1 (21) Let 𝑞 > 1. Then the following 

inequality holds:  

𝑎𝑏 ≤
1

𝑞
𝑎𝑞 +

𝑞 − 1

𝑞
𝑏

𝑞
𝑞−1 

for arbitrary positive real numbers 𝑎, 𝑏.  

Lemma 2.2 (22) Let 𝐶 be a nonempty, closed 

and convex subset of a real 𝑞-uniformly smooth 

Banach space 𝐸, 𝐿2: 𝐶 → 𝐸 be a 𝜅-Lipschitzian 

and 𝜂-strongly accretive operator with constants 

𝜅, 𝜂 > 0 and let 0 < 𝜇 < (
𝑞𝜂

𝑐𝑞𝜅𝑞)
1

𝑞−1, 𝜏 = 𝜇(𝜂 −

𝑐𝑞𝜇𝑞−1𝜅𝑞

𝑞
), then for 𝑡 ∈ (0, 𝑚𝑖𝑛{1,

1

𝜏
}), the 
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mapping 𝑆: 𝐶 → 𝐸 defined by 𝑆: = (𝐼 − 𝑡𝜇𝐿2) is 

a contraction with a constant 1 − 𝑡𝜏.  

Lemma 2.3 (22) Let 𝐶 be a nonempty, closed 

and convex subset of a real 𝑞-uniformly smooth 

Banach space E which admits weakly 

sequentially continuous generalized duality 

mapping 𝑗𝑞 from 𝐸 into 𝐸∗. Let 𝑇: 𝐶 → 𝐶 be a 

nonexpansive mapping. Then, for all {𝑥𝑛} ⊂ 𝐶, 

if 𝑥𝑛 ⇀ 𝑥 and 𝑥𝑛 − 𝑇𝑥𝑛 → 0, then 𝑥 = 𝑇𝑥.  

Lemma 2.4 (19) Let C be a nonempty, closed 

and convex subset of a real reflexive and q-

uniformly smooth Banach space E which admits 

a weakly sequentially continuous generalized 

duality mapping 𝐽𝑞 from E into E*. Let 𝑄𝐶 be a 

sunny nonexpansive retraction from E onto C, 

𝑉: 𝐶 → 𝐸 a k-Lipschitzian and 𝜂-strongly 

accretive operator with constants k, 𝜂 > 0. 

Suppose 𝑓: 𝐶 → 𝐸 is a L-Lipschitzian mapping 

with constant 𝐿 > 0 and 𝑇: 𝐶 → 𝐶 a 

nonexpansive mapping such that 𝐹(𝑇) ≠ ∅. Let 

 0 < 𝜇 < (
𝑞𝜂

𝑐𝑞𝜅𝑞
)

1

𝑞−1 and 0 ≤ 𝛾𝐿 < 𝜏 where 

 𝜏 = 𝜇(𝜂 −
𝑐𝑞𝜇𝑞−1𝜅𝑞

𝑞
). Then {𝑥𝑡} defined by 

 𝑥𝑡 = 𝑄𝐶[𝑡𝛾𝑓𝑥𝑡 + (𝐼 − 𝑡𝜇𝑉)𝑇𝑥𝑡] converges 

strongly to some point 𝑥∗ ∈ 𝐹(𝑇) as 𝑡 → 0, 

which is the unique solution of the variational 

inequality:  

〈𝛾𝑓𝑥∗ − 𝜇𝑉𝑥∗, 𝐽𝑞(𝑝 − 𝑥∗)〉 ≤ 0, ∀𝑝 ∈ 𝐹(𝑇). 

Lemma 2.5 (23) Let 𝐶 be a closed convex subset 

of a strictly convex Banach space 𝐸. Let 𝑇1 and 

𝑇2 be two nonexpansive mappings from 𝐶 into 

itself with 𝐹(𝑇1) ∩ 𝐹(𝑇2) ≠ ∅. Define a 

mapping 𝑆 by  

𝑆𝑥 = 𝜆𝑇1𝑥 + (1 − 𝜆)𝑇2𝑥, ∀𝑥 ∈ 𝐶, 
where 𝜆 is a constant in (0,1). Then 𝑆 is 

nonexpansive and 𝐹(𝑆) = 𝐹(𝑇1) ∩ 𝐹(𝑇2).  

Lemma 2.6 (3) Suppose that {𝑇𝑛} satisfy the 

𝐴𝐾𝑇𝑇-condition such that   

(1) For each 𝑥 ∈ 𝐶, {𝑇𝑛𝑥} converge strongly to 

some point in 𝐶.  

(2) Let the mapping 𝑇: 𝐶 → 𝐶 defined by  

𝑇𝑥 = lim𝑛→∞𝑇𝑛𝑥 for all 𝑥 ∈ 𝐶. Then 

lim𝑛→∞sup𝜔∈𝐵 ∥ 𝑇𝜔 − 𝑇𝑛𝜔 ∥= 0 for each 

bounded subset 𝐵 of 𝐶.  

Lemma 2.7 (24) Let 𝐸 be a real smooth and 

uniformly convex Banach space and let 𝑟 > 0. 

Then there exists a strictly increasing, 

continuous and convex function 𝑔: [0,2𝑟] → ℝ 

such that 

𝑔(0) = 0 and 

𝑔(∥ 𝑥 − 𝑦 ∥) ≤∥ 𝑥 ∥2− 2⟨𝑥, 𝐽𝑦⟩+∥ 𝑦 ∥2, 
for all 𝑥, 𝑦 ∈ 𝐵𝑟  where 𝐵𝑟 = {𝑧 ∈ 𝐸: ∥ 𝑧 ∥≤ 𝑟}.  

Lemma 2.8 (25) Let 𝐸 be a real q-uniformly 

smooth Banach space, then there exists a 

constant 𝑐𝑞 > 0 such that  

∥ 𝑥 + 𝑦 ∥𝑞≤∥ 𝑥 ∥𝑞+ 𝑞⟨𝑦, 𝐽𝑞(𝑥)⟩ + 𝑐𝑞 ∥ 𝑦 ∥𝑞 , 

∀𝑥, 𝑦 ∈ 𝐸. 
In particular, if 𝐸 is real 2-uniformly smooth 

Banach space, then there exists a best smooth 

constant 𝐾 > 0 such that  

∥ 𝑥 + 𝑦 ∥2≤∥ 𝑥 ∥2+ 2⟨𝑦, 𝐽(𝑥)⟩ + 2𝐾 ∥ 𝑦 ∥2, 
∀𝑥, 𝑦 ∈ 𝐸. 

Lemma 2.9 (26) Let {𝑎𝑛} be a sequence of 

nonnegative numbers satisfying the property:  

𝑎𝑛+1 ≤ (1 − 𝛼𝑛)𝑎𝑛 + 𝑏𝑛 + 𝛼𝑛𝑐𝑛 , 𝑛 ∈ ℕ, 
where {𝛼}, {𝑏𝑛}, {𝑐𝑛} satisfy the restrictions:   

(1) lim𝑛⟶∞𝛼𝑛 = 0, ∑∞
𝑛=1 𝛼𝑛 = ∞,  

(2) 𝑏𝑛 ≥ 0, ∑∞
𝑛=1 𝑏𝑛 < ∞,  

(3) limsup𝑛⟶∞𝑐𝑛 ≤ 0.  
Then, lim𝑛⟶∞𝑎𝑛 = 0.  

Lemma 2.10 (27) Let 𝐶 be a closed convex 

subset of a smooth Banach space 𝐸. Let 𝐶̃ be a 

nonempty subset of 𝐶. Let 𝑄: 𝐶 → 𝐶̃ be a 

retraction and let 𝑗, 𝑗𝑞 be the normalized duality 

mapping and generalized duality mapping on 𝐸, 

respectively. Then the following are equivalent:   

(1) 𝑄 is sunny and nonexpansive;  

(2) ∥ 𝑄𝑥 − 𝑄𝑦 ∥2≤ ⟨𝑥 − 𝑦, 𝑗(𝑄𝑥 − 𝑄𝑦)⟩, 
       ∀𝑥, 𝑦 ∈ 𝐸; 

(3) 〈𝑥 − 𝑄𝑥, 𝑗(𝑦 − 𝑄𝑥)〉 ≤ 0, ∀𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶̃;  

(4) 〈𝑥 − 𝑄𝑥, 𝑗𝑞(𝑦 − 𝑄𝑥)〉 ≤ 0, ∀𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶̃.  

Lemma 2.11 (19) Let 𝐶 be a nonempty closed 

convex subset of a real 𝑞-uniformly smooth 

Banach space 𝐸. Let the mapping 𝐴: 𝐶 → 𝐸 be a 

ƒ𝛼-inverse-strongly accretive operator. Then 

the following inequality holds:  

∥ (𝐼 − 𝜆𝐴)𝑥 − (𝐼 − 𝜆𝐴)𝑦 ∥𝑞≤ 𝑥 − 𝑦 ∥𝑞 

−𝜆(𝑞𝛼 − 𝑐𝑞𝜆𝑞−1) ∥ 𝐴𝑥 − 𝐴𝑦 ∥𝑞 . 

In particular, if 0 < 𝜆 ≤ (
𝑞𝛼

𝑐𝑞
)

1

𝑞−1, then 𝐼 − 𝜆𝐴 is 

nonexpansive.  

Lemma 2.12 (20) Let 𝐸 be a real Banach space. 

Let ∅ ≠ 𝐶 ⊂ 𝐸  be a closed convex subset and 

𝐴, 𝐵: 𝐶 → 𝐸  be two nonlinear mappings. 

https://dx.doi.org/10.14456/x0xx00000x
http://sci.rmutt.ac.th/
https://ph02.tci-thaijo.org/index.php/past/index


4 Prog Appl Sci Tech. 2022; 12(1):1-10 

Prog Appl Sci Tech © 2022 Faculty of Science and Technology, RMUTT 

Suppose that 𝑄𝐶  is a sunny nonexpansive 

retraction. For ∀𝜆, 𝜎 > 0  and 𝑡 ∈ [0,1] , then 

the following assertions are equivalent: 

(a) (𝑥∗, 𝑦∗) ∈ 𝐶 × 𝐶 is a solution of problem (1.4); 

(b) Let Ψ: 𝐶 → 𝐶 be a mapping defined by  
Ψ(𝑥) = 𝑄𝐶(𝐼 − 𝜆𝐴)[𝑡𝑥 + (1 − 𝑡)𝑄𝐶(𝐼 − 𝜎𝐵)𝑥], 

then let 𝑥∗ be the fixed point of Ψ, that is 𝑥∗ = Ψ𝑥∗. 

where 𝑥∗ = 𝑄𝐶(𝐼 − 𝜆𝐴)[𝑡𝑥∗ + (1 − 𝑡)𝑦∗] ,             

𝑦∗ = 𝑄𝐶(𝐼 − 𝜎𝐵)𝑥∗ . Assume that 𝐴, 𝐵: 𝐶 → 𝐸 

are 𝛼-inverse strongly accretive operator and 𝛽-

inverse strongly operator, respectively.  

If 0 < 𝜆 <
2𝛼

𝑐
, 0 < 𝜎 <

2𝛽

𝑐
, then Ψ  is 

nonexpansive. 

Lemma 2.13 Let 𝐶 be a nonempty closed convex 

subset of a real 𝑞-uniformly smooth Banach 

space 𝐸. Suppose 𝑄𝐶 is a sunny nonexpansive 

retraction from 𝐸 onto 𝐶. Let the mapping 

𝐴, 𝐵: 𝐶 → 𝐸 are 𝛼-inverse strongly accretive 

operator and 𝛽-inverse strongly operator, 

respectively. Assume 𝛹: 𝐶 → 𝐶 is a mapping 

defined by  
Ψ(𝑥) = 𝑄𝐶(𝐼 − 𝜆𝐴)[𝑡𝑥 + (1 − 𝑡)𝑄𝐶(𝐼 − 𝜎𝐵)𝑥], 

for all 𝜆, 𝜎 > 0 and 𝑡 ∈ [0,1]. If 0 < 𝜆 ≤ (
𝑞𝛼

𝑐𝑞
)

1

𝑞−1 

and 0 < 𝜎 ≤ (
𝑞𝛽

𝑐𝑞
)

1

𝑞−1, then Ψ is nonexpansive. 

Proof. For all 𝑥, 𝑦 ∈ 𝐶, by Lemma 2.11 and 

Lemma 2.12, we have that  

∥ Ψ(𝑥) − Ψ(𝑦) ∥≤∥ 𝑥 − 𝑦 ∥. 
Therefore Ψ is nonexpansive.   

Lemma 2.14 Let 𝐶 be a nonempty closed convex 

subset of a real 𝑞-uniformly smooth Banach 

space 𝐸. Let 𝑄𝐶 be the sunny nonexpansive 

retraction from 𝐸 onto 𝐶. Let 𝐴, 𝐵: 𝐶 → 𝐸 be two 

nonlinear mappings. For given 𝑥∗, 𝑦∗ ∈ 𝐶, 

(𝑥∗, 𝑦∗) is a solution of problem (1.5) if and only if 

𝑥∗ = 𝑄𝐶(𝐼 − 𝜆𝐴)[𝑡𝑥∗ + (1 − 𝑡)𝑦∗] 
where 𝑦∗ = 𝑄𝐶(𝐼 − 𝜎𝐵)𝑥∗, that is 𝑥∗ = 𝛹(𝑥∗), 

where 𝛹 is defined by Lemma 2.13. 

Proof. From Lemma 2.10 and the definition of 

the sunny nonexpansive retraction, we deduce 

the problem (1.5) is equivalent to  

{
𝑥∗ = 𝑄𝐶(𝐼 − 𝜆𝐴)[𝑡𝑥∗ + (1 − 𝑡)𝑦∗]

𝑦∗ = 𝑄𝐶(𝐼 − 𝜎𝐵)𝑥∗,
 

which is solution of the problem (1.5).   

Lemma 2.15 (28) Assume {𝑎𝑛} is a sequence of 

nonnegative real numbers such that  

𝑎𝑛+1 ≤ (1 − 𝛼𝑛)𝑎𝑛 + 𝛿𝑛, 𝑛 ≥ 0 

where {𝛼𝑛} is a sequence in (0,1) and {𝛿𝑛} is a 

sequence in ℝ such that   

(1) ∑∞
𝑛=1 𝛼𝑛 = ∞  

(2) limsup𝑛⟶∞
𝛿𝑛

𝛼𝑛
≤ 0 or ∑∞

𝑛=1 |𝛿𝑛| < ∞.  

Then lim𝑛⟶∞𝑎𝑛 = 0.  

3. Main results 

Theorem 3.1 Let 𝐸 be a 𝑞-uniformly smooth and 

uniformly convex Banach space and ∅ ≠ 𝐶 ⊂ 𝐸 

be a closed convex subset. Let 𝑗𝑞: 𝐸 → 𝐸∗ be a 

weakly sequentially continuous generalized 

duality mapping and 𝑄𝐶 be a sunny 

nonexpansive retraction from 𝐸 onto 𝐶. Suppose 

that 𝐴: 𝐶 → 𝐸 is an 𝛼-inverse-strongly accretive, 

𝐵: 𝐶 → 𝐸 is a 𝛽-inverse-strongly accretive, 

{𝑇𝑖: 𝐶 → 𝐶}𝑖=1
∞  is an infinite family of 

nonexpansive mappings and 𝛹 is defined by 

Lemma 2.13. Let 𝐿1: 𝐶 → 𝐸 be a 𝐿-Lipschitzian, 

𝐿 ≥ 0 and 𝐿2: 𝐶 → 𝐸 be a 𝜅-Lipschitzian and 𝜂-

strongly accretive, 𝜅, 𝜂 > 0. Assume 𝑡 ∈ [0,1),  

{𝛼𝑛}, {𝛾𝑛} ⊂ (0,1), 0 < 𝜇 < (
𝑞𝜂

𝑐𝑞𝜅𝑞
)

1

𝑞−1, 0 < 𝜆 <

(
𝑞𝛼

𝑐𝑞
)

1

𝑞−1, 𝑐𝑞>0, 0 < 𝜎 < (
𝑞𝛽

𝑐𝑞
)

1

𝑞−1 , 0 ≤ 𝛾𝐿 < 𝜏 

where 𝜏 = 𝜇(𝜂 −
𝑐𝑞𝜇𝑞−1𝜅𝑞

𝑞
) and 𝐹: =

∩𝑖=1
∞ 𝐹(𝑇𝑖) ∩ 𝐹(𝛹) ≠ ∅.  

Let {𝑥𝑛} be the sequences defined by 𝑥1 ∈ 𝐶 and  

{

𝑧𝑛 = 𝑄𝐶(𝐼 − 𝜎𝐵)𝑥𝑛

𝑦𝑛 = 𝑄𝐶(𝐼 − 𝜆𝐴)(𝑡𝑥𝑛 + (1 − 𝑡)𝑧𝑛),
𝑥𝑛+1 = 𝑄𝐶[𝛼𝑛𝛾𝐿1𝑥𝑛 + 𝛾𝑛𝑥𝑛

  +((1 − 𝛾𝑛)𝐼 − 𝛼𝑛𝜇𝐿2)𝑇𝑛𝑦𝑛],

 (3.1) 

which corresponds to the conditions:   

(C1) lim𝑛→∞𝛼𝑛 = 0, ∑∞
𝑛=1 𝛼𝑛 = ∞; and 

lim𝑛→∞|𝛼𝑛+1 − 𝛼𝑛| = 0;  

(C2) lim𝑛→∞|𝛾𝑛+1 − 𝛾𝑛| = 0, 
0 < liminf𝑛→∞𝛾𝑛 ≤ limsup𝑛→∞𝛾𝑛 < 1.  

Assume that {𝑇𝑛}𝑛=1
∞  and the 𝐴𝐾𝑇𝑇-condition 

are satisfied. Let a mapping 𝑇: 𝐶 → 𝐶 be defined 

by 𝑇𝑥 = lim𝑛→∞𝑇𝑛𝑥 for all 𝑥 ∈ 𝐶 and suppose 

that 𝐹(𝑇) =∩𝑛=1
∞ 𝐹(𝑇𝑛). Then {𝑥𝑛} converges 

strongly to 𝑥∗ ∈ 𝐹 which also solves the 

following variational inequality:  

〈𝛾𝐿1𝑥∗ − 𝜇𝐿2𝑥∗, 𝑗𝑞(𝑧 − 𝑥∗)〉 ≤ 0, ∀𝑧 ∈ 𝐹. (3.2) 

Proof. First of all, we shall prove that {𝑥𝑛} is 

bounded. Let 𝑥∗ ∈ 𝐹, from Lemma 2.14, we 

have 

𝑥∗ = 𝑄𝐶(𝐼 − 𝜆𝐴)[𝑡𝑥∗ + (1 − 𝑡)𝑦∗] 
and    𝑦∗ = 𝑄𝐶(𝐼 − 𝜎𝐵)𝑥∗.  
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It follows from (3.1) that  

∥ 𝑦𝑛 − 𝑥∗ ∥=∥ Ψ(𝑥𝑛) − 𝑥∗ ∥≤∥ 𝑥𝑛 − 𝑥∗ ∥. (3.3) 

From (3.1) and (3.3), we have  

∥ 𝑥𝑛+1 − 𝑥∗ ∥ 

=∥ 𝑄𝐶[𝛼𝑛𝛾𝐿1𝑥𝑛 + 𝛾𝑛𝑥𝑛 

 +((1 − 𝛾𝑛)𝐼 − 𝛼𝑛𝜇𝐿2)𝑇𝑛𝑦𝑛] − 𝑥∗ ∥ 

≤∥ 𝛼𝑛𝛾𝐿1𝑥𝑛 + 𝛾𝑛𝑥𝑛 

 +((1 − 𝛾𝑛)𝐼 − 𝛼𝑛𝜇𝐿2)𝑇𝑛𝑦𝑛 − 𝑥∗ ∥ 

=∥ [(1 − 𝛾𝑛)𝐼 − 𝛼𝑛𝜇𝐿2](𝑇𝑛𝑦𝑛 − 𝑥∗) 

   +𝛼𝑛(𝛾𝐿1𝑥𝑛 − 𝜇𝐿2𝑥∗) + 𝛾𝑛(𝑥𝑛 − 𝑥∗) ∥ 

≤ (1 − 𝛾𝑛 − 𝛼𝑛𝜏) ∥ 𝑇𝑛𝑦𝑛 − 𝑥∗ ∥ 

 +𝛼𝑛 ∥ 𝛾𝐿1𝑥𝑛 − 𝜇𝐿2𝑥∗ ∥ +𝛾𝑛 ∥ 𝑥𝑛 − 𝑥∗ ∥ 
≤ (1 − 𝛾𝑛 − 𝛼𝑛𝜏) ∥ 𝑥𝑛 − 𝑥∗ ∥ +𝛼𝑛𝛾𝐿 ∥ 𝑥𝑛 − 𝑥∗ ∥ 

    +𝛼𝑛 ∥ 𝛾𝐿1𝑥∗ − 𝜇𝐿2𝑥∗ ∥ +𝛾𝑛 ∥ 𝑥𝑛 − 𝑥∗ ∥ 

= [1 − 𝛼𝑛(𝜏 − 𝛾𝐿)] ∥ 𝑥𝑛 − 𝑥∗ ∥ 

 +𝛼𝑛(𝜏 − 𝛾𝐿)
∥𝛾𝐿1𝑥∗−𝜇𝐿2𝑥∗∥

𝜏−𝛾𝐿
. 

Therefore by the mathematical induction, we can 

conclude that for all 𝑛 ≥ 1, 

∥ 𝑥𝑛 − 𝑥∗ ∥≤ max {∥ 𝑥1 − 𝑥∗ ∥,
∥ 𝛾𝐿1𝑥∗ − 𝜇𝐿2𝑥∗ ∥

𝜏 − 𝛾𝐿
}. 

Hence, {𝑥𝑛} is bounded and also {𝑦𝑛}, {𝑧𝑛} are 

bounded. Next, we will show that lim𝑛→∞ ∥
𝑥𝑛+1 − 𝑥𝑛 ∥= 0. By (3.1) and Lemma 2.13, we 

observe that  

∥ 𝑦𝑛+1 − 𝑦𝑛 ∥ 

=∥ 𝑄𝐶(𝐼 − 𝜆𝐴)(𝑡𝑥𝑛+1 + (1 − 𝑡)𝑧𝑛+1) 

 −𝑄𝐶(𝐼 − 𝜆𝐴)(𝑡𝑥𝑛 + (1 − 𝑡)𝑧𝑛) ∥ 
=∥ 𝑄𝐶(𝐼 − 𝜆𝐴)(𝑡𝑥𝑛+1 + (1 − 𝑡)𝑄𝐶(𝐼 − 𝜎𝐵)𝑥𝑛+1) 

   −𝑄𝐶(𝐼 − 𝜆𝐴)(𝑡𝑥𝑛 + (1 − 𝑡)𝑄𝐶(𝐼 − 𝜎𝐵)𝑥𝑛) ∥ 

=∥ Ψ(𝑥𝑛+1) − Ψ(𝑥𝑛) ∥ 
≤∥ 𝑥𝑛+1 − 𝑥𝑛 ∥, 
 and  

∥ 𝑇𝑛+1𝑦𝑛+1 − 𝑇𝑛𝑦𝑛 ∥ 

≤∥ 𝑇𝑛+1𝑦𝑛+1 − 𝑇𝑛+1𝑦𝑛 ∥ +∥ 𝑇𝑛+1𝑦𝑛 − 𝑇𝑛𝑦𝑛 ∥ 

≤∥ 𝑦𝑛+1 − 𝑦𝑛 ∥ +∥ 𝑇𝑛+1𝑦𝑛 − 𝑇𝑛𝑦𝑛 ∥ 

≤∥ 𝑥𝑛+1 − 𝑥𝑛 ∥ +∥ 𝑇𝑛+1𝑦𝑛 − 𝑇𝑛𝑦𝑛 ∥. (3.4) 

 Again, it follows from (3.1) and Lemma 2.13, 

we have  

∥ 𝑥𝑛+2 − 𝑥𝑛+1 ∥ 

=∥ 𝑄𝐶[𝛼𝑛+1𝛾𝐿1𝑥𝑛+1 + 𝛾𝑛+1𝑥𝑛+1 

   +((1 − 𝛾𝑛+1)𝐼 − 𝛼𝑛+1𝜇𝐿2)𝑇𝑛+1𝑦𝑛+1] 
   −𝑄𝐶[𝛼𝑛𝛾𝐿1𝑥𝑛 + 𝛾𝑛𝑥𝑛 

   +((1 − 𝛾𝑛)𝐼 − 𝛼𝑛𝜇𝐿2)𝑇𝑛𝑦𝑛] ∥ 
≤ 𝛼𝑛+1𝛾 ∥ 𝐿1𝑥𝑛+1 − 𝐿1𝑥𝑛 ∥ +𝛾𝑛+1 ∥ 𝑥𝑛+1 − 𝑥𝑛 ∥ 

   +∥ [(1 − 𝛾𝑛+1)𝐼 − 𝛼𝑛+1𝜇𝐿2] 

   × (𝑇𝑛+1𝑦
𝑛+1

− 𝑇𝑛𝑦
𝑛
) ∥ +|𝛼𝑛+1 − 𝛼𝑛|𝛾 ∥ 𝐿1𝑥𝑛 ∥ 

   +|𝛼𝑛+1 − 𝛼𝑛|𝜇 ∥ 𝐿2𝑇𝑛𝑦𝑛 ∥ 

   +|𝛾𝑛+1 − 𝛾𝑛| ∥ 𝑇𝑛𝑦𝑛 − 𝑥𝑛 ∥ 

 

≤ 𝛼𝑛+1𝛾𝐿 ∥ 𝑥𝑛+1 − 𝑥𝑛 ∥ +𝛾𝑛+1 ∥ 𝑥𝑛+1 − 𝑥𝑛 ∥ 

   +[(1 − 𝛾𝑛+1)𝐼 − 𝛼𝑛+1𝜏][∥ 𝑥𝑛+1 − 𝑥𝑛 ∥ 

   +∥ 𝑇𝑛+1𝑦𝑛 − 𝑇𝑛𝑦𝑛 ∥] 
   +|𝛼𝑛+1 − 𝛼𝑛|[𝛾 ∥ 𝐿1𝑥𝑛 ∥ +𝜇 ∥ 𝐿2𝑇𝑛𝑦𝑛 ∥] 
   +|𝛾𝑛+1 − 𝛾𝑛| ∥ 𝑇𝑛𝑦𝑛 − 𝑥𝑛 ∥ 

≤ [1 − 𝛼𝑛+1(𝜏 − 𝛾𝐿)] ∥ 𝑥𝑛+1 − 𝑥𝑛 ∥ 

   +∥ 𝑇𝑛+1𝑦𝑛 − 𝑇𝑛𝑦𝑛 ∥ 

   +(|𝛼𝑛+1 − 𝛼𝑛| + |𝛾𝑛+1 − 𝛾𝑛|)𝑀1, (3.5) 

 where  

𝑀1 = sup𝑛≥1{𝛾 ∥ 𝐿1𝑥𝑛 ∥ +𝜇 ∥ 𝐿2𝑇𝑛𝑦𝑛 ∥, 
            ∥ 𝑇𝑛𝑦𝑛 − 𝑥𝑛 ∥} 

              < ∞.  

Since {𝑇𝑛}𝑛=1
∞  satisfies the 𝐴𝐾𝑇𝑇-condition, we 

have  

∑∞
𝑛=1 ∥ 𝑇𝑛+1𝑦𝑛 − 𝑇𝑛𝑦𝑛 ∥  

           ≤ ∑∞
𝑛=1 sup

𝑦∈{𝑦𝑛}
∥ 𝑇𝑛+1𝑦 − 𝑇𝑛𝑦 ∥< ∞. (3.6) 

Form the condition (C1), (C2), (3.5), (3.6) and 

Lemma 2.9, we can verify that  

lim
𝑛→∞

∥ 𝑥𝑛+1 − 𝑥𝑛 ∥= 0. (3.7) 

Later, we prove that lim𝑛→∞ ∥ 𝑥𝑛 − Ψ𝑥𝑛 ∥= 0 

and lim𝑛→∞ ∥ 𝑇𝑥𝑛 − 𝑥𝑛 ∥= 0. 

It follows from (3.1), Lemma 2.8 and Lemma 

2.11, we have  

∥ 𝑧𝑛 − 𝑦∗ ∥𝑞 

=∥ 𝑄𝐶(𝐼 − 𝜎𝐵)𝑥𝑛 − 𝑄𝐶(𝐼 − 𝜎𝐵)𝑥∗ ∥𝑞 

≤∥ (𝐼 − 𝜎𝐵)𝑥𝑛 − (𝐼 − 𝜎𝐵)𝑥∗ ∥𝑞 

≤∥ 𝑥𝑛 − 𝑥∗ ∥𝑞− 𝜎(𝑞𝛽 − 𝑐𝑞𝜎𝑞−1) 
    ∥ 𝐵𝑥𝑛 − 𝐵𝑥∗ ∥𝑞. (3.8) 

Form equation (3.1) and (3.8), we get  

∥ 𝑦𝑛 − 𝑥∗ ∥𝑞 

=∥ 𝑄𝐶(𝐼 − 𝜆𝐴)(𝑡𝑥𝑛 + (1 − 𝑡)𝑧𝑛) 

 −𝑄𝐶(𝐼 − 𝜆𝐴)(𝑡𝑥∗ + (1 − 𝑡)𝑦∗) ∥𝑞  

≤∥ (𝐼 − 𝜆𝐴)(𝑡𝑥𝑛 + (1 − 𝑡)𝑧𝑛) 
 −(𝐼 − 𝜆𝐴)(𝑡𝑥∗ + (1 − 𝑡)𝑦∗) ∥𝑞 

≤∥ (𝑡𝑥𝑛 + (1 − 𝑡)𝑧𝑛) − (𝑡𝑥∗ + (1 − 𝑡)𝑦∗) ∥𝑞 

 −𝑞𝜆𝛼 ∥ 𝐴(𝑡𝑥𝑛 + (1 − 𝑡)𝑧𝑛) 
 −𝐴(𝑡𝑥∗ + (1 − 𝑡)𝑦∗) ∥𝑞 

 +𝑐𝑞𝜆𝑞 ∥ 𝐴(𝑡𝑥𝑛 + (1 − 𝑡)𝑧𝑛) 

 −𝐴(𝑡𝑥∗ + (1 − 𝑡)𝑦∗) ∥𝑞 

≤ 𝑡 ∥ 𝑥𝑛 − 𝑥∗ ∥𝑞+ (1 − 𝑡)[∥ 𝑥𝑛 − 𝑥∗ ∥𝑞 

 −𝜎(𝑞𝛽 − 𝑐𝑞𝜎𝑞−1) ∥ 𝐵𝑥𝑛 − 𝐵𝑥∗ ∥𝑞] 

 −𝜆(𝑞𝛼 − 𝑐𝑞𝜆𝑞−1) ∥ 𝐴(𝑡𝑥𝑛 + (1 − 𝑡)𝑧𝑛) 

 −𝐴(𝑡𝑥∗ + (1 − 𝑡)𝑦∗) ∥𝑞 
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=∥ 𝑥𝑛 − 𝑥∗ ∥𝑞− (1 − 𝑡)𝜎(𝑞𝛽 − 𝑐𝑞𝜎𝑞−1) 

 ×∥ 𝐵𝑥𝑛 − 𝐵𝑥∗ ∥𝑞  

 −𝜆(𝑞𝛼 − 𝑐𝑞𝜆𝑞−1) ∥ 𝐴(𝑡𝑥𝑛 + (1 − 𝑡)𝑧𝑛) 

 −𝐴(𝑡𝑥∗ + (1 − 𝑡)𝑦∗) ∥𝑞 . 
Moreover, we know that  

∥ 𝑥𝑛+1 − 𝑥∗ ∥𝑞 

=∥ 𝑄𝐶[𝛼𝑛𝛾𝐿1𝑥𝑛 + 𝛾𝑛𝑥𝑛 
 +((1 − 𝛾𝑛)𝐼 − 𝛼𝑛𝜇𝐿2)𝑇𝑛𝑦𝑛] − 𝑥∗ ∥𝑞  

≤∥ 𝛾𝑛(𝑥𝑛 − 𝑥∗) + (1 − 𝛾𝑛)(𝑇𝑛𝑦𝑛 − 𝑥∗) 

 +𝛼𝑛(𝛾𝐿1𝑥𝑛 − 𝜇𝐿2𝑇𝑛𝑦𝑛) ∥𝑞  
≤∥ 𝛾𝑛(𝑥𝑛 − 𝑥∗) + (1 − 𝛾𝑛)(𝑇𝑛𝑦𝑛 − 𝑥∗) ∥𝑞 

 +𝑞〈𝛼𝑛(𝛾𝐿1𝑥𝑛 − 𝜇𝐿2𝑇𝑛𝑦𝑛), 
 𝑗𝑞(𝛾𝑛(𝑥𝑛 − 𝑥∗) + (1 − 𝛾𝑛)(𝑇𝑛𝑦𝑛 − 𝑥∗))〉 

 +𝑐𝑞 ∥ 𝛼𝑛(𝛾𝐿1𝑥𝑛 − 𝜇𝐿2𝑇𝑛𝑦𝑛) ∥𝑞 

≤ 𝛾𝑛 ∥ 𝑥𝑛 − 𝑥∗ ∥𝑞+ (1 − 𝛾𝑛) ∥ 𝑇𝑛𝑦𝑛 − 𝑥∗ ∥𝑞 

 +𝑞𝛼𝑛 ∥ 𝛾𝐿1𝑥𝑛 − 𝜇𝐿2𝑇𝑛𝑦𝑛 ∥ 
    ×∥ 𝛾𝑛(𝑥𝑛 − 𝑥∗) + (1 − 𝛾𝑛)(𝑇𝑛𝑦𝑛 − 𝑥∗) ∥𝑞−1 

 +𝑐𝑞𝛼𝑛
𝑞

∥ 𝛾𝐿1𝑥𝑛 − 𝜇𝐿2𝑇𝑛𝑦𝑛 ∥𝑞 
≤ 𝛾𝑛 ∥ 𝑥𝑛 − 𝑥∗ ∥𝑞+ (1 − 𝛾𝑛) ∥ 𝑦𝑛 − 𝑥∗ ∥𝑞+ 𝛼𝑛𝑀2 
≤∥ 𝑥𝑛 − 𝑥∗ ∥𝑞 

 −(1 − 𝛾𝑛)(1 − 𝑡)𝜎(𝑞𝛽 − 𝑐𝑞𝜎𝑞−1) 

 ×∥ 𝐵𝑥𝑛 − 𝐵𝑥∗ ∥𝑞  
 −(1 − 𝛾𝑛)𝜆(𝑞𝛼 − 𝑐𝑞𝜆𝑞−1) ∥ 𝐴(𝑡𝑥𝑛 + (1 − 𝑡)𝑧𝑛) 

 −𝐴(𝑡𝑥∗ + (1 − 𝑡)𝑦∗) ∥𝑞+ 𝛼𝑛𝑀2, 
 where  

𝑀2 = sup
𝑛≥1

{𝑞 ∥ 𝛾𝐿1𝑥𝑛 − 𝜇𝐿2𝑇𝑛𝑦𝑛 ∥ 

×∥ 𝛾𝑛(𝑥𝑛 − 𝑥∗) + (1 − 𝛾𝑛)(𝑇𝑛𝑦𝑛 − 𝑥∗) ∥𝑞−1  

+𝑐𝑞𝛼𝑛
𝑞−1

∥ 𝛾𝐿1𝑥𝑛 − 𝜇𝐿2𝑇𝑛𝑦𝑛 ∥𝑞} < ∞.  
By the fact that 𝑎𝑟 − 𝑏𝑟 ≤ 𝑟𝑎𝑟−1(𝑎 − 𝑏), 
∀𝑟 ≥ 1, we get 

(1 − 𝛾𝑛)(1 − 𝑡)𝜎(𝑞𝛽 − 𝑐𝑞𝜎𝑞−1) ∥ 𝐵𝑥𝑛 − 𝐵𝑥∗ ∥𝑞 

+(1 − 𝛾𝑛)𝜆(𝑞𝛼 − 𝑐𝑞𝜆𝑞−1) ∥ 𝐴(𝑡𝑥𝑛 + (1 − 𝑡)𝑧𝑛) 

 −𝐴(𝑡𝑥∗ + (1 − 𝑡)𝑦∗) ∥𝑞  

≤ 𝑞 ∥ 𝑥𝑛 − 𝑥∗ ∥𝑞−1∥ 𝑥𝑛 − 𝑥𝑛+1 ∥ +𝛼𝑛𝑀2. 

Since 0 < 𝜆 < (
𝑞𝛼

𝑐𝑞
)

1

𝑞−1, 0 < 𝜎 < (
𝑞𝛽

𝑐𝑞
)

1

𝑞−1, (3.7) 

and by the conditions (𝐶1) and (𝐶2), we 

conclude that  

lim
𝑛→∞

∥ 𝐵𝑥𝑛 − 𝐵𝑥∗ ∥= 0 (3.9) 

 and  

lim
𝑛→∞

∥ 𝐴(𝑡𝑥𝑛 + (1 − 𝑡)𝑧𝑛)  

          −𝐴(𝑡𝑥∗ + (1 − 𝑡)𝑦∗) ∥ = 0. (3.10) 

Setting 𝑟1 = sup𝑛≥1{∥ 𝑥𝑛 − 𝑥∗ ∥, ∥ 𝑧𝑛 − 𝑦∗ ∥}, 

it follows from Lemma 2.7 and Lemma 2.10, we 

have  

 

 

∥ 𝑧𝑛 − 𝑦∗ ∥2  

=∥ 𝑄𝐶(𝑥𝑛 − 𝜎𝐵𝑥𝑛) − 𝑄𝐶(𝑥∗ − 𝜎𝐵𝑥∗) ∥2 

≤ 〈(𝑥𝑛 − 𝜎𝐵𝑥𝑛) − (𝑥∗ − 𝜎𝐵𝑥∗), 𝑗(𝑧𝑛 − 𝑦∗)〉 
= 〈(𝑥𝑛 − 𝑥∗) + 𝜎(𝐵𝑥∗ − 𝐵𝑥𝑛), 𝑗(𝑧𝑛 − 𝑦∗)〉 
= ⟨𝑥𝑛 − 𝑥∗, 𝑗(𝑧𝑛 − 𝑦∗⟩ 

 +𝜎〈𝐵𝑥∗ − 𝐵𝑥𝑛, 𝑗(𝑧𝑛 − 𝑦∗)〉 

≤
1

2
[∥ 𝑥𝑛 − 𝑥∗ ∥2 +∥ 𝑧𝑛 − 𝑦∗ ∥2 

 −𝑔1(∥ (𝑥𝑛 − 𝑥∗) − (𝑧𝑛 − 𝑦∗) ∥)] 
 +𝜎 ∥ 𝐵𝑥∗ − 𝐵𝑥𝑛 ∥∥ 𝑧𝑛 − 𝑦∗ ∥. 

Then,   

∥ 𝑧𝑛 − 𝑦∗ ∥2 
≤∥ 𝑥𝑛 − 𝑥∗ ∥2− 𝑔1(∥ (𝑥𝑛 − 𝑥∗) − (𝑧𝑛 − 𝑦∗) ∥) 

+2𝜎 ∥ 𝐵𝑥∗ − 𝐵𝑥𝑛 ∥∥ 𝑧𝑛 − 𝑦∗ ∥, (3.11) 

Furthermore, setting 

𝑟2 = sup𝑛≥1{∥ 𝑥𝑛 − 𝑥∗ ∥, ∥ 𝑦𝑛 − 𝑥∗ ∥} 

and 

𝑟3 = sup𝑛≥1{∥ 𝑦𝑛 − 𝑥∗ ∥, ∥ 𝑧𝑛 − 𝑦∗ ∥},  

we compute  

∥ 𝑦𝑛 − 𝑥∗ ∥2 

=∥ 𝑄𝐶(𝐼 − 𝜆𝐴)(𝑡𝑥𝑛 + (1 − 𝑡)𝑧𝑛) 

 −𝑄𝐶(𝐼 − 𝜆𝐴)(𝑡𝑥∗ + (1 − 𝑡)𝑦∗) ∥2 

≤ ⟨(𝐼 − 𝜆𝐴)(𝑡𝑥𝑛 + (1 − 𝑡)𝑧𝑛) 

 −(𝐼 − 𝜆𝐴)(𝑡𝑥∗ + (1 − 𝑡)𝑦∗), 𝑗(𝑦𝑛 − 𝑥∗)〉 

≤
𝑡

2
[∥ 𝑥𝑛 − 𝑥∗ ∥2 +∥ 𝑦𝑛 − 𝑥∗ ∥2 

 −𝑔2(∥ 𝑥𝑛 − 𝑦𝑛 ∥)] 

 +
1−𝑡

2
[∥ 𝑧𝑛 − 𝑦∗ ∥2 +∥ 𝑦𝑛 − 𝑥∗ ∥2 

 −𝑔3(∥ (𝑧𝑛 − 𝑦∗) − (𝑦𝑛 − 𝑥∗) ∥)] 
 +𝜆 ∥ 𝐴(𝑡𝑥∗ + (1 − 𝑡)𝑦∗) 

 −𝐴(𝑡𝑥𝑛 + (1 − 𝑡)𝑧𝑛) ∥∥ 𝑦𝑛 − 𝑥∗ ∥, 
where 𝑔2: [0,2𝑟2) → [0, ∞) and 𝑔3: [0,2𝑟3) →
[0, ∞) are continuous, strictly increasing and 

convex functions. Since 0 ≤ 𝑡 < 1 and from 

(3.11), so  

∥ 𝑦𝑛 − 𝑥∗ ∥2 

≤ 𝑡 ∥ 𝑥𝑛 − 𝑥∗ ∥2+ (1 − 𝑡) ∥ 𝑧𝑛 − 𝑦∗ ∥2 

 −𝑡𝑔2(∥ 𝑥𝑛 − 𝑦𝑛 ∥) 

 −(1 − 𝑡)𝑔3(∥ (𝑧𝑛 − 𝑦∗) − (𝑦𝑛 − 𝑥∗) ∥) 

 +2𝜆 ∥ 𝐴(𝑡𝑥∗ + (1 − 𝑡)𝑦∗) 
 −𝐴(𝑡𝑥𝑛 + (1 − 𝑡)𝑧𝑛) ∥∥ 𝑦𝑛 − 𝑥∗ ∥ 

≤∥ 𝑥𝑛 − 𝑥∗ ∥2− 𝑡𝑔2(∥ 𝑥𝑛 − 𝑦𝑛 ∥) 

 −(1 − 𝑡)𝑔3(∥ (𝑧𝑛 − 𝑦∗) − (𝑦𝑛 − 𝑥∗) ∥) 

 −(1 − 𝑡)𝑔1(∥ (𝑥𝑛 − 𝑥∗) − (𝑧𝑛 − 𝑦∗) ∥) 

 +2𝜎(1 − 𝑡) ∥ 𝐵𝑥∗ − 𝐵𝑥𝑛 ∥∥ 𝑧𝑛 − 𝑦∗ ∥ 

 +2𝜆 ∥ 𝐴(𝑡𝑥∗ + (1 − 𝑡)𝑦∗) 
 −𝐴(𝑡𝑥𝑛 + (1 − 𝑡)𝑧𝑛) ∥∥ 𝑦𝑛 − 𝑥∗ ∥. 

Consider, 

∥ 𝑥𝑛+1 − 𝑥∗ ∥2 

=∥ 𝑄𝐶[𝛼𝑛𝛾𝐿1𝑥𝑛 + 𝛾𝑛𝑥𝑛 

 +((1 − 𝛾𝑛)𝐼 − 𝛼𝑛𝜇𝐿2)𝑇𝑛𝑦𝑛] − 𝑥∗ ∥2 

≤∥ 𝛾𝑛(𝑥𝑛 − 𝑥∗) + (1 − 𝛾𝑛)(𝑇𝑛𝑦𝑛 − 𝑥∗) 

 +𝛼𝑛(𝛾𝐿1𝑥𝑛 − 𝜇𝐿2𝑇𝑛𝑦𝑛) ∥2 
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≤∥ 𝛾𝑛(𝑥𝑛 − 𝑥∗) + (1 − 𝛾𝑛)(𝑇𝑛𝑦𝑛 − 𝑥∗) ∥2 

 +2𝛼𝑛⟨𝛾𝐿1𝑥𝑛 − 𝜇𝐿2𝑇𝑛𝑦𝑛, 𝑗(𝛾𝑛(𝑥𝑛 − 𝑥∗) 
 +(1 − 𝛾𝑛)(𝑇𝑛𝑦𝑛 − 𝑥∗) 

    +𝛼𝑛(𝛾𝐿1𝑥𝑛 − 𝜇𝐿2𝑇𝑛𝑦𝑛))〉 
≤ 𝛾𝑛 ∥ 𝑥𝑛 − 𝑥∗ ∥2+ (1 − 𝛾𝑛) ∥ 𝑦𝑛 − 𝑥∗ ∥2+ 𝛼𝑛𝑀3 

≤∥ 𝑥𝑛 − 𝑥∗ ∥2 
 −(1 − 𝛾𝑛)𝑡𝑔2(∥ 𝑥𝑛 − 𝑦𝑛 ∥) 
 −(1 − 𝛾𝑛)(1 − 𝑡)𝑔3(∥ (𝑧𝑛 − 𝑦∗) − (𝑦𝑛 − 𝑥∗) ∥) 

 −(1 − 𝛾𝑛)(1 − 𝑡)𝑔1(∥ (𝑥𝑛 − 𝑥∗) − (𝑧𝑛 − 𝑦∗) ∥) 

 +2𝜎(1 − 𝛾𝑛)(1 − 𝑡) ∥ 𝐵𝑥∗ − 𝐵𝑥𝑛 ∥∥ 𝑧𝑛 − 𝑦∗ ∥ 

 +2𝜆(1 − 𝛾𝑛) ∥ 𝐴(𝑡𝑥∗ + (1 − 𝑡)𝑦∗) 
 −𝐴(𝑡𝑥𝑛 + (1 − 𝑡)𝑧𝑛) ∥∥ 𝑦𝑛 − 𝑥∗ ∥] + 𝛼𝑛𝑀3, 

 where  

𝑀3 = sup
𝑛≥0

{2⟨𝛾𝐿1𝑥𝑛 − 𝜇𝐿2𝑇𝑛𝑦𝑛, 𝐽(𝛾𝑛(𝑥𝑛 − 𝑝) 

          +(1 − 𝛾𝑛)(𝑇𝑛𝑦𝑛 − 𝑝) 

          +𝛼𝑛(𝛾𝐿1𝑥𝑛 − 𝜇𝐿2𝑇𝑛𝑦𝑛))〉} < ∞. 
It follows that 
(1 − 𝛾𝑛)(1 − 𝑡)𝑔1(∥ (𝑥𝑛 − 𝑥∗) − (𝑧𝑛 − 𝑦∗) ∥) 

+(1 − 𝛾𝑛)𝑡𝑔2(∥ 𝑥𝑛 − 𝑦𝑛 ∥) 
+(1 − 𝛾𝑛)(1 − 𝑡)𝑔3(∥ (𝑧𝑛 − 𝑦∗) − (𝑦𝑛 − 𝑥∗) ∥)  

≤∥ 𝑥𝑛 − 𝑥∗ ∥2 −∥ 𝑥𝑛+1 − 𝑥∗ ∥2 
 +2𝜎(1 − 𝛾𝑛)(1 − 𝑡) ∥ 𝐵𝑥∗ − 𝐵𝑥𝑛 ∥∥ 𝑧𝑛 − 𝑦∗ ∥ 

 +2𝜆(1 − 𝛾𝑛) ∥ 𝐴(𝑡𝑥∗ + (1 − 𝑡)𝑦∗) 

 −𝐴(𝑡𝑥𝑛 + (1 − 𝑡)𝑧𝑛) ∥∥ 𝑦𝑛 − 𝑥∗ ∥] + 𝛼𝑛𝑀3 

≤∥ 𝑥𝑛 − 𝑥𝑛+1 ∥ (∥ 𝑥𝑛 − 𝑥∗ ∥ +∥ 𝑥𝑛+1 − 𝑥∗ ∥) 
 +2𝜎(1 − 𝛾𝑛)(1 − 𝑡) ∥ 𝐵𝑥∗ − 𝐵𝑥𝑛 ∥∥ 𝑧𝑛 − 𝑦∗ ∥ 

 +2𝜆(1 − 𝛾𝑛) ∥ 𝐴(𝑡𝑥∗ + (1 − 𝑡)𝑦∗) 
 −𝐴(𝑡𝑥𝑛 + (1 − 𝑡)𝑧𝑛) ∥∥ 𝑦𝑛 − 𝑥∗ ∥] + 𝛼𝑛𝑀3. 

 It follows from (3.7), (3.9), (3.10), condition 

(𝐶1), (𝐶2) and the properties of 𝑔, we conclude 

that  

lim
𝑛→∞

∥ (𝑥𝑛 − 𝑥∗) − (𝑧𝑛 − 𝑦∗) ∥= 0, (3.12) 

lim
𝑛→∞

∥ 𝑥𝑛 − 𝑦𝑛 ∥= 0 (3.13) 

 and  

lim
𝑛→∞

∥ (𝑧𝑛 − 𝑦∗) − (𝑦𝑛 − 𝑥∗) ∥= 0. (3.14) 

 So,  

∥ 𝑥𝑛 − Ψ𝑥𝑛 ∥=∥ 𝑥𝑛 − 𝑦𝑛 ∥→ 0      
𝑎𝑠     𝑛 → ∞. (3.15) 

Observe that 

∥ 𝑇𝑛𝑦𝑛 − 𝑥𝑛 ∥  

≤∥ 𝑥𝑛+1 − 𝑥𝑛 ∥ +∥ 𝑥𝑛+1 − 𝑇𝑛𝑦𝑛 ∥ 

=∥ 𝑥𝑛+1 − 𝑥𝑛 ∥ +∥ 𝑄𝐶[𝛼𝑛𝛾𝐿1𝑥𝑛 + 𝛾𝑛𝑥𝑛 

 +((1 − 𝛾𝑛)𝐼 − 𝛼𝑛𝜇𝐿2)𝑇𝑛𝑦𝑛] − 𝑇𝑛𝑦𝑛 ∥ 

≤∥ 𝑥𝑛+1 − 𝑥𝑛 ∥ +∥ [𝛼𝑛𝛾𝐿1𝑥𝑛 + 𝛾𝑛𝑥𝑛 

 +((1 − 𝛾𝑛)𝐼 − 𝛼𝑛𝜇𝐿2)𝑇𝑛𝑦𝑛] − 𝑇𝑛𝑦𝑛 ∥ 

 

=∥ 𝑥𝑛+1 − 𝑥𝑛 ∥ 
 +∥ 𝛼𝑛(𝛾𝐿1𝑥𝑛 − 𝜇𝐿2𝑇𝑛𝑦𝑛) + 𝛾𝑛(𝑥𝑛 − 𝑇𝑛𝑦𝑛) ∥ 

≤∥ 𝑥𝑛+1 − 𝑥𝑛 ∥ +𝛼𝑛 ∥ 𝛾𝐿1𝑥𝑛 − 𝜇𝐿2𝑇𝑛𝑦𝑛 ∥ 

 +𝛾𝑛 ∥ 𝑥𝑛 − 𝑇𝑛𝑦𝑛 ∥, 
which implies that  

∥ 𝑇𝑛𝑦𝑛 − 𝑥𝑛 ∥≤
1

1 − 𝛾𝑛
(∥ 𝑥𝑛+1 − 𝑥𝑛 ∥ 

+𝛼𝑛 ∥ 𝛾𝐿1𝑥𝑛 − 𝜇𝐿2𝑇𝑛𝑦𝑛 ∥). (3.16) 

Applied condition (𝐶1), (𝐶2) and (3.7) in (3.16), 

we get  

lim
𝑛→∞

∥ 𝑇𝑛𝑦𝑛 − 𝑥𝑛 ∥= 0. (3.17) 

Thus, we have  

∥ 𝑇𝑛𝑦𝑛 − 𝑦𝑛 ∥   
= ∥ 𝑇𝑛𝑦𝑛 − 𝑥𝑛 ∥ +∥ 𝑥𝑛 − 𝑦𝑛 ∥→ 0 
    𝑎𝑠     𝑛 → ∞,   (3.18) 

Therefore, 

∥ 𝑇𝑛𝑥𝑛 − 𝑥𝑛 ∥  
≤∥ 𝑇𝑛𝑥𝑛 − 𝑇𝑛𝑦𝑛 ∥ +∥ 𝑇𝑛𝑦𝑛 − 𝑦𝑛 ∥ +∥ 𝑦𝑛 − 𝑥𝑛 ∥  
≤ 2 ∥ 𝑦𝑛 − 𝑥𝑛 ∥ +∥ 𝑇𝑛𝑦𝑛 − 𝑦𝑛 ∥→ 0       
     𝑎𝑠     𝑛 → ∞. (3.19) 

By Lemma 2.6, we have  

lim
𝑛→∞

sup ∥ 𝑇𝑥𝑛 − 𝑇𝑛𝑥𝑛 ∥≤ lim
𝑛→∞

sup
𝑥∈{𝑥𝑛}

∥ 𝑇𝑥 − 𝑇𝑛𝑥 ∥ 

                                          = 0. (3.20) 

Thus, 

∥ 𝑇𝑥𝑛 − 𝑥𝑛 ∥≤∥ 𝑇𝑥𝑛 − 𝑇𝑛𝑥𝑛 ∥ +∥ 𝑇𝑛𝑥𝑛 − 𝑥𝑛 ∥ 

                               → 0      𝑎𝑠     𝑛 → ∞. (3.21) 

Now, we show that 𝑥∗ ∈ 𝐹: =∩𝑖=1
∞ 𝐹(𝑇𝑖) ∩

𝐹(Ψ). Let 𝛿 ∈ (0,1) be a constant and 𝑈: 𝐶 → 𝐶 

be defined by 𝑈𝑥 = 𝛿𝑇𝑥 + (1 − 𝛿)Ψ𝑥, where Ψ 

is defined by Lemma 2.13. By Lemma 2.5 and 

Lemma 2.13, we conclude that 𝑈 is a 

nonexpansive and  

𝐹(𝑈) = 𝐹(𝑇) ∩ 𝐹(Ψ) =∩𝑖=0
∞ 𝐹(𝑇𝑖) ∩ 𝐹(Ψ).  

Setting 𝑥𝑡 = 𝑄𝐶[𝑡𝛾𝐿1𝑥𝑡 + (𝐼 − 𝑡𝜇𝐿2)𝑈𝑥𝑡], by 

Lemma 2.4, we get {𝑥𝑡} converges strongly to 

the unique solution of the variational inequality 

(3.2), that is 𝑥∗ ∈ 𝐹(𝑈). Consider, 
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∥ 𝑥𝑛 − 𝑈𝑥𝑛 ∥  

≤∥ 𝛿(𝑥𝑛 − 𝑇𝑥𝑛) + (1 − 𝛿)(𝑥𝑛 − Ψ𝑥𝑛) ∥ 

≤ 𝛿 ∥ 𝑥𝑛 − 𝑇𝑥𝑛 ∥ +(1 − 𝛿) ∥ 𝑥𝑛 − Ψ𝑥𝑛 ∥ 

= 𝛿 ∥ 𝑥𝑛 − 𝑇𝑥𝑛 ∥ +(1 − 𝛿) ∥ 𝑥𝑛 − 𝑦𝑛 ∥. 
From (3.13) and (3.21), we have  

∥ 𝑥𝑛 − 𝑈𝑥𝑛 ∥→ 0     𝑎𝑠     𝑛 → ∞. (3.22) 

Next, we need to show  

limsup𝑛→∞〈𝛾𝐿1𝑥∗ − 𝜇𝐿2𝑥∗, 𝑗𝑞(𝑦𝑛 − 𝑥∗)〉 ≤ 0, 

where 𝑥∗  is the solution of the variational 

inequality (3.2).  

It follows from (3.22) and Lemma 2.5 that 𝑧 ∈
𝐹(𝑈). Since the Banach space 𝐸 has a weakly 

sequentially continuous generalized duality 

mapping 𝑗𝑞: 𝐸 → 𝐸∗ and 𝑥𝑛𝑘
⇀ 𝑧, we obtain that 

limsup𝑛→∞〈𝛾𝐿1𝑥∗ − 𝜇𝐿2𝑥∗, 𝑗𝑞(𝑥𝑛 − 𝑥∗)〉   
= lim

𝑘→∞
〈𝛾𝐿1𝑥∗ − 𝜇𝐿2𝑥∗, 𝑗𝑞(𝑥𝑛𝑘

− 𝑥∗)〉  

= 〈𝛾𝐿1𝑥∗ − 𝜇𝐿2𝑥∗, 𝑗𝑞(𝑧 − 𝑥∗)〉 ≤ 0. (3.23) 

Finally, we prove that  

∥ 𝑥𝑛 − 𝑥∗ ∥→ 0     𝑎𝑠     𝑛 → ∞.  

Setting 𝑢𝑛 = 𝛼𝑛𝛾𝐿1𝑥𝑛 + 𝛾𝑛𝑥𝑛 + ((1 − 𝛾𝑛)𝐼 −
𝛼𝑛𝜇𝐿2)𝑇𝑛𝑥𝑛+1, ∀𝑛 ≥ 0, it follows from Lemma 

2.1, Lemma 2.2 and Lemma 2.10 that  

∥ 𝑥𝑛+1 − 𝑥∗ ∥𝑞 

≤ 〈𝑢𝑛 − 𝑥∗, 𝑗𝑞(𝑥𝑛+1 − 𝑥∗)〉 

≤ (1 − 𝛾𝑛 − 𝛼𝑛𝜏) ∥ 𝑇𝑛𝑦𝑛 − 𝑥∗ ∥∥ 𝑥𝑛+1 − 𝑥∗ ∥𝑞−1 

 +𝛾𝑛 ∥ 𝑥𝑛 − 𝑥∗ ∥∥ 𝑥𝑛+1 − 𝑥∗ ∥𝑞−1 

 +𝛼𝑛〈𝛾𝐿1𝑥𝑛 − 𝛾𝐿1𝑥∗, 𝑗𝑞(𝑥𝑛+1 − 𝑥∗)〉 

 +𝛼𝑛〈𝛾𝐿1𝑥∗ − 𝜇𝐿2𝑥∗, 𝑗𝑞(𝑥𝑛+1 − 𝑥∗)〉 
≤ [1 − 𝛼𝑛(𝜏 − 𝛾𝐿)] ∥ 𝑥𝑛 − 𝑥∗ ∥∥ 𝑥𝑛+1 − 𝑥∗ ∥𝑞−1 

 +𝛼𝑛〈𝛾𝐿1𝑥∗ − 𝜇𝐿2𝑥∗, 𝑗𝑞(𝑥𝑛+1 − 𝑥∗)〉 

≤ [1 − 𝛼𝑛(𝜏 − 𝛾𝐿)][
1

𝑞
∥ 𝑥𝑛 − 𝑥∗ ∥𝑞 

 +
𝑞−1

𝑞
∥ 𝑥𝑛+1 − 𝑥∗ ∥𝑞] 

 +𝛼𝑛〈𝛾𝐿1𝑥∗ − 𝜇𝐿2𝑥∗, 𝑗𝑞(𝑥𝑛+1 − 𝑥∗)〉, 

therefore  

∥ 𝑥𝑛+1 − 𝑥∗ ∥𝑞 

≤
1 − 𝛼𝑛(𝜏 − 𝛾𝐿)

1 + (𝑞 − 1)𝛼𝑛(𝜏 − 𝛾𝐿)
∥ 𝑥𝑛 − 𝑥∗ ∥𝑞 

    +
𝑞𝛼𝑛

1+(𝑞−1)𝛼𝑛(𝜏−𝛾𝐿)
⟨𝛾𝐿1𝑥∗ − 𝜇𝐿2𝑥∗, 

        𝑗𝑞(𝑥𝑛+1 − 𝑥∗)〉 

≤ [1 − 𝛼𝑛(𝜏 − 𝛾𝐿)] ∥ 𝑥𝑛 − 𝑥∗ ∥𝑞 

    +
𝑞𝛼𝑛

1+(𝑞−1)𝛼𝑛(𝜏−𝛾𝐿)
⟨𝛾𝐿1𝑥∗ − 𝜇𝐿2𝑥∗, 

        𝑗𝑞(𝑥𝑛+1 − 𝑥∗)〉. (3.24) 

Now, from (C1), (3.23) and applying Lemma 

2.15 to (3.24), we can verify that ∥ 𝑥𝑛 − 𝑥∗ ∥→
0, that is 𝑥𝑛 → 𝑥∗ as 𝑛 → ∞. This completes the 

proof. 

Corollary 3.2 Let 𝐸 be a 2-uniformly smooth 

and uniformly convex Banach space and ∅ ≠
𝐶 ⊂ 𝐸 be a closed convex subset. Let 𝑗: 𝐸 → 𝐸∗ 

be a weakly sequentially continuous generalized 

duality mapping  with the best smooth constant 

K and 𝑄𝐶 be a sunny nonexpansive retraction 

from 𝐸 onto 𝐶. Suppose that 𝐴: 𝐶 → 𝐸 is an 𝛼-

inverse-strongly accretive, 𝐵: 𝐶 → 𝐸 is a 𝛽-

inverse-strongly accretive, 𝑇: 𝐶 → 𝐶 is a 

nonexpansive mappings and 𝛹 is defined by 

Lemma 2.13. Let 𝐿1: 𝐶 → 𝐸 be a 𝐿-Lipschitzian, 

𝐿 ≥ 0 and 𝐿2: 𝐶 → 𝐸 be a 𝜅-Lipschitzian and 𝜂-

strongly accretive, 𝜅, 𝜂 > 0. Assume 

{𝛼𝑛}, {𝛾𝑛} ⊂ (0,1), 

 0 < 𝜇 <
𝜂

𝐾2𝜅2 , 0 < 𝜆 <
𝛼

𝐾2 , 

 0 < 𝜎 <
𝛽

𝐾2, 0 ≤ 𝛾𝐿 < 𝜏 where 𝜏 = 𝜇(𝜂 −

𝐾2𝜇𝜅2) and 𝐹: = 𝐹(𝑇) ∩ 𝐹(𝛹) ≠ ∅. Let {𝑥𝑛} 

be the sequences defined by 𝑥1 ∈ 𝐶 and  

{

𝑧𝑛 = 𝑄𝐶(𝐼 − 𝜎𝐵)𝑥𝑛

𝑦𝑛 = 𝑄𝐶(𝐼 − 𝜆𝐴)(𝑡𝑥𝑛 + (1 − 𝑡)𝑧𝑛),
𝑥𝑛+1 = 𝑄𝐶[𝛼𝑛𝛾𝐿1𝑥𝑛 + 𝛾𝑛𝑥𝑛

+((1 − 𝛾𝑛)𝐼 − 𝛼𝑛𝜇𝐿2)𝑇𝑦𝑛],

 (3.25) 

 which corresponds to the conditions:   

(C1) lim𝑛→∞𝛼𝑛 = 0, ∑∞
𝑛=1 𝛼𝑛 = ∞; and 

lim𝑛→∞|𝛼𝑛+1 − 𝛼𝑛| = 0;  

(C2)  lim𝑛→∞|𝛾𝑛+1 − 𝛾𝑛| = 0, 
0 < liminf𝑛→∞𝛾𝑛 ≤ limsup𝑛→∞𝛾𝑛 < 1.  

Then {𝑥𝑛} converges strongly to 𝑥∗ ∈ 𝐹 which 

also solves the following variational inequality:  

〈𝛾𝐿1𝑥∗ − 𝜇𝐿2𝑥∗, 𝐽(𝑧 − 𝑥∗)〉 ≤ 0, ∀𝑧 ∈ 𝐹. 
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