PROGRESS IN APPLIED
SCIENCE AND TECHNOLOGY

Faculty of Science and Technology
Rajamangala University of Technology Thanyaburi

Research Article

Received: November 05, 2021
Revised:  January 11, 2022
Accepted: February 22, 2022

DOI: 10.14456/past.2022.1

56000, Thailand

Prog Appl Sci Tech. 2022; 12(1):1-10

ISSN (Print): 2730-3012
ISSN (Online): 2730-3020

https://ph02.tei-tl index.php/past

Iteration Methods for a General Variational
Inequality System and Common Fixed Point
Problems of Nonexpansive Mappings in
g-Uniformly Smooth Banach Spaces

Uamporn Witthayarat!, Kriengsak Wattanawitoon? and
Phayap Katchang?*
! Department of Mathematics, School of Science, University of Phayao, Phayao

2 Division of Mathematics, Faculty of Science and Agricultural Technology,
Rajamangala University of Technology Lanna Tak, Tak 63000, Thailand
*E-mail: p.katchang@rmutl.ac.th

Abstract
This research proposed the iteration method for finding a common fixed point of an infinite
family of nonexpansive mappings and two inverse strongly accretive mappings in g-uniformly smooth
Banach spaces. Furthermore, our method can also solve a new general variational inequality system and
its strong convergence theorem is proved under some appropriate conditions. Our result improves and
extends the previous outcomes in the literature.

Keywords: Banach space, Fixed point, Inverse-strongly accretive mapping, g-uniformly smooth,

General variational inequality system

1. Introduction
Throughout this research, let E be a
real Banach space. We recall that E is called:
o uniformly convex if for each € € (0,2] there
exists 6 > 0 such that for any x,y € U where

U={x€eElxl=1} then llx—yI>e
x+y

I - [I<1— 6 holds.

e smooth if for each x,y € U, lim,_, w
exists.

o uniformly smooth if lim,_,o@ = 0, where

the modulus of smoothness of E is the
mapping p: [0, ) — [0,0) defined by

1
p() =sup{5(ll x+yl+lx—yl)—1:
xy€EEIxI=1lyl=r1}
e g-uniformly smooth if for each 1 <q <2
there exists ¢ > 0 such that modulus of
smoothness p(t) < ct4, VT > 0.

Let E* be a dual space of E. The
generalized duality mapping J4: E — 28 g>1
is defined by

Jq@) ={f € E":(x, f) =l x 19,

I f =1l x 1913,

forall x € E.
If g = 2, the mapping Jq = J, =] is said to be
the normalized duality. For all x € E, the
properties of mapping /, are shown as follow:
(i) Jg () =N x 1972 J5(x), x # 0;
(ii) Jo(tx) = 97, (x), t = 0;
(i) Jg(—=x) = —J4(%).
We know that the mapping J, is single-valued if
E is smooth and can be written by j, (1, 2).

Let C < E be a nonempty closed
convex subset. A fixed point problem is to find a
set of fixed points of amapping T: C — C denoted
by F(T) where F(T) = {x € C|Tx = x}.
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Let {T,: C = C};>-, be a sequence of
an infinite family of mappings such that
Ny_, F(T,) # @. {T,} is said to satisfy the
AKTT-condition (3), if

Z sup | Tpy1w — Thw lI< oo,

=i wWEB
for all bounded subset B of C.
A mapping T:C - C is called nonexpansive if
for each x, y € C such that

ITx=TylI<lx—yl.

A mapping A: C - C is called Lipschitzian if for
each x,y € C, L > 0 such that

lAx —Ay lI<Llx—yl.

A mapping A:C - E is called g-strongly
accretive if for each x,y € C, 8 > 0 there exists
Jq(x —y) € J¢(x — y) such that
(Ax — Ay, ja(x =)y = B Il x—y lI9.
A mapping A: C - E is called B-inverse strongly
accretive, if forany x,y € C, B > 0 there exists
Jq(x —y) € Jo(x — y) such that
(Ax — Ay, j,(x — y)) = B I| Ax — Ay |I4.

A mapping Q:C » D, D c C is called sunny if

Q(Qx +t(x — Qx)) = Qx,
where Qx +t(x —Qx),x €C and t = 0. Q is
called retraction if Qx = x, Vx € D. If Q is a
retraction form C onto D then Q is called sunny
nonexpansive retraction form C onto D (4-6).

Nowadays, variational inequality is
one of the most attractive problems due to its
widely use applications in many disciplines such
as economics, engineering, medical sciences ,
operation research, structural analysis and many
others. Undoubtedly, the algorithms for solving
this problem have been studied and improved
continuously not only in theoretical way but also
in practical approach. Many authors endeavor to
reach their goals in real world applications, see
(7-16) and the related reference therein.

The famous classical variational
inequality problem in the framework of 2-
uniformly smooth Banach spaces was published
in 2006 by Aoyama et al. (17) which is to find a
point x* € C such that

(Ax,j(x —x")) =0 (1.1)

forall x € C. In 2010, Yao et al. (18) generated
the system of variational inequalities in 2-
uniformly smooth Banach spaces for finding
(x*,y) eCxC satisfying the following
conditions:

(I =20)y* —x*,j(x —x")) < 0,vx €C,
{((1 —oB)x* -y j(x—y"))<0,vx € C.
(12

Later, in 2013, Song and Ceng (19) generalized
the framework to a g-uniformly smooth Banach
spaces and solve the problem of finding
(x*,y*) € C x C such that

(U —24)y" —x", jq(x —x™)) < 0,Vx € C,
{((1 —0B)x" =y, ju(x —y")) < 0,vx € C.
13)

Recently, in 2020, Wang and Pan (20) proposed
the general variational inequality system in a 2-
uniformly smooth Banach spaces:

(T=-2D)[tx*+ (A —t)y*] —x%jlx —x*)) <0,
{ Vx € C,
(I—-0B)x*—y",j(x—y"))<0,vx € C.

(1.4)

Due to its significance and the
motivation for solving the system of variational
inequalities (1.4), we extended their framework
to g-uniformly smooth Banach spaces and
therefore our mention variational system is
stated as follow:

(U =2AD)[tx* + (1 = )y*] —x*, jy(x = x")) < 0,

vVx €C,
(U —0oB)x" —y",ja(x —y")) < 0,vx € C.
(1.5)

2. Preliminaries

In this section, we recall some well
known lemmas that will be used to support our
proof in the next part.
Lemma 2.1 (21) Let g > 1. Then the following
inequality holds:

q
ba-1

1
ab <—af+
q

for arbitrary positive real numbers a, b.

Lemma 2.2 (22) Let C be a nonempty, closed
and convex subset of a real g-uniformly smooth
Banach space E, L,: C — E be a k-Lipschitzian
and n-strongly accretive operator with constants

1
x,m >0 and Iet0<u<(%)ﬁ,r=u(n—

-1
cqnT Kl

), then for te(O,min{l,%}). the
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mapping S: C — E defined by S: = (I — tulL,) is
a contraction with a constant 1 — tt.

Lemma 2.3 (22) Let C be a nonempty, closed
and convex subset of a real g-uniformly smooth
Banach space E which admits weakly
sequentially continuous generalized duality
mapping j, from E into E*. Let T:C — C be a
nonexpansive mapping. Then, for all {x,} c C,
if x, = xand x,, — Tx,, - 0, then x = Tx.

Lemma 2.4 (19) Let C be a nonempty, closed
and convex subset of a real reflexive and g-
uniformly smooth Banach space E which admits
a weakly sequentially continuous generalized
duality mapping J, from E into E*. Let Q. be a
sunny nonexpansive retraction from E onto C,
V:C—-E a k-Lipschitzian and n-strongly
accretive operator with constants k, n > 0.
Suppose f:C — E is a L-Lipschitzian mapping
with constant L>0 and T:C-C a
nonexpansive mapping such that F(T) # @. Let
1
0<u<(Lys1and0 < yL < T where

chq
T=pum— y). Then {x,} defined by

x¢ = Qcltyfxe + (I — tuV)Tx,] converges
strongly to some point x* € F(T) as t — 0,
which is the unique solution of the variational
inequality:

(vfx" = puVx’,Jo(p — x7)) < 0,Vp € F(T).

Lemma 2.5 (23) Let C be a closed convex subset
of a strictly convex Banach space E. Let T; and
T, be two nonexpansive mappings from C into
itself with F(T;) N F(T,) # @. Define a
mapping S by

Sx =ATyx + (1 — V)T,x,Vx € C,
where A is a constant in (0,1). Then S is
nonexpansive and F(S) = F(Ty) N F(T,).

Lemma 2.6 (3) Suppose that {T;,} satisfy the
AKTT-condition such that

(1) For each x € C,{T,,x} converge strongly to
some point in C.

(2) Let the mapping T: C — C defined by

Tx =lim,_,T,x for all x€C. Then
lim, ,eSupyep | Tw —T,w I=0 for each
bounded subset B of C.

Lemma 2.7 (24) Let E be a real smooth and
uniformly convex Banach space and let r > 0.
Then there exists a strictly increasing,

continuous and convex function g:[0,2r] = R
such that
g(0) =0and
gilx—y D <l x 12— 2(x,Jy)+l y I%,
forall x,y € B.where B, ={z € E: |l z I< r}.

Lemma 2.8 (25) Let E be a real g-uniformly
smooth Banach space, then there exists a
constant ¢, > 0 such that
Ihx+y 19<l x 194 q(y, J; () + ¢ 1y 119,
Vx,y € E.
In particular, if E is real 2-uniformly smooth
Banach space, then there exists a best smooth
constant K > 0 such that
Ihx+y I2<I x 124 2(y,J (x)) + 2K Il y 1I?,
Vx,y € E.

Lemma 2.9 (26) Let {a,} be a sequence of

nonnegative numbers satisfying the property:
ani1 < (A —ay)a, + by, + aycp,n €N,

where {a}, {b,}, {c,} satisfy the restrictions:

D limy, ey, = 0,271 ay = o,

(2) by > 0,55, by < o0,

(3) limsup,, _e0Cp < 0.

Then, lim,,_,,a, = 0.

Lemma 2.10 (27) Let C be a closed convex
subset of a smooth Banach space E. Let € be a
nonempty subset of C. Let Q:C—C be a
retraction and let j, j, be the normalized duality
mapping and generalized duality mapping on E,
respectively. Then the following are equivalent:
(1) Q is sunny and nonexpansive;
(2) I @x — Qy I”< {x — ¥,j(Qx — Qy)),

Vx,y € E;
(3) (x = Qx,j(y —Qx)) < 0,Vx € C,y € C;
(4) (x — Qx,j;(y — Qx)) < 0,vx € C,y € C.

Lemma 2.11 (19) Let C be a nonempty closed
convex subset of a real g-uniformly smooth
Banach space E. Let the mapping A: C — E bea
fa-inverse-strongly accretive operator. Then
the following inequality holds:
I(I—2)x— (I —- 2Dy 9= x—y I

—Aga — cg 297 1) 1| Ax — Ay 119

In particular, if 0 < 1 < (Z—a);, then I — A4 is
q

nonexpansive.

Lemma 2.12 (20) Let E be a real Banach space.

Let @ # C c E be a closed convex subset and
A,B:C - E be two nonlinear mappings.
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Suppose that Q. is a sunny nonexpansive
retraction. For V1,0 > 0 and t € [0,1], then
the following assertions are equivalent:

@) (x*,¥*) € C x C isasolution of problem (1.4);
(b) Let W: C — C be a mapping defined by
W(x) = Qc( — AA)[tx + (1 — )Qc(I — 0B)x],
then let x* be the fixed point of W, thatis x* = Wx*.
where  x* = Qc(I — AD)[tx* + (1 —t)y*]
y* =Qc(I —oB)x*. Assume that A,B:C - E
are a-inverse strongly accretive operator and -
inverse  strongly  operator,  respectively.

If 0</1<27“, 0<a<¥ , then W s
nonexpansive.

Lemma 2.13 Let C be a nonempty closed convex
subset of a real g-uniformly smooth Banach
space E. Suppose Q. is a sunny nonexpansive
retraction from E onto C. Let the mapping
A,B:C —» E are a-inverse strongly accretive
operator and fS-inverse strongly operator,
respectively. Assume ¥:C — C is a mapping
defined by

Y(x) = Qc(I — AA)[tx + (1 - )Qc( — oB)x],

1

forall 4,0 > 0andt € [0,1]. If0 < 2 < (F)a=
q

1
and0 <o < (Z—B)E, then W is nonexpansive.
q

Proof. For all x,y € C, by Lemma 2.11 and
Lemma 2.12, we have that

Y —Y@) Il x—yl.
Therefore W is nonexpansive.

Lemma 2.14 Let C be a nonempty closed convex
subset of a real g-uniformly smooth Banach
space E. Let Q. be the sunny nonexpansive
retraction from E onto C. Let 4, B: C — E be two
nonlinear mappings. For given x*,y* € C,
(x*,y™) isasolution of problem (1.5) if and only if

x*=Qc(I—AA)[tx" + (1 - O)y~]
where y* = Q¢(I — oB)x*, that is x* = ¥ (x*),
where ¥ is defined by Lemma 2.13.
Proof. From Lemma 2.10 and the definition of
the sunny nonexpansive retraction, we deduce
the problem (1.5) is equivalent to

{x* =Qc(I —AM)[tx" + (1 - t)y”]

y* = Qc( — oB)x’,

which is solution of the problem (1.5).

Lemma 2.15 (28) Assume {a,} is a sequence of
nonnegative real numbers such that

a1 < (1 —ay)a, + 8y, n=0

where {a,} is a sequence in (0,1) and {5} isa
sequence in R such that

(1) Z?Lo=1 an = ©

(2) limsup,,_..o j— <00rE2, [8,] < 0.

Then lim,,_,,a, = 0.

3. Main results

Theorem 3.1 Let E be a g-uniformly smooth and
uniformly convex Banach spaceand @ # C c E
be a closed convex subset. Let j,: E — E* be a
weakly sequentially continuous generalized
duality mapping and Q, be a sunny
nonexpansive retraction from E onto C. Suppose
that A: C — E is an a-inverse-strongly accretive,
B:C - E is a f-inverse-strongly accretive,
{T;: € - C}Z, is an infinite family of
nonexpansive mappings and ¥ is defined by
Lemma 2.13. Let L;: C — E be a L-Lipschitzian,
L = 0and L,: C — E be a k-Lipschitzian and n-
strongly accretive, k,n > 0. Assume t € [0,1),

1

{an} i} € O, 0<p < (D™, 0 <A<

1 1
@7, >0, 0<o <Py, 0<yL<rt
q q

cond1Kd
where  T=u(m— q”q

N2, F(T)) N F(¥) # 0.
Let {x,,} be the sequences defined by x;, € C and

zZp = Qc( — aB)xy
Yn = Qc — 24)(txy + (1 — D)zy),
Xns1 = Q¢ [an)’len t VnXn

+((1 =yl — anpla)Taynl,

) and F:=

3.1

which corresponds to the conditions:

(C1) lim,, oy = 0, Yooy @, = o0; and
limy, o0 |@ns1 — an| = 0;

(C2) limy0l¥ni1 — ¥ul = 0,

0 < liminf, 0y, < limsup,oeyn < 1.
Assume that {T,}n=; and the AKTT-condition
are satisfied. Let a mapping T: C — C be defined
by Tx = lim,_,,,T,,x for all x € C and suppose
that F(T) =n;-; F(T,). Then {x,} converges
strongly to x* € F which also solves the
following variational inequality:

(YLix™ — pLyx™, jo(z — x™)) < 0,vz € F. (3.2)

Proof. First of all, we shall prove that {x,} is
bounded. Let x* € F, from Lemma 2.14, we
have

x*=Qc(I —AA)[tx" + (1 — 1)y’]
and y*=Q.(I—oB)x".
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It follows from (3.1) that
Iy — x* 1= W) — x* I<Il 2, — x* 11.(3.3)

From (3.1) and (3.3), we have
lxpeq —x* I
=Nl QclanyLixn + Ynxn
+((A = v — aguly)Toyp] —x* |l
SN anyLiXn + YnXn
+((1 =y — anpl) Ty, — x* |l
=11 =yl — apuly](Tryy — x™)
+an(yL1xn - ,LLLZX*) + Vn(xn - x*) I
< (1 ~—Yn— anr) I TnYn —x" |
+an I Vlen - MLZx* Il +yn Il Xn — x* I
SA—=—yp—ayt) I x —x" Il +a,vL l %, — x™ |l
+an | yLix™ — ulox™ I 4y, l x —x* |l
=[1-ap@—yL)] llxy — x|

Iy Lyx*—puLyx” |l
—yL)—————.
+an(t —yL) =L

Therefore by the mathematical induction, we can
conclude that forall n > 1,
Il yLix* — uL,x* II}
T—yL '
Hence, {x,} is bounded and also {y,}, {z.} are
bounded. Next, we will show that lim,_ e Il
Xpe1 — X II=0. By (3.1) and Lemma 2.13, we
observe that
[ Yn+1 — Vn [
=l Q¢ — 24)(txp+1 + (1 = t)Zpn41)
—Qc(I = AA)(tx + (1 —t)zp)
=1 QcU — 24)(txn41 + (1 = )Qc(I — 0B)Xp41)
—Qc(I = AA)(txn, + (1 = t)Qc(I — 0B)xy) |l
=W (xpe1) = Pxn) I
<N xppq — x5 I,
and

Ilx, —x* < max{ll X —x" 1,

I Tn+1yn+1 - Tnyn I
<l Tn+1yn+1 - Tn+13’n I =+1 Tn+1yn - Tnyn I
| Yn+1 — Vn I+ Tn+13’n - TnYn I
<l xpe1 = xn I Il TV — T Il (3.4)
Again, it follows from (3.1) and Lemma 2.13,
we have
[ Xn+2 — Xn+1 [
=l Qclant1¥LiXns1 + Vnr1¥ns1
+((1 = Y] — @ny1tLa) Tnr1Yned]
_QC [anylen + YnXn
+((1 - Vn)l - anﬂLZ)TnYn] I
= An1V I len+1 - len I +tVn+1 I Xn+1 — Xn I
{1 = VeI — angqpily]
X Ty = To¥y) I Hltnas = @uly I Lix, I
Hani1 — anlu | LTy, |l
+|yn+1 - ynl I Tnyn — Xn I

< an+1yL [ Xn4+1 — Xn I +TVn+1 I Xn4+1 — Xn Il
+[(1 - yn+1)1 - an+1T][” Xn+1 — Xn I
+I Tn+1Yn - TnYn "]
+|an+1 - anl[y [ len I +u I LZTnyn ”]
+|Vn+1 - ynl [ Tnyn —Xn I

< [1 - an+1(T - )/L)] I Xn+1 — Xn I
+I Tn+1Yn - TnYn I

+(|an+1 - anl + I}/n+1 - YnI)Mli (35)
where
My = supps1{y Il Lyxp I+l LyToym |,
Il Tnyn —Xn "}
< 0o,

Since {T,, };»-, satisfies the AKTT-condition, we
have

2;0:1 I Tn+1Yn - Tn)’n Il
< Xn=1 sup N Tpyyy — Ty lI< 0.(3.6)
Y€{yn}

Form the condition (C1), (C2), (3.5), (3.6) and
Lemma 2.9, we can verify that

3.7

lim || x,41 —x, II= 0.
n—-oo

Later, we prove that lim,_,, Il x, — ¥x, I=0
and lim,, o, Il Tx,, — x,, II= 0.

It follows from (3.1), Lemma 2.8 and Lemma
2.11, we have

Il z, —y* 119
=l Qc(I = 0B)xy — Qc(I — oB)x™ ||
<|l (I — oB)x,, — (I — oB)x* |19
<l x, —x* 19— (g — cq0771)
Il Bx, — Bx* ||9. (3.8)
Form equation (3.1) and (3.8), we get
Il ym —x 119
=Nl Qc(I — 24) (txp + (1 — )zy,)
—Qc(I = AA)(tx" + (1 = 0)y™) I
<Il (I = 2A) (tx, + (1 — £)zy,)
- =24)(tx + (A -t)yH) 119
<l (txp,+(1—t)zy) —(tx*+ (1 —-t)y") 19
—qla |l A(tx, + (1 —t)z,)
—A(tx*+ (1 -t)y") 111
+cg AT I A(txy, + (1 —t)zy)
—A(tx*+ (1 —t)y*) 119
S<tlx,—x 19+ A=)l x, —x* 117
—0(qB — cqa7™ 1) | Bx,, — Bx* 1]
—A(qa — cgA7 ) I A(tx, + (1 — t)zy)
—A(tx* + (1 —t)y*) 114
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=[x, —x* 19— (1 — Do (gB — cqo7?)
x|l Bx, — Bx* ||
—A(qa — cgA7 ) I A(txy, + (1 — t)zy,)
—A(tx*+ (1 —t)y") 9.
Moreover, we know that
Il xp4q —x* 119
=l Q¢ [anyl‘lxn + YnXn
+((1 - yn)l - an.uLZ)TnYn] —x" 9
SHynCon —x) + (1= ) Ty — x7)
+an(yL1xn - ,uLZTnYn) ”q
SHynCon —x) + (1 = ) (Tyn — x7) 119
+q{an(YL1xn — uLyTyyn),
jq(yn(xn - X*) + (1 - Vn)(TnYn - x*)))
+Cq I an(Vlen - ,uLZTnyn) (K
< Yn Il Xn — x* "q+ (1 - Vn) Il TnYn —-x* ”q
+qan | yLixn, — uL Ty |l
XN ¥ (xn = x7) + (1 = 1) (T — x7) 9=t
+anz | yLyxn — uLyTyp 119
=Y [ Xn —x" 9+ (1 - Yn) I Yn — x* 19+ anMZ
<l x, —x" 119
~(1 =) (A =)o (B — cg07")
X|l Bx, — Bx* |19
_(1 - Yn)l(qa - quq—l) I A(txn + (1 - t)Zn)
—A(tx* + (1 —O)y*) 194+ a, M,,
where
M, = glgrl){q I yLyxy — uLyToyyn |
XN Yo (i = ) + (1= ) (T — X7 1977
+eqty I YLyxn — Ly Tyyp 19} < oo,
By the fact that a" —b" <ra"'(a-b),
vr > 1, we get
(1 -y —8)o(qB — cgo97) Il Bx, — Bx* I
+(1 = y)A(qa — Cq)lq‘l) Il ACtx, + (1 — t)z,)
—Altx"+ A =ty 19
<qllx, —x* 11974 Xn = Xni1 Il +a,M,.

1
since 0 <2< (%71, 0 < o < (B)e1, (3.7)
q q

and by the conditions (€1) and (C2), we
conclude that

rllim Il Bx, —Bx*lI=0 (3.9)

and

lim || A(tx, + (1 —t)z,)
n—oo

—A(tx*+ (1 =t)y") II=0. (3.10)
Setting 7y = supps1{ll X, —x* I, Il z, — ¥ II},

it follows from Lemma 2.7 and Lemma 2.10, we
have

Il z, —y* I
=1l Q¢c(x, — 0Bx,) — Qc(x* — dBx*) II?
< ((xq —0Bxy) — (x* — 0Bx"),j(zn — ¥7))
=((xy —x) + 0(Bx" — Bxy),j(z2n —¥"))
=(xn —x%j(Zn —Y")

I‘U(BX* — Bxp, j(zn —¥"))
< E[" X — x* N2 +ll 2 —y* 112

=91l Gtn = x%) = (za —¥7) D]
+0 Il Bx* — By Illl z, — y* .

Then,

|z, —y* II?

<l xy —x* 12— g2(l (xp —x*) = (Z — ¥ )
+20 | Bx* — Bxp, Wl z, — y* |, (3.11)

Furthermore, setting
72 = suppa1{ll Xp — " I Iy —x* 11}
and
73 = Suppa1{ll yu = %" I, Il 2, — ¥ I},
we compute
Iy, —x* 112
=l QcU — 24)(txn + (1 — )zy)
—Qc(I — AA)(tx* + (1 — )y I
< —-24)(tx, + (1 —t)z,)
t—(l —A4)(Ex" + (1 =)y (Y — x7))
< E[" X — X 1% 1y —x* 112
_‘%35" Xn — Yn D]
+7[II Zn =V 2+l oy — x* 12
=93l (Zn = ¥") = O —x7) D]
+A 1A + (1 —t)y")
—A(tx, + (1 —t)zy) My, —x* I,
where g,:[0,2r,) = [0,0) and g3:[0,213) =
[0,0) are continuous, strictly increasing and
convex functions. Since 0 <t <1 and from

(3.11), so

Iy — x* 112

Stlhag—x" 1P+ @A —=0) ll z, —y* I?
_tgz(” Xn = Yn ")

—(1=-0gsU zn —y) = —x) 1D
+2A 11 A(tx* + (1 = t)y*)
— At + (1= D22) 1l 3 — 2" |
<l x, —x* I1>— tga (Il xp —yn 1D
—1=-0g3U (zn =y) = O —x9) 1D
—A =gl (tn =x") = (2o =¥ D
+20(1—1t) | Bx* —Bx, llll z, —y* |l
+2A 11 A(tx* + (1 —t)y*)
—A(txy, + (1 —t)zy) ll y, —x™ I,
Consider,
Il xpeq —x* 112
=l Qc[anyLixn + YnXy
+((1 =y = @uul)Toyn] — x* II?
<N y(n —x7) + (1 = ) (Tpyn — x7)
+an (Y Lyxn = ULy Toyn) II?
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SHynCn —x) + (1= ¥) (Tnyn — x7) 2
+2an(yL1xn - .uLZTnYn'j(yn (xn - x*)
+(1 - Vn)(TnYn - x*)
+an (YLixn — 1Ly Toyn)))

< Yn Il Xn — x" "2+ (1 - yn) II Yn — x* ”2+ anMS

<Il x, — x* 112
—A=y)tg(l xp —yn 1)

—1=-v)A =091 zn =y) = O —x) 1)

—1=v)A =gl (xn —x) =z —¥) )

+20(1—v)A =) | Bx* = Bx, lll z, —y™ |l

+22(1 =) N ACtx* + (1 = £)y*)

—A(tx, + (1 =0)zy) My —x* 1] + M3,
where

M; = igg{zmlxn — ULy T Yn, J (¥n (xn — p)

+(1 - yn)(Tnyn - p)
+an(YL1xn — ulyTpyn)))} < oo
It follows that
A=) A =g (0 —x") = (zp =¥ )
+(1 - yn)tgz(" Xn = Yn ")
A =r)A - g3l Zn =y) = O —x) 1D
Sl —x* 12 =1 xpqq — x* 112
+20(1—v)A=t) | Bx* — Bx, lll z, —y™ Il
+2A(1 =) 1 A(tx* + (1 — t)y*)
—A(txy, + (1= t)zp) Ml y — x" ] + ay M3
SNxy = xpgr Q2 — ™ 1+ X0 — X7 1)
+20(1—v)@A =) | Bx* = Bx, lll z, —y* |l
+22(1 =) M A" + (1 = 0)y")
—A(tx, + (1 —t)zy) Ml vy, — x* ] + ap,Ms.
It follows from (3.7), (3.9), (3.10), condition
(C1), (€2) and the properties of g, we conclude
that

lim 1l (o —x7) = (2o —y") =0, 3.12)
1%1_{{)10 I, =y, I=0 (3.13)

and
lim 1l (zn = y*) = O —x7) I1I=0. (3.14)
So,

” xn _lpxn "=" xn _yn "—) 0
as n-— oo. (3.15)

Observe that

I Tnyn — Xn I

S0 Xpgr — X 1+ X1 — Ty |l

=l Xpyq — X |+l QclanyLixn + Yaxn
+((1 - Vn)l - anﬂLZ)Tnyn] - TnYn I

S xpgr — X I+l [@nVLiXn + VrXn
+((1 - Vn)l - anﬂLZ)Tnyn] - TnYn I

=l Xpgq — x5 |l
+Il an(Vlen - .uLZTnyn) + Vn(xn - TnYn) I
Sl xpe1 = Xp | +an 1 YLyxy — pLo Ty |l
+yp Il xn — Ty |1l
which implies that

I Toyn — x5 IS 1—y (B

—In

o I vLix, — MLZTnyn ") (316)

Applied condition (C1), (€2) and (3.7) in (3.16),
we get

lim Il Ty, = %, 1= 0, (3.17)
Thus, we have

[ Tnyn ~Wn I
= Tn}’n —Xn I+ Xn = Yn -0
as n- o, (3.18)

Therefore,

Il T — x5 |l
| Tnxn - Tnyn I+ TnYn ~—Vn I+ Yn — Xn I
<2 Yn — Xn I+ Tn)’n —Vn [I-0

as n-— oo, (3.19)

By Lemma 2.6, we have

limsup || Tx, — T,x, I< lim sup || Tx — Tx Il
n—-oo n—=0ye(x,}

=0. (3.20)
Thus,

| Tty — 2xn I Txp — Ty | +1l Tpxtp — x|l
-0 as n- oo (3.21)

Now, we show that x* € F:=n2; F(T;) N
F(¥). Leté € (0,1) beaconstantand U: C - C
be defined by Ux = 8Tx + (1 — §)Wx, where ¥
is defined by Lemma 2.13. By Lemma 2.5 and
Lemma 2.13, we conclude that U is a
nonexpansive and
F(U)=F(T) NFM¥) =nZ, F(T;) N F(¥).

Setting x; = Qc¢[tyLix: + (I — tul,)Ux,], by
Lemma 2.4, we get {x,} converges strongly to
the unique solution of the variational inequality
(3.2), thatis x* € F(U). Consider,
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Il xn — Uxy |l

<08y — Txn) + (1= 6) (e — W) |l
SOlxy =Txp I +(1—=6) Il x — Wy |l
=6lx, = Txp Il +(1 =) 1 xp —yu .
From (3.13) and (3.21), we have

I x,—Ux, >0 as n- oo, (3.22)

Next, we need to show

limsupn—»ooO/LIX* - .uLZx*rjq(Yn - x*)) <0
where x* is the solution of the variational
inequality (3.2).

It follows from (3.22) and Lemma 2.5 that z €
F(U). Since the Banach space E has a weakly
sequentially continuous generalized duality
mapping j;: E — E™ and x,,, — z, we obtain that

limsupy oo (Y L1x™ — pLyx”™, jg (O — x*))
= )}ij{}o(yl'lx* — ULyx", j (Xp, — X7))
= (yLix™ — ulyx”, jo(z — x™)) < 0. (3.23)

Finally, we prove that
Ix,—x*lI-0 as n- oo.
Setting u, = a,yYLixn + Ynxn + (1 =yl —
ALy Tyxpe1, V0 = 0, it follows from Lemma
2.1, Lemma 2.2 and Lemma 2.10 that
Il xpeq —x* 119
< (un - x*rjq(xn+1 - x*))
= (1 ~¥n— anT) Il Toyn — 2 Xn+1 — x* ”q—l
¥ Xy — 2 Il X — x* 1971
+an(yLix, — ]/le*!jq(xn+1 —x"))
+an(yLix* — AuLZX*qu(erl —x"))
S[1—an@—yD] I X = X" Il Xy — 2™ 1977
+an(yLix* — AuLZX*qu(erl —x"))

1
< [1 = (@ =y I 20 = x 19
L g = x" 1]

Fan(YLix™ — pLlyx”®, jq(Xn41 — X)),
therefore

Il —x* 119

< 1—-a,(t—yL)

T 1+(q —qal)an(r —vL)
1+(q—Dan(t—yL) {rlax” = plox’,
jq(xn+1 —x"))

S[1-ap(@—yL)] lx, —x" 117

qan * *
1+(g-Dan(r=yL) {rlax” = plox’,
Jqg(Xns1 — X)) (3.24)

Il x, —x* 119

Now, from (C1), (3.23) and applying Lemma
2.15 to (3.24), we can verify that || x,, — x* |-
0, thatis x,, » x* as n — oo. This completes the
proof.

Corollary 3.2 Let E be a 2-uniformly smooth
and uniformly convex Banach space and @ #
C c E be a closed convex subset. Let j: E - E*
be a weakly sequentially continuous generalized
duality mapping with the best smooth constant
K and Q. be a sunny nonexpansive retraction
from E onto C. Suppose that A: C — E is an a-
inverse-strongly accretive, B:C - E is a B-
inverse-strongly accretive, T:C—->C is a
nonexpansive mappings and ¥ is defined by
Lemma 2.13. Let L;: C — E be a L-Lipschitzian,
L = 0andL,:C - E be ak-Lipschitzian and n-
strongly  accretive, K,1 > 0. Assume
{an}. {ra} € (0,1),

O<pu<——,0<1A< %

K2K2 '

B
0<o<:z Os=syL<t where 7=pu(m —
K2ux?) and F:=F(T) N F(¥) # @. Let {x,}
be the sequences defined by x; € C and

zZn = Qc(I — 0B)xy

Yn = Qc — A4)(txn + (1 — D)zy),
Xns1 = Q¢ [an)’len t VnXn

+((1 =yl — anul;)Tyn],

(3.25)

which corresponds to the conditions:

(C1) limy e, =0, X7, a, =o0; and

limy, o0 |@n41 — an| = 0;

(C2) limpoo|Vn+1 — ¥ul =0,

0 < liminf, 0y, < limsup,oeyn < 1.

Then {x,,} converges strongly to x* € F which

also solves the following variational inequality:
(yLix* — uL,x*, J(z —x*)) < 0,vz €F.
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